DO0I:10.1145/1536616.1536639

Does Distributed Development
Affect Software Quality?
An Empirical Case Study

of Windows Vista

By Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and Brendan Murphy

Abstract

Existing literature on distributed development in software
engineering, and other fields discusses various challenges,
including cultural barriers, expertise transfer difficulties, and
communication and coordination overhead. Conventional
wisdom, in fact, holds that distributed software development
isriskierand more challenging than collocated development.
We revisit this belief, empirically studying the overall devel-
opment of Windows Vista and comparing the post-release
failures of components that were developed in a distributed
fashion with those that were developed by collocated teams.
We found a negligible difference in failures. This difference
becomes even less significant when controlling for the num-
ber of developers working on a binary. Furthermore, we also
found that component characteristics (such as code churn,
complexity, dependency information, and test code cover-
age) differ very little between distributed and collocated
components. Finally, we examine the software process used
during the Vista development cycle and examine how it may
have mitigated some of the difficulties of distributed devel-
opment introduced in prior work in this area.

1. INTRODUCTION
Globally distributed software development is an increasingly
common strategic response to issues such as skill set avail-
ability, acquisitions, government restrictions, increased code
size, cost and complexity, and other resource constraints.* *
In this paper, we examine development that is globally dis-
tributed, but completely within Microsoft. This style of global
development within a single company is to be contrasted with
outsourcing, which involves multiple companies. It is widely
believed that distributed collaboration involves challenges
not inherent in collocated teams, including delayed feedback,
restricted communication, less shared project awareness, dif-
ficulty of synchronous communication, inconsistent develop-
mentand build environments, and lack of trust and confidence
between sites.” While there are studies that have examined the
delay associated with distributed development and the direct
causes for them,'* there has been much less attention (see e.g.,
Rammasubbu and Balan?!) to the effect of distributed develop-
ment on software quality in terms of post-release failures.

In this paper, we use historical development data from the
implementation of Windows Vista, along with post-release

failure information, to empirically evaluate the hypothesis
that globally distributed software development leads to more
failures. We focus on post-release failures at the level of indi-
vidual executables and libraries (which we refer to as binaries)
shipped as part of the operating system and use the IEEE defi-
nition of a failure as “the inability of a system or component to
perform its required functions within specified performance
requirements.” Post-release failures are the most costly to
companies in terms of reputation and marketshare.

Using geographical and commit data for the develop-
ers that worked on Vista, we divide the Vista binaries into
those developed by (a) distributed and (b) collocated teams;
we then examine the distribution of post-release failures in
both populations. Binaries are classified as developed in
a distributed manner if at least 25% of the commits came
from locations other than where binary’s owner resides.
We find that there is a small (around 10%) increase in the
number of failures of binaries written by distributed teams
(hereafter referred to as distributed binaries) over those
written by collocated teams (collocated binaries). However,
when controlling for team size, the difference becomes neg-
ligible. In order to see if only smaller, less complex, or less
critical binaries are chosen for distributed development
(which could explain why distributed binaries have approxi-
mately the same number of failures), we examined many rel-
evant properties of these binaries, but found no difference
between distributed and collocated binaries. We present
our methods and findings in this paper.

2. MOTIVATION AND CONTRIBUTIONS
Distributed software development is a general concept that
can be operationalized in various ways. Development may
be distributed along many dimensions with various distinec-
tive characteristics.® There are key questions that should
be clarified when discussing a distributed software project.
Who or what is distributed and at what level? Are people or
the artifacts distributed? Are people dispersed individually
or dispersed in groups?

It is important to consider the way that developers and
other entities are distributed. The distribution can be across

A previous version of this article appeared in Proceedings
of the 31st International Conference on Software Engi-
neering (May 2009).

AUGUST 2009 | VOL.52 | NO.8 | COMMUNICATIONS OF THE ACM 85

research highlights

geographical, organizational, temporal, or stakeholder bound-
aries.” A scenario involving one company outsourcing work
to another will certainly differ from another, where multiple,
distributed teams work within the same company. A recent
special issue of IEEE Software focused on globally distributed
development, but the majority of the papers dealt with offshor-
ing relationships between separate companies and outsourc-
ing,which are likely very different from distributed sites within
the same company.”*® Even within a company, the develop-
ment may or may not span organizational structure at differ-
entlevels. Do geographical locations span the globe, including
multiple time zones, languages, and cultures or are they sim-
ply in different cities of the same state or nation?

We are interested in studying the effect of globally dis-
tributed software development within the same company,
because there are many issues involved in outsourcing that
are independent of geographical distribution (e.g. expertise
finding, different process, and an asymmetric relationship).
Our main motivation is to confirm or refute the notion that
global software development leads to more failures within
the context of our setting.

To our knowledge, this is the first large scale distributed
development study that considers distributed development
within an organization. This study augments the current
body of knowledge and differs from prior studies by making
the following contributions:

1. We examine distributed development at multiple lev-
els of separation (building, campus, continent, etc.).

2. We examine a large scale software development effort,
composed of thousands of binaries and thousands
developers.

3. We examine complexity and maintenance characteris-
tics of the distributed and collocated binaries to check
for inherent differences that might influence post-
release quality.

4. Our study examines a project in which all sites involved
are part of the same company and have been using the
same process and tools for years.

There is a large body of theory describing the difficulties
inherent in distributed development. We summarize them
here.

Communication suffers due to alack of unplanned and infor-
mal meetings.'* Engineers do not get to know each other on a
personal basis. Synchronous communication becomes less
common due to time zone and language barriers. Even when
communication is synchronous, the communication chan-
nels, such as conference calls orinstant messaging, arelessrich
than face to face and collocated group meetings. Developers
may take longer to solve problems because they lack the ability
to step into a neighboring office to ask for help. They may not
even know the correct person to contact at a remote site.

Coordination breakdowns occur due to this lack of commu-
nication and lower levels of group awareness. * When man-
agers must manage across large distances, it becomes more
difficult to stay aware of peoples’ task and how they are inter-
related. Different sites often use different tools and processes
which can also make coordinating between sites difficult.

86 COMMUNICATIONS OF THE ACM | AUGUST 2009 | VOL.52 | NO.8

Diversity in operating environments may cause manage-
ment problems.! Often there are relationships between the
organization doing development and external entities such
as governments and third party vendors. In a geographically
dispersed project, these entities will be different based on
location (e.g., national policies on labor practices may differ
between the United States and India).

Distance can reduce team cohesion® in groups collaborat-
ingremotely. Eating, sharing an office, orworking late together
to meet a deadline, all contribute to a feeling of being part of a
team. These opportunities are diminished by distance.

Organizational and national cultural barriers may compli-
cate globally distributed work.* Coworkers must be aware
of cultural differences in communication behaviors. One
example of a cultural difference within Microsoft became
apparent when a large company meeting was originally (and
unknowingly) planned on a major national holiday for one
of the sites involved.

Based on these prior observations and an examination of
the hurdles involved in globally distributed development we
expect that difficulties in communication and coordination
will lead to an increase in the number of failures in code pro-
duce by distributed teams over code from collocated teams.
We formulate our testable hypothesis formally.

H1: Binaries that are developed by teams of engineers that
are distributed will have more post-release failures than those
developed by collocated engineers.

We are also interested to see if the binaries that are dis-
tributed differ from their collocated counterparts in any
significant ways. It is possible that managers, aware of the
difficulties mentioned above, may choose to develop simpler,
less frequently changing, or less critical software in a distrib-
uted fashion. We therefore present our second hypothesis.

H2: Binaries that are distributed will be less complex, expe-
rience less code churn, and have fewer dependencies than
collocated binaries.

3. RELATED WORK

There is a wealth of literature in the area of globally distrib-
uted software development. It has been the focus of multiple
special issues of IEEE Software, workshops at ICSE and the
International Conference on Global Software Engineering.
Here we survey important work in the area, including both
studies and theory of globally distributed work in software
development.

There have been a number of experience reports for
globally distributed software development projects at vari-
ous companies including Siemens,"” Alcatel,” Motorola,!
Lucent,' and Philips."

3.1. Effects on bug resolution

In an empirical study of globally distributed software
development,™* Herbsleb and Mockus examined the time
to resolution of Modification Requests (MRs) in two depart-
ments of Lucent working on distinct network elements for
a telecommunication system. The average time needed to
complete a “single-site” MR was 5 days versus 12.7 for “dis-
tributed.” When controlling for other factors such as num-
ber of people working on an MR, how diffused the changes

are across the code base, size of the change, and severity, the
effect of being distributed was no longer significant. They
hypothesize that large and/or multi-module changes are
both more time consuming and more likely to involve mul-
tiple sites. These changes require more people, which intro-
duce delay. They conclude that distributed development
indirectly introduces delay due to correlated factors such as
team size and breadth of changes required.

Thanh et al.* examined the effect of distributed develop-
ment on delay between communications and time to resolu-
tion of workitems in IBM’s Jazz project, which was developed
at five globally distributed sites. While Kruskal-Wallis tests
showed a statistically significant difference in resolution
times for items that were more distributed, the Kendall Tau
correlations of time to resolution and time between com-
ments with number of sites were extremely low (below 0.1
in both cases). This indicates that distributed collaboration
does not have a strong effect.

Herbsleb and Mockus'? formulate an empirical theory of
coordination in software engineering and test hypotheses
based on this theory. They precisely define software engi-
neering as requiring a sequence of decisions associated with
a project. Each decision constrains the project and future
decisions in some way, until all choices have been made, and
the final product does or does not satisfy the requirements.
It is therefore important that only feasible decisions (those
which will lead to a project that does satisfy the require-
ments) be made. They present a coordination theory, and
develop testable hypotheses regarding productivity, mea-
sured as number of MRs resolved per unit time. They find
that (a) people who are assigned work from many sources
have lower productivity, and that (b) MRs that require work
in multiple modules have a longer cycle time than those
which require changes to just one.

Unlike the above papers, our study focuses on the effect
of distributed development on defect occurrence, rather than
on defect resolution time.

3.2. Effects on quality and productivity

Diomidis Spinellis examined the effect of distributed devel-
opment on productivity, code style, and defect density in the
FreeBSD code base.”® He measured the geographical dis-
tance between developers, the number of defects per source
file, as well as productivity in terms of number of lines com-
mitted per month. A correlation analysis showed that there
is little, if any, relationship between geographic distance of
developers and productivity and defect density. It should be
noted that this is a study of open source software which is, by
its very nature, distributed and has a very different process
model from commercial software.

Cusickand Prasad®examined the practicesused byWolters
Kluwer Corporate Legal Services when outsourcing software
development tasks and present their model for deciding if a
project is offshorable and how to manage it effectively. Their
strategies include keeping communication channels open,
using consistent development environments and machine
configurations, bringing offshore project leads onsite for
meetings, developing and using necessary infrastructure and
tools, and managing where the control and domain expertise

lies. They also point out that there are some drawbacks that
are difficult to overcome and should be expected such as the
need for more documentation, more planning for meetings,
higher levels of management overhead, and cultural differ-
ences. This work was based on an offshoring relationship
with a separate vendor and not collaboration between two
entities within the same company. We expect that the chal-
lenges faced in distributed development may differ based on
the type of relationship between distributed sites.

Ramasubbu and Balan® examined the relationship
between the dispersion (a measure of geographic dispersion)
of a project and its development productivity and confor-
mance quality. They gathered information from 42 projects
over 2 years and found that projects that had more disper-
sion also had lower levels of productivity and conformance
quality, though the effects were strongly mitigated through
quality management approaches. In their study, productiv-
ity and quality were measured on a project basis between
different projects, while our study examines characteristics
of components within one large software project, which
arguably provides better control over possibly confounding
project-specific factors.

Our study examines distributed development in the con-
text of one commercial entity, which differs greatly from
both open source projects and outsourcing relationships.

3.3. Issues and solutions

In his paper on global software teams,* Carmel categorizes
project risk factors into four categories that act as centrifu-
gal forces that pull global projects apart. These are

* Loss of communication richness
* Coordination breakdowns

* Geographic dispersion

* Cultural differences

In 2001, Battin et al.' discussed the challenges and their
solutions relative to each of Carmel’s categories in a large
scale project implementing the 3G Trial (Third Generation
Cellular System) at Motorola. By addressing these chal-
lenges in this project, they found that globally distributed
software development did not increase defect density, and
in fact, had lower defect density than the industrial aver-
age. Table 1 lists the various locations, the size of the code
developed at those locations, and their defect density. They
summarize the key actions necessary for success with global
development in order of importance:

¢ Use Liaisons
* Distribute entire things for entire life cycle
* Plan to accommodate time and distance

Carmel and Agarwal* present three tactics for alleviating
distance in global software development, each with exam-
ples, possible solutions, and caveats:

* Reduce intensive collaboration.
* Reduce national and organizational cultural distance.

* Reduce temporal distance.

AUGUST 2009 | VOL.52 | NO.8 | COMMUNICATIONS OF THE ACM 87

research highlights

Table 1. Locations, code size, and defect density from Motorola’s
3G trial project for each site.

Code Size Defect Density
Development Locations (KLOC C/C++) (Defects/KLOC)
Beijing, China 57 0.7
Arlington Heights, USA 54 0.8
Arlington Heights, USA 74 1.3
Tokyo, Japan 56 0.2
Bangalore, India 165 0.5
Singapore 45 0.1
Adelaide, Australia 60 0.5

Nagappan et al. investigated the influence of organiza-
tional structure on software quality in Windows Vista.*® They
found a strong relationship between how development is
distributed across the organizational structure and number
of post-release failures in binaries shipped with the operat-
ing system. Along with other organizational measures, they
measured the level of code ownership by the organization
that the binary owner belonged to, the number of organi-
zations that contributed at least 10% to the binary, and the
organizational level of the person whose reporting engineers
perform more than 75% of the edits. Our paper comple-
ments this study by examining geographically, rather than
organizationally distributed development.

4. METHODS AND ANALYSIS

In this section, we describe our methods of gathering data for
our studyand the analysis methodsused to evaluate our hypoth-
eses regarding distributed development in Windows Vista.

4.1. Data collection

Windows Vista is a large commercial software project involv-
ing a few thousand developers. It comprises thousands of
binaries (defined as individual files containing machine code
such as executables or a libraries) with a source code base
of tens of millions LOC. Developers were distributed across
59 buildings and 21 campuses in Asia, Europe, and North
America. Vista was developed completely in-house without
any outsourced elements.

Our data focuses on three properties: code quality, geo-
graphical location, and code ownership. Our measure of code
quality is post-release failures, since these matter most to
end-users, cost the most to fix, and affect product and com-
pany reputation. These failures are recorded for the 6 months
following the release of Vista at the binary level.

The geographical location of each software developer at
Microsoft is obtained from the people management software
at the time of release to manufacturing of Vista. This data
includes the building, campus, region, country,and continent
information. While some developers occasionally move, it is
standard practice at Microsoft to keep a software engineer at
one location during an entire product cycle. Most of the devel-
opers of Vista didn’t move during the observation period.

Finally we gathered the number of commits made by each
engineer to each binary. We remove build engineers from the

88 COMMUNICATIONS OF THE ACM | AUGUST 2009 | VOL.52 | NO.8

analysis because their changes are broad, but not substan-
tive. Many files have fields that need to be updated prior to a
build, but the actual source code is not modified. By combin-
ing this data with developer geographical data, we determine
the level of distribution of each binary and categorize these
levels into a hierarchy. Microsoft practices a strong code own-
ership development process. We found that on average, 49%
of the commiits for a particular binary can be attributed to one
engineer. Although we are basing our analysis on data from
the development phase, in most cases, this is indicative of the
distribution that was present during the design phase as well.

We categorized the distribution of binaries into the fol-
lowing geographic levels. Our reasoning behind this classifi-
cation is explained below.

Building: Developers who work in the same building (and
often the same floor) will enjoy more face to face and infor-
mal contact. A binary classified at the building level may
have been worked on by developers on different floors of the
same building.

Cafeteria: Several buildings share a cafeteria. One cafeteria
services between one and five nearby buildings. Developers
in different, but nearby buildings, may “share meals”
together or meet by chance during meal times. In addi-
tion, the typically shorter geographical distance facilitates
impromptu meetings.

Campus: A campus represents a group of buildings in one
location. For instance, in the United States, there are mul-
tiple campuses. Some campuses are located in the same city.
It is easy to travel between buildings on the same campus by
foot while travel between campuses (even in the same city)
requires a vehicle.

Locality: We use localities to represent groups of geographi-
cally proximate campuses. For instance, the Seattle locality
contains all of the campuses in western Washington. One
can travel within a locality by car on day trips, but travel
between localities often requires air travel and multi-day
trips. Also, all sites in a particular locality operate in the
same time zone, making coordination and communication
within a locality easier than between localities.

Continent: All of the locations on a given continent fall into
this category. We choose to group at the continent level
rather than the country level because Microsoft has offices
in Vancouver Canada and we wanted those to be grouped
together with other west coast sites (Seattle to Vancouver is
less than 3h by road). If developers are located in the same
continent, but not the same locality, then it is likely that cul-
tural similarities exists, but they operate in different time
zones and rarely speak face to face.

World: Binaries developed by engineers on different conti-
nents are placed in this category. This level of geographical
distribution means that face to face meetings are rare and
synchronous communication such as phone calls or online
chats are hindered by time differences. Also, cultural and
language differences are more likely.

For every level of geographical dispersion there are more
than two entities from the lower level within that level. That
is, Vista was developed in more that three continents, locali-
ties, etc. Each binaryis assigned the lowestlevel in the hierar-
chy fromwhich atleast 75% of the commits were made. Thus,

Figure 1: Hierarchy of distribution levels in Windows Vista.

Redmond Charlotte

cmroute. dll

Bldg 40
John 67
Tom 10
Zach 3

Bldg AP2
Sal 2

Bldg 26
Jack 2

Luy 2 Silicon valley

Bldg 5
Lynn 2

Bldg 30
Matt 2

cmroute.cpp

Hyderabad

Bldg 1
Ram 16
Prem 10

cmroute.h Srini 9

Vijay
Pradesh
Sita
Raju

if engineers residing in one region make at least 75% of the
commits for a binary, but there is no campus that accounts
for 75%, then the binary is categorized at the region level.
This threshold was chosen based on results of prior work on
development distributed across organizational boundaries
that is standardized across Windows.'® Figure 1 illustrates
the geographic distribution of commits to an actual binary
(with names anonymized). To assess the sensitivity of our
results to this selection and address any threats to validity
we performed the analysis using thresholds of 60%, 75%,
90%, and 100% with consistently similar results.

Note that whether a binary is distributed or not is orthog-
onal to the actual location where it was developed. Some
binaries that are classified at the building level were devel-
oped entirely in a building in Hyderabad, India while others
were owned in Redmond, Washington.

Figure 2 illustrates the hierarchy and shows the pro-
portion of binaries that fall into each category. Note that a
majority of binaries have over 75% of their commits coming
from just one building. The reason that so few binaries fall
into the continent level is that the Unites States is the only
country which contains multiple localities. Although the
proportion of binaries categorized above the campus level
is barely 10%, this still represents a sample of over 380 bina-
ries; enough for a strong level of statistical power.

We initially examined the number of binaries and distri-
bution of failures for each level of our hierarchy. In addition,
we divided the binaries into “distributed” and “collocated”
categories in five different ways using, each time using a
different level shown in Figure 2 (e.g., one split categorizes
building and cafeteria level binaries as collocated and the
rest as distributed). These categorizations are used to deter-
mine if there is a level of distribution above which there is
a significant increase in the number of failures. The results
from analysis of these dichotomized data sets were consis-
tent in nearly all respects. We therefore present the results
of the first data set and point out deviations between the
data sets where they occurred.

4.2. Experimental analysis
In order to test our hypothesis about the difference in code
quality between distributed and collocated development,

we examined the distribution of the number of post-release
failures per binary in both populations. Figure 3 shows
histograms of the number of bugs for distributed and col-
located binaries. Absolute numbers are omitted from the
histograms for confidentiality, but the horizontal and verti-
cal scales are the same for both histograms. A visual inspec-
tion indicates that although the mass is different, with more
binaries categorized as collocated than distributed, the dis-
tribution of failures are very similar.

A Mann-Whitney test was used to quantitatively measure
the difference in means because the number of failures was
not normally distributed.'® The difference in means is statis-
tically significant, but small. While the average number of
failures per binary is higher when the binary was distributed,
the actual magnitude of the increase is only about 8%. In a
prior study by Herbsleb and Mockus, time to resolution of

Figure 2. Commits to the library cmroute.dll. For clarity, location
of anonymized developers is shown only in terms of continents,
regions, and buildings.

e World 5.9%

s T
il ~~

Contiﬂe_ﬂt 0.2%

_— K\
Locality 5.6%

>

Campus 17%

" i \\\ .‘.‘"u "“‘

.\‘: ‘\ |

Cafeterim \ | |
\ |

g— \ | |

\ \ ‘\' ‘;“ /

\ | |

Building | | |

\\68%//

AUGUST 2009 | VOL.52 | NO.8 | COMMUNICATIONS OF THE ACM 89

research highlights

Figure 3. Histograms of the number of failures per binary for distributed (left) and
collocated (right) binaries. Although numbers are not shown on the axes, the

scales are the same in both histograms.

Post-Release Failures

Distributed

Collocated

Number of binaries

.

T

Failures

Failures

MRs was positively correlated with the level of distribution of
the participants. After further analysis, they discovered that
the level of distribution was not significant when controlling
for the number of people participating. We performed a sim-
ilar analysis on our data.

We used linear regression to examine the effect of distrib-
uted development on number of failures. Our initial model
contained only the binary variable indicating whether or
not the binary was distributed. The number of developers
working on a binary was then added to the model and we
examined the coefficients in the model. In these models, dis-
tributed is a binary variable indicating if the binary is distrib-
uted and numdevs is the number of developers that worked
on the binary. We show here the results of analysis when
splitting the binaries at the regions level. The F-statistic and
p value show how likely the null hypothesis (the hypothesis
that the predictor variable has no effect on the response vari-
able) is. We give the percentage increase in failures when the
binaries are distributed based on the parameter values. As
numdevs is only included in the models to examine effect of
distribution when controlling for number of developers we
do not include estimates or percentage increase.

Model 1. F Statistic =12.43, p <.0005

Variable % Increase Standard Error Significance
(Constant) 0.30 p <.0005
distributed 9.2% 031 p <.0005

This indicates that on average, a distributed binary has
9.2% more failures than a collocated binary. However, the
result changes then controlling for the number of develop-
ers working on a binary.

Model 2. F Statistic = 720.74, p < .0005

Variable % Increase Standard Error Significance
(Constant) 0.25 p <.0005
distributed 4.6% 0.25 p=.056
numdevs 0.00 p <.0005

90 COMMUNICATIONS OF THE ACM AUGUST 2009 | VOL.52 | NO.8

We performed this analysis on all five splits of the bina-
ries (one at each level as shown in Figure 2). The estimates
for distributed coefficient for all models were below 17%,
and dropped even further to below 9% when controlling for
number of developers (many were below this value, but the
numbers cited are upper bounds). In addition, the effect
of distributed in models that accounted for the number of
developers was only statistically significant when divid-
ing binaries at the continents level. In concrete terms, this
indicates that a binary contributed to by 20 developers in
Redmond will have relatively the same number of defects as
one that has commits from 20 developers around the world.

We also used linear regression to examine the effect of the
level of distribution on the number of failures of a binary. Since
the level of distribution is a nominal variable that can take on
six different values, we encode it into five binaryvariables. The
variable diffbuildingsis 1if the binarywas distributed among
different buildings that all were served by the same cafeteria
and 0 otherwise, etc. The percentage increase for each diff
represents the increase in failures relative to binaries that are
developed by engineers in the same building.

Model 3. F Statistic = 25.48, p <.0005

Variable % Increase Standard Error Significance
(Constant) 0.09 p <.0005
diff_buildings 15.1% 0.50 p <.0005
diff_cafeterias 16.3% 0.21 p <.0005
diff_campuses 12.6% 0.35 p <.0005
diff_localities 2.6% 1.47 p=.824
diff_continents -51% 0.31 p=.045

The parameter estimates of the model indicate that bina-
ries developed by engineers on the same campus served by
different cafeterias have, on average, 16% more post-release
failures than binaries developed in the same building.
Interestingly, the change in number of failures is quite low for
those developed in multiple regions and continents. However,
when controlling for development team size, only binaries
categorized at the levels of different cafeterias and different
campuses show a statistically significant increase in failures

over binaries developed in the same building. Even so, the
actual effects are relatively minor (4% and 6%, respectively).

Model 4. F Statistic = 242.73, p < .0005

Variable % Increase Standard Error Significance
(Constant) 0.09 p <.0005
diff_buildings 2.6% 0.42 p=.493
diff_cafeterias 3.9% 0.18 p=.016
diff_campuses 6.3% 0.29 p=.019
diff_Localities 8.3% 1.23 p=.457
diff_continents -3.9% 0.26 p=.101
numdevs 0.00 p <.0005

Two important observations can be made from these
models. The first is that the variance explained by the pre-
dictor variables as measured in the adjusted R* value (not
shown) for the built models rises from 2% and 4% (models
1 and 3) to 33% (models 2 and 4) when adding the number of
developers. The second is that when controlling for the num-
ber of developers, not all levels of distribution show a signifi-
cant effect, but the increase in post-release failures for those
that do is minimal with values at or below 6%. To put this into
perspective, a binary with 4 failures if collocated would have
4.24 failures if distributed. Although our response variable is
different from Herbsleb and Mockus, our findings are con-
sistent with their result that when controlling for the number
of people working on a development task, distribution does
not have a large effect. Based on these results, we are unable
to reject the null hypothesis and H1 is not confirmed.

This leads to the surprising conclusion that in the context
in which Windows Vista was developed, teams that were dis-
tributed wrote code that had virtually the same number of
post-release failures as those that were collocated.

4.3. Differences in binaries

One possible explanation for this lack of difference in fail-
ures could be that distributed binaries are smaller, less com-
plex, have fewer dependencies, etc. Although the number of
failures changes only minimally when the binaries are dis-
tributed, we are interested in the differences in characteris-
tics between distributed and collocated binaries. This was
done to determine if informed decisions were made about
which binaries should be developed in a distributed man-
ner. For instance, prior work has shown that the number of
failures is highly correlated with code complexity and num-
ber of dependencies.'”** Therefore, it is possible that only
less complex binaries or those with less dependents were
chosen for distribution in an effort to mitigate the perceived
dangers of distributed development.

We gathered metrics for each of the binaries in an attempt
to determine if there is a difference in the nature of bina-
ries that are distributed. These measures fall into five broad
categories.

Size and Complexity: Our code size and complexity mea-
sures include number of independent paths through the
code, number of functions, classes, parameters, blocks,
lines, local and global variables, and cyclomatic complexity.
From the call graph we extract the fan in and fan out of each

function. For object oriented code we include measures
of class coupling, inheritance depth, the number of base
classes, subclasses and class methods, and the number of
public, protected, and private data members and methods.
All of these are measured as totals for the whole binary and
as maximums on a function or class basis as applicable.
Code Churn: As measures of code churnwe examine the change
in size of the binary, the frequency of edits and the churn size
in terms of lines removed, added, and modified from the begin-
ning of Vista development until release to manufacturing.
Test Coverage: The number of blocks and arcs as well as the
block coverage and arc coverage are recorded during the
testing cycle for each binary.
Dependencies: Many binaries have dependencies on one
another (in the form of method calls, data types, registry val-
ues that are read or written, etc.). We calculate the number
of direct incoming and outgoing dependencies as well as the
transitive closure of these dependencies. The depth in the
dependency graph is also recorded.
People: We include a number of statistics on the people and
organizations that worked on the binaries. These include
all of the metrics in our prior organizational metrics paper®
such as the number of engineers that worked on the binary.
We began with a manual inspection of the 20 binaries
with the least and 20 binaries with the most number of post-
release failures in both the distributed and collocated catego-
ries and examined the values of the metrics described above.
The only discernible differences were metrics relative to the
number of people working on the code, such as team size.

Metric Average Value Correlation Significance
Functions 895.86 0.114 p <.0005
Complexity 4603.20 0.069 p <.0005
Churn Size 53430.00 0.057 p=.033
Edits 63.82 0.134 p <.0005
Indegree 13.04 -0.024 p=.363
Outdegree 9.67 0.100 p <.0005
Number of Devs 21.55 0.183 p <.0005

We evaluated the effect of these metrics on level of distri-
bution in the entire population by examining the spearman
rank correlation of distribution level of binaries (not limited
to the “top 20” lists) with the code metrics. Most metrics
had correlation levels below 0.1 and the few that were above
that level, such as number of engineers, never exceeded
0.25. Logistic regression was used to examine the relation-
ship of the development metrics with distribution level. The
increase in classification accuracy between a naive model
including no independent variables and a stepwise refined
model with 15 variables was only 4%. When removing data
related to people that worked on the source, the refined
model’s accuracy only improved 2.7% from the naive model.
We include the average values for a representative sample
of the metrics along with a spearman rank correlation with
the level of distribution for the binaries and the significance
of the correlation. Although the p-values are quite low, the
magnitude of the correlation is small. This is attributable to
the very large sample of binaries (over 3,000).

AUGUST 2009 | VOL.52 | NO.8 | COMMUNICATIONS OF THE AcM 91

research highlights

We conclude that there is no discernible difference in
the measured metrics between distributed and collocated
binaries.

5. DISCUSSION

We have presented an unexpected, but encouraging result: it
is possible to conduct in-house globalized distributed devel-
opment without adversely impacting quality. It is certainly
important to understand why this occurred and how this
experience can be repeated in other projects and contexts.
To prime this future endeavor, we make some observations
concerning pertinent practices that have improved commu-
nication, coordination, team cohesion, etc.,and reduced the
impact of differences in culture and business context. These
observations come from discussions with management as
well as senior and experienced developers.

Relationship between Sites: Much of the work on distributed
development examines outsourcing relationships.> ® Others
have looked at strategic partnerships between companies
or scenarios in which a foreign remote site was acquired."
These create situations where relationships are asymmetric.
Engineers at different sites may feel competitive or may for
other reasons be less likely to help each other. In our situa-
tion, all sites have existed and worked together on software
for manyyears. There is no threat that if one site performs bet-
ter, the other will be shut down. The pay scale and benefits are
equivalent at all sites in the company.

Cultural Barriers: In a study of distributed development
within Lucentatsitesin Great Britain and Germany, Herbsleb
and Grinter'® found that significant national cultural bar-
riers existed. These led to a lack of trust between sites and
misinterpreted actions due to lack of cultural context. This
problem was alleviated when a number of engineers (liai-
sons) from one site visited another for an extended period
of time. Battin et al.’ found that when people from different
sites spent time working together in close proximity, many
issues such as trust, perceived ability and delayed response
to communication requests were assuaged.

A similar strategy was used during the development of
Vista. Development occurred mostly in the United States
(predominantly in Redmond) and Hyderabad, India. In
the initial development phases, a number of engineers
and executives left Redmond to work at the Indian site.
Many of these people had 10+ years within Microsoft, and
understood the company’s development process. In addi-
tion, the majority of these employees were originally from
India, removing one key challenge from globally distrib-
uted work. These people acted as facilitators, informa-
tion brokers, recommenders, and cultural liaisons’ and
had already garnered a high level of trust and confidence
from the engineers in the United States. Despite consti-
tuting only a small percent of the Indian workforce, they
helped to reduce both organizational and national cultural
distances.*

Communication: Communication is the single most refer-
enced problem in globally distributed development. Face to
face meetings are difficult and rare and people are less likely
to communicate with others that they don’t know personally.
Distributed sites are also more likely to use asynchronous

92 COMMUNICATIONS OF THE ACM AUGUST 2009 | VOL.52 | NO.8

communication channels such as email which introduce a
task resolution delay.**

The Vista developers made heavy use of synchronous com-
munication daily. Employees took on the responsibility of stay-
ing atwork late or arriving early for a status conference call on a
rotating basis, changing the site that needed to keep odd hours
everyweek. Keepingin close and frequent contactincreases the
level of awareness and the feeling of “teamness.”** This also
helps to convey status and resolve issues quickly before they
escalate. Engineers also regularly traveled between remote
sites during development for important meetings.

Consistent Use of Tools: Both Battin' and Herbsleb and
Mockus' cite the importance of the configuration manage-
ment tools used. In the case of Motorola’s project, a single,
distributed configuration management tool was used with
great success. At Lucent, each site used their own manage-
menttools, which led to an initial phase of rapid development
at the cost of cumbersome integration work toward the end.
Microsoft employs the use of one configuration management
and builds system throughout all of its sites. Every engineer is
familiar with the same source code management tools, devel-
opment environment, documentation method, defect track-
ing system, and integration process. The integration process
for code is incremental, allowing problems to surface early.
End to End Ownership: Distributed ownership is a problem
with distributed development. When an entity fails, needs
testing, or requires a modification, it may not be clear who
is responsible for performing the task or assigning the work.
Battin mentions ownership of a component for the entire
life cycle as one of three critical strategies when distributing
development tasks. While binaries were committed to from
different sites during the implementation phase, Microsoft
practices strong code ownership. One developer is clearly “in
control” of a particular piece of code from design, through
implementation, and into testing and maintenance. Effort
is made to minimize the number of ownership changes.
Common Schedules: All of the development that we exam-
ined was part of one large software project. The project was
not made up of distributed modules that shipped separately.
Rather, Vista had a fixed release date for all parties and mile-
stones were shared across all sites. Thus all engineers had
a strong interest in working together to accomplish their
tasks within common time frames.

Organizational Integration: Distributed sites in Microsoft do
not operate in organizational isolation. There is no top level
executive at India or China that all the engineers in those
locations report to. Rather, the organizational structure
spans geographical locations at low levels. It is not uncom-
mon for engineers at multiple sites to have a common direct
manager. This, in turn, causes geographically dispersed
developers to be more integrated into the company and the
project. The manager can act as a facilitator between engi-
neers who may not be familiar with one another and can
also spot problems due to poor coordination earlier than
in an organizational structure based purely on geography,
with less coupling between sites. Prior work has shown
that organizationally distributed development dramatically
affects the number of post-release defects.'. This organiza-
tional integration across geographic boundaries reconciles

the results of that work with the conclusions reached in
this study. Organizational culture is fairly consistent across
geography because the same process has been used in all
locations of the company for some time.

6. THREATS TO VALIDITY

Construct Validity: The data collection on a system the size of
Windows Vista is automated. Metrics and other data were col-
lected using production level quality tools and we have no rea-
son to believe that there were large errors in measurement.
Internal Validity: In Section 5 we listed observations about
the distributed development process used at Microsoft.
While we have reason to believe that these alleviate the
problems associated with distributed development, a causal
relationship has not been empirically shown. Further study
is required to determine to what extent each of these prac-
tices actually helps. In addition, although we attempted an
exhaustive search of differences in characteristics between
distributed a collocated binaries, it is possible that they dif-
fer in some way not measured by our analysis in Section 4.3.
External Validity: Itis unclear how well our results generalize
to other situations. We examine one large project and there
is a dearth of literature that examines the effect of distrib-
uted development on post-release failures. We have identi-
fied similarities in Microsoft’s development process with
other successful distributed projects, which may indicate
important principles and strategies to use. There are many
ways in which distributed software projects may vary and the
particular characteristics must be taken into account. For
instance, we have no reason to expect that a study of an out-
sourced project would yield the same results as ours.

7. CONCLUSION
In our study we divide binaries based on the level of geo-
graphic dispersion of their commits. We studied the post-
release failures for the Windows Vista code base and
concluded that distributed development has little to no
effect. We posit that this negative result is a significant
finding as it refutes, at least in the context of Vista develop-
ment, conventional wisdom and widely held beliefs about
distributed development. When coupled with prior work," !
our results support the conclusion that there are scenarios
in which distributed development can work for large soft-
ware projects. Based on earlier work,'® our study shows that
organizational differences are much stronger indicators of
quality than geography. An organizationally compact but
geographically distributed project would be better than a
geographically local, organizationally distributed project.
We have presented a number of observations about the
development practices at Microsoft which may mitigate some
of the hurdles associated with distributed development, but
no causal link has been established. There is a strong simi-
larity between these practices and those that have worked for
other teams in the past' as well as solutions proposed in other
work.' Directly examining the effects of these practices is an
important direction for continued research in globally distrib-
uted software development. Devanbu and Bird acknowledge
that their work is in part supported by the National Science
Foundation, under Grant NSF-SOD 0613949.

References

1

10.

11

12.

13.

14.

Battin, R.D., Crocker, R., Kreidler,

J., Subramanian, K. Leveraging
resources in global software
development. IEEE Softw. 18, 2 (Mar./
Apr. 2001), 70-77.

. Bhat, JM,, Gupta, M., Murthy, S.N.

Overcoming requirements engineering
challenges: Lessons from offshore
outsourcing. IEEE Softw. 23, 6 (Sept.
/Oct. 2006), 38-44.

. Carmel, E. Global Software Teams:

Collaborating across Borders and
Time Zones. Prentice Hall, 1999.

. Carmel, E., Agarwal, R. Tactical

approaches for alleviating distance in
global software development. IEEE
Softw. 2,18 (Mar./Apr. 2001), 22-29.

. Cusick, J., Prasad, A. A practical

management and engineering approach
to offshare collaboration. IEEE Softw.
23,5 (Sept./Oct. 2006), 20-29.

. Desouza, K.C., Awaza, Y., Baloh,

P. Managing knowledge in global
software development efforts: Issues
and practices. IEEE Softw. 23,5
(Sept./Oct. 2006), 30-37.

. Ebert, C., Neve, P.D. Surviving global

software development. TEEE Softw.
18,2 (2001), 62-69.

. Gumm, D.C. Distribution dimensions

in software development projects:
a taxonomy. IEEE Softw. 23 (2006),
545-551.

. Herbsleb, J. Global software

engineering: the future of socio-
technical coordination. International
Conference on Software Engineering,
2007,188-198.

Herbsleb, J., Grinter, R. Architectures,
coordination, and distance: Conway's
law and beyond. TEEE Softw. (1999).
Herbsleb, J., Mockus, A. An empirical
study of speed and communication

in globally distributed software
development. IEEE Trans. Softw. Eng.
(2003).

Herbsleb, J.D., Mockus, A.
Formulation and preliminary test of
an empirical theory of coordination in
software engineering. In Proceedings
of 11th International Symposium on
Foundations of Software Engineering
(2003).

Herbsleb, J.D., Paulish, D.J., Bass,

M. Global software development

at siemens: Experience from nine
projects. In Proceedings of the 27th
International Conference on Software
Engineering (2005), ACM, 524-533.
Holmstrom, H., Conchuir, E., Agerfalk,
P., Fitzgerald, B. Global software
development challenges: A case
study on temporal, geographical and

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

socio-cultural distance. Proceedings
of the IEEE International Conference
on Global Software Engineering
(2006), 3-11.

Kommeren, R., Parviainen, P. Philips
experiences in global distributed
software development. Empirical
Softw. Eng. 12, 6 (2007), 647-660.
Mann, H.B., Whitney, D.R. On a test of
whether one of two random variables
is stochastically larger than the other.
Ann. Math. Stat. 18, 1 (1947), 50-60.
Nagappan, N., Ball, T,, Zeller, A. Mining
metrics to predict component failures.
In Proceedings of the International
Conference on Software Engineering
(2006).

Nagappan, N., Murphy, B., Basili,

V. The influence of organizational
structure on software quality: An
empirical case study. In Proceedings
of the 30th International Conference
on Software Engineering (2008).
Nguyen, T., Wolf, T., Damian, D.

Global software development and
delay: Does distance still matter?

In Proceedings of the International
Conference on Global Software
Engineering (2008).

Olson, G.M., Olson, J.S. Distance
matters. Hum. Comp. Interact. 15,
2/3 (2000), 139-178.

Rammasubbu, N., Balan, R. Globally
distributed software development
project performance: An empirical
analysis. In Proceedings of the

6th Joint Meeting of the European
Software Engineering Conference and
the ACM SIGSOFT Symposium on the
Foundations of Software Engineering
(2007), ACM, New York, NY, USA,
125-134.

Sosa, M, Eppinger, S., Pich, M.,
McKendrick, D., Stout, S., Manage,

T., Insead, F. Factors that influence
technical communication in distributed
product development: An empirical
study in the telecommunications in-
dustry. IEEE Trans. Eng. Manage. 49, 1
(2002), 45-58.

Spinellis, D. Global software
development in the freebsd project.
In GSD ‘06: Proceedings of the 2006
International Workshop on Global
Software Development for the
Practitioner (Shanghai, China, 2006),
73-79.

Zimmermann, T., Nagappan, N.
Predicting defects using network
analysis on dependency graphs. In
Proceedings of the International
Conference on Software Engineering
(2008).

Christian Bird (cabird@ucdavis.edu),
University of California, Davis, Davis, CA.

Nachiappan Nagappan
(nachin@microsoft.com), Microsoft
Research, Redmond, WA.

Premkumar Devanbu
(ptdevanbu@ucdavis.edu), University of
California, Davis, Davis, CA.

© 2009 ACM 0001-0782/098/0800 $10.00

AUGUST 20089 | VOL. 52

Harald Gall (gall@ifi.uzh.ch), University of
Zurich, Zurich, Switzerland.

Brendan Murphy (bmurphy@microsoft.
com), Microsoft Research, Cambridge,
England.

NO.8 | COMMUNICATIONS OF THE ACM 93

