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Abstract—Given limited resource and time before software 

release, development-site testing and debugging become more 

and more insufficient to ensure satisfactory software 

performance. As a counterpart for debugging in the large 

pioneered by the Microsoft Windows Error Reporting (WER) 

system focusing on crashing/hanging bugs, performance 

debugging in the large has emerged thanks to available 

infrastructure support to collect execution traces with 

performance issues from a huge number of users at the 

deployment sites. However, performance debugging against 

these numerous and complex traces remains a significant 

challenge for performance analysts. In this paper, to enable 

performance debugging in the large in practice, we propose a 

novel approach, called StackMine, that mines callstack traces 

to help performance analysts effectively discover highly 

impactful performance bugs (e.g., bugs impacting many users 

with long response delay). As a successful technology-transfer 

effort, since December 2010, StackMine has been applied in 

performance-debugging activities at a Microsoft team for 

performance analysis, especially for a large number of 

execution traces. Based on real-adoption experiences of 

StackMine in practice, we conducted an evaluation of 

StackMine on performance debugging in the large for 

Microsoft Windows 7. We also conducted another evaluation 

on a third-party application. The results highlight substantial 

benefits offered by StackMine in performance debugging in 

the large for large-scale software systems. 

I. INTRODUCTION 

A modern software system tends to include an 
increasingly large number of components and lines of code 
(LOC), and depend on an increasingly large number of 
system components. For example, among commercial 
software systems, more than 10 Microsoft products could 
amount to more than 600 million LOC [7]. 

To assure high quality of such modern software systems, 
testing and debugging remain the most commonly used 
techniques. However, given limited resource and time before 
software release, development-site testing and debugging 
become more and more insufficient to ensure high software 
quality. Development-site testing typically covers only a 
limited percentage of various usage scenarios and vast 
multitude of execution environments that could occur upon 
the deployed software systems. Development-site debugging 
typically relies on a limited number of failing runs, which 
could be insufficient for effective debugging. Furthermore, 
during development-site debugging with limited resource 
and time, developers have relatively little knowledge on 
which bugs should be given higher priority to fix based on 
their impact on users including their impact scope, e.g., 

which bugs impact a large number of users at deployment 
sites, and their impact severity, e.g., which bugs impact an 
individual user at a high severity level. 

To address these issues, recent industrial solutions are 
developed and deployed for collecting and leveraging a high 
volume of deployment-site usage data to improve debugging 
with postmortem analysis. There emerges a new frontier of 
debugging practice: debugging in the large, with a prominent 
example as the Microsoft Windows Error Reporting (WER) 
system (a.k.a. Dr. Watson) [9]. Using a long time period in 
the post-release stage and a huge number of information 
sources from real-world users, WER allows developers to 
obtain distribution information of crashing/hanging bugs to 
guide their debugging prioritization. Since its operation in 
1999, WER has accomplished huge success within Microsoft. 

However, in spite of high importance, performance bugs 
are not handled by WER, which heavily focuses on 
crash/hang debugging. Performance is one of the key 
properties of software, primarily concerning responsiveness, 
throughput, and resource utilization. For example, to conduct 
performance debugging, along a call path associated with a 
thread blocked on a wait, performance analysts typically start 
with looking for a subsequence of function calls that account 
for a non-trivial portion of waiting time and then try to 
derive performance signatures from the subsequence. A 
performance signature is one or more functions in which a 
potential performance bug resides, often manifested as the 
location where the fix to the bug is applied. Optimizing code 
implementation within the performance signature could 
reduce time consumption on wait. For example, a 
subsequence of function calls (InitComponents, 
GetHashCode, GetShortPathName, MmAccessFault) comes 
from a trace associated with slow startup of a third-party 
application, accounting for approximately 0.3 second waiting 
time. There, the function GetHashCode is a performance 
signature, fixing which could resolve the performance issue 
of slow startup (this example is explained in more details in 
Section2)). 

In contrast to performance debugging against one or a 
few execution traces, performance debugging in the large 
deals with execution traces with performance issues from a 
huge number of users from the deployment sites. Similar to 
WER, Microsoft has also provided infrastructure support for 
such purpose with mechanisms such as PerfTrack [25] based 
on the Event Tracing for Windows (ETW) [28] platform. In 
particular, PerfTrack resides inside Windows 7 for 
measuring system responsiveness to user actions on 
operating systems (OS). For example, when a user clicks on 



a folder name, PerfTrack measures how long it takes for the 
user to receive an expected reaction from the system, and if 
the response time exceeds a pre-defined threshold, PerfTrack 
sends execution traces based on ETW such as callstack 
information collected in the preceding period back to 
Microsoft for performance debugging. Note that other OS 
platforms also provide similar mechanisms such as DTrace 
[26] for Solaris and several other Unix-like systems. 

Such execution traces collected from real users provide 
substantial advantages as discussed earlier, including more 
traces with performance issues and more information on a 
performance issue’s impact on users. For example, 
performance analysts now can start with looking for a 
subsequence of function calls that account for a non-trivial 
portion of time consumption across all the collected traces 
 from real users to hunt for highly impactful performance 
bugs (e.g., bugs impacting many users with long response 
delay). For example, the earlier described subsequence of 
function calls accounts for a total amount of 8.28 seconds 
waiting time from 24 startups of the application. However, 
there exists no effective support for performance debugging 
in the large similar to WER to deal with the high volume of 
complex traces for performance debugging. For example, 
PerfTrack collected execution traces including more than 1 
billion of callstacks for response delay of the Windows 
Explorer User Interface (UI), far beyond affordable 
investigation effort of performance analysts.  

To fill the gap of existing performance debugging 
practices and the vision of performance debugging in the 
large similar to WER, in this paper, we propose StackMine, a 
novel approach to enable performance debugging in the large, 
and its supporting scalable system for postmortem 
performance debugging as the counterpart of WER in 
performance debugging. Our approach includes a novel 
costly-pattern clustering mechanism, consisting of two 
phases, to reduce investigation effort of performance 
analysts. In the first phase, we apply a costly-pattern mining 
algorithm (such as subsequence mining) on trace streams
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that include callstack traces, and then apply clustering on the 
mined costly patterns based on a set of novel similarity 
metrics. We propose these metrics to reflect domain-specific 
characteristics of program-execution traces in contrast to 
other types of data. 

In particular, our costly-pattern clustering mechanism 
addresses three significant challenges in performance 
debugging in the large.  

First, in modern multi-tasking systems, the collected 
trace streams recorded not only performance-issue-exhibiting 
executions of an application, but also simultaneous normal 
executions of the same application, as well as executions of 
other applications. For a subsequence of function calls under 
investigation, its measured performance metric values such 
as waiting time would include contributions from both 
performance-issue-exhibiting executions (such as lock 
contention) and normal executions (such as waiting time on 
user inputs), with the latter as noise for compromising 
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 A trace stream records a stream of system level events to capture the program 

execution behaviors during a time period of bad performance. 

effectiveness of performance analysis. To address this 
challenge, we propose the Wait Graph model, which extracts 
from raw trace streams relevant traces with respect to 
performance issues, before we apply mining techniques on 
the traces.  

Second, it is infeasible to enumerate all subsequences of 
function calls and then rank them based on their time 
consumption across trace streams, due to the combinatorial 
explosion. To address this challenge, we propose to conduct 
subsequence mining on traces to extract highly impactful 
subsequences of function calls. Based on overall 
performance metric values of the traces, performance 
analysts can set a meaningful performance-metric threshold 
for the subsequence mining algorithm to efficiently output 
only costly subsequence patterns of function calls with 
performance metric values beyond the threshold.  

Third, partly due to trace collection from various 
deployment sites with different execution environments (a 
unique nature of performance debugging in the large), 
multiple mined costly patterns of function calls with slight 
differences could be related to the same performance bug, 
compromising effectiveness of performance analysis for two 
main reasons. First, analysts would waste time to investigate 
multiple variant patterns corresponding to the same 
performance bug. Second, the impact computation used to 
hunt for performance bugs would be inaccurate, since the 
contributions of the same performance bug are dispersed 
among multiple patterns. For example, a series of function 
calls for Windows 32-bit on Windows 64-bit (wow64) 
simulation would appear in trace streams on a 64-bit system, 
but would not appear in the corresponding ones on a 32-bit 
system. As another example, a performance-issue-exhibiting 
subsequence of function calls in the kernel mode might be 
invoked by some user-mode functions in some trace streams, 
and by different user-mode functions in some other trace 
streams. To address this challenge, we propose a clustering 
mechanism to group multiple mined costly patterns of 
function calls with slight differences. 

StackMine is the outcome of two-year effort of 
continuous development and improvement at the Software 
Analytics group of Microsoft Research Asia in collaboration 
with Microsoft product teams. As a successful technology-
transfer effort, since December 2010, StackMine has been 
applied in performance-debugging activities at a Microsoft 
team for performance analysis, especially for a large number 
of execution traces. During this period, performance analysts 
in the team have applied StackMine to analyze hundreds of 
millions of callstacks. StackMine has been shown to reduce 
more than 90% of the human investigation effort for 
identifying highly impactful bugs. The substantial benefits of 
StackMine have been reflected by feedback given by the 
performance analysis team: “We believe that the StackMine 
tool is highly valuable and much more efficient for mass 
trace streams (100+ trace streams) analysis. For 1000 trace 
streams, we believe the tool saves us 4-6 weeks of time to 
create new performance signatures, which is quite a 
significant productivity boost.” 

This paper makes the following main contributions: 



 The first formulation and real-world deployment of 
performance debugging in the large as a data mining 
problem on callstacks; 

 The Wait Graph representation abstracted from 
callstacks to capture program behaviors essential to 
performance analysis;  

 A clustering mechanism for reducing costly-pattern 
mining results based on domain-specific characteristics 
of program-execution traces; 

 Industrial experiences on using StackMine in 
performance debugging in the large for Microsoft 
Windows 7. For example, a Microsoft performance 
analyst applied StackMine on 921 real-world trace 
streams for response delays in the Windows Explorer UI. 
The analysts reviewed the top 400 pattern clusters 
produced by StackMine, created 93 performance 
signatures, and identified 12 highly impactful hidden 
performance bugs of Windows Explorer.  These bugs 
had been hidden for at least more than one year since the 
release of Windows 7, and some of them can even be 
traced back to earlier versions of Windows. 

 Third-party-application experiences on using StackMine 
in performance debugging in the large for a third-party 
application. With the assistance of StackMine, we 
discovered 6 highly impactful performance bugs of this 
application. Among these 6 bugs, 5 of them have been 
confirmed with third-party sources and 1 of them is yet 
to be confirmed. 

II. PROBLEM FORMULATION 

In this section, we first use an example to informally 
explain the intuitions behind formulating performance 
debugging in the large as a data mining problem. We then 
provide a more formal description of the problem. 

A. Performance-Bug Hunting from Callstacks 

Figure 1 shows an illustrative scenario within a small 
time window of a program’s execution such as startup of 
program Foo. Along the time axis, thread T1 was running 
until it was blocked at time t1 because it requested a lock 
held by another thread T2. Then a context switch from T1 to 
T2 occurred on the CPU, and then T2 entered its running 
state while T1 entered its waiting state. After T2 released the 
lock requested by T1, another context switch occurred to 
enable T1 to resume running at time t6. After thread T1 
finished its execution, the corresponding startup time of Foo 
exceeded a pre-defined threshold, satisfying the triggering 
condition for trace collection. 

Then a low-overhead mechanism for trace collection 
such as ETW can collect two types of events with callstacks 
shown in the figure. W1 is a waiting event of T1, with 
callstack snapshot W1.S (with an upper function invoking a 
lower function) on which T1 was blocked and switched out 
of the CPU. We name this type of callstack as a waiting 
stack. R1, R2, R3, and R4 are running events of T2, which 
are sampled with callstack snapshots R1.S, R2.S, R3.S, and 
R4.S, respectively. Typically the sampling is at a constant 
rate for every CPU, e.g., once per millisecond. We name this 
type of callstack as a running stack. From a thread’s point of 
view, its running stacks capture how it behaves when using 
the CPU resource, while its waiting stacks capture why it is 
temporarily blocked and switched out of the CPU. The 
waiting time associated with a waiting stack shows for how 
long the thread is blocked, while the sampling rate and 
sample size determine how much CPU time is associated 
with a running stack, such as 4 ms period of CPU 
consumption for T2 in Figure 1. 

Based on the experience of performance analysts from 
Microsoft, a majority of existing software performance bugs 
fall into two categories: CPU consumption and wait. 

CPU consumption bug. As shown in Figure 1, the CPU 
usage pattern of thread T2 can be reflected by running stacks 
R1.S, R2.S, R3.S, and R4.S. We notice that a subsequence 
pattern from these running stacks, <Func_RA, Func_RB, 
Func_RD, Func_RE, Func_RF>, is executed throughout the 4 
ms period of CPU consumption. We name such non-
consecutive subsequence pattern from callstacks as callstack 
pattern. If a large amount of CPU consumption from many 
trace streams is observed on this callstack pattern, it is 
suspicious to be a highly impactful performance bug. The 
aggregated performance metric values on this callstack 
pattern can be used to reflect its impact and to rank the bug 
along with other bugs. 

Wait bug. As shown in Figure 1, the wait reason of 
thread T1 at time t1 can be reflected by waiting stack W1.S. 
If a large number of waiting events from many trace streams 
are observed on the same waiting stack, or on waiting stacks 
containing a common callstack pattern reflecting the same 
waiting reason, e.g., <Func_WA, Func_WC, Func_WD, 

Func_WF>, it is quite suspicious to be a highly impactful 
performance bug. The content of the callstack pattern (the 
full waiting stack W1.S can also be a callstack pattern) can 
be used to both represent the bug and help analysts narrow 

Figure 1. A time window of program execution 

Time axis 

Func_WA 

Func_WB 

Func_WC 

Func_WD 

Func_WE 

Func_WF 

Func_WG 

Func_RA 

Func_RB 

Func_RY 

Func_RD 

Func_RE 

Func_RF 

Func_RG 

W_G 

Func_RA 

Func_RB 

Func_RX 

Func_RD 

Func_RE 

Func_RF 

Func_RG 

W_G 

Func_RA 

Func_RB 

Func_RY 

Func_RD 

Func_RE 

Func_RF 

Func_RA 

Func_RB 

Func_RX 

Func_RD 

Func_RE 

Func_RF 

Running 

Waiting 

W1.S : stack of waiting event W1 

of thread T1 at time t1 

Thread T1 

Thread T2 

W1.S 

R1.S R2.S R3.S R4.S 

Stacks of running events R1, R2, R3, and R4 of 

thread T2 at a sampling rate of once per millisecond 

t1 t2 t3 t4 t5 t6 



down the investigation scope. The aggregated performance 
metric values on the callstack pattern, i.e., the number of 
occurrences and total waiting time, can be used to reflect its 
impact and to rank the bug along with other bugs. 

B. Problem Definition 

Before we formalize the problem, we define some 
concepts used in the problem definition. 

Definition 1. A callstack   is a sequence of function calls 

                  , where    is a function call for 

     . 

Definition 2. An event   is of running event type   or 

waiting event type   with fields defined as in TABLE 1: 

TABLE 1. DEFINITIONS OF THE FIELDS IN AN EVENT 

Field Type Description 

    Callstack Running stack if           
Waiting stack if           

    Int64 Timestamp of event   

    Int64 Cost as CPU consumption in ms if           
Cost as waiting time in ms if           

      Int32 Thread ID 

Definition 3. A trace stream    is a sequence of events 

                   , where    is an event for 

     . 

Definition 4. A callstack pattern    for a set of trace 

streams       is a non-consecutive subsequence of a 

callstack      of    , i.e.,        .  

Definition 5. The cost of a callstack pattern    for a set of 

trace streams       is defined as 

    (  )  ∑     

    |{   }|       

             

 

 
Basic-Problem Definition: 
Inputs: 
A set of trace streams      . 
A number   as the threshold of waiting time or CPU 
consumption time. 

Outputs: All callstack patterns       for {   } where 

         (   )   , sorted by their costs in the descending 

order. 
 

To make the problem manageable, we reduce the basic 
problem to a costly-subsequence-pattern mining problem 
where the outputs are costly callstack patterns whose costs 
are equal to or higher than  . Furthermore, because multiple 
mined costly callstack patterns with slight differences could 
be related to the same performance bug, we apply clustering 
on the mined costly subsequences to produce the final output 
as a set of clusters of costly callstack patterns       , where 
a cluster of callstack patterns      is a set of callstack 

patterns    , denoted as      {   }. 
We next define four typical performance metrics for a 

callstack pattern cluster     as below: 

(1) Total cost, 

         (   )  ∑     

    |{   }|       

                     

 

(2) Number of trace streams, 
               (   )   

|                                 | 

(3) Number of events, 
        (   )   

|{        {   }                              }| 

(4) Average event cost, 
           (   )           (   )         ⁄ (   ) 

III. APPROACH OVERVIEW 

For the described problem, we propose our StackMine 
approach that includes the costly-pattern clustering 
mechanism to address significant challenges in performance 
debugging in the large. In particular, given a (large) set of 
trace streams, StackMine includes three steps to reduce the 
investigation scope as callstack pattern clusters for 
performance analysts to investigate. 

AOI extraction: For different subjects under analysis, the 

area of interests (AOIs) within the trace streams might be 

different. For example, when analyzing response delay of 

the Windows Explorer UI, a large proportion of the given 

trace streams can be irrelevant to the delay in the UI thread. 

The AOI extraction step is responsible for extracting 

relevant events and callstacks based on dependencies among 

thread executions due to resource sharing. 

Costly-maximal-pattern mining: From callstacks in the 

extracted AOIs, this step mines callstack patterns out of 

waiting stacks and running stacks, respectively, with 

maximal subsequence pattern mining. 

Callstack pattern clustering: To group variations of one 

performance bug that are in the form of a set of similar 

callstack patterns, we propose a similarity model for 

callstack patterns and conduct hierarchical clustering on 

callstack patterns with this similarity model. 

Recall that each callstack pattern cluster is associated 
with a set of performance metrics as presented earlier. 
Analysts can inspect the pattern clusters ranked based on one 
of these metrics. We next illustrate the technical details of 
these three steps. 

IV. AOI EXTRACTION 

The step of AOI extraction addresses two major issues 
related to effectiveness and efficiency, respectively, faced 
when applying performance analysis directly on all events 
from the trace streams. 

First, a trace collection platform typically collects trace 
streams that record not only the problematic time period with 
respect to performance, but also some normal time periods 
around the problematic period. In modern multi-tasking 
system environments, even within the problematic period 
including performance-issue-exhibiting executions (such as 



lock contention), there would be normal executions (such as 
waiting time on user inputs) recorded together. Performance 
metric values of such normal executions need to be excluded 
since they would be noise for compromising effectiveness of 
performance analysis. Second, all events within collected 
trace streams are typically too many and too complicated for 
even well-designed and engineered mining algorithms to 
handle. 

To address these issues, based on more than 1-year’s 
interactions and collaborations with Microsoft performance 
analysts, from performance-analysis industrial practices, we 
identified two effective AOI extraction techniques (scope-
based extraction and content-based extraction) and built tool 
support in StackMine to enable such effective and efficient 
AOI extraction. Note that in practice, performance analysts 
often use a mixture of these two techniques in this step. 

Scope-based extraction. Recording a trace stream    is 
typically triggered by some performance symptom, e.g., 
delayed finish of a feature or delayed handling of a message. 
Based on the recorded information of the trace stream, such 
symptom can be automatically identified in the form of a 
triple          , denoting the execution of a thread   
within a time period         (     ) of bad performance. 
With respect to the identified symptom, our technique 
identifies a scope to include the symptom’s relevant events 
and callstacks within the trace stream.  

In particular, we propose the Wait Graph model to 
extract such scope for a symptom. A wait graph, denoted as 
        , consists of a vertex set   and an edge set  . 
Each vertex     represents a running or waiting event of a 
thread. Each directed edge     always starts from a vertex 
for a waiting event        and ends at a vertex for a running 
or waiting event     , denoting that (1) the time span of 
       has overlapping with the time span of     , and (2) 
    ’s thread makes       ’s thread ready, where          
could be acquired by calling                          (). 

Figure 2 shows an algorithm for constructing a wait graph. 
From the wait graph for a symptom, we identify the relevant 
scope as all the waiting events and running events from the 
vertices in the graph. Despite the similar shape, the Wait 
Graph substantially differs from the Wait-For graph [27]. 
The Wait Graph (1) uses finer-grained entities 
(running/waiting events instead of processes/threads) as 
nodes, (2) uses directed edges to express their timing 
dependencies instead of resource dependencies, and (3) is 
used to reduce the investigation scope instead of detecting 
deadlocks. Note that the key idea of our technique can be 
applied in a more aggressive way to further reduce the 
investigation scope by identifying the relevant scope as the 
waiting events and running events from only (1) the UI 
threads or (2) the critical paths of the Wait Graph, as often 
done by Microsoft performance analysts. 

Content-based extraction. Performance analysts may 
often initiate performance analyses with certain hypotheses 
or focuses in mind. For example, Microsoft performance 
analysts initiated a real-world analysis when they suspected 
that some locks in the win32k.sys module caused poor 
performance, and initiated another real-world analysis when 
the analysts wanted to discover hard-fault-related bugs for 
causing slow Windows logon. In these situations, our 
technique allows analysts to conveniently extract required 
events, e.g., including at least one function for win32k.sys 
lock access or including one function for hard-fault handling 
in its callstack for the preceding two examples, respectively. 

V. CALLSTACK PATTERN MINING 

After the step of AOI extraction, our proposed mining 
algorithm mines costly callstack patterns       from two 
types of callstacks (within the extracted AOI), i.e., waiting 
stacks and running stacks, separately. 

Our algorithm is a novel adaptation of a classic algorithm 
for mining frequent maximal

2
 subsequences, where the 

support of a pattern is the number of supporting entities in 
the input database, such as transactions and sequences. Both 
a costly callstack pattern    (targeted by our algorithm) and 
a frequent subsequence pattern    (targeted by the classic 
algorithm) obey the Apriori [2] property:      
       (   )      (  )  whereas a nonempty 
subsequence of a frequent    pattern must also be frequent. 
In particular, we adapt the classic BIDE algorithm [23] with 
two major modifications. First, we modify the support of a 
subsequence pattern    from its occurrences to     (  ). 
Second, for maximal pattern checking, we modify the 
condition in the forward/backward extension check of a 
super-sequence pattern     from     (   )       (  ) 
(originally used to mine closed patterns) to     (   )   . 

For the condition      (  )   , an analyst can follow 
some guideline to determine an appropriate   threshold value 
for the analysis task at hand. For example, assume that an 
analyst intends to conduct performance analysis on one 

 
2 When a frequent (costly) pattern is maximal, none of its super patterns 

can be frequent (costly). For our problem, we choose maximal patterns 

since doing so helps produce desirable results for inspection: reducing the 
pattern set while preserving call path information. 

Inputs: trace stream    and symptom          , denoting 
execution of thread   within         (     ) with bad performance 
Output: wait graph          
1.      ;      ;       ; 

2. foreach      where              

3.         if         (           )           (     ) 

4.                  .AddNode ( ); 

5.        ; 

6. foreach      

7.           .AddNode( ); 

8.         if           

9.                      :=  .GetReadierThreadID(); 

10.                 foreach       where              

11.                         if (         )          (           ) 
12.                                  .AddNode(  ); 

13.                                  .AddEdge( ,  ); 

14. if      

15.         goto 5; 

16. return      ; 

Figure 2. Pseudo-algorithm for Wait Graph construction 



performance bug triggered in over 10% of the collected 1000 
trace streams with an impact of 0.3 second response delay on 
average. Then the analyst can set      seconds, since 30 
seconds = 10% * 0.3 second/trace stream * 1000 trace 
streams. 

VI. CALLSTACK PATTERN CLUSTERING 

Given the mined costly callstack patterns, our step of 
clustering groups similar patterns into clusters with 
hierarchical clustering (a popular clustering technique), 
offering two main benefits. First, when exploring together 
callstack patterns of different variations, analysts can more 
easily recognize the common part and the variant part of the 
callstack patterns. Doing so not only helps better determine 
whether and where there is a hidden performance bug, but 
also helps find a high-covering fix (likely falling into the 
common part) that could fix performance issues across 
various similar patterns. Second, using performance metrics 
of a cluster can help produce better prioritization of results 
for investigation since without clustering, performance 
metric values of a high-impact bug can be spread across 
multiple callstack patterns of different variations, causing the 
bug not to emerge with a high rank. 

A key component of any clustering technique is the 
underlying similarity model used to measure how similar 
two entities are. Based on years of performance-analysis 
experiences of Microsoft performance analysts, we construct 
a novel similarity model (sharing the key concept with the 
edit distance model [17]) that takes into account 
characteristics of programs and their behaviors. In particular, 
we calculate similarity of two callstack patterns with two 
major steps: align the two patterns (Section A) and then 
calculate the similarity of the two patterns (Section B) based 
on the weighted similarity between the aligned segments of 
the two patterns (Section C). 

A. Alignment 

Similar to the edit distance model, we use dynamic-
programming search to derive an optimal alignment with 
respect to minimizing the total cost of three kinds of editing 

operations: (1) match; (2) insertion/deletion; (3) substitution. 
For example, given a pair of callstack patterns   and  , we 
get the optimal alignment in the form of a series of operation 
segments, as shown in Figure 3.  

When computing operation cost, we set the cost of a 
match operation as 0, the cost of an insertion/deletion 
operation as 1.0, and the cost of a substitution operation 
between function    and    as    (     ), where    (     ) 
is a cost function defined based on their function names (we 
split a name into words by treating upper-case characters as 
word boundaries):  

   (     )     
                             

                                   
 

Intuitively,    and    are more similar when    (     ) 
is smaller. We define the preceding cost function based on 
substantial observations from practice that two different 
callstack patterns of the same performance bug tend to share 
the similar name structure and words across their 
corresponding functions in a substitution segment, with an 
example as segment S1 in Figure 3.  

More formally, we define a segment of   consecutive 
match operations as                        , such as 

  and    shown in Figure 3. Each      represents a 

function that appears in both callstack patterns at the 
corresponding position  . We assign      and        with the 

value   for the sake of simplicity, denoted as      
        . 

We define a segment of   consecutive insertion/deletion 
operations as                             , such as     

shown in Figure 3. Each       represents a function that 

appears in one callstack pattern at the corresponding position 
 .                . 

We define a segment of   consecutive substitution 
operations from the left callstack pattern to the right one as 
                (          )(          ) (          ) 

such as    shown in Figure 3. Each pair of       and       

represents a pair of functions (from the two patterns) that are 
different at the corresponding position  .               
 ,                . 

Given a pair of callstack patterns, we first derive an 
alignment of the callstack patterns as a set of operation 
segments as                   . Then, based on this 
alignment  , we calculate the similarity of the two callstack 
patterns denoted as    ( ) , with details illustrated next.  

B. Similarity Calculation 

Given an alignment    of a pair of callstack patterns, we 
use the edit distance model to calculate their similarity as the 
ratio of the length of the match-operation segments over the 
length of all the segments. However, using only the lengths 
(i.e., the number of function calls) of aligned segments to 
calculate similarity often cannot reflect desirable similarity 
in terms of program behaviors. To address the issue, we 
define a set of weight functions   on segments, and then 
define the similarity    ( ) as  

   ( )  
∑  (  )    

∑  (  )     ∑  (   )      ∑  (  )    
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We denote the     function in a segment   as   , where 

                   . Once we define a weight function 

 (  )  for each function   , we can define the weight 

functions   for the three types of segments as 

 (  )  ∑ (    )

    

   

              (   )  ∑  (     )
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We define function weight  (  ) in the next sub-section. 

C. Function-Weight Calculation 

We define the weight of function    as 

 (  )     (  )  
   (       )     (       )

 
 

in which    (  ) (denoting unigram information) represents 

the weight for reflecting how unlikely     is a common-

purpose function, e.g., the App_main function. Note that an 
editing operation on a common-purpose function has less 
contribution to the overall pattern similarity than a non-
common-purpose function. 

   (       )  and    (       ) (denoting forward 

bigram information and backward bigram information, 
respectively) represent the weights for reflecting how 
unlikely    is in a constant/dominant call path, given its 

caller and callee functions as context. Note that a callstack 
segment   has less contribution to the overall pattern 
similarity when the segment   is in a constant/dominant call 
path. 

For functions  and      , we calculate    ( )  
   ( 

 
  

 
), and    ( 

 
  

 
) based on statistics derived from 

our trace-stream database (beyond just the trace streams 
under investigation) as  

   ( )     
                       

                       
 

   (     )    
                                       

                               
 

   (     )     
                                       

                               
 

Specially, we define    (   )     (   )   . 
Intuitively,   tends to be a common-purpose function when 
   ( )  is small.      tends to be a part of a 
constant/dominant call path when    (     ) or    (     ) 
is small. 

VII. EVALUATIONS 

We conducted two evaluations on StackMine with two of 
the most popular real-world software products - Microsoft 
Windows 7 and a third-party application, respectively. In the 
evaluation with Windows 7, we intended to answer three 
research questions with results produced when Microsoft 
performance analysts used StackMine in real-world 
industrial settings. 

 Q1. How much does StackMine improve practices of 
the performance debugging in the large?  

 Q2. How well do the performance signatures derived 
with the assistance of StackMine capture performance 
bottlenecks caused by performance bugs?  

 Q3. How does StackMine perform compared to 
alternative techniques?  

StackMine was motivated by the needs of Microsoft 
Windows teams. Our evaluation serves as the first reported 
experience of performance debugging in the large for such 
large-scale software products as Windows. After research 
and incubation for more than one year, with close 
collaboration between Microsoft researchers and 
performance analysts, StackMine has been adopted by one 
team of Windows performance analysts, and is becoming 
part of the standard Windows performance analysis 
workflow. Our evaluation focuses on real-world experiences 
of Microsoft performance analysts when applying StackMine 
on a large performance analysis task: response-delay analysis 
of the Windows 7 Explorer (in short as Windows Explorer) 
User Interface (UI). 

Due to confidentiality, we are not able to disclose some 
low-level details of the first evaluation’s results such as 
detailed descriptions of the investigated bugs. To allow the 
community to build upon our research and results, with the 
help of researchers from North Carolina State University, our 
approach was applied on one popular third-party application. 
The details of the evaluation results can be found on our 
project website [29]. Note that in our setting, we take the role 
of third-party performance analysts (other than the 
developers of the application), lacking deep knowledge of 
the application’s code base while achieving substantial 
success with the assistance of StackMine. 

A. Windows 7 Study  

In December 2010, as a continued effort to improve the 
performance of Windows, performance analysts from one 
performance analysis team for Microsoft Windows planned 
to conduct an investigation to hunt for the hidden 
performance bugs that caused common impact on Windows 
Explorer UI response. The investigation was against a large 
set of ETW event trace streams collected through the 
PerfTrack mechanism. This initial set included over 6,000 
such trace streams collected by satisfying a triggering 
condition of Windows Explorer UI response delay. The 
performance analysts focused on 921 trace streams by first 
randomly sampling 1,000 trace streams and then excluding 
79 irrelevant ones (e.g., those not including any key function 
calls related to the Windows Explorer UI). Among the 921 
trace streams, there were 181 million callstacks in total, 
among which 140 million were waiting stacks and 41 million 
were running stacks. Each typical trace-stream file can 
include hundreds of thousands of events and callstacks with 
hundreds of megabytes in binary format.  

1) Q1. Overall Improvement of Practices: Given the 921 

trace streams, StackMine took about 10 hours of automatic 

analysis to output a ranked list of 1,215 pattern clusters. In 

particular, the AOI extraction phase reduced the 140 million 

callstacks to 689 thousand callstacks using both scope-based 

(in particular the critical-path model) and content-based 



techniques. The maximal-callstack-pattern mining produces 

2,239 costly patterns. The callstack-pattern clustering 

produces the final ranked list of the 1,215 pattern clusters. 

One analyst took 1 day (8 hours) to go through the top 
400 clusters, in the descending order of the             

metric values as defined in Section B, and derived 93 
performance signatures from these clusters. These 93 
signatures covered 58.26% of the response delay time (of the 
Windows Explorer UI) captured in the 921 trace streams.  

With additional deep investigation on both trace streams 
and source code based on the 93 signatures, the analyst 
successfully diagnosed and filed 12 highly impactful hidden 
performance bugs of Windows Explorer. These bugs had 
been hidden for at least more than one year since the release 
of Windows 7, and some of them can even be traced back to 
earlier versions of Windows. In terms of their performance 
impact, one of the bugs caused significant response delay 
observed in 32% of the 921 trace streams, and another one 
caused significant response delay observed in 11% of the 
921 trace streams with on average 1.6 seconds of UI 
response delay once triggered.  

Ideally we would like to measure the effort of an analyst 
(without the assistance of StackMine) to derive performance 
signatures for discovering these highly impactful 
performance bugs, in order to measure effort reduction 
achieved by StackMine. However, we could not attain such 
statistics because the performance analysis team would not 
afford to invest analysts to manually investigate these 921 
trace streams before we introduced StackMine into their 
practices. Therefore, we make a rough estimation as below 
based on past experiences of the performance analysis team. 
On average, it takes about 10~30 minutes for an experienced 
performance analyst to derive signatures from a single trace 
stream. Therefore, it would take 20~60 days to derive 
signatures if each and every single trace were analyzed 
manually. In contrast, with StackMine, deriving signatures 
can be finished in 1 day. 

The substantial benefits of StackMine have been 
reflected by feedback given by the performance analysis 
team: “We believe that the StackMine tool is highly valuable 
and much more efficient for mass trace streams (100+ trace 
streams) analysis. For 1000 trace streams, we believe the tool 
saves us 4-6 weeks of time to create new signatures, which is 
quite a significant productivity boost.” 

2) Q2. Performance Bottleneck Coverage: The study results 

against Q1 show that StackMine substantially reduces the 

effort of the performance analyst on deriving performance 

signatures. However, it is an open question on whether the 

effort reduction compromises the effectiveness, i.e., missing 

other highly impactful hidden performance bugs (beyond 

these 12 bugs) that could be found by more-expensive 

investigation without the assistance of StackMine. 

To address this evaluation issue, we propose and measure 
the performance bottleneck coverage of a set of performance 
signatures as below: 

                                                          

                                                        
 

The coverage denotes the proportion of the bad-performance 
time period that analysts can explain and take action on with 
the performance signatures. The higher coverage the 
performance signatures achieve, the lower possibility highly 
impactful performance bugs remain not captured by the 
performance signatures. The reason is that shorter (not-
covered) bad-performance time period causes the remaining 
performance bugs (if any) to be less highly impactful (i.e., 
causing less-significant delay). 

Recall that the analyst identified 93 performance 
signatures from the pattern clusters. These 93 signatures 
achieved 58.26% performance bottleneck coverage: nearly 
60% of the total response delay captured in the 921 trace 
streams can be explained and improved with these 93 
performance signatures. The performance analysis team 
indicated to us that the achieved coverage was quite 
satisfactory. Among these signatures, two signatures led the 
analyst to discover two highly impactful performance bugs 
with high impact as described in Section 1), respectively.  

3) Q3. Comparison with Alternative Techniques: We 

identified three alternative techniques along with StackMine 

that rank trace streams for the performance analyst to 

investigate.  

 Random: this technique ranks trace streams in a random 
order, serving as the baseline technique;  

 Greedy-Total: this technique ranks trace streams in the 
descending order of total UI response delay time within 
a trace stream;  

 Greedy-Max: this technique ranks trace streams in the 
descending order of the maximum UI response delay 
time within a trace stream;  

 StackMine: this technique first defines a set of 
performance signatures (93 signatures in 1)) from the 
top pattern clusters (400 clusters in 1)). After the 
signatures are sorted by their performance bottleneck 
coverage, the technique then selects one trace stream 
containing the top 1 signature to investigate. Then it 
selects a new trace stream containing the next not-yet-
investigated signature, and so on. 

Figure 4 shows the number of trace streams (y-axis) 
required to achieve a certain performance bottleneck 
coverage (x-axis) for the Random, Greedy-Total, Greedy-
Max, and StackMine techniques, respectively. For example, 
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these four techniques require the analyst to investigate 193, 
238, 220, and 14 trace streams, respectively, to achieve 
58.26% coverage. On average, StackMine requires only 
7.2%, 5.8%, and 6.3% of trace streams required by the 
Random, Greedy-Total, and Greedy-Max techniques, 
respectively, to achieve a certain performance bottleneck 
coverage. The results highlight the substantial advantages of 
StackMine over other alternative techniques. 

B. Study Results on a Third-Party Application  

To allow the community to build upon our research and 
results, with the help of researchers from North Carolina 
State University, our approach was applied on one popular 
third-party application

3
. Such case reflects situations where 

users of our approach take the role of third-party 
performance analysts (other than the developers of the 
application), lacking deep knowledge of the code base of the 
application.  

In particular, StackMine was applied to analyze the 
startup performance of the third-party application, based on 
54 trace streams with the following characteristics. 

 Running a specific same version of the application; 

 Containing the start point of a startup process, indicated 
by the process start event of the application; 

 Containing the end point of the startup process, 
indicated by the first occurrence of function call 
“user32.dll!PeekMessage” after the start point of the 
startup process. This first attempt for handling a user’s 
input tends to reflect the end point of the startup process. 

 Spending > 1 second for the identified startup process.  
These 54 trace streams included 59 occurrences of slow 

startups (each > 1 second). The average time consumption of 
a startup was 7.0 seconds and the slowest one took 52.8 
seconds. These trace streams included 33 million callstacks, 
while 20 million were waiting stacks and 13 million were 
running stacks. In this study, we focused on wait-related 
bugs. Discovering CPU-consumption-related bugs can be 
conducted similarly. 

1) Results of Applying StackMine: We next illustrate the 

results from each phase in details. In the phase of AOI 

extraction, waiting stacks were extracted from the UI thread 

using the Wait Graph model. Then, AOI extraction 

produced 41 thousand callstacks with average length of 36 

function calls for each callstack. The phase of maximal-

callstack-pattern mining produced 371 costly patterns. The 

phase of pattern clustering produced 251 pattern clusters. 

The entire automatic processing took less than 10 minutes. 

Finally, these 251 pattern clusters were ranked according 
to the four different metrics as defined in Section B, and the 
top 60 pattern clusters in each prioritized list were examined. 
Based on the top pattern clusters, it took about 1 hour to 
manually derive 22 performance signatures, which achieved 
66.69% performance bottleneck coverage of the collected 54 
trace streams. In contrast, without the assistance of 

 
3
 Readers who would like to learn specifics of the third-party application 

could contact the last author. 

StackMine, it would have to take 9 to 27 hours to manually 
derive these performance signatures, based on empirical 
estimation. 

Among the signatures, 16 of them with 55.80% 
performance bottleneck coverage in total corresponded to 
three major factors that were widely discussed on the 
Internet for slow startup of the application: (1) on-demand 
scanning conducted by anti-virus software before the 
application loads some external components, (2) loading of a 
non-trivial number of plugins, (3) loading of more-than-
necessary contents by the prefetching functionality. The 
three main factors can be considered as known common 
issues, and developers of the application can make 
improvements accordingly.  

Based on the remaining 6 signatures, 6 performance bugs 
were discovered with 10.89% performance bottleneck 
coverage. Among these 6 bugs, 5 of them have been 
confirmed with third-party sources and 1 of them is yet to be 
confirmed. 

In summary, StackMine achieved substantial effort 
reduction with respect to research question Q1. For Q2, these 
22 signatures achieved satisfying performance bottleneck 
coverage of 66.69%. Due to space limit, in this evaluation, 
we could not include detailed comparison with alternative 
techniques for Q3, which would have similar conclusions to 
what have been shown in the Windows study. 

2) Representative Performance Bug: We next describe one 

representative performance bug that has been identified with 

StackMine. When ranked based on average waiting time, 

this bug emerged in the 24th cluster, with an average 

waiting time of 382 milliseconds over 36 trace streams. 

Note that among the higher-ranked 23 clusters, 4 of them 

were related to our 6 newly discovered bugs while the other 

19 were related to known issues due to common factors. 

Figure 5 shows the common part of the patterns from this 

24th cluster. It is divided into three segments, and between 

the segments there are variant function-call paths 

corresponding to different situations. Without clustering, the 

performance metric value of the same logic but along 

different call paths would be split into different patterns and 

thus such splitting would prohibit the bug from emerging 

from a pattern with a high performance metric value. 

      Reading the common part of the pattern cluster could 
help learn the following logic. In Segment 1, the application 
would load a set of components during the initialization 
stage. A hash table was used and the GetShortPathName 
Windows API function was invoked in GetHashCode. In 
Segment 2, the Windows kernel would perform some 
operations to support GetShortPathName. In Segment 3, hard 
faults happened and disk I/O was conducted, causing 
additional time consumption. 

Based on the pattern cluster, further investigations 
exposed two major findings. On one hand, Segment 1 
provided us with sufficient information to quickly locate the 
problem in the source code, e.g., the invocation of the 
GetShortPathName API function. The application used a 
hash table to manage the components that it loaded, and the 



path name of a file was used as the key in the hash table. 
However, Windows has a historical issue about short path 
names. To ensure that both the long path name and short 
path name of a single component would map to the same 
entry in the hash table, the application adopted the short 
name and therefore the GetShortPathName API function was 
always invoked at the first time of loading a component.  

On the other hand, the investigation on the trace streams 
exposed that the disk I/O in Segment 3 was for reading 
$MFT of the file system, and the readings on $MFT would 
introduce severe lock contention with many other 
applications and OS components; thus, the readings could be 
blocked for a long period of time. 

It was observed that all the key functions involved in this 
performance bug had been captured and connected by a call 
context in the pattern cluster. Based on the call context, it 
was natural and efficient for analysts to figure out the 
performance bug. Beyond that, analysts can focus on this call 
context and figure out the corresponding optimization 
solution accordingly. It has been shown that the usage of 
long path names was dominant on recent Windows versions. 
Therefore, an optimization solution is to adopt the long path 
name as the key of the hash table. There are simple and 
reliable ways to detect whether a path name is a short name, 
and the GetLongPathName API function needs to be invoked 
only when a path name is detected as a short name. This 
optimization solution is expected to significantly reduce the 
chance to read $MFT of the file system, thus improving the 
performance. 

VIII. RELATED WORK 

Previous work on performance debugging typically 

focused on one or a few full or sampled trace streams of a 

software system, in contrast to a large number of trace 

streams focused by StackMine for performance debugging in 

the large. 

For example, Ammons et al. [5] proposed an approach 

that includes a search tool built upon a simple profile 

interface to help analysts explore summaries of profile 

measurements to search for performance bottlenecks within 

a few trace streams. Their approach heavily relies on manual 

effort to navigate through traces. 

To analyze a few sampled trace streams collected from 

deployment sites of modern enterprise-class multi-tier server 

applications, the IBM Whole-system Analysis of Idle Time 

(WAIT) approach [3] helps analysts diagnose idle time 

(indicating a lack of forward motion), which corresponds to 

wait bugs handled by StackMine (which also handles CPU 

consumption bugs). Their approach heavily relies on an 

extensible set of manually specified declarative rules to 

abstract traces to states of observed idleness.  

Srinivas and Srinivasan [20] proposed to use thresholding 

and filtering to summarize performance problems on a 

component basis, by identifying a small set of interesting 

function calls in manually specified components of interest. 

The IBM Jinsight tool [19] allows analysts to explore traces 

at different dimensions with visualization support. In 

contrast to these approaches, StackMine does not require 

manual specifications of components of interest or heavy 

manual effort to explore traces. 

There were various previous approaches on applying 

frequent pattern mining or clustering on execution traces 

[4][8][13][24] or source code [1][6][10][12][16][18][21][22]. 

However, these approaches typically focus on mining API 

specifications, rather than performance debugging, calling 

for novel techniques in StackMine. There were a number of 

previous debugging approaches [9][11][14][15] based on 

real-world usage data but none of them focused on 

performance debugging.  

IX. CONCLUSION  

To enable performance debugging in the large, we have 
proposed the StackMine approach that conducts mining and 
clustering on callstack traces from trace streams related to 
performance issues encountered by real-world users. 
StackMine helps performance analysts effectively discover 
highly impactful performance bugs. Since December 2010, 
StackMine has been applied in performance-debugging 
activities at a Microsoft team for performance analysis, 
especially for a large number of execution traces. Our 
evaluations on two large-scale real-world software products 
(Microsoft Windows 7 and a third-party application) 
demonstrated StackMine’s substantial benefits in 
performance debugging in the large.  

Exemplified by WER and StackMine, we envision and 
advocate a game-changing paradigm for software quality 
assurance in the large based on usage data collected from the 
real world, in order to cope with increasingly large and 
complex modern software systems, such as ultra-large-scale 
systems. 

ACKNOWLEDGMENT 

The authors would like to thank the developers and 
analysts from the Microsoft product teams for the 
collaboration throughout the StackMine project. The authors 
would like to also thank the researchers from Microsoft 
Research for the discussions on the Wait Graph definition. 

App_main 

Initialize 

InitComponents 

HashTableOperate 

GetHashCode 

kernel32.dll!GetShortPathName 

 

 

 

 

 

…… 

Nt!ObOpenObjectByName 

Nt!ObpLookupObjectName 

Nt!opParseDevice 

Ntfs.sys!NtfsFsdCreate 

Ntfs.sys!NtfsCommonCreateOnNewStack 

 

 

 

 

…… 

Nt!MmAccessFault 

Nt!MiIssueHardFault 

Nt!IoPageRead 

 

 

Segment 1 

Segment 2 

Segment 3 

Figure 5. Callstack pattern of a slow startup bug of the third-party 

application 



REFERENCES 

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial 
orders from source code: from usage scenarios to specifications,” 
Proc. ESEC/FSE, 2007, pp. 25–34. 

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association 
rules,” Proc. VLDB, 1994, pp. 487-499. 

[3] E. Altman, M. Arnold, S. Fink, and N. Mitchell, “Performance 
analysis of idle programs,” Proc. OOPSLA, 2010, pp. 739-753. 

[4] G. Ammons, R. Bodik, and J.R. Larus, “Mining specifications,” Proc. 
POPL, 2002,  pp. 4–16. 

[5] G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy, “Finding and 
removing performance bottlenecks in large systems,” 
Proc.  ECOOP, 2004, pp. 170-194. 

[6] R.-Y. Chang, A. Podgurski, and J. Yang, “Finding what’s not there: a 
new approach to revealing neglected conditions in software,” Proc. 
ISSTA, 2007, pp. 163–173. 

[7] Y. Dang, S. Ge, R. Huang, and D. Zhang, “Code clone detection 
experience at Microsoft,” Proc. IWSC, 2011, pp. 63-64. 

[8] W. Dickinson, D. Leon, and A. Podgurski, “Finding failures by 
cluster analysis of execution profiles,” Proc. ICSE, 2001, pp. 339-348. 

[9] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. 
Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the (very) 
large: ten years of implementation and experience,” Proc. SOSP, 
2009, pp. 103-116. 

[10] Z. Li and Y. Zhou, “PR-Miner: Automatically extracting implicit 
programming rules and detecting violations in large software codes,” 
Proc. ESEC/FSE, 2005, pp. 306–315. 

[11] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via 
remote program sampling,” Proc. PLDI, 2003, pp. 141-154. 

[12] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V. Lopes, and 
P. Baldi, “Sourcerer: mining and searching internet-scale software 
repositories,” Data Min. Knowl. Discov., vol.18, no.2, Apr. 2009, pp. 
300-336. 

[13] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of 
software behavioral models,” Proc. ICSE, 2008, pp. 501-510. 

[14] A. Orso, D. Liang, M. J. Harrold, and R. J. Lipton, “Gamma system: 
continuous evolution of software after deployment,” Proc. ISSTA, 
2002, pp. 65-69. 

[15] A. A. Porter, C. Yilmaz, A. M. Memon, D. C. Schmidt, and B. 
Natarajan, “Skoll: A process and infrastructure for distributed 
continuous quality assurance,” IEEE Trans. Software Eng., vol.33, 
no.8, Aug. 2007, pp. 510-525. 

[16] M.K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive 
inference of function precedence protocols,” Proc. ICSE, 2007, pp. 
240–250. 

[17] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE 
Trans. PAMI, vol.20, no.5, May 1998, pp.522-532. 

[18] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage 
changes from instantiation code,” Proc. ICSE, 2008, pp. 471-480. 

[19] G. Sevitsky, W. De Pauw, and R. Konuru, “An information 
exploration tool for performance analysis of Java programs,” Proc. 
TOOLS Euro, 2001, pp. 85-101. 

[20] K. Srinivas and H. Srinivasan, “Summarizing application 
performance from a components perspective,” Proc. ESEC/FSE, 
2005, pp. 136–145. 

[21] S. Thummalapenta and T. Xie, “Alattin: mining alternative patterns 
for detecting neglected conditions,” Proc. ASE, 2009, pp. 283–294. 

[22] S. Thummalapenta and T. Xie, “Mining exception-handling rules as 
sequence association rules,” Proc. ICSE, 2009, pp. 496–506. 

[23] J. Wang and J. Han, “BIDE: Efficient mining of frequent closed 
sequences,” Proc. ICDE, 2004, pp. 79-90. 

[24] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta: 
mining temporal API rules from imperfect traces,” Proc. ICSE, 2006, 
pp. 282–291. 

[25] http://channel9.msdn.com/Blogs/Charles/Inside-Windows-7-
Reliability-Performance-and-PerfTrack 

[26] http://en.wikipedia.org/wiki/DTrace 

[27] http://en.wikipedia.org/wiki/Wait-for_graph 

[28] http://msdn.microsoft.com/en-
us/library/windows/desktop/bb968803(v=vs.85).aspx 

[29] http://research.csc.ncsu.edu/ase/projects/perfanalysis/ 

 


