
Software Analytics for Mobile Applications – Insights & Lessons Learned

Roberto Minelli and Michele Lanza
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Mobile applications, known as apps, are software
systems running on handheld devices, such as smartphones and
tablet PCs. The market of apps has rapidly expanded in the
past few years into a multi-billion dollar business. Being a new
phenomenon, it is unclear whether approaches to maintain and
comprehend traditional software systems can be ported to the
context of apps.

We present a novel approach to comprehend apps from a
structural and historical perspective, leveraging three factors
for the analysis: source code, usage of third-party APIs, and
historical data. We implemented our approach in a web-based
software analytics platform named SAMOA.

We detail our approach and the supporting tool, and present
a number of findings obtained while investigating a corpus
of mobile applications. Our findings reveal that apps differ
significantly from traditional software systems in a number of
ways, which calls for the development of novel approaches to
maintain and comprehend them.

Keywords-mobile applications; software evolution, mainte-
nance, analytics; mining software repositories;

I. Introduction

Mobile applications, also known as apps, are software
systems aimed at smartphones, tablet PCs, and other handheld
devices. Apps are implemented in programming languages
usually dictated by the platform: Java for Android, Objective-
C for iOS, C# for Windows phone, etc. Each vendor provides
its own distribution channel (e.g., Google Play for Android
apps, App Store for iOS apps). The apps marketplace is vast:
The Apple and Android stores, for example, offer around one
million apps for download. Islam et al. [1] affirm that the
development of apps is having significant impact both from
an economical and from a social perspective. They reported
that the apps business generated a revenue of ca. $4.5 billion
USD in 2009. Markets & Markets predict that the global
apps business will be worth $25 billion USD in 2015 [2].
As the popularity of apps increases, maintaining them will
become critical.

Like traditional software systems, apps evolve over time
and require maintenance activities. Classical approaches to
software maintenance and program comprehension [3], [4],
[5], [6], [7], [8] were developed when apps did not exist, and
it is unclear if those approaches can be ported to apps. Apps
are distributed through app stores that do not provide source
code, as mentioned by Harman et al. [9]. To overcome this
problem, we settled on a public catalogue of FOSS (free and
open source) apps for the Android platform, named F-Droid1.

1See http://f-droid.org/

We present an in-depth investigation of a large corpus of
apps from a structural and historical perspective. Our analysis
focuses on three factors: (1) source code, (2) usage of third-
party Application Programming Interfaces (APIs), and (3)
historical data. We want to answer questions such as: How
does an app differ from a traditional system in terms of size
and complexity? Do apps make intensive use of third-party
APIs? Does the source code of apps contain the usual code
smells [10] or are there smells specific to apps? To support
our analysis, we developed a software analytics platform for
apps: Samoa [11]. Samoa mines software repositories of apps
and uses visualizations to present the data. We present a
number of findings obtained while investigating the F-Droid
corpus. For example, we noticed that the use of inheritance is
essentially absent in apps, that apps heavily rely on external
APIs, and that most apps are short-lived single developer
projects. In this article2 we make the following contributions:
• An in-depth analysis of apps from a structural and

historical perspective.
• A presentation of Samoa, a web-based software analytics

tool for apps.
• A collection of insights pertaining to the maintenance

and comprehension of apps.
Structure of the Paper: In Section II we review related

work. In Section III we detail our approach and Samoa, our
supporting tool. In Section IV we present our findings. In
Section V we summarize our work and outline future work.

II. RelatedWork

Due to the recency of apps, there is little directly related
work, and its nature is quite heterogeneous.

Ruiz et al. explored software design aspects of apps,
focusing on reuse by inheritance and class reuse [12].
They divided apps in categories (i.e., Cards & Casino,
Personalization, Photography, Social and Weather), and found
that 61% of all classes in each category appear in two or
more apps. Hundreds of apps were completely reused by
another app in the same category. Harman et al. introduced
App Store Mining [9], and focused on aspects pertaining to
factors of success of apps with respect to their distribution
channels. We want to study the source code of apps, rather
than their channels of distributions, to understand if and how
they differ from traditional software systems, and which are
the possible implications for the maintenance of apps.

2For understandability we advise reading a color version of this paper.

http://f-droid.org/


Figure 1: A first glance of Samoa.

Indirectly related are studies of the Android operating
system, which is in itself a traditional software system,
i.e., the following works do not focus on apps, but on
the framework that allows apps to be built. Khomh et
al. [13] conducted an empirical study to understand how
Android adapts the Linux kernel, from which it is derived.
Asaduzzaman et al. [14] mapped bug reports and changes
to identify bug-introducing changes. Martie et al. [15] used
statistical models to identify Android’s most debated high-
level issues. Reina and Robles [16] analyzed Android to
understand who is involved in localization and translation
activities. Guana et al. [17] used Android bug repository
data to comprehend the architectural layers of Android. Hu
et al. [18] compared Android’s concrete and conceptual
architecture. Sinha et al. [19] performed a quantitative
investigation of Android’s change history.

Apps have only recently started to be the focus of software
engineering research, this explains the small amount of related
work. At this time it is uncertain whether classical software
maintenance and program comprehension approaches can be
used for apps, which motivates the present work.

III. SAMOA

To support our analysis we developed Samoa, an interactive
web-based visual software analytics platform to analyze apps
from a structural and historical perspective. Samoa is available
at http://samoa.inf.usi.ch. The User Interface (UI) of Samoa
is divided into 5 parts (see Figure 1):

1) Selection panel. It allows the user to pick the app to
be analyzed, and to switch between the three different
interactive visualizations offered by Samoa.

2) Metrics panel. It displays a set of metrics for a specific
revision of an app chosen through the selection panel.
At ecosystem level, it displays global measurements.

3) Revision info panel. It displays information about a
specific revision of an app (i.e., snapshot).

4) Entity panel. It displays data about the entity in focus.
5) Main view. The main surface dedicated to the interactive

visualizations: (1) a snapshot view to depict a specific
revision of one app, (2) a history view to depict the
evolution of one app, and (3) an ecosystem view to
depict more apps at once.

http://samoa.inf.usi.ch


A. Software Metrics for Apps
We gather, through a module of Samoa, a set of metrics

for our app analysis. They are listed in Table I.

Metric Description Scope

NOP The Number of Packages of a project. A

NOC The Number of Classes defined by the user. AP

NOM The Number of Methods defined by the user. APC
LOC The number of (non-empty) Lines of Code. APCM
CYCLO McCabe’s Cyclomatic Complexity [20]. APCM
CALLS The number of (distinct) Method Calls. APCM
FANOUT The Number of Called Classes [21]. APCM
ANDC The Average Number of Derived Classes [22].

This metric does not count interfaces.
AP

AHH The Average Hierarchy Height of a system. A
class is a root class if it is not an interface and
not derived from user-defined classes.

AP

INTC The Number of Internal Calls, i.e., invocations
of methods that implement internal behavior.

APCM

EXTC The Number of External Calls, i.e., invocations
that refer to third-party libraries.

APCM

NOCE The Number of Core Elements, i.e., classes
composing the core of the app.

AP

CoreLOC The sum of LOC of core elements. AP

Commits The Number of Commits of an app. APC

CALLR The ratio between INTC and EXTC. APCM

CORER The ratio between CoreLOC and LOC. APCM

Table I: Software metrics for apps.

The scope of a metric denotes to which type of entity
(i.e., App, Package, Class, or Method) it pertains. Some finer-
grained metrics, e.g., LOC (Lines of Code), can be used at
any granularity level through aggregation, but in practice we
use them for specific scopes, indicated in bold.

B. Visualizing Apps
Samoa provides three visualizations to explore apps: a

snapshot view to depict a specific revision of one app, a
history view to depict the evolution of one app, and an
ecosystem view to depict several apps at once.

Snapshot View
Figure 2 depicts our snapshot view. It presents the essential

structural properties of an app using a circular view depicting
the core of an app (i.e., the classes) and the external API
calls it makes. Core elements are the entities specific to
the development of apps (i.e., inheriting from the mobile
platform SDK’s base classes). In Android apps, they are
specified in the manifest (i.e., An XML file that presents
essential information about an app). The view depicts each
core element as a circle, where its radius is proportional to the
value of LOC, and the color indicates its type (e.g., Activity,
Service, Main Activity). Figure 2 depicts the Alogcat3 app.

3See http://code.google.com/p/alogcat/

Activity Main Activity

Default
Main Activity Service

Phantom 
Element

Core Colors Call Ring Colors

Android calls Java calls

JavaX calls Apache calls

Unclassified 
calls All other calls

Delta with largest snapshot in history

Number of
external calls

Number of
internal calls

The whole app (in terms of LOC)

The CORELOC

b
a

Other LOC

Figure 2: A snapshot view of Alogcat.

Alogcat is composed of 21 classes. The central part of
the visualization (Figure 2.a) presents information about
the size of the app (in terms of LOC). The core of the
app accounts for nearly half the size of the app (i.e., 409
CoreLOC out of 876 LOC) and is composed of four elements:
two services, a main activity, and a default main activity.
The remaining 17 classes are not depicted, but their LOC
value is represented in Figure 2 as the difference between
the radiuses of the app (i.e., blue shaded circle) and the
core circle (i.e., red). The call ring (Figure 2.b) depicts third-
party method invocations. Its thickness is proportional to
the number of external method calls. Each portion of the
ring represents calls to a distinct third-party library. Colors
distinguish calls to different libraries. The angle spanned by
an arc is proportional to the number of API calls. Alogcat
mostly calls two libraries: Android SDK (i.e., green) and
Java (i.e., orange). The outer radius of the call ring indicates
the size of an app, considering both LOC and method calls.
The green shaded circle represents the maximum size of an
app over its history. Figure 2 shows a gap between the green
circle and the outer radius of the call ring, meaning that the
current revision is not the largest in the app’s history. The
snapshot view provides also the means to assess the ratio
between internal and external method calls. The thickness of
the white ring between the app and the call ring portrays the
number of internal calls. In Alogcat the call ring is wider than
the white ring, meaning there are more calls to third-party
libraries than calls to methods of user-defined classes.

http://code.google.com/p/alogcat/


(a)

(b)

Figure 3: Evolution views of Open-GPSTracker in terms of
(a) LOC and (b) number of core elements.

Evolution View

The evolution view (see Figure 3) depicts, using stacked bar
charts and line charts, evolutionary information (e.g., LOC,
external calls, or core elements) about an app, depicting
all the snapshots available to Samoa. Each bar represents a
snapshot of an app, divided into layers, according to the type
of data presented. The height of each bar represents the value
of a specific software metric. The view uses opacity to denote
an app’s release versions: Darker bars are snapshots whose
release number changed. Figure 3 shows the evolution of
LOC of the Open-GPSTracker4 app. The layers are CoreLOC
(i.e., red) and non-CoreLOC (i.e., grey), and the height of
each bar portrays the value of LOC. We also use line charts
to represent data without a logical layer subdivision, such as
the number of core elements presented in Figure 3.b.

Ecosystem View

The ecosystem view depicts several apps at once, using
stacked bar charts or a grid view (see Figure 4). In the
grid view each element is a simplified snapshot view: The
radius of the core (i.e., yellow) corresponds to the number of
CoreLOC, the total radius is proportional to the total number
of LOC, the span of the call ring shows the proportions of
external calls, but omits the number of internal calls.

Figure 4: An ecosystem view of 6 apps.

4See http://code.google.com/p/open-gpstracker/

Figure 4 shows 6 apps, sorted according to their LOC size.
This view is useful to get a “big picture” of several apps and
then drill down using the snapshot and the evolution view.

User Interaction
In Samoa all visualizations are interactive. For example,

by hovering on a shape, the entity is highlighted and the user
is provided with additional information about that entity. The
user can use the mouse to pan the snapshot view. Scrolling
(i.e., mouse wheel) on the metrics table (Figure 1.2) allows
to change the zoom level. On clicking on a core element,
Samoa shows its source code, as depicted in Figure 5.

Figure 5: Samoa displaying the source code of Alogcat.

In the bar charts data can be re-ordered and layers can be
grouped or stacked. In both the evolution and ecosystem view
clicking on a shape leads to a snapshot view. To illustrate
how user interaction is supported in Samoa we provide a
screencast located at http://samoa.inf.usi.ch/samoa.mov.

C. Samoa Behind the Curtains

SAMOA BACK-END

Java SVN 
Crawler

Source code model extraxction

Metrics Extraction

AST

Generator
Parser

MSE

Generator
Parser

JSON 
Files

SAMOA FRONT-END

JSON retrieval

HTML
CSS

Javascript
jQuery/PHP

d3.js

Internet

1

2

3

4

SVNSVNSVNSVN

Figure 6: Architectural overview of Samoa.

1) Architectural Overview: Samoa has a back-end and a
front-end, as Figure 6 depicts. The back-end is responsible
for (1) mining apps-specific data (source code and history)
data from the repository; (2) processing the data, by parsing
the source code (analyzing both the Abstract Syntax Tree
and the MSE5); (3) extracting a set of software metrics from
the AST and the MSE file; and (4) generating JSON6 files
that are provided to the front-end.

5See http://www.moosetechnology.org/docs/mse
6See http://www.json.org

http://code.google.com/p/open-gpstracker/
http://samoa.inf.usi.ch/samoa.mov
http://www.moosetechnology.org/docs/mse
http://www.json.org


2) Modeling apps: To model apps and their history we
extended classical software concepts (structure, source code,
revisions, etc.) with concepts specific to mobile applications.
In an app, we distinguish two sets of classes: “core” and

“non-core”. The former are entities specific to the development
of apps (i.e., classes that inherit from the mobile platform
SDK’s base classes), and the latter are the remaining classes.
In Android, core classes are Activities and Services, and are
specified in the manifest file. Also, since apps extensively
rely on third-party libraries, we explicitly model not only
invocations of methods within the app, but also of methods
located in external third-party APIs.

IV. Insights aboutMobile Applications

We present insights that pertain to apps, in terms of
maintenance and evolution-related issues and which have an
impact on the applicability of existing analysis approaches.
Our analysis is based on the F-Droid corpus7, i.e., a catalogue
of FOSS apps for Android. To conduct an in-depth analysis
we restricted the dataset to a final corpus composed of the
20 apps listed in Table II.

Name Rate Installs Start
rev.

End
rev.

Size
(LOC)

Alogcat 4.6 >100k 2 48 876

Andless 4.2 >100k 2 93 2’372

Android VNC 4.3 >1m 2 203 4’949

Anstop N/A N/A 2 61 1’142

AppSoundmanager 4.5 >50k 1 157 1’605

Appsorganizer 4.6 >1m 3 191 8’321

Csipsimple 4.4 >100k 2 1415 20’777

Diskusage 4.7 >50k 2 69 4’749

Mythdroid N/A N/A 76 640 6’114

Mythmote 4.6 >10k 2 281 1’593

Open GPSTracker 4.2 >100k 2 1255 9’754

Opensudoku 4.6 >1m 15 415 3’813

Replicaisland 4.2 >1m 2 7 14’192

Ringdroid 4.6 >10m 2 66 3’516

Search Light 4.7 >100k 2 4 272

Share My Position 4.6 >10k 2 76 468

Sipdroid 4.0 >500k 50 620 14’019

Solitaire 4.3 >10m 2 30 3’343

Zirco Browser 3.8 >10k 65 457 6’429

Zxing 4.3 >50m 569 2257 3’407

Table II: The final corpus.

Rating and installs information come from the Google
play store8 (where “N/A” means that the app is not listed
in the store). The first and last snapshot available to Samoa,
are reported in the columns “start” and “end revision”.

7See http://f-droid.org/
8See https://play.google.com/store

During our analysis, we discovered peculiarities of Android
apps. We devised an extensive catalogue [11] of use cases,
symptoms, and possible scenarios, which we cannot present
here due to space reasons. Instead, we present a subset
of observations supported by a description, one or more
examples, and a discussion of the implications.

Apps are smaller than traditional software systems.

Description: In terms of LOC, apps are small compared
to traditional software systems. Often a few classes compose
an entirely working app. In our dataset, the average size is
5.6 kLOC. The smallest app, Searchlight9, has less than 300
LOC; the largest app, Csipsimple10, has ca. 20 kLOC.

Figure 7: The SearchLight application.

Example: Figure 7 depicts the Searchlight application,
which is composed of two classes: a main activity (i.e., the
yellow entity), and a non-core class (whose LOC value is
proportional to the remaining part of the core container, the
blue shaded circle). Together, they sum up to 272 LOC.

Implications: Many apps have a small set of functionali-
ties, thus a few classes are enough to build them. Nevertheless
it seems they are not trivial to maintain, as we see with the
next observation.

Apps are inherently complex, mostly because they
rely on third-party libraries.

Description: In the subset of apps of the F-Droid corpus
we analyzed, external calls make up roughly 2/3 of all method
invocations. In many apps external calls represent more than
75% of the total number of method invocations. Consequently,
the number of calls implementing internal behavior is small.
This is visible from our snapshot visualization: The thickness
of the call ring represents the number of third-party calls.
The number of internal calls is associated with the thickness
of the white ring between the shaded blue circle and the
call ring. Comparing these two measures gives an indication
about the ratio of external and internal method calls.

9See https://code.google.com/p/search-light/
10See http://code.google.com/p/csipsimple/

http://f-droid.org/
https://play.google.com/store
https://code.google.com/p/search-light/
http://code.google.com/p/csipsimple/


Figure 8: The call ring of Share My Position application.

Example: Figure 8 shows the Share My Position11 ap-
plication, which has 157 external invocations and 48 calls
implementing internal behavior.

Implications: Since apps heavily rely on external libraries,
in addition to look at their source code to comprehend them,
one must also understand the behavior of the employed third-
party libraries, complicating program comprehension and
maintenance [23], [24], [25], [26].

The size and complexity of apps grow in correlation
with the addition of third-party method invocations.

Description: In our analysis, we studied a set of software
metrics of apps and their relationships. We observed that
Pearson’s linear correlation coefficient between number of
external calls and McCabe’s cyclomatic complexity number
is high. The correlation between number of LOC and external
calls is also strong. On the entire dataset, the average values
for these correlations are respectively 0.82 and 0.84.

Figure 9: The evolution of LOC of the Zxing application.

Example: Figure 9 and 10 respectively show the evolution
of number of LOC and external calls of the Zxing12 app.
The two bar charts have analogous shapes, supporting our
observation: During the history, when LOC increase or
decrease, third-party invocations behave the same way.

11See http://code.google.com/p/sharemyposition/
12See http://code.google.com/p/zxing/

Figure 10: The evolution of third-party calls of Zxing.

Implications: We observed high values for the correlations
of EXTC vs. CYCLO, and EXTC vs. LOC. Since the
behavior of apps relies to a large extent on external libraries,
the growth of an app is causally connected with the usage
of the external libraries.

The use of inheritance is essentially absent in apps.

Description: Since Android apps are object-oriented
systems, we also studied the use of inheritance employing
two software metrics: Average Hierarchy Height (AHH) and
Average Number of Derived Classes (ANDC) [22].

Example: The apps in our corpus have very small average
values for both these metrics (ANDC = 0.19, AHH = 0.09)
compared to traditional Java systems [22].

Implications: On the one hand the near-absence of
inheritance could be justified by the fact that apps tend
to be small, and thus there is little potential for inheritance.
However, apps are real world systems, and we suspect that if
they evolve over a long time, they will grow in size, according
the Lehman’s software evolution laws [27].

On the other hand, it could also point to the fact that
many apps are not developed in a systematic way, and when
programming is performed in a sluggish way, inheritance is
a likely victim. This might be a problem, since inheritance
helps to better structure the code and enables code reuse.
Daly et al. analyzed traditional software systems and showed
that on average, maintaining a flat system requires 20% more
effort than an analogous system using inheritance [28].

Some apps contain the entire source code of third-
party libraries.

Description: Android apps are Java systems, where usually
third-party source code is reused by referencing JAR (Java
ARchive) files containing the byte code of the external library.
Developers of apps have a tendency of directly importing the
entire source code of third-party libraries instead of adding
the needed JAR files to their projects.

http://code.google.com/p/sharemyposition/
http://code.google.com/p/zxing/


Figure 11: The evolution of LOC of Apps Organizer.

Example – Evolution view: Figure 11 depicts the evolution
of the number of LOC of the Apps Organizer13 application.
The view presents remarkable increases and decreases in
terms of size. In Figure 11.a the authors added the source code
of the Trove library14 that provides high speed collections
for Java. Later on, as depicted in Figure 11.b, they removed
some unused classes of the same library.

Figure 12: The Sipdroid application.

Example – Snapshot view: Figure 12 depicts the Sip-
droid15 application. The app has ca. 14k LOC, but only
1.5k are CoreLOC. The app is a Voice Over IP client
and uses JSTUN16 i.e., a Java-based library for Simple
Traversal of User Datagram Protocol through Network
Address Translation. Developers included all the source code
of that library.

Implications: One implication is that mobile devices still
possess only limited computing resources, and code bloat in
such a context is not desirable [29], [30]. We believe this to
be a minor problem, since mobile devices are getting more
and more powerful. The major implication is that copying
external code into a system can have a series of far from
obvious legal consequences [31], [32], which are probably
underestimated by many apps developers.

13See http://code.google.com/p/appsorganizer/
14See http://trove.starlight-systems.com/
15See http://code.google.com/p/sipdroid/
16See http://jstun.javawi.de/

Some developers use versioning systems only at later
stages of the development.

Description: Developers of apps seem to ignore an
established common-sense practice: To put software projects
under revision control early on. On average, the LOC of
the first revision represents ca. one third of the LOC at the
end of the evolution, which points to the fact that the first
versions of the system were never under revision control.

Figure 13: The evolution of LOC of Solitaire for Android.

Example: Figure 13 shows the evolution of LOC of
Solitaire for Android17. At the beginning of the history the
app has already 2.5 kLOC. We assume the app had a previous
evolution, not versioned, or versioned elsewhere. The SVN
log confirms our conjecture: “Initial add, corresponds to
market version 1.8”.

(a)

(b) (c)

Figure 14: a) Evolution view of App-SoundManager (LOC);
b) Snapshot view of rev. 1; c) Snapshot view of rev. 123.

Example: Figure 14.a depicts the evolution of LOC of
App-SoundManager18. In the first 122 revisions (Figure 14.b),
apparently, the app is left unchanged. A deeper analysis
revealed that developers worked on one of the “branches” of
the repository, i.e., schedules. At revision 123 (Figure 14.c)
they “merge from schedules branch”. However, we do not
have any means to reconstruct what happened.

17See http://code.google.com/p/solitaire-for-android/
18See http://code.google.com/p/app-soundmanager/

http://code.google.com/p/appsorganizer/
http://trove.starlight-systems.com/
http://code.google.com/p/sipdroid/
http://jstun.javawi.de/
http://code.google.com/p/solitaire-for-android/
http://code.google.com/p/app-soundmanager/


Implications: The quality of any software analysis is
connected to the quality of the available data, as otherwise
wrong conclusions can be drawn [33], [34]. Incomplete
histories of apps make retrospective software evolution
analysis difficult.

Developers often break the connection between An-
droid manifest and source code.

Description: The manifest file tells Android where to find
core elements within an app. Developers must manually
maintain this file in sync with the source code. Sometimes
developers modify classes (e.g., rename refactoring) without
reflecting the changes in the manifest.

Figure 15: The evolution of LOC of the Zxing app.

Example: Figure 15 shows part of the evolution of the
LOC of Zxing. The figure highlights what we call “core
drop”: The number of CoreLOC decreases, while the overall
number of LOC remains constant. In Zxing the authors
reordered some functionalities into sub-packages, but they
forgot to update the references in the manifest. Then, at later
revisions they “unbroke the app after the big subpackage
reshuffle of ’09: Updated manifest entries [. . . ]”.

Implications: Like any software system, apps are also
made up of pieces that are not source code [35], but necessary
for their functioning. We believe that as apps will get more
complex the maintenance and understanding of such pieces
will become a concern.

Development guidelines are often ignored.

Description: Software systems should conform to a set
of sound guiding principles. For example, the Android
documentation states that “an app consists of multiple
activities loosely bound to each other. Typically, one activity
is specified as the “main” activity, which is presented to
the user when launching the application for the first time”.
Activities are depicted as core elements in our snapshot view.
We observed many apps have more than one main activity.
Android lets one specify also a “default main activity”: The
real activity to invoke when the app is started. In some apps
there are also multiple occurrences of such special activities.

Figure 16: The App-SoundManager application. Main ac-
tivities are yellow, “default” main activities have a thicker
stroke.

Example: Figure 16 depicts a snapshot of App-
SoundManager. The core has eight Activities (i.e., orange and
yellow) and two Services (i.e., purple). Four of the activities
are labeled as ”main” and three of them are “default” main
activities (i.e., thicker stroke in our snapshot view).

Implications: Multiple main activities represent diverse
entry points for apps, which complicates their comprehension.

Some apps are only composed of the core.

Description: On average, CoreLOC represent roughly half
of the size of an entire app. The snapshot visualization unveils
that some apps have almost only CoreLOC. In our corpus
25% of the apps have more than 70% of CoreLOC.

Figure 17: The AndLess application.

Example: Figure 17 shows the AndLess19 application,
which has about 2.3k LOC, and only 60 of those are non-
CoreLOC. The snapshot view shows a small gap between
the core circle (i.e., light red circle) and the entire app (i.e.,
shaded blue circle).

19See http://code.google.com/p/andless/

http://code.google.com/p/andless/


Implications: Apps entirely implemented within core
element violate basic design guidelines regarding separation
of concerns and encapsulation. For example, AndLess is a
music player composed only of four classes. Its main activity
(i.e., the big yellow circle in Figure 17) counts 1.7k LOC
and it is responsible for (1) drawing the UI, (2) starting &
stopping the music, (3) recursively traversing the file system
to find the music, (4) parsing playlists, (5) handling CUE
files, etc. The main activity is de facto a “god activity”, and
like god classes represents a maintenance problem [36].

V. Conclusions

The first apps were born when Apple introduced the iPhone,
back in 2007. Apps are software systems, and like traditional
software systems, they evolve and require maintenance activ-
ities. Since traditional approaches to program comprehension
and maintenance [3], [4], [5], [6], [7], [8] were created before
apps appeared, it is unclear whether they can be used or
adapted to the context of apps.

We performed an in-depth investigation of a corpus of
Android apps, supported by our freely available software
analytics platform named Samoa. Some of our findings are
unique to Android apps because they involve app-specific
concepts (e.g., Android manifest, core elements). Other
insights could possibly be applied to traditional systems
as well, but further investigation is required. We discovered
that apps present substantial differences to classical software
systems. In the first place, apps are significantly smaller: The
average value of LOC for the apps in our corpus is 5.6k.
Nevertheless it seems they are not trivial to comprehend
and maintain, since the behavior of apps relies to a large
extent on external libraries (i.e., on average, external calls
account for about 2/3 of all method invocations). Their
comprehension involves the understanding of the employed
third-party libraries, in addition to the source code of apps,
complicating maintenance activities [23], [24], [25], [26].

Nowadays, apps are smaller, simpler, and have less
functionality than traditional software systems, but we believe
this difference is destined to disappear. On the one side this
implies that in the future apps will be more powerful and
will have a richer set of features. In the long term, on the
other hand, since the distinction between apps and traditional
systems will become subtle, apps will face the same software
maintenance and program comprehension issues faced with
classical systems. Our investigation points out that while
many existing approaches should be portable to the context
of mobile applications they may need to be tailored to the
specific context of apps.

Future Work. We analyzed a set of open-source Android
apps with fairly short histories. As part of our future work we
want to investigate long lived apps. We also plan to investigate
a larger dataset to confirm the insights obtained so far and
to collect new ones. Moreover, we did not consider apps for
platforms other than Android. Apps for iOS, for example,

could present different peculiarities or structural properties.
As part as our future work, we want to add support for
additional platforms (e.g., iOS, Windows Phone, Nokia) and
therefore also extend our supporting tool, Samoa. It remains
to be seen how we can leverage the differences between apps
and traditional software systems to derive novel approaches
to maintain and comprehend apps.

Acknowledgments. We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for
the project “GSync” (SNF Project No. 129496). We thank
Alberto Bacchelli for his feedback on this work.

References

[1] R. Islam, R. Islam, and T. Mazumder, “Mobile application
and its global impact,” International Journal of Engineering
& Technology (IJEST), 2010.

[2] Markets and Markets, “Global mobile application market
(2010–2015),” 2010.

[3] M. Lehman, “Laws of software evolution revisited,” in
Proceedings of EWSPT 1996 (5th European Workshop on
Software Process Technology). Springer, 1996, pp. 108–124.

[4] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski,
“Metrics and laws of software evolution - the nineties view,” in
Proceedings of METRICS 1997 (4th International Symposium
on Software Metrics). IEEE Computer Society Press, 1997,
pp. 20–32.

[5] M. Lehman, D. Perry, and J. Ramil, “Implications of evolution
metrics on software maintenance,” in Proceedings of ICSM
1998 (14th International Conference on Software Mainte-
nance). IEEE Computer Society Press, 1998, p. 208.

[6] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth, “Software
evolution observations based on product release history,” in
Proceedings of ICSM 1997 (13th International Conference on
Software Maintenance). IEEE Computer Society Press, 1997,
pp. 160–166.

[7] M. Godfrey and Q. Tu, “Evolution in open source software: A
case study,” in Proceedings of ICSM 2000 (16th International
Conference on Software Maintenance). IEEE Computer
Society Press, 2000, pp. 131–142.

[8] W. Turski, “The reference model for smooth growth of soft-
ware systems revisited,” Transactions on Software Engineering
(TSE), pp. 814–815, 2002.

[9] M. Harman, Y. Jia, and Y. Zhang, “App store mining and
analysis: MSR for app stores,” in Proceedings of MSR 2012
(9th Working Conference on Mining Software Repositories).
IEEE Computer Society Press, 2012.

[10] M. Fowler, Refactoring - Improving the Design of Existing
Code. Addison-Wesley, 1999.

[11] R. Minelli, “Software analytics for mobile applications,”
Master’s thesis, University of Lugano, 2012.



[12] I. Ruiz, M. Nagappan, B. Adams, and A. Hassan, “Under-
standing reuse in the android market,” ACM-ICPC 2012 (ACM
International Collegiate Programming Contest), 2012.

[13] F. Khomh, H. Yuan, and Y. Zou, “Adapting linux for mobile
platforms: An empirical study of android,” in Proceedings of
ICSM 2012 (28th IEEE International Conference on Software
Maintenance). IEEE CS Press, 2012, pp. 629–632.

[14] M. Asaduzzaman, M. Bullock, C. Roy, and K. Schneider,
“Bug introducing changes: A case study with android,” in
Proceedings of MSR 2012 (9th Working Conference on Mining
Software Repositories). IEEE CS Press, 2012, pp. 116–119.

[15] L. Martie, V. Palepu, H. Sajnani, and C. Lopes, “Trendy bugs
– topic trends in the android bug reports,” in Proceedings
of MSR 2012 (9th Working Conference on Mining Software
Repositories). IEEE CS Press, 2012, pp. 120–123.

[16] L. Reina and G. Robles, “Mining for localization in android,”
in Proceedings of MSR 2012 (9th Working Conference on
Mining Software Repositories). IEEE Computer Society
Press, 2012, pp. 136–139.

[17] V. Guana, F. Rocha, A. Hindle, and E. Stroulia, “Do the stars
align? multidimensional analysis of androidś layered architec-
ture,” in Proceedings of MSR 2012 (9th Working Conference
on Mining Software Repositories). IEEE Computer Society
Press, 2012, pp. 124–127.

[18] W. Hu, D. Han, A. Hindle, and K. Wong, “The build
dependency perspective of android’s concrete architecture,”
in Proceedings of MSR 2012 (9th Working Conference on
Mining Software Repositories). IEEE Computer Society
Press, 2012, pp. 128–131.

[19] V. Sinha, S. Mani, and M. Gupta, “Mince: Mining change
history of android project,” in Proceedings of MSR 2012 (9th
Working Conference on Mining Software Repositories). IEEE
Computer Society Press, 2012, pp. 132–135.

[20] T. McCabe, “A measure of complexity,” Transactions on
Software Engineering (TSE), pp. 308–320, 1976.

[21] M. Lorenz and J. Kidd, Object-oriented Software Metrics.
Prentice Hall, 1994.

[22] M. Lanza and R. Marinescu, Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[23] S. Raemaekers, A. van Deursen, and J. Visser, “Exploring
risks in the usage of third-party libraries,” in BENEVOL 2011
(10th BElgian-NEtherlands software eVOLution), 2011.

[24] ——, “An analysis of dependence on third-party libraries in
open source and proprietary systems,” in Proceedings of CSMR
2012 (16th European Conference on Software Maintenance
and Reengineering), 2012, pp. 64–67.

[25] V. Bauer, L. Heinemann, and F. Deissenboeck, “A structured
approach to assess third-party library usage,” in Proceedings of
ICSM 2012 (28th IEEE International Conference on Software
Maintenance). IEEE Computer Society Press, 2012, pp.
483–492.

[26] V. Bauer and L. Heinemann, “Understanding api usage to
support informed decision making in software maintenance,”
in Proceedings of CSMR 2012 (16th European Conference on
Software Maintenance and Reengineering), 2012, pp. 435–440.

[27] M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, no. 9, pp. 1060–1076,
1980.

[28] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood,
“The effect of inheritance on the maintainability of object-
oriented software: an empirical study,” in Proceedings of ICSM
1995 (11st International Conference on Software Maintenance.
IEEE Computer Society Press, 1995, pp. 160–166.

[29] N. Mitchell and G. Sevitsky, “The causes of bloat, the
limits of health,” in Proceedings of OOPSLA 2007 (22nd
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM Press, 2007,
pp. 245–260.

[30] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky,
“Software bloat analysis: finding, removing, and preventing
performance problems in modern large-scale object-oriented
applications,” in Proceedings of the FSE/FoSER 2010 (18th
International Symposium on Foundations of Software Engineer-
ing – Workshop on Future of Software Engineering Research.
ACM Press, 2010, pp. 421–426.

[31] M. Di Penta, D. Germán, Y.-G. Guéhéneuc, and G. Antoniol,
“An exploratory study of the evolution of software licensing,”
in Proceedings of ICSE 2010 (32nd International Conference
on Software Engineering), 2010, pp. 145–154.

[32] D. Germán, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol,
“Code siblings: Technical and legal implications of copying
code between applications,” in Proceedings of MSR 2009 (6th
Working Conference on Mining Software Repositories), 2009,
pp. 81–90.

[33] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and balanced?: bias in bug-
fix datasets,” in Proceedings of ESEC/SIGSOFT FSE 2009
(7th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering), 2009, pp. 121–130.

[34] D. Kawrykow and M. Robillard, “Non-essential changes
in version histories,” in Proceedings of ICSE 2011 (29th
International Conference on Software Engineering), 2011,
pp. 351–360.

[35] S. McIntosh, B. Adams, T. Nguyen, Y. Kamei, and A. Hassan,
“An empirical study of build maintenance effort,” in Proceed-
ings of ICSE 2009 (31st International Conference on Software
Engineering), 2011, pp. 141–150.

[36] A. Riel, Object-Oriented Design Heuristics. Addison-Wesley,
1996.


	Introduction
	Related Work
	SAMOA
	Software Metrics for Apps
	Visualizing Apps
	Samoa Behind the Curtains
	Architectural Overview
	Modeling apps


	Insights about Mobile Applications
	Conclusions
	References

