
Performance Debugging in the Large via Mining Millions of Stack Traces

Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang

Microsoft Research Asia

{shihan, yidang, songge, dongmeiz}@microsoft.com

Tao Xie

North Carolina State University

xie@csc.ncsu.edu

Abstract—Given limited resource and time before software

release, development-site testing and debugging become more

and more insufficient to ensure satisfactory software

performance. As a counterpart for debugging in the large

pioneered by the Microsoft Windows Error Reporting (WER)

system focusing on crashing/hanging bugs, performance

debugging in the large has emerged thanks to available

infrastructure support to collect execution traces with

performance issues from a huge number of users at the

deployment sites. However, performance debugging against

these numerous and complex traces remains a significant

challenge for performance analysts. In this paper, to enable

performance debugging in the large in practice, we propose a

novel approach, called StackMine, that mines callstack traces

to help performance analysts effectively discover highly

impactful performance bugs (e.g., bugs impacting many users

with long response delay). As a successful technology-transfer

effort, since December 2010, StackMine has been applied in

performance-debugging activities at a Microsoft team for

performance analysis, especially for a large number of

execution traces. Based on real-adoption experiences of

StackMine in practice, we conducted an evaluation of

StackMine on performance debugging in the large for

Microsoft Windows 7. We also conducted another evaluation

on a third-party application. The results highlight substantial

benefits offered by StackMine in performance debugging in

the large for large-scale software systems.

I. INTRODUCTION

A modern software system tends to include an
increasingly large number of components and lines of code
(LOC), and depend on an increasingly large number of
system components. For example, among commercial
software systems, more than 10 Microsoft products could
amount to more than 600 million LOC [7].

To assure high quality of such modern software systems,
testing and debugging remain the most commonly used
techniques. However, given limited resource and time before
software release, development-site testing and debugging
become more and more insufficient to ensure high software
quality. Development-site testing typically covers only a
limited percentage of various usage scenarios and vast
multitude of execution environments that could occur upon
the deployed software systems. Development-site debugging
typically relies on a limited number of failing runs, which
could be insufficient for effective debugging. Furthermore,
during development-site debugging with limited resource
and time, developers have relatively little knowledge on
which bugs should be given higher priority to fix based on
their impact on users including their impact scope, e.g.,

which bugs impact a large number of users at deployment
sites, and their impact severity, e.g., which bugs impact an
individual user at a high severity level.

To address these issues, recent industrial solutions are
developed and deployed for collecting and leveraging a high
volume of deployment-site usage data to improve debugging
with postmortem analysis. There emerges a new frontier of
debugging practice: debugging in the large, with a prominent
example as the Microsoft Windows Error Reporting (WER)
system (a.k.a. Dr. Watson) [9]. Using a long time period in
the post-release stage and a huge number of information
sources from real-world users, WER allows developers to
obtain distribution information of crashing/hanging bugs to
guide their debugging prioritization. Since its operation in
1999, WER has accomplished huge success within Microsoft.

However, in spite of high importance, performance bugs
are not handled by WER, which heavily focuses on
crash/hang debugging. Performance is one of the key
properties of software, primarily concerning responsiveness,
throughput, and resource utilization. For example, to conduct
performance debugging, along a call path associated with a
thread blocked on a wait, performance analysts typically start
with looking for a subsequence of function calls that account
for a non-trivial portion of waiting time and then try to
derive performance signatures from the subsequence. A
performance signature is one or more functions in which a
potential performance bug resides, often manifested as the
location where the fix to the bug is applied. Optimizing code
implementation within the performance signature could
reduce time consumption on wait. For example, a
subsequence of function calls (InitComponents,
GetHashCode, GetShortPathName, MmAccessFault) comes
from a trace associated with slow startup of a third-party
application, accounting for approximately 0.3 second waiting
time. There, the function GetHashCode is a performance
signature, fixing which could resolve the performance issue
of slow startup (this example is explained in more details in
Section2)).

In contrast to performance debugging against one or a
few execution traces, performance debugging in the large
deals with execution traces with performance issues from a
huge number of users from the deployment sites. Similar to
WER, Microsoft has also provided infrastructure support for
such purpose with mechanisms such as PerfTrack [25] based
on the Event Tracing for Windows (ETW) [28] platform. In
particular, PerfTrack resides inside Windows 7 for
measuring system responsiveness to user actions on
operating systems (OS). For example, when a user clicks on

a folder name, PerfTrack measures how long it takes for the
user to receive an expected reaction from the system, and if
the response time exceeds a pre-defined threshold, PerfTrack
sends execution traces based on ETW such as callstack
information collected in the preceding period back to
Microsoft for performance debugging. Note that other OS
platforms also provide similar mechanisms such as DTrace
[26] for Solaris and several other Unix-like systems.

Such execution traces collected from real users provide
substantial advantages as discussed earlier, including more
traces with performance issues and more information on a
performance issue’s impact on users. For example,
performance analysts now can start with looking for a
subsequence of function calls that account for a non-trivial
portion of time consumption across all the collected traces
 from real users to hunt for highly impactful performance
bugs (e.g., bugs impacting many users with long response
delay). For example, the earlier described subsequence of
function calls accounts for a total amount of 8.28 seconds
waiting time from 24 startups of the application. However,
there exists no effective support for performance debugging
in the large similar to WER to deal with the high volume of
complex traces for performance debugging. For example,
PerfTrack collected execution traces including more than 1
billion of callstacks for response delay of the Windows
Explorer User Interface (UI), far beyond affordable
investigation effort of performance analysts.

To fill the gap of existing performance debugging
practices and the vision of performance debugging in the
large similar to WER, in this paper, we propose StackMine, a
novel approach to enable performance debugging in the large,
and its supporting scalable system for postmortem
performance debugging as the counterpart of WER in
performance debugging. Our approach includes a novel
costly-pattern clustering mechanism, consisting of two
phases, to reduce investigation effort of performance
analysts. In the first phase, we apply a costly-pattern mining
algorithm (such as subsequence mining) on trace streams

1

that include callstack traces, and then apply clustering on the
mined costly patterns based on a set of novel similarity
metrics. We propose these metrics to reflect domain-specific
characteristics of program-execution traces in contrast to
other types of data.

In particular, our costly-pattern clustering mechanism
addresses three significant challenges in performance
debugging in the large.

First, in modern multi-tasking systems, the collected
trace streams recorded not only performance-issue-exhibiting
executions of an application, but also simultaneous normal
executions of the same application, as well as executions of
other applications. For a subsequence of function calls under
investigation, its measured performance metric values such
as waiting time would include contributions from both
performance-issue-exhibiting executions (such as lock
contention) and normal executions (such as waiting time on
user inputs), with the latter as noise for compromising

1
 A trace stream records a stream of system level events to capture the program

execution behaviors during a time period of bad performance.

effectiveness of performance analysis. To address this
challenge, we propose the Wait Graph model, which extracts
from raw trace streams relevant traces with respect to
performance issues, before we apply mining techniques on
the traces.

Second, it is infeasible to enumerate all subsequences of
function calls and then rank them based on their time
consumption across trace streams, due to the combinatorial
explosion. To address this challenge, we propose to conduct
subsequence mining on traces to extract highly impactful
subsequences of function calls. Based on overall
performance metric values of the traces, performance
analysts can set a meaningful performance-metric threshold
for the subsequence mining algorithm to efficiently output
only costly subsequence patterns of function calls with
performance metric values beyond the threshold.

Third, partly due to trace collection from various
deployment sites with different execution environments (a
unique nature of performance debugging in the large),
multiple mined costly patterns of function calls with slight
differences could be related to the same performance bug,
compromising effectiveness of performance analysis for two
main reasons. First, analysts would waste time to investigate
multiple variant patterns corresponding to the same
performance bug. Second, the impact computation used to
hunt for performance bugs would be inaccurate, since the
contributions of the same performance bug are dispersed
among multiple patterns. For example, a series of function
calls for Windows 32-bit on Windows 64-bit (wow64)
simulation would appear in trace streams on a 64-bit system,
but would not appear in the corresponding ones on a 32-bit
system. As another example, a performance-issue-exhibiting
subsequence of function calls in the kernel mode might be
invoked by some user-mode functions in some trace streams,
and by different user-mode functions in some other trace
streams. To address this challenge, we propose a clustering
mechanism to group multiple mined costly patterns of
function calls with slight differences.

StackMine is the outcome of two-year effort of
continuous development and improvement at the Software
Analytics group of Microsoft Research Asia in collaboration
with Microsoft product teams. As a successful technology-
transfer effort, since December 2010, StackMine has been
applied in performance-debugging activities at a Microsoft
team for performance analysis, especially for a large number
of execution traces. During this period, performance analysts
in the team have applied StackMine to analyze hundreds of
millions of callstacks. StackMine has been shown to reduce
more than 90% of the human investigation effort for
identifying highly impactful bugs. The substantial benefits of
StackMine have been reflected by feedback given by the
performance analysis team: “We believe that the StackMine
tool is highly valuable and much more efficient for mass
trace streams (100+ trace streams) analysis. For 1000 trace
streams, we believe the tool saves us 4-6 weeks of time to
create new performance signatures, which is quite a
significant productivity boost.”

This paper makes the following main contributions:

 The first formulation and real-world deployment of
performance debugging in the large as a data mining
problem on callstacks;

 The Wait Graph representation abstracted from
callstacks to capture program behaviors essential to
performance analysis;

 A clustering mechanism for reducing costly-pattern
mining results based on domain-specific characteristics
of program-execution traces;

 Industrial experiences on using StackMine in
performance debugging in the large for Microsoft
Windows 7. For example, a Microsoft performance
analyst applied StackMine on 921 real-world trace
streams for response delays in the Windows Explorer UI.
The analysts reviewed the top 400 pattern clusters
produced by StackMine, created 93 performance
signatures, and identified 12 highly impactful hidden
performance bugs of Windows Explorer. These bugs
had been hidden for at least more than one year since the
release of Windows 7, and some of them can even be
traced back to earlier versions of Windows.

 Third-party-application experiences on using StackMine
in performance debugging in the large for a third-party
application. With the assistance of StackMine, we
discovered 6 highly impactful performance bugs of this
application. Among these 6 bugs, 5 of them have been
confirmed with third-party sources and 1 of them is yet
to be confirmed.

II. PROBLEM FORMULATION

In this section, we first use an example to informally
explain the intuitions behind formulating performance
debugging in the large as a data mining problem. We then
provide a more formal description of the problem.

A. Performance-Bug Hunting from Callstacks

Figure 1 shows an illustrative scenario within a small
time window of a program’s execution such as startup of
program Foo. Along the time axis, thread T1 was running
until it was blocked at time t1 because it requested a lock
held by another thread T2. Then a context switch from T1 to
T2 occurred on the CPU, and then T2 entered its running
state while T1 entered its waiting state. After T2 released the
lock requested by T1, another context switch occurred to
enable T1 to resume running at time t6. After thread T1
finished its execution, the corresponding startup time of Foo
exceeded a pre-defined threshold, satisfying the triggering
condition for trace collection.

Then a low-overhead mechanism for trace collection
such as ETW can collect two types of events with callstacks
shown in the figure. W1 is a waiting event of T1, with
callstack snapshot W1.S (with an upper function invoking a
lower function) on which T1 was blocked and switched out
of the CPU. We name this type of callstack as a waiting
stack. R1, R2, R3, and R4 are running events of T2, which
are sampled with callstack snapshots R1.S, R2.S, R3.S, and
R4.S, respectively. Typically the sampling is at a constant
rate for every CPU, e.g., once per millisecond. We name this
type of callstack as a running stack. From a thread’s point of
view, its running stacks capture how it behaves when using
the CPU resource, while its waiting stacks capture why it is
temporarily blocked and switched out of the CPU. The
waiting time associated with a waiting stack shows for how
long the thread is blocked, while the sampling rate and
sample size determine how much CPU time is associated
with a running stack, such as 4 ms period of CPU
consumption for T2 in Figure 1.

Based on the experience of performance analysts from
Microsoft, a majority of existing software performance bugs
fall into two categories: CPU consumption and wait.

CPU consumption bug. As shown in Figure 1, the CPU
usage pattern of thread T2 can be reflected by running stacks
R1.S, R2.S, R3.S, and R4.S. We notice that a subsequence
pattern from these running stacks, <Func_RA, Func_RB,
Func_RD, Func_RE, Func_RF>, is executed throughout the 4
ms period of CPU consumption. We name such non-
consecutive subsequence pattern from callstacks as callstack
pattern. If a large amount of CPU consumption from many
trace streams is observed on this callstack pattern, it is
suspicious to be a highly impactful performance bug. The
aggregated performance metric values on this callstack
pattern can be used to reflect its impact and to rank the bug
along with other bugs.

Wait bug. As shown in Figure 1, the wait reason of
thread T1 at time t1 can be reflected by waiting stack W1.S.
If a large number of waiting events from many trace streams
are observed on the same waiting stack, or on waiting stacks
containing a common callstack pattern reflecting the same
waiting reason, e.g., <Func_WA, Func_WC, Func_WD,

Func_WF>, it is quite suspicious to be a highly impactful
performance bug. The content of the callstack pattern (the
full waiting stack W1.S can also be a callstack pattern) can
be used to both represent the bug and help analysts narrow

Figure 1. A time window of program execution

Time axis

Func_WA

Func_WB

Func_WC

Func_WD

Func_WE

Func_WF

Func_WG

Func_RA

Func_RB

Func_RY

Func_RD

Func_RE

Func_RF

Func_RG

W_G

Func_RA

Func_RB

Func_RX

Func_RD

Func_RE

Func_RF

Func_RG

W_G

Func_RA

Func_RB

Func_RY

Func_RD

Func_RE

Func_RF

Func_RA

Func_RB

Func_RX

Func_RD

Func_RE

Func_RF

Running

Waiting

W1.S : stack of waiting event W1

of thread T1 at time t1

Thread T1

Thread T2

W1.S

R1.S R2.S R3.S R4.S

Stacks of running events R1, R2, R3, and R4 of

thread T2 at a sampling rate of once per millisecond

t1 t2 t3 t4 t5 t6

down the investigation scope. The aggregated performance
metric values on the callstack pattern, i.e., the number of
occurrences and total waiting time, can be used to reflect its
impact and to rank the bug along with other bugs.

B. Problem Definition

Before we formalize the problem, we define some
concepts used in the problem definition.

Definition 1. A callstack is a sequence of function calls

 , where is a function call for

 .

Definition 2. An event is of running event type or

waiting event type with fields defined as in TABLE 1:

TABLE 1. DEFINITIONS OF THE FIELDS IN AN EVENT

Field Type Description

 Callstack Running stack if
Waiting stack if

 Int64 Timestamp of event

 Int64 Cost as CPU consumption in ms if
Cost as waiting time in ms if

 Int32 Thread ID

Definition 3. A trace stream is a sequence of events

 , where is an event for

 .

Definition 4. A callstack pattern for a set of trace

streams is a non-consecutive subsequence of a

callstack of , i.e., .

Definition 5. The cost of a callstack pattern for a set of

trace streams is defined as

 () ∑

 |{ }|

Basic-Problem Definition:
Inputs:
A set of trace streams .
A number as the threshold of waiting time or CPU
consumption time.

Outputs: All callstack patterns for { } where

 () , sorted by their costs in the descending

order.

To make the problem manageable, we reduce the basic
problem to a costly-subsequence-pattern mining problem
where the outputs are costly callstack patterns whose costs
are equal to or higher than . Furthermore, because multiple
mined costly callstack patterns with slight differences could
be related to the same performance bug, we apply clustering
on the mined costly subsequences to produce the final output
as a set of clusters of costly callstack patterns , where
a cluster of callstack patterns is a set of callstack

patterns , denoted as { }.
We next define four typical performance metrics for a

callstack pattern cluster as below:

(1) Total cost,

 () ∑

 |{ }|

(2) Number of trace streams,
 ()

| |

(3) Number of events,
 ()

|{ { } }|

(4) Average event cost,
 () () ⁄ ()

III. APPROACH OVERVIEW

For the described problem, we propose our StackMine
approach that includes the costly-pattern clustering
mechanism to address significant challenges in performance
debugging in the large. In particular, given a (large) set of
trace streams, StackMine includes three steps to reduce the
investigation scope as callstack pattern clusters for
performance analysts to investigate.

AOI extraction: For different subjects under analysis, the

area of interests (AOIs) within the trace streams might be

different. For example, when analyzing response delay of

the Windows Explorer UI, a large proportion of the given

trace streams can be irrelevant to the delay in the UI thread.

The AOI extraction step is responsible for extracting

relevant events and callstacks based on dependencies among

thread executions due to resource sharing.

Costly-maximal-pattern mining: From callstacks in the

extracted AOIs, this step mines callstack patterns out of

waiting stacks and running stacks, respectively, with

maximal subsequence pattern mining.

Callstack pattern clustering: To group variations of one

performance bug that are in the form of a set of similar

callstack patterns, we propose a similarity model for

callstack patterns and conduct hierarchical clustering on

callstack patterns with this similarity model.

Recall that each callstack pattern cluster is associated
with a set of performance metrics as presented earlier.
Analysts can inspect the pattern clusters ranked based on one
of these metrics. We next illustrate the technical details of
these three steps.

IV. AOI EXTRACTION

The step of AOI extraction addresses two major issues
related to effectiveness and efficiency, respectively, faced
when applying performance analysis directly on all events
from the trace streams.

First, a trace collection platform typically collects trace
streams that record not only the problematic time period with
respect to performance, but also some normal time periods
around the problematic period. In modern multi-tasking
system environments, even within the problematic period
including performance-issue-exhibiting executions (such as

lock contention), there would be normal executions (such as
waiting time on user inputs) recorded together. Performance
metric values of such normal executions need to be excluded
since they would be noise for compromising effectiveness of
performance analysis. Second, all events within collected
trace streams are typically too many and too complicated for
even well-designed and engineered mining algorithms to
handle.

To address these issues, based on more than 1-year’s
interactions and collaborations with Microsoft performance
analysts, from performance-analysis industrial practices, we
identified two effective AOI extraction techniques (scope-
based extraction and content-based extraction) and built tool
support in StackMine to enable such effective and efficient
AOI extraction. Note that in practice, performance analysts
often use a mixture of these two techniques in this step.

Scope-based extraction. Recording a trace stream is
typically triggered by some performance symptom, e.g.,
delayed finish of a feature or delayed handling of a message.
Based on the recorded information of the trace stream, such
symptom can be automatically identified in the form of a
triple , denoting the execution of a thread
within a time period () of bad performance.
With respect to the identified symptom, our technique
identifies a scope to include the symptom’s relevant events
and callstacks within the trace stream.

In particular, we propose the Wait Graph model to
extract such scope for a symptom. A wait graph, denoted as
 , consists of a vertex set and an edge set .
Each vertex represents a running or waiting event of a
thread. Each directed edge always starts from a vertex
for a waiting event and ends at a vertex for a running
or waiting event , denoting that (1) the time span of
 has overlapping with the time span of , and (2)
 ’s thread makes ’s thread ready, where
could be acquired by calling ().

Figure 2 shows an algorithm for constructing a wait graph.
From the wait graph for a symptom, we identify the relevant
scope as all the waiting events and running events from the
vertices in the graph. Despite the similar shape, the Wait
Graph substantially differs from the Wait-For graph [27].
The Wait Graph (1) uses finer-grained entities
(running/waiting events instead of processes/threads) as
nodes, (2) uses directed edges to express their timing
dependencies instead of resource dependencies, and (3) is
used to reduce the investigation scope instead of detecting
deadlocks. Note that the key idea of our technique can be
applied in a more aggressive way to further reduce the
investigation scope by identifying the relevant scope as the
waiting events and running events from only (1) the UI
threads or (2) the critical paths of the Wait Graph, as often
done by Microsoft performance analysts.

Content-based extraction. Performance analysts may
often initiate performance analyses with certain hypotheses
or focuses in mind. For example, Microsoft performance
analysts initiated a real-world analysis when they suspected
that some locks in the win32k.sys module caused poor
performance, and initiated another real-world analysis when
the analysts wanted to discover hard-fault-related bugs for
causing slow Windows logon. In these situations, our
technique allows analysts to conveniently extract required
events, e.g., including at least one function for win32k.sys
lock access or including one function for hard-fault handling
in its callstack for the preceding two examples, respectively.

V. CALLSTACK PATTERN MINING

After the step of AOI extraction, our proposed mining
algorithm mines costly callstack patterns from two
types of callstacks (within the extracted AOI), i.e., waiting
stacks and running stacks, separately.

Our algorithm is a novel adaptation of a classic algorithm
for mining frequent maximal

2
 subsequences, where the

support of a pattern is the number of supporting entities in
the input database, such as transactions and sequences. Both
a costly callstack pattern (targeted by our algorithm) and
a frequent subsequence pattern (targeted by the classic
algorithm) obey the Apriori [2] property:
 () () whereas a nonempty
subsequence of a frequent pattern must also be frequent.
In particular, we adapt the classic BIDE algorithm [23] with
two major modifications. First, we modify the support of a
subsequence pattern from its occurrences to ().
Second, for maximal pattern checking, we modify the
condition in the forward/backward extension check of a
super-sequence pattern from () ()
(originally used to mine closed patterns) to () .

For the condition () , an analyst can follow
some guideline to determine an appropriate threshold value
for the analysis task at hand. For example, assume that an
analyst intends to conduct performance analysis on one

2 When a frequent (costly) pattern is maximal, none of its super patterns

can be frequent (costly). For our problem, we choose maximal patterns

since doing so helps produce desirable results for inspection: reducing the
pattern set while preserving call path information.

Inputs: trace stream and symptom , denoting
execution of thread within () with bad performance
Output: wait graph
1. ; ; ;

2. foreach where

3. if () ()

4. .AddNode ();

5. ;

6. foreach

7. .AddNode();

8. if

9. := .GetReadierThreadID();

10. foreach where

11. if () ()
12. .AddNode();

13. .AddEdge(,);

14. if

15. goto 5;

16. return ;

Figure 2. Pseudo-algorithm for Wait Graph construction

performance bug triggered in over 10% of the collected 1000
trace streams with an impact of 0.3 second response delay on
average. Then the analyst can set seconds, since 30
seconds = 10% * 0.3 second/trace stream * 1000 trace
streams.

VI. CALLSTACK PATTERN CLUSTERING

Given the mined costly callstack patterns, our step of
clustering groups similar patterns into clusters with
hierarchical clustering (a popular clustering technique),
offering two main benefits. First, when exploring together
callstack patterns of different variations, analysts can more
easily recognize the common part and the variant part of the
callstack patterns. Doing so not only helps better determine
whether and where there is a hidden performance bug, but
also helps find a high-covering fix (likely falling into the
common part) that could fix performance issues across
various similar patterns. Second, using performance metrics
of a cluster can help produce better prioritization of results
for investigation since without clustering, performance
metric values of a high-impact bug can be spread across
multiple callstack patterns of different variations, causing the
bug not to emerge with a high rank.

A key component of any clustering technique is the
underlying similarity model used to measure how similar
two entities are. Based on years of performance-analysis
experiences of Microsoft performance analysts, we construct
a novel similarity model (sharing the key concept with the
edit distance model [17]) that takes into account
characteristics of programs and their behaviors. In particular,
we calculate similarity of two callstack patterns with two
major steps: align the two patterns (Section A) and then
calculate the similarity of the two patterns (Section B) based
on the weighted similarity between the aligned segments of
the two patterns (Section C).

A. Alignment

Similar to the edit distance model, we use dynamic-
programming search to derive an optimal alignment with
respect to minimizing the total cost of three kinds of editing

operations: (1) match; (2) insertion/deletion; (3) substitution.
For example, given a pair of callstack patterns and , we
get the optimal alignment in the form of a series of operation
segments, as shown in Figure 3.

When computing operation cost, we set the cost of a
match operation as 0, the cost of an insertion/deletion
operation as 1.0, and the cost of a substitution operation
between function and as (), where ()
is a cost function defined based on their function names (we
split a name into words by treating upper-case characters as
word boundaries):

 ()

Intuitively, and are more similar when ()
is smaller. We define the preceding cost function based on
substantial observations from practice that two different
callstack patterns of the same performance bug tend to share
the similar name structure and words across their
corresponding functions in a substitution segment, with an
example as segment S1 in Figure 3.

More formally, we define a segment of consecutive
match operations as , such as

 and shown in Figure 3. Each represents a

function that appears in both callstack patterns at the
corresponding position . We assign and with the

value for the sake of simplicity, denoted as
 .

We define a segment of consecutive insertion/deletion
operations as , such as

shown in Figure 3. Each represents a function that

appears in one callstack pattern at the corresponding position
 . .

We define a segment of consecutive substitution
operations from the left callstack pattern to the right one as
 ()() ()

such as shown in Figure 3. Each pair of and

represents a pair of functions (from the two patterns) that are
different at the corresponding position .
 , .

Given a pair of callstack patterns, we first derive an
alignment of the callstack patterns as a set of operation
segments as . Then, based on this
alignment , we calculate the similarity of the two callstack
patterns denoted as () , with details illustrated next.

B. Similarity Calculation

Given an alignment of a pair of callstack patterns, we
use the edit distance model to calculate their similarity as the
ratio of the length of the match-operation segments over the
length of all the segments. However, using only the lengths
(i.e., the number of function calls) of aligned segments to
calculate similarity often cannot reflect desirable similarity
in terms of program behaviors. To address the issue, we
define a set of weight functions on segments, and then
define the similarity () as

 ()
∑ ()

∑ () ∑ () ∑ ()

App_main

Initialize

 InitComponents

HashTableOperate

GetHashCode

GetShortPathName

MmAccessFault

MiIssueHardFault

IoPageRead

wow64Service

wow64System

wow64QueryAttr

SwapKernelStack ExpandKernelStack

ID1,1

ID1,2

ID1,3

Insertion/

Deletion

Substitution

Match
M2,1

M2,2

M2,3

SL1,1

MmAccessFault

MiIssueHardFault

IoPageRead

Match

App_main

Initialize

 InitComponents

HashTableOperate

GetHashCode

GetShortPathName M1,6

M1,5

M1,4

M1,3

M1,2

M1,1

M1

ID1

S1

M2

SR1,1

Callstack Pattern L Callstack Pattern R

Figure 3. An illustration of callstack similarity model

We denote the function in a segment as , where

 . Once we define a weight function

 () for each function , we can define the weight

functions for the three types of segments as

 () ∑ ()

 () ∑ ()

 () ∑ ()

 () ()

We define function weight () in the next sub-section.

C. Function-Weight Calculation

We define the weight of function as

 () ()
 () ()

in which () (denoting unigram information) represents

the weight for reflecting how unlikely is a common-

purpose function, e.g., the App_main function. Note that an
editing operation on a common-purpose function has less
contribution to the overall pattern similarity than a non-
common-purpose function.

 () and () (denoting forward

bigram information and backward bigram information,
respectively) represent the weights for reflecting how
unlikely is in a constant/dominant call path, given its

caller and callee functions as context. Note that a callstack
segment has less contribution to the overall pattern
similarity when the segment is in a constant/dominant call
path.

For functions and , we calculate ()
 (

), and (

) based on statistics derived from

our trace-stream database (beyond just the trace streams
under investigation) as

 ()

 ()

 ()

Specially, we define () () .
Intuitively, tends to be a common-purpose function when
 () is small. tends to be a part of a
constant/dominant call path when () or ()
is small.

VII. EVALUATIONS

We conducted two evaluations on StackMine with two of
the most popular real-world software products - Microsoft
Windows 7 and a third-party application, respectively. In the
evaluation with Windows 7, we intended to answer three
research questions with results produced when Microsoft
performance analysts used StackMine in real-world
industrial settings.

 Q1. How much does StackMine improve practices of
the performance debugging in the large?

 Q2. How well do the performance signatures derived
with the assistance of StackMine capture performance
bottlenecks caused by performance bugs?

 Q3. How does StackMine perform compared to
alternative techniques?

StackMine was motivated by the needs of Microsoft
Windows teams. Our evaluation serves as the first reported
experience of performance debugging in the large for such
large-scale software products as Windows. After research
and incubation for more than one year, with close
collaboration between Microsoft researchers and
performance analysts, StackMine has been adopted by one
team of Windows performance analysts, and is becoming
part of the standard Windows performance analysis
workflow. Our evaluation focuses on real-world experiences
of Microsoft performance analysts when applying StackMine
on a large performance analysis task: response-delay analysis
of the Windows 7 Explorer (in short as Windows Explorer)
User Interface (UI).

Due to confidentiality, we are not able to disclose some
low-level details of the first evaluation’s results such as
detailed descriptions of the investigated bugs. To allow the
community to build upon our research and results, with the
help of researchers from North Carolina State University, our
approach was applied on one popular third-party application.
The details of the evaluation results can be found on our
project website [29]. Note that in our setting, we take the role
of third-party performance analysts (other than the
developers of the application), lacking deep knowledge of
the application’s code base while achieving substantial
success with the assistance of StackMine.

A. Windows 7 Study

In December 2010, as a continued effort to improve the
performance of Windows, performance analysts from one
performance analysis team for Microsoft Windows planned
to conduct an investigation to hunt for the hidden
performance bugs that caused common impact on Windows
Explorer UI response. The investigation was against a large
set of ETW event trace streams collected through the
PerfTrack mechanism. This initial set included over 6,000
such trace streams collected by satisfying a triggering
condition of Windows Explorer UI response delay. The
performance analysts focused on 921 trace streams by first
randomly sampling 1,000 trace streams and then excluding
79 irrelevant ones (e.g., those not including any key function
calls related to the Windows Explorer UI). Among the 921
trace streams, there were 181 million callstacks in total,
among which 140 million were waiting stacks and 41 million
were running stacks. Each typical trace-stream file can
include hundreds of thousands of events and callstacks with
hundreds of megabytes in binary format.

1) Q1. Overall Improvement of Practices: Given the 921

trace streams, StackMine took about 10 hours of automatic

analysis to output a ranked list of 1,215 pattern clusters. In

particular, the AOI extraction phase reduced the 140 million

callstacks to 689 thousand callstacks using both scope-based

(in particular the critical-path model) and content-based

techniques. The maximal-callstack-pattern mining produces

2,239 costly patterns. The callstack-pattern clustering

produces the final ranked list of the 1,215 pattern clusters.

One analyst took 1 day (8 hours) to go through the top
400 clusters, in the descending order of the

metric values as defined in Section B, and derived 93
performance signatures from these clusters. These 93
signatures covered 58.26% of the response delay time (of the
Windows Explorer UI) captured in the 921 trace streams.

With additional deep investigation on both trace streams
and source code based on the 93 signatures, the analyst
successfully diagnosed and filed 12 highly impactful hidden
performance bugs of Windows Explorer. These bugs had
been hidden for at least more than one year since the release
of Windows 7, and some of them can even be traced back to
earlier versions of Windows. In terms of their performance
impact, one of the bugs caused significant response delay
observed in 32% of the 921 trace streams, and another one
caused significant response delay observed in 11% of the
921 trace streams with on average 1.6 seconds of UI
response delay once triggered.

Ideally we would like to measure the effort of an analyst
(without the assistance of StackMine) to derive performance
signatures for discovering these highly impactful
performance bugs, in order to measure effort reduction
achieved by StackMine. However, we could not attain such
statistics because the performance analysis team would not
afford to invest analysts to manually investigate these 921
trace streams before we introduced StackMine into their
practices. Therefore, we make a rough estimation as below
based on past experiences of the performance analysis team.
On average, it takes about 10~30 minutes for an experienced
performance analyst to derive signatures from a single trace
stream. Therefore, it would take 20~60 days to derive
signatures if each and every single trace were analyzed
manually. In contrast, with StackMine, deriving signatures
can be finished in 1 day.

The substantial benefits of StackMine have been
reflected by feedback given by the performance analysis
team: “We believe that the StackMine tool is highly valuable
and much more efficient for mass trace streams (100+ trace
streams) analysis. For 1000 trace streams, we believe the tool
saves us 4-6 weeks of time to create new signatures, which is
quite a significant productivity boost.”

2) Q2. Performance Bottleneck Coverage: The study results

against Q1 show that StackMine substantially reduces the

effort of the performance analyst on deriving performance

signatures. However, it is an open question on whether the

effort reduction compromises the effectiveness, i.e., missing

other highly impactful hidden performance bugs (beyond

these 12 bugs) that could be found by more-expensive

investigation without the assistance of StackMine.

To address this evaluation issue, we propose and measure
the performance bottleneck coverage of a set of performance
signatures as below:

The coverage denotes the proportion of the bad-performance
time period that analysts can explain and take action on with
the performance signatures. The higher coverage the
performance signatures achieve, the lower possibility highly
impactful performance bugs remain not captured by the
performance signatures. The reason is that shorter (not-
covered) bad-performance time period causes the remaining
performance bugs (if any) to be less highly impactful (i.e.,
causing less-significant delay).

Recall that the analyst identified 93 performance
signatures from the pattern clusters. These 93 signatures
achieved 58.26% performance bottleneck coverage: nearly
60% of the total response delay captured in the 921 trace
streams can be explained and improved with these 93
performance signatures. The performance analysis team
indicated to us that the achieved coverage was quite
satisfactory. Among these signatures, two signatures led the
analyst to discover two highly impactful performance bugs
with high impact as described in Section 1), respectively.

3) Q3. Comparison with Alternative Techniques: We

identified three alternative techniques along with StackMine

that rank trace streams for the performance analyst to

investigate.

 Random: this technique ranks trace streams in a random
order, serving as the baseline technique;

 Greedy-Total: this technique ranks trace streams in the
descending order of total UI response delay time within
a trace stream;

 Greedy-Max: this technique ranks trace streams in the
descending order of the maximum UI response delay
time within a trace stream;

 StackMine: this technique first defines a set of
performance signatures (93 signatures in 1)) from the
top pattern clusters (400 clusters in 1)). After the
signatures are sorted by their performance bottleneck
coverage, the technique then selects one trace stream
containing the top 1 signature to investigate. Then it
selects a new trace stream containing the next not-yet-
investigated signature, and so on.

Figure 4 shows the number of trace streams (y-axis)
required to achieve a certain performance bottleneck
coverage (x-axis) for the Random, Greedy-Total, Greedy-
Max, and StackMine techniques, respectively. For example,

193

238
220

14

0

50

100

150

200

250

20% 30% 40% 50% 60%

N
u

m
b

e
r

o
f

re
q

u
ir

e
d

 t
ra

ce

st
re

am
s

to
 in

ve
st

ig
at

e

Performance bottleneck coverage (%)

Baseline-Random
Greedy-Total
Greedy-Max
StackMine

Figure 4. Comparison with alternative techniques

these four techniques require the analyst to investigate 193,
238, 220, and 14 trace streams, respectively, to achieve
58.26% coverage. On average, StackMine requires only
7.2%, 5.8%, and 6.3% of trace streams required by the
Random, Greedy-Total, and Greedy-Max techniques,
respectively, to achieve a certain performance bottleneck
coverage. The results highlight the substantial advantages of
StackMine over other alternative techniques.

B. Study Results on a Third-Party Application

To allow the community to build upon our research and
results, with the help of researchers from North Carolina
State University, our approach was applied on one popular
third-party application

3
. Such case reflects situations where

users of our approach take the role of third-party
performance analysts (other than the developers of the
application), lacking deep knowledge of the code base of the
application.

In particular, StackMine was applied to analyze the
startup performance of the third-party application, based on
54 trace streams with the following characteristics.

 Running a specific same version of the application;

 Containing the start point of a startup process, indicated
by the process start event of the application;

 Containing the end point of the startup process,
indicated by the first occurrence of function call
“user32.dll!PeekMessage” after the start point of the
startup process. This first attempt for handling a user’s
input tends to reflect the end point of the startup process.

 Spending > 1 second for the identified startup process.
These 54 trace streams included 59 occurrences of slow

startups (each > 1 second). The average time consumption of
a startup was 7.0 seconds and the slowest one took 52.8
seconds. These trace streams included 33 million callstacks,
while 20 million were waiting stacks and 13 million were
running stacks. In this study, we focused on wait-related
bugs. Discovering CPU-consumption-related bugs can be
conducted similarly.

1) Results of Applying StackMine: We next illustrate the

results from each phase in details. In the phase of AOI

extraction, waiting stacks were extracted from the UI thread

using the Wait Graph model. Then, AOI extraction

produced 41 thousand callstacks with average length of 36

function calls for each callstack. The phase of maximal-

callstack-pattern mining produced 371 costly patterns. The

phase of pattern clustering produced 251 pattern clusters.

The entire automatic processing took less than 10 minutes.

Finally, these 251 pattern clusters were ranked according
to the four different metrics as defined in Section B, and the
top 60 pattern clusters in each prioritized list were examined.
Based on the top pattern clusters, it took about 1 hour to
manually derive 22 performance signatures, which achieved
66.69% performance bottleneck coverage of the collected 54
trace streams. In contrast, without the assistance of

3
 Readers who would like to learn specifics of the third-party application

could contact the last author.

StackMine, it would have to take 9 to 27 hours to manually
derive these performance signatures, based on empirical
estimation.

Among the signatures, 16 of them with 55.80%
performance bottleneck coverage in total corresponded to
three major factors that were widely discussed on the
Internet for slow startup of the application: (1) on-demand
scanning conducted by anti-virus software before the
application loads some external components, (2) loading of a
non-trivial number of plugins, (3) loading of more-than-
necessary contents by the prefetching functionality. The
three main factors can be considered as known common
issues, and developers of the application can make
improvements accordingly.

Based on the remaining 6 signatures, 6 performance bugs
were discovered with 10.89% performance bottleneck
coverage. Among these 6 bugs, 5 of them have been
confirmed with third-party sources and 1 of them is yet to be
confirmed.

In summary, StackMine achieved substantial effort
reduction with respect to research question Q1. For Q2, these
22 signatures achieved satisfying performance bottleneck
coverage of 66.69%. Due to space limit, in this evaluation,
we could not include detailed comparison with alternative
techniques for Q3, which would have similar conclusions to
what have been shown in the Windows study.

2) Representative Performance Bug: We next describe one

representative performance bug that has been identified with

StackMine. When ranked based on average waiting time,

this bug emerged in the 24th cluster, with an average

waiting time of 382 milliseconds over 36 trace streams.

Note that among the higher-ranked 23 clusters, 4 of them

were related to our 6 newly discovered bugs while the other

19 were related to known issues due to common factors.

Figure 5 shows the common part of the patterns from this

24th cluster. It is divided into three segments, and between

the segments there are variant function-call paths

corresponding to different situations. Without clustering, the

performance metric value of the same logic but along

different call paths would be split into different patterns and

thus such splitting would prohibit the bug from emerging

from a pattern with a high performance metric value.

 Reading the common part of the pattern cluster could
help learn the following logic. In Segment 1, the application
would load a set of components during the initialization
stage. A hash table was used and the GetShortPathName
Windows API function was invoked in GetHashCode. In
Segment 2, the Windows kernel would perform some
operations to support GetShortPathName. In Segment 3, hard
faults happened and disk I/O was conducted, causing
additional time consumption.

Based on the pattern cluster, further investigations
exposed two major findings. On one hand, Segment 1
provided us with sufficient information to quickly locate the
problem in the source code, e.g., the invocation of the
GetShortPathName API function. The application used a
hash table to manage the components that it loaded, and the

path name of a file was used as the key in the hash table.
However, Windows has a historical issue about short path
names. To ensure that both the long path name and short
path name of a single component would map to the same
entry in the hash table, the application adopted the short
name and therefore the GetShortPathName API function was
always invoked at the first time of loading a component.

On the other hand, the investigation on the trace streams
exposed that the disk I/O in Segment 3 was for reading
$MFT of the file system, and the readings on $MFT would
introduce severe lock contention with many other
applications and OS components; thus, the readings could be
blocked for a long period of time.

It was observed that all the key functions involved in this
performance bug had been captured and connected by a call
context in the pattern cluster. Based on the call context, it
was natural and efficient for analysts to figure out the
performance bug. Beyond that, analysts can focus on this call
context and figure out the corresponding optimization
solution accordingly. It has been shown that the usage of
long path names was dominant on recent Windows versions.
Therefore, an optimization solution is to adopt the long path
name as the key of the hash table. There are simple and
reliable ways to detect whether a path name is a short name,
and the GetLongPathName API function needs to be invoked
only when a path name is detected as a short name. This
optimization solution is expected to significantly reduce the
chance to read $MFT of the file system, thus improving the
performance.

VIII. RELATED WORK

Previous work on performance debugging typically

focused on one or a few full or sampled trace streams of a

software system, in contrast to a large number of trace

streams focused by StackMine for performance debugging in

the large.

For example, Ammons et al. [5] proposed an approach

that includes a search tool built upon a simple profile

interface to help analysts explore summaries of profile

measurements to search for performance bottlenecks within

a few trace streams. Their approach heavily relies on manual

effort to navigate through traces.

To analyze a few sampled trace streams collected from

deployment sites of modern enterprise-class multi-tier server

applications, the IBM Whole-system Analysis of Idle Time

(WAIT) approach [3] helps analysts diagnose idle time

(indicating a lack of forward motion), which corresponds to

wait bugs handled by StackMine (which also handles CPU

consumption bugs). Their approach heavily relies on an

extensible set of manually specified declarative rules to

abstract traces to states of observed idleness.

Srinivas and Srinivasan [20] proposed to use thresholding

and filtering to summarize performance problems on a

component basis, by identifying a small set of interesting

function calls in manually specified components of interest.

The IBM Jinsight tool [19] allows analysts to explore traces

at different dimensions with visualization support. In

contrast to these approaches, StackMine does not require

manual specifications of components of interest or heavy

manual effort to explore traces.

There were various previous approaches on applying

frequent pattern mining or clustering on execution traces

[4][8][13][24] or source code [1][6][10][12][16][18][21][22].

However, these approaches typically focus on mining API

specifications, rather than performance debugging, calling

for novel techniques in StackMine. There were a number of

previous debugging approaches [9][11][14][15] based on

real-world usage data but none of them focused on

performance debugging.

IX. CONCLUSION

To enable performance debugging in the large, we have
proposed the StackMine approach that conducts mining and
clustering on callstack traces from trace streams related to
performance issues encountered by real-world users.
StackMine helps performance analysts effectively discover
highly impactful performance bugs. Since December 2010,
StackMine has been applied in performance-debugging
activities at a Microsoft team for performance analysis,
especially for a large number of execution traces. Our
evaluations on two large-scale real-world software products
(Microsoft Windows 7 and a third-party application)
demonstrated StackMine’s substantial benefits in
performance debugging in the large.

Exemplified by WER and StackMine, we envision and
advocate a game-changing paradigm for software quality
assurance in the large based on usage data collected from the
real world, in order to cope with increasingly large and
complex modern software systems, such as ultra-large-scale
systems.

ACKNOWLEDGMENT

The authors would like to thank the developers and
analysts from the Microsoft product teams for the
collaboration throughout the StackMine project. The authors
would like to also thank the researchers from Microsoft
Research for the discussions on the Wait Graph definition.

App_main

Initialize

InitComponents

HashTableOperate

GetHashCode

kernel32.dll!GetShortPathName

……

Nt!ObOpenObjectByName

Nt!ObpLookupObjectName

Nt!opParseDevice

Ntfs.sys!NtfsFsdCreate

Ntfs.sys!NtfsCommonCreateOnNewStack

……

Nt!MmAccessFault

Nt!MiIssueHardFault

Nt!IoPageRead

Segment 1

Segment 2

Segment 3

Figure 5. Callstack pattern of a slow startup bug of the third-party

application

REFERENCES

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial
orders from source code: from usage scenarios to specifications,”
Proc. ESEC/FSE, 2007, pp. 25–34.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” Proc. VLDB, 1994, pp. 487-499.

[3] E. Altman, M. Arnold, S. Fink, and N. Mitchell, “Performance
analysis of idle programs,” Proc. OOPSLA, 2010, pp. 739-753.

[4] G. Ammons, R. Bodik, and J.R. Larus, “Mining specifications,” Proc.
POPL, 2002, pp. 4–16.

[5] G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy, “Finding and
removing performance bottlenecks in large systems,”
Proc. ECOOP, 2004, pp. 170-194.

[6] R.-Y. Chang, A. Podgurski, and J. Yang, “Finding what’s not there: a
new approach to revealing neglected conditions in software,” Proc.
ISSTA, 2007, pp. 163–173.

[7] Y. Dang, S. Ge, R. Huang, and D. Zhang, “Code clone detection
experience at Microsoft,” Proc. IWSC, 2011, pp. 63-64.

[8] W. Dickinson, D. Leon, and A. Podgurski, “Finding failures by
cluster analysis of execution profiles,” Proc. ICSE, 2001, pp. 339-348.

[9] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G.
Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the (very)
large: ten years of implementation and experience,” Proc. SOSP,
2009, pp. 103-116.

[10] Z. Li and Y. Zhou, “PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software codes,”
Proc. ESEC/FSE, 2005, pp. 306–315.

[11] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” Proc. PLDI, 2003, pp. 141-154.

[12] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V. Lopes, and
P. Baldi, “Sourcerer: mining and searching internet-scale software
repositories,” Data Min. Knowl. Discov., vol.18, no.2, Apr. 2009, pp.
300-336.

[13] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of
software behavioral models,” Proc. ICSE, 2008, pp. 501-510.

[14] A. Orso, D. Liang, M. J. Harrold, and R. J. Lipton, “Gamma system:
continuous evolution of software after deployment,” Proc. ISSTA,
2002, pp. 65-69.

[15] A. A. Porter, C. Yilmaz, A. M. Memon, D. C. Schmidt, and B.
Natarajan, “Skoll: A process and infrastructure for distributed
continuous quality assurance,” IEEE Trans. Software Eng., vol.33,
no.8, Aug. 2007, pp. 510-525.

[16] M.K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive
inference of function precedence protocols,” Proc. ICSE, 2007, pp.
240–250.

[17] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE
Trans. PAMI, vol.20, no.5, May 1998, pp.522-532.

[18] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage
changes from instantiation code,” Proc. ICSE, 2008, pp. 471-480.

[19] G. Sevitsky, W. De Pauw, and R. Konuru, “An information
exploration tool for performance analysis of Java programs,” Proc.
TOOLS Euro, 2001, pp. 85-101.

[20] K. Srinivas and H. Srinivasan, “Summarizing application
performance from a components perspective,” Proc. ESEC/FSE,
2005, pp. 136–145.

[21] S. Thummalapenta and T. Xie, “Alattin: mining alternative patterns
for detecting neglected conditions,” Proc. ASE, 2009, pp. 283–294.

[22] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” Proc. ICSE, 2009, pp. 496–506.

[23] J. Wang and J. Han, “BIDE: Efficient mining of frequent closed
sequences,” Proc. ICDE, 2004, pp. 79-90.

[24] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
mining temporal API rules from imperfect traces,” Proc. ICSE, 2006,
pp. 282–291.

[25] http://channel9.msdn.com/Blogs/Charles/Inside-Windows-7-
Reliability-Performance-and-PerfTrack

[26] http://en.wikipedia.org/wiki/DTrace

[27] http://en.wikipedia.org/wiki/Wait-for_graph

[28] http://msdn.microsoft.com/en-
us/library/windows/desktop/bb968803(v=vs.85).aspx

[29] http://research.csc.ncsu.edu/ase/projects/perfanalysis/

