
Towards Building a Universal Defect Prediction Model

Feng Zhang
School of Computing
Queen’s University

Kingston, Ontario, Canada
feng@cs.queensu.ca

Audris Mockus
Department of Software
Avaya Labs Research

Basking Ridge, NJ 07920,
USA

audris@avaya.com
Iman Keivanloo

Department of Electrical and
Computer Engineering

Queen’s University
Kingston, Ontario, Canada

iman.keivanloo@queensu.ca

Ying Zou
Department of Electrical and

Computer Engineering
Queen’s University

Kingston, Ontario, Canada
ying.zou@queensu.ca

ABSTRACT
To predict files with defects, a suitable prediction model
must be built for a software project from either itself (within-
project) or other projects (cross-project). A universal de-
fect prediction model that is built from the entire set of
diverse projects would relieve the need for building models
for an individual project. A universal model could also be
interpreted as a basic relationship between software metrics
and defects. However, the variations in the distribution of
predictors pose a formidable obstacle to build a universal
model. Such variations exist among projects with differ-
ent context factors (e.g., size and programming language).
To overcome this challenge, we propose context-aware rank
transformations for predictors. We cluster projects based
on the similarity of the distribution of 26 predictors, and
derive the rank transformations using quantiles of predic-
tors for a cluster. We then fit the universal model on the
transformed data of 1,398 open source projects hosted on
SourceForge and GoogleCode. Adding context factors to
the universal model improves the predictive power. The
universal model obtains prediction performance compara-
ble to the within-project models and yields similar results
when applied on five external projects (one Apache and four
Eclipse projects). These results suggest that a universal de-
fect prediction model may be an achievable goal.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Product metrics;
K.6.3 [Management of Computing and Information
Systems]: Software Management—Software maintenance

General Terms
Algorithms, Experimentation, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MSR ’14, May 31 - June 07 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

Keywords
Universal defect prediction model, defect prediction, context
factors, rank transformation, large scale, quality, defect, bug

1. INTRODUCTION
A defect causes software to behave improperly or pro-

duce unexpected results. Attempts to anticipate the parts
of source code that may have fixes for defects have a rich
history. For example, D’Ambros et al. [10] evaluate over
30 different approaches to build defect prediction models
that were published from 1996 to 2010. Unfortunately, such
models could not be generalized to apply on other projects
or even new releases of the same project [39, 27]. Refitting
such models is non-trivial. It requires collecting and tagging
defects for each file, and collecting sufficient history which
may not be available in small or new projects [26]. We refer
to a single model that is built from the entire set of diverse
projects as a universal model. A universal defect prediction
model would relieve the need for refitting project-specific
or release-specific models for an individual project. A uni-
versal model would also help interpret basic relationships
between software metrics and defects, potentially resolving
inconsistencies among different studies [19]. Moreover, it
might allow a more direct comparison of defect rates across
projects and a continuous evaluation of defect proneness of
a project. Therefore, it is of significant interest to build a
universal defect prediction model.

Cross-project prediction may be a step towards building
a universal model. Zimmermann et al. [39] apply defect
prediction models learnt from one project on another, with
a low ratio of successful predictions (i.e., 3.4%). Zimmer-
mann et al. [39] consider a prediction to be successful if all
precision, recall, and accuracy are greater than 0.75. One
difficulty for building cross-project defect prediction models
may be related to the variations in the distribution of pre-
dictors [27]. To overcome this challenge, we consider two
approaches: 1) only use the data from projects with similar
distribution to the target project (e.g., [35, 28, 21]); and 2)
transform predictors in both training and target projects to
make them more similar in their distribution (e.g., [27, 18]).
However, the first approach uses partial dataset and results
in multiple models. The transformation approaches are typ-
ically specialized to a particular pair of training and testing

datasets. Our prior study [37] found that the distribution of
software metrics varies with project contexts (e.g., size and
programming language). Therefore, we combine the three
insights in an attempt to build a universal defect prediction
model for a large set of projects with diverse contexts.

In this study, we propose a context-aware rank transfor-
mation to address the variations in the distribution of pre-
dictors before fitting them to the universal defect prediction
model. We use 21 code metrics, five process metrics, and six
context factors as predictors (i.e., programming language,
issue tracking, the total lines of code, the total number of
files, the total number of commits, and the total number
of developers). The context-aware approach stratifies the
entire set of projects by context factors, and clusters the
projects with similar distribution of predictors. Inspired by
metric-based benchmarks (e.g., [1]) which use quantiles to
derive thresholds for ranking software quality, we apply ev-
ery tenth quantile of predictors on each cluster to formulate
ranking functions. After transformation, the predictors from
different projects have exactly the same scales. The univer-
sal model is then built based on the transformed predictors.

We apply our approach on 1,398 open source projects
hosted on SourceForge and GoogleCode. We mine defect
data solely from the commit messages of fixes for defects,
since many subject projects have no issue tracking systems.
The result of F-measures and area under curve (AUC) using
rank-transformed predictors is comparable to the result of
logarithmic transformation. The performance of the univer-
sal model can be improved by adding context factors as pre-
dictors. The universal model yields better recall and higher
AUC than within-project models, possibly due to the fact
that the defects in the files of similar properties are fixed in
one project but overlooked in another. Moreover, the uni-
versal model achieves up to 70% of the successful predictions
of within-project models, using the loose criteria suggested
by He et al. [12] for determining the success of predictions
(i.e., recall is above 0.70, and precision is greater than 0.50).

We examine the generalizability of the universal model
by applying it on five external projects that are not hosted
on SourceForge or GoogleCode (i.e., one Apache project:
Lucene, and four Eclipse projects: Eclipse, Equinox, My-
lyn, and PDE). The results show that the universal model
provides a similar performance (in terms of AUC) as within-
project models for the five projects. In summary, the major
contributions of our study are:

• Context-aware rank transformation: The rank trans-
formation method addresses the problem of large varia-
tions in the distribution of predictors across projects from
diverse contexts. The transformed predictors have exactly
the same scales. This enables us to build a universal model
for a large set of projects.

• Context factors as predictors of the universal model:
We add the context factors to our universal prediction
model, and find that context factors significantly improve
the predictive power of the universal defect prediction
model (e.g., AUC increases from 0.60 to 0.65 when com-
paring to the combination of code and process metrics).

The remainder of this paper is organized as follows. The
related work is summarized in Section 2. Section 3 and Sec-
tion 4 describe our approach and experiment design, respec-
tively. Section 5 presents our results and discussions. The
threats to validity of our work are discussed in Section 6. We
conclude and provide insights for future work in Section 7.

2. RELATED WORK
In this section, we review previous studies on four aspects

of defect prediction: software metrics, data preprocessing,
modelling techniques, and cross-project defect prediction.

2.1 Software Metrics
Software metrics are often used to evaluate software qual-

ity with proper thresholds and ranges of metric values [3].
For instance, McCabe [20] states that: the sub-functions
are well structured if the value of his complexity metric is
between 3 and 7; and sub-functions with the metric value
beyond 10 are unmaintainable and untestable. Software
metrics are commonly used as predictors in defect predic-
tion models. Numerous software metrics have been inves-
tigated, including complexity metrics (e.g., lines of code
and McCabe’s cyclomatic complexity [23]), structural met-
rics [38], process metrics (e.g., recent activities, number of
changes, and the complexity of changes [11]), the number
of previous defects [40], and social network metrics [4]. Ar-
isholm et al. [2] find there exist large differences in terms
of cost-effectiveness in defect prediction models among dif-
ferent metric sets (e.g., process metrics significantly outper-
form structural metrics).

2.2 Data Preprocessing
The distribution of metric values sometimes varies signifi-

cantly in projects of different contexts [37]. The varied scales
of metrics are a challenge towards building a universal de-
fect prediction model. Data preprocessing has been proved
to improve the performance of defect prediction models by
Menzies et al. [23]. Jiang et al.[14] evaluate the impact of
log transformation and discretization on the performance
of defect prediction models, and find different modelling
techniques “prefer” different transformation techniques. For
instance, Naive Bayes achieves better performance on dis-
cretized data, while logistic regression achieves better per-
formance for both.

The state-of-the-art approaches to improve the perfor-
mance of cross-project defect prediction mainly use two data
preprocessing techniques: 1) only use the data from projects
with similar distributions to the target project (e.g., [35, 28,
21]); and 2) transform predictors in both training and tar-
get projects to make them more similar in their distribution
(e.g., [27, 18]). He et al. [12] propose to use the distributional
characteristics (e.g., median, mean, variance, standard devi-
ation, skewness, and quantiles); Turhan et al. [35] and Peters
et al. [28] propose different filters; and Li et al. [17] propose
to use sampling. The aforementioned approaches are able to
improve the performance of cross-project defect prediction
models. However, they use only partial dataset and end
up with multiple models. The transformation approaches
are typically specialized to a particular pair of training and
testing datasets. For instance, Ma et al. [18] propose to
weight training data by estimations on the distribution of
testing data. Nam et al. [27] propose to transform both
training and testing data to the same latent feature space,
and build models on the latent feature space. Our previ-
ous study [37] finds that the distribution of metrics varies
with project contexts. By combining these three insights,
we propose a context-aware rank transformation approach
which does not require or depend on the target data set.
The target data set contains the projects on which to apply
defect prediction models.

R3(x)

R2(x)

R1(x)

(Clustering) (Obtaining Ranking Function) (Ranking)

project
clustered project rank transformed project

ranking functionR3(x)R2(x)R1(x)

(Partitioning)

Context 1

Context 2

Figure 1: Our four-step rank transformation approach: 1) stratify the set of projects along different contexts
into non-overlap groups; 2) cluster project groups; 3) derive ranking function for each cluster; and 4) perform
rank transformation.

2.3 Modelling Techniques
There are two major types of modelling techniques: sta-

tistical methods (e.g., Naive Bayes and logistic regression),
and machine learning methods (e.g., decision trees, support
vector machine, K-nearest neighbour, and artificial neural
networks). Lessmann et al. [16], Arisholm et al. [2], and
D’Ambros et al. [10] propose different approaches to com-
pare and evaluate different modelling techniques. Lessmann
et al. [16] find that there are no significant differences in
the performance among different modelling techniques. Ar-
isholm et al. [2] also report that the choice of modelling
techniques only has limited impact on the performance in
terms of accuracy or cost-effectiveness. Our rank transfor-
mation approach is a step for data preprocessing, thus is
independent from modelling techniques. Software organiza-
tions can choose the technique that best suits their needs.

2.4 Cross-Project Defect Prediction
To predict defects on the projects without sufficient train-

ing data, many researchers attempt to build cross-project
defect prediction models. Zimmerman et al. [39] run cross-
project predictions for 622 pairs of 12 projects, and find only
21 pairs (i.e., cross-project predictions) match their perfor-
mance criteria (i.e., all precision, recall and accuracy are
above 0.75). Turhan et al. [35] observe that cross-project
prediction not only underperforms within-project prediction,
but also has excessive false alarms. Premraj and Herzig [29]
confirm the big challenge in cross-project defect prediction
through their replication study. However, Rahman et al. [30]
argue that cross-project defect prediction can yield the same
performance as within-project prediction in terms of cost ef-
fectiveness, instead of standard measures (i.e., precision, re-
call, and F-measure). The challenge of cross-project predic-
tion might be caused by the fact that metrics from different
projects may have significantly different distributions [27].
Zimmerman et al. [39] and Menzies et al. [21] suggest to
consider project contexts for cross-project defect prediction.
We propose context-aware rank transformation for predic-
tors, and find that adding context factors (see Section 3.1)
can improve the predictive power for the universal defect
prediction model.

3. APPROACH
It is very likely that predictors from different projects of

various contexts exhibit different distribution [37]. To over-
come this challenge towards building a universal defect pre-
diction model, we propose a context-aware rank transforma-
tion approach, as illustrated in Figure 1. It consists of four
steps:

1) Partition the entire set of projects to non-overlapped
groups based on the six aforementioned context factors;
2) Cluster the project groups with the similar distribution
of predictor values;
3) Derive a ranking function for each cluster using every
10th quantiles of predictor values, in order to address the
large variations in the distribution of predictors;
4) Apply the ranking functions to convert the raw values of
predictors to one of the ten levels.

The scales of the transformed predictors are exactly the
same even from different projects. We then build the uni-
versal model based on the transformed predictors. The fol-
lowing subsections describe the context factors used in this
study, and the details of each step.

3.1 Context Factors
In this study, we choose six context factors based on their

availability to open source projects and our previous work [37].
1) Programming Language (PL): describes the nature
of programming paradigms. Due to the limitation of our
metric computing tool, we only consider projects mainly
written in C, C++, Java, C#, or Pascal. In this study,
we divide the set of projects into five groups based on pro-
gramming languages: Gc, Gc++, Gjava, Gc#, and Gpascal.
2) Issue Tracking (IT): describes whether a project uses
an issue tracking system or not. The set of projects is sepa-
rated into two groups based on the usage of an issue tracking
system: GuseIT and GnoIT .
3) Total Lines of Code (TLOC): describes the project
size in terms of source code. We compute the TLOC of each
project and the quartiles of TLOC. Based on the first, sec-
ond, and third quartiles, we split the set of projects into four
groups: GleastTLOC , GlessTLOC , GmoreTLOC , andGmostTLOC .
4) Total Number of Files (TNF): describes the project
size in terms of files. We calculate TNF of each project, and
the quartiles of TNF. Based on the first, second, and third
quartiles, we separate the set of projects into four groups:
GleastTNF , GlessTNF , GmoreTNF , and GmostTNF .
5) Total Number of Commits (TNC): describes the
project size in terms of commits. We compute the TNC
of each project, and the quartiles of TNC. Based on the
first, second, and third quartiles, we break the entire set of
projects into four groups: GleastTNC , GlessTNC , GmoreTNC ,
and GmostTNC .
6) Total Number of Developers (TND): describes the
project size in terms of developers. We calculate the TND
of each project, and the quartiles of TND. Based on the
first, second, and third quartiles, we split the whole set of
projects into four groups: GleastTND, GlessTND, GmoreTND,
and GmostTND.

3.2 Partitioning Projects
We assume that projects with the same context factors

have the similar distribution of software metrics, and projects
with different contexts might have different distribution of
software metrics. Hence, we stratify the entire set of projects
based on the aforementioned six context factors. We get 5,
2, 4, 4, 4, and 4 groups, respectively. In total, we obtain
2560 (i.e., 5× 2× 4× 4× 4× 4) non-overlapped groups.

3.3 Clustering Similar Projects
To derive more accurate quantiles of a particular metric,

we group the projects with the similar distribution of the
metric. We consider two distributions are similar if their
difference is neither statistically significant nor significantly
large. The clusters may not be the same for different met-
rics. Therefore we yield different sets of clusters for each
metric. Each cluster is described by a vector, e.g., < m,
C++, useIT , moreTLOC >. This cluster example is cre-
ated for metric m, and contains C++ projects that use issue
tracking systems, and has the TLOC between the second
and third quartiles (see Section 3.1). For each metric m, the
clusters of projects with the similar distribution of metric m
are obtained using the Algorithm 1. It has two major steps.
1) Comparing the Distribution of Metrics. This step
merges the groups of projects that do not have significantly
different distribution of metric m. We apply Mann-Whitney
U test [33] to compare the distribution of metric values be-
tween every two groups of projects, using the 5% confidence
level (i.e., p-value<0.05). The Mann-Whitney U test as-
sesses whether two independent distributions have equally
large values. It is a non-parametric statistical test. There-
fore it does not assume a normal distribution. As we conduct
multiple tests to investigate the distribution of each metric,
we apply Bonferroni correction to control family-wise er-
rors. Bonferroni adjusts the threshold p-value by dividing
the number of tests.
2) Quantifying the Difference between Distributions.
This step merges the groups of projects that have signifi-
cantly different distributions of metric m, but the difference
is not large. We calculate Cliff’s δ as the effect size [32] to
quantify the importance of the difference between the dis-
tribution of every two groups of projects. Cliff’s δ estimates
non-parametric effect sizes. It makes no assumptions of a
particular distribution, and is reported [32] to be more ro-
bust and reliable than Cohen’s d [7]. Cliff’s δ represents
the degree of overlap between two sample distributions [32].
It ranges from -1 (if all selected values in the first group
are larger than the second group) to +1 (if all selected val-
ues in the first group are smaller than the second group).
It is zero when two sample distributions are identical [6].
To interpret the Cliff’s δ, we map it to Cohen’s standards
(i.e., small, medium, and large) using the percentage of non-
overlap [32], as shown in Table 1. Cohen [8] states that a
medium effect size represents a difference likely to be visi-
ble to a careful observer, while a large effect is noticeably
greater than medium. In this study, we choose the large
effect size as the threshold of the importance of the distri-
bution differences.

3.4 Obtaining Ranking Functions
The ranking function transforms the raw metric values

to relatively predefined values (i.e., ranging from one to
ten). The transformed metrics have exactly the same scales

Algorithm 1: Clustering Similar Projects

Input: m: the metric m
N: the number of groups

Output: clusterOfGroup: the cluster index of projects
/* Initialize the array clusterOfGroup. */

1 int indexOfCluster = 1;
2 for i = 1 to N do
3 clusterOfGroup[i] = indexOfCluster;
4 end

/* Do the clustering. */

5 for i = 1 to N − 1 do
6 int indexNewCluster = indexOfCluster+1;
7 for j = i+ 1 to N do

/* Compare the distribution of metric

values between two groups i and j. */

8 compareMetricDistribution(m, i, j);
9 if the difference is statistically significant then

/* Quantify the importance of the

difference. */

10 computeCliffsDelta(i, j);
11 if Cliff’s δ is large then

/* Put group i and j in different

clusters. */

12 if clusterOfGroup[j] equals to
clusterOfGroup[i] then

13 indexOfCluster = indexNewCluster;
14 clusterOfGroup[j] = indexOfCluster;

15 end

16 end

17 end

18 end

19 end

Table 1: Mapping Cliff’s δ with Cohen’s standards.

Cliff’s δ % of Non-overlap Cohen’s d Cohen’s Std.

0.147 14.7% 0.20 small
0.330 33.0% 0.50 medium
0.474 47.4% 0.80 large

across projects. We use the quantiles of metric values to
formulate our ranking functions. This is inspired by metric-
based benchmarks (e.g., [1]), which often use the quantiles
to derive thresholds of metrics to distinguish files of different
quality related to defects.

For metric mi (where i ∈ {1, . . . ,M}, and M is the num-
ber of metrics), we denote the corresponding clusters as Cli1,
Cli2, . . ., and CliNi (where Ni is the total number of clusters
obtained for metric mi). We formulate the ranking functions
for metric mi following Equation (1).

R(mi, Clij) =

⎧⎪⎨
⎪⎩

1 if V (mi) ∈ [0, Qij,1(mi)]

k if V (mi) ∈ (Qij,k−1(mi), Qij,k(mi)]

10 if V (mi) ∈ (Qij,9(mi),+∞)
(1)

where R(mi, Cij) is the ranking function for metric mi in
cluster Cij , V (mi) is the value of metric mi to be converted,
Qij,k(mi) is the k ∗10th quantile of metric mi in the cluster
Clij , j ∈ {1, . . . , Ni}, and k ∈ {2, . . . , 9}.
For example, we assume that every tenth quantile for a

metric m1 in cluster Cl12 is: 11, 22, 33, 44, 55, 66, 77, 88,
and 99, respectively. We then convert the value 27 of metric

m1 to 3 if the corresponding project belongs to cluster Cl12.
This is because the value 27 is greater than 22 (i.e., the 20%
quantile) and less than 33 (i.e., the 30% quantile).

3.5 Building a Universal Defect Prediction Model
Choice of modelling techniques. As described in Sec-
tion 2.3, there is no significant difference among different
modelling techniques in the performance of defect predic-
tion models [16, 2]. However, Kim et al. [15] find that Bayes
learners (i.e., Bayes Net and Naive Bayes) perform better
when defect data contains noises, even up to 20%-35% of
false positive and false negative noises in defect data. Based
on their findings, we apply Naive Bayes as the modelling
technique in our experiments.
Steps to build the universal defect prediction model.
First, we transform the raw values of each metric using
Equation (1). Before transforming a metric mi for project
pj , we identify context factors of project pj and formulate
a vector like < mi, C++, useIT , moreTLOC, lessTNF ,
lessTNC, lessTND >. In order to locate the ranking func-
tions (see Section 3.4), we compare the vector of project
pj to the vectors of all clusters to determine which cluster
project pj belongs to. We apply the ranking functions of
the identified cluster to transform the raw metric values of
each file in project pj to one of the ten levels. As a result,
the transformed metrics have the scales ranging from one to
ten. A universal defect prediction model is then built upon
the entire set of projects using Weka1 tool.

3.6 Measuring the performance
To evaluate the performance of prediction models, the

confusion matrix (see Table 2) is computed. Using the con-
fusion matrix, we calculate the following five measures: pre-
cision, recall, false positive rate, F-measure, and g-measure.
Precision (prec). Precision measures the proportion of ac-
tual defective entities that are predicted as defective against
all predicted defective entities. It is defined as: prec =

TP
TP+FP

.

Recall (pd). Recall evaluates the proportion of actual de-
fective entities that are predicted as defective against all
actual defective entities. It is defined as: pd = TP

TP+FN
.

False Positive Rate (fpr). False positive rate is the pro-
portion of actual non-defective entities that are predicted
as defective against all actual non-defective entities. It is
defined as: fpr = FP

FP+TN
.

F-measure. F-measure calculates the harmonic mean of
precision and recall. It balances precision and recall. It is
defined as: F -measure = 2×pd×prec

pd+prec
.

g-measure. g-measure computes the harmonic mean of re-
call and 1-fpr. The 1-fpr represents Specificity (not pre-
dicting entities without defects as defective). We report
g-measure as Peters et al. [28], since Menzies et al. [22]
show that precision can be unstable when datasets contain
a low percentage of defects. It is defined as: g-measure =
2×pd×(1−fpr)
pd+(1−fpr)

.

Area Under Curve (AUC). AUC is the area under the re-
ceiver operating characteristics (ROC) curve. ROC is inde-
pendent of the cut-off value that is used to compute the con-
fusion matrix. Rahman et al. [30] recommend to use AUC
for cross-project defect prediction instead of traditional mea-
sures such as precision, and recall).

1http://www.cs.waikato.ac.nz/ml/weka

Table 2: Confusion matrix used in defect prediction
studies.

�������Actual

Predicted
defective non-defective

defective true positive (TP) false negative (FN)
non-defective false positive (FP) true negative (TN)

4. EXPERIMENT SETUP

4.1 Data Collection

4.1.1 Subject Projects
SourgeForge and GoogleCode are two large and popular

repositories for open source projects. We use the Source-
Forge and GoogleCode data initially collected by Mockus [24]
with his updates until October 2010. The dataset contains
about 154K projects that are hosted on SourceForge and
81K projects that are hosted on GoogleCode. However,
there are too many trivial projects. Many projects do not
have enough history and defect data for evaluation. Hence,
we clean the dataset for our experiments.

4.1.2 Cleaning the Dataset
Filtering out projects by programming languages. In
this study, we use a commercial tool, called Understand2, to
compute code metrics. Due to the limitation of the tool, we
only investigate projects that are mainly written in C, C++,
C#, Java, or Pascal. For each project, we determine its
main programming languages by counting the total number
of files per file type (i.e., *.c, *.cpp, *.cxx, *.cc, *.cs, *.java,
and *.pas).
Filtering out the projects with a small number of
commits. A small number of commits can not provide
enough information for computing process metrics and min-
ing defect data. We compute the quantiles of the number of
commits of all projects throughout their history. We choose
the 25% quantile of the number of commits as the thresh-
olds to filter out projects. In our dataset, we filter out the
projects with less than 32 (inclusive) commits throughout
their histories.
Filtering out the projects with lifespan less than one
year. Most studies in defect prediction collect defect data
from six months’ period [40] after the software release, and
compute process metrics using the six months’ data ahead.
However, numerous projects on SourceForge or GoogleCode
do not have clear release periods. Therefore, we simply de-
termine the split date for each project by looking 6 months
(i.e., 182.5 days) back from its last commit. We collect de-
fect data in the six months’ period after the split date, and
compute process metrics using the change history in the six
months’ period before the split date. Thus we filter out the
projects with a lifespan less than one year (i.e., 365 days).
Filtering out the projects with limited defect data.
Defect data needs to be mined from enough commit mes-
sages. We count the number of fix-inducing and non-fixing
commits from a one-year period. We choose the 75% quan-
tile of the number of fix-inducing (respectively non-fixing)
commits as the thresholds to filter out the projects with less
defect data. For projects hosted on SourceForge, the 75%
quantile of the number of fix-inducing and non-fixing com-

2http://www.scitools.com

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●

●●

●●

●●●●●●●●●●●●
●●●●●●●●

●●●●

●●

●●●●●●●●●●●●

●●

●●●●●●●

●●
●●●

●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●

●●
●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●

●●●●●

●●

●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●

●●●●●●●●●●●

●●

●●
●●●●●
●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●

●●●

4
6

8
10

12
14

TLOC

lo
g(

TL
O

C
+1

)

●●●●

●●

●●●●

●●

●●●●

●●

●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●

●●●●
●●●●●

●●●

●●●●●●●

●●●

●●

●●●●●●●●

●●●●●●●

●●●●●●●●●●

●●

●●●●●●●

●●●●

●●

●●●●●●●

●●●

●●●●●●●●●●●●

●●●
●●●●

●●

●●●

●●●●●●●

●●●●●●

●●●●●

●●●●●●●
●●●●●●
●●●●●●●

●●●●

●●●●●●

●●●

●●●●●●●

●●●●●●●●
●●●
●●●●

●●●●●●

●●●●●●●●

●●

●●●●●●

●●

●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●
●●●●
●●●

●●●●●●●

●●●●●

●●●●●●●

●●●●●●●●●

2
4

6
8

TNF

lo
g(

TN
F+

1)
●●●●●●●●●●●

●●

●●●

4
6

8
10

12

TNC

lo
g(

TN
C

+1
)

●●

1
2

3
4

5
6

7

TND

lo
g(

TN
D

+1
)

Figure 2: Boxplot of four numeric context factors
(i.e., TLOC, TNF, TNC, and TND) in our dataset.

mits are: 152 and 1,689, respectively. For projects hosted on
GoogleCode, the 75% quantile of the number of fix-inducing
and non-fixing commits are: 92 and 985, respectively.
Filtering out the projects without fix-inducing com-
mits. Subject projects in defect prediction studies usually
contain defects. For example, the 56 projects used by Peters
et al. [28] have at least one defect. We consider the projects
that have no fix-inducing commits during six months as ab-
normal projects, therefore we filter out such projects.
Description of the final experiment dataset. In the
cleaned dataset, there are 937 SourceForge projects, and
461 GoogleCode projects. Among them, 715 projects em-
ploy CVS as their version control system, 621 projects use
Subversion, and 62 projects adopt Mercurial. The number of
projects that are mainly written in C, C++, C#, Java, and
Pascal are 288, 424, 84, 591, and 11, respectively. There are
817 projects using issue tracking systems, and 581 projects
without using any issue tracking system. We show the box-
plot of other four context factors in Figure 2.

4.2 Software Metrics
As shown in Table 3, this study covers 21 code metrics,

and five process metrics that are often used in defect pre-
diction models. The code metrics are computed by the tool
called Understand. The process metrics are computed by
our scripts. As mentioned in Section 4.1.2, we look 6 months
(i.e., 182.5 days) back from the last commit to obtain the
split date. The code metrics are computed using the files
from the snapshot of the split date. The process metrics are
computed using the change history in the six months’ period
before the split date.

4.3 Defect Data
Defect data are often mined from commit messages, and

corrected using defect information stored in an issue tracking
system [40]. In our dataset, 42% of subject projects do not
use issue tracking systems. For such projects, we mine defect
data solely by tagging keywords of commit messages. A
similar tagging method for mining defect data is used by
Mockus and Votta [25] and in SZZ algorithm [34]. We first
remove all words ending with “bug” or “fix” from commit
messages, since “bug” and “fix” can be affix of other words
(e.g., “debug” and “prefix”). A commit message is tagged as
fixing defect, if it matches the following regular expression:

(bug|fix|error|issue|crash|problem|fail|defect|patch)
Using commit messages to mine defect information may be

biased [5, 15, 13]. However, Rahman et al. [31] report that
increasing the sample size can leverage the possible bias in
defect data. Our dataset contains 1,398 subject projects,
and is around 140 to 280 times larger than most papers in
this field [28]. In addition, the modelling technique (i.e.,
Naive Bayes) used in this study is proved by Kim et al. [15]
to have strong noise resistance with up to 20%-35% of false

●
●

●
●●●

●

1
3

5
7

lo
g(

#D
ef

ec
t+

1)

0.
0

0.
4

0.
8

%
 D

ef
ec

ts

Defect % Defect

Figure 3: Boxplot of the number of defects and the
percentage of defects in our dataset.

positive and false negative noises in defect data. The defect
data is collected in the six months’ period after the split
date. We show the boxplot of the number of defects and the
percentage of defects in our dataset in Figure 3.

5. CASE STUDY RESULTS

5.1 Project Clusters
In our dataset, there are 1,398 open source projects. The

set of projects is stratified into non-overlapped groups along
the six context factors: programming language, issue track-
ing, total lines of code, total number of files, total number
of commits, and total number of developers, respectively. In
total, we obtain 480 non-empty groups. For each metric, we
perform

(
480
2

)
= 480!

2!×478!
= 114, 960 times of Mann-Whitney

U tests to compare the difference of the distribution be-
tween any pair of groups. To control family-wise errors, we
adjust the threshold p-value using Bonferroni correction to
0.05/114, 960 = 4.35e-07. Any pair of groups without statis-
tically significant difference in their distribution are merged
together. Moreover, the pair of groups without a large dif-
ference (measured by Cliff’s δ) are also merged together.
The maximum number of clusters observed for a metric is
25, which is the number of clusters obtained for the metric
total Cbo (i.e., the sum of Cbo values per file).

5.2 Research Questions

RQ1: Can a context-aware rank transformation pro-
vide predictive power comparable to the power of log
transformation?

Motivation. We have proposed a context-aware rank trans-
formation method to eliminate the impact of varied scales
of metrics among different projects. The rank transforma-
tion converts raw values of all metrics to levels of the same
scale. The log transformation uses the logarithm of raw val-
ues, and has been proved to improve the predictive power
in defect prediction approaches [23, 14]. Therefore, we com-
pare the performance of defect prediction models built using
rank transformations to the models built using log transfor-
mations.
Approach. We build two types of within-project defect pre-
diction models for every project, using log transformations
and rank transformations, respectively. We call a model is a
within-project defect prediction model if both training and
testing data are from the same project. To evaluate the per-
formance of predictions, we perform 10-fold cross-validation
on each project. To investigate the performance of our rank
transformation, we test the following null hypothesis for each
performance measure:

H01: there is no difference in the performance of defect
prediction models built using log and rank transformations.

Table 3: List of software metrics.

Type Metric Level Metric Name Description File Level

Code Metrics

File

Loc Lines of Code value
Cl Comment Lines value
Nstmt Number of Statements value
Nfunc Number of Functions value
Rcc Ratio Comments to Codes value
Mnl Max Nesting Level value

Class

Wmc Weighted Methods per Class avg, max, total
Dit Depth of Inheritance Tree avg, max, total
Rfc Response For a Class avg, max, total
Noc Number of Immediate Subclasses avg, max, total
Cbo Coupling Between Objects avg, max, total
Lcom Lack of Cohesion in Methods avg, max, total
Niv Number of instance variables avg, max, total
Nim Number of instance methods avg, max, total
Nom Number of Methods avg, max, total
Npbm Number of Public Methods avg, max, total
Npm Number of Protected Methods avg, max, total
Nprm Number of Private Methods avg, max, total

Methods
Cc McCabe Cyclomatic Complexity avg, max, total
Fanin Number of Input Data avg, max, total
Fanout Number of Output Data avg, max, total

Process Metrics File

Nrev Number of revisions value
Nfix Number of revisions a file was involved in bug-fixing value
AddedLoc Lines added avg, max, total
DeletedLoc Lines deleted avg, max, total
ModifiedLoc Lines modified avg, max, total

Table 4: The results of Wilcoxon rank sum tests
and mean values of six performance measures of
log transformation (LogTran) and our context-aware
rank transformation (RankTran) in the within-
project settings. (* denotes statistical significance.)

Measures LogTran RankTran p-value Cohen’s d

prec 0.48 0.48 0.71 -0.01
pd 0.57 0.58 0.31 0.03
fpr 0.36 0.35 0.43 0.04

F-measure 0.49 0.50 0.33 -0.03
g-measure 0.53 0.54 4.7e-03 -0.07*

AUC 0.61 0.62 0.14 -0.03

We conduct Wilcoxon rank sum test [33] to compare the
six performance measures, using the 5% confidence level
(i.e., p-value<0.05). The Wilcoxon rank sum test is a non-
parametric statistical test to assess whether two independent
distributions have equally large values. Non-parametric sta-
tistical methods make no assumptions about the distribution
of assessed variables. If there is a statistical significance, we
reject the hypothesis and conclude that the performance of
the two transformation techniques are different. Moreover,
we compare the proportion of the successful predictions.
The success of predictions is determined using two criteria:
1) strict criteria (i.e., precision and recall are greater than
0.75), as used by Zimmermann et al. [39]; and 2) loose cri-
teria (i.e., precision is greater than 0.5 and recall is greater
than 0.7), as applied by He et al. [12].
Findings. Table 4 presents the mean values of the six per-
formance measures of both log and rank transformations,
and the corresponding p-values of Wilcoxon rank sum test.
We can not reject the hypothesis H01 that there is no dif-

ference between rank transformation and log transformation
in within-project defect prediction in most measures, except
g-measure. We further compute Cohen’s d [7] as effect size
to measure the mean difference. As shown in Table 4, the
results show the difference between the two transformations
is small (i.e., less than 0.10). The proportion of success-
ful predictions for both approaches is identical where it is
9% and 20% using the strict and loose criteria for successful
prediction, respectively. We conclude that rank transforma-
tion achieves comparable performance to log transformation.
It is reasonable to use the proposed rank transformation
method to build universal defect prediction models.

RQ2: What is the performance of the universal defect
prediction model?

Motivation. The findings of RQ1 support the feasibility
of our proposed rank transformation method for building de-
fect prediction models. However, building an effective uni-
versal model is still a challenge. For instance, Menzies et
al. [21] report the poor performance of a model built on the
entire set of diverse projects. This research question aims
to investigate the best achievable predictive power of the
universal model. First, we evaluate if the predictive power
of the universal model can be improved by adding context
factors as predictors, together with code metrics and pro-
cess metrics that are commonly used in prior studies for
defect prediction. Second, we study if the universal model
can achieve comparable performance as within-project de-
fect prediction models. We split RQ2 to two sub questions:
RQ2.1: Can context factors improve the predictive power?
RQ2.2: Is the performance of the universal model defect pre-
diction comparable to within-project models?

Table 5: The performance measures for the univer-
sal models built using code metrics (CM), code +
process metrics (CPM), and code + process + con-
texts (CPMC), respectively.

Measures CM CPM CPMC

prec 0.36 0.38 0.40
pd 0.91 0.83 0.86
fpr 0.87 0.76 0.70

F-measure 0.51 0.51 0.55
g-measure 0.23 0.36 0.42

AUC 0.58 0.60 0.65

Table 6: The results for Wilcoxon rank sum tests
and mean values of six performance measures of
within-project models (WM) and the universal mod-
els (UM). (* denotes statistical significance.)

Measures WM UM p-value Cohen’s d

prec 0.48 0.45 2.34e-03 0.10*
pd 0.58 0.63 2.81e-11 -0.25*
fpr 0.35 0.45 6.76e-42 -0.48*

F-measure 0.50 0.46 2.19e-05 0.15*
g-measure 0.54 0.52 7.58e-14 0.14*

AUC 0.62 0.64 3.33e-04 -0.16*

Approach. To address RQ2.1, we start to build the uni-
versal model using only code metrics, then adding process
metrics, and finally including context factors. This provides
the insights of the improvements on the performance of the
universal model by adding context factors as predictors.

To address RQ2.2, we build a universal model using the
set of projects except the testing projects and build within-
project model for each project. We conduct 10-fold cross-
validation to obtain the average predictive power of both the
universal model and the within-project models. We apply
Wilcoxon rank sum test (5% confidence level) to examine
the following null hypothesis for each performance measure:

H02: there is no difference in the performance of within-
project and universal defect prediction models.

We compute the proportion of acceptable predictions of
both the universal model and the within-project models.
Findings. (RQ2.1) Table 5 provides a summary of the com-
parison steps. It shows that the AUC value keeps increasing
when adding more metric sets to the model. The context
factors increase the precision, recall, F-measure, g-measure,
and the AUC value. Hence, the context factors are good
predictors for building a universal defect prediction model.

(RQ2.2) Table 6 presents the Wilcox rank sum test results
of six measures between within-project model and universal
models built using rank transformations. We reject the null
hypothesis H02 for all measures. The results show that the
within-project model has 3% higher precision, 4% higher F-
measure, and 2% higher g-measure. The universal model
has 5% higher recall and 2% higher AUC, but experiences
10% higher false positive rate. The Cohen’s d reports the
difference among these measures are medium (i.e., greater
than 0.10, but less than 0.30), except g-measure. The higher
recall and lower precision of universal models might be due
to the fact that the defects of files with similar properties
are fixed in one project but overlooked in another project.
Nevertheless, the results show that the universal model can
slightly outperform the within-project prediction models in
the context of cross-project prediction by comparing the

Table 7: The six performance measures for within-
project model (wm) and the universal model (um).
P1 is Eclipse, P2 is Equinox, P3 is PDE, P4 is My-
lyn, P5 is Lucene.

Measures P1 P2 P3 P4 P5 Type

prec
0.47 0.63 0.28 0.28 0.21 wm
0.31 0.66 0.23 0.23 0.13 um

pd
0.57 0.61 0.47 0.42 0.34 wm
0.79 0.54 0.72 0.60 0.61 um

fpr
0.17 0.24 0.20 0.17 0.13 wm
0.46 0.19 0.39 0.30 0.42 um

F-measure
0.52 0.62 0.35 0.34 0.26 wm
0.45 0.59 0.35 0.33 0.21 um

g-measure
0.68 0.68 0.59 0.56 0.49 wm
0.64 0.65 0.66 0.64 0.60 um

AUC
0.76 0.78 0.70 0.68 0.69 wm
0.77 0.79 0.70 0.69 0.67 um

AUC values as Rahman et al. [30] show that AUC is a more
reliable measure than precision and recall for cross-project
prediction.

Moreover, the universal models yield similar percentage
(i.e., 3%) of successful predictions (see RQ1) as Zimmer-
man et al. [39] who report a 3.4% success rate. If using loose
criteria, the universal model achieves 14% of successful pre-
dictions, much higher than He et al. [12] who report 0.32%
of successful predictions. The universal model achieves up
to 70% (i.e., 14% against 20%) of the successful predictions
by within-project model. We conclude that our approach
for building a universal model is promising.

RQ3: What is the performance of the universal defect
prediction model on external projects?

Motivation. In RQ2, we successfully build a universal
model for a large set of projects. The universal model slightly
outperforms within-project models in terms of recall and
AUC. Although our experiments involve a large number of
projects from various contexts, the projects are selected from
only two hosts: SourceForge and GoogleCode. It is still un-
clear if the universal model is generalizable, i.e., whether it
works well for external projects that are not managed on
the aforementioned two hosts. This research question aims
to investigate the capability of applying the universal model
to predict defects for external projects that are not hosted
on SourceForge or GoogleCode.
Approach. To address this question, we choose to use the
publicly available dataset3 that was collected by D’Ambros
et al. [9]. The dataset contains four Eclipse projects (i.e.,
Eclipse JDT Core, Eclipse PDE UI, Equinox Framework,
and Mylyn), and one Apache project (i.e., Lucene). We
calculate the six context factors of the five aforementioned
projects, and apply related ranking functions to convert
their raw metric values to one of the ten levels. We pre-
dict defects on each project using the universal model which
is learnt from 1,398 SourceForge and GoogleCode projects.
The six performance measures of within-project models are
obtained via 10-folds cross-validation for each project.
Findings. Table 7 presents the mean of six performance
measures of the universal model and within-project models.
Similar to RQ2, the universal model achieves higher recall
and better AUC values but has a higher false positive rate.

3http://bug.inf.usi.ch/download.php

The results show our universal model can provide compara-
ble performances to within-project defect prediction models
for the five subject projects. Considering the five projects
might conduct different development strategies than Source-
Forge or GoogleCode projects, there is a high chance to
apply the universal model on more external projects with
acceptable predictive power.

6. THREATS TO VALIDITY
We now discuss the threats to validity of our study fol-

lowing common guidelines provided in [36].
Threats to conclusion validity concern the relation be-

tween the treatment and the outcome. Our conclusion va-
lidity threats are mainly due to data cleaning methods. For
instance, we remove the projects with negligible fix-inducing
or non-fixing commits (both using 75% quantile as the thresh-
old). We plan to investigate the impact of different thresh-
olds in future study.

Threats to internal validity concern our selection of
subject systems and analysis methods. SourceForge and
GoogleCode are considered to have a large proportion of
not well managed projects. We believe our data cleaning
step increases the data quality. The other threats to inter-
nal validity is possible biases in the defect data. We plan to
include well managed projects (e.g., Linux projects, Eclipse
projects, and Apache projects) in future study.

Threats to external validity concern the possibility to
generalize our results. Although we demonstrate the capa-
bility of the universal model on predicting defects for four
Eclipse projects and one Apache project, it is unclear if the
universal model also performs well for commercial projects.
Future validation on commercial projects is welcome.

Threats to reliability validity concern the possibility
of replicating this study. The subject projects are publicly
available from SourceForge and GoogleCode. We attempt
to provide all necessary details to replicate our study4.

7. CONCLUSION
In this study, we attempt to build a universal defect pre-

diction model for a large set of projects from various con-
texts. We first propose a context-aware rank transforma-
tion method to pre-process the predictors. The transformed
predictors have the same scales. We then build a univer-
sal model using the metrics after rank transformation, and
find that the rank transformation performs as good as log
transformation. By adding different metric sets (i.e., code
metrics, process metrics, and context factors) step by step,
we find that the context factors increase the predictive power
of the universal model. We further find that the universal
model has higher AUC values and higher recall than within-
project models. In the context of cross-project prediction,
our approach is better based on the AUC measure. We also
evaluate the generalizability of the universal model by eval-
uating its performance using five external projects that are
not hosted on SourceForge and GoogleCode. The findings
remain the same. The universal model not only relieves
the need for training defect prediction models for different
projects, but also helps interpret basic relationships between
software metrics and defects.

In future, we plan to evaluate the feasibility of the uni-
versal model for commercial projects. We will also evaluate

4http://fengzhang.bitbucket.org/replications/unimodel.html

the possibility to embed the universal model as a plugin for
a version control system or an integrated development en-
vironment (IDE) to provide developers with an immediate
feedback on risk.

8. ACKNOWLEDGMENTS
The authors would like to thank Professor Ahmed E. Has-

san from Software Analysis and Intelligence Lab (SAIL) at
Queen’s University for his strong support during this work.
The authors would also like to thank Professor Daniel Ger-
man from University of Victoria for his insightful advice.

9. REFERENCES
[1] T. Alves, C. Ypma, and J. Visser. Deriving metric

thresholds from benchmark data. In Proceedings of the
26th IEEE International Conference on Software
Maintenance, pages 1 –10, sept. 2010.

[2] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of
methods to build and evaluate fault prediction models.
Journal of Systems and Software, 83(1):2–17, 2010.

[3] R. Baggen, J. Correia, K. Schill, and J. Visser.
Standardized code quality benchmarking for
improving software maintainability. Software Quality
Journal, 20:287–307, 2012.

[4] N. Bettenburg and A. E. Hassan. Studying the impact
of social structures on software quality. In Proceedings
of the 18th IEEE International Conference on
Program Comprehension, pages 124–133, 2010.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced?: bias in bug-fix datasets. In Proceedings of
the 12th European Software Engineering Conference
and the 17th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE ’09,
pages 121–130, 2009.

[6] N. Cliff. Dominance statistics: Ordinal analyses to
answer ordinal questions. Psychological Bulletin,
114(3):494–509, Nov. 1993.

[7] J. Cohen. Statistical power analysis for the behavioral
sciences : Jacob Cohen. Lawrence Erlbaum, 2 edition,
Jan. 1988.

[8] J. Cohen. A power primer. Psychological Bulletin,
112(1):155–159, 1992.

[9] M. D’Ambros, M. Lanza, and R. Robbes. An extensive
comparison of bug prediction approaches. In
Proceedings of the 7th IEEE Working Conference on
Mining Software Repositories, pages 31 – 41, 2010.

[10] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: a benchmark and an
extensive comparison. Empirical Software Engineering,
17(4-5):531–577, Aug. 2012.

[11] A. Hassan. Predicting faults using the complexity of
code changes. In Proceedings of the 31st IEEE
International Conference on Software Engineering,
pages 78 –88, 2009.

[12] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An
investigation on the feasibility of cross-project defect
prediction. Automated Software Engineering,
19(2):167–199, June 2012.

[13] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a
feature: how misclassification impacts bug prediction.

In Proceedings of the 35th International Conference on
Software Engineering, pages 392–401, 2013.

[14] Y. Jiang, B. Cukic, and T. Menzies. Can data
transformation help in the detection of fault-prone
modules? In Proceedings of the 2008 Workshop on
Defects in Large Software Systems, DEFECTS ’08,
pages 16–20, 2008.

[15] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with
noise in defect prediction. In Proceedings of the 33rd
International Conference on Software Engineering,
pages 481–490, 2011.

[16] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering,
34(4):485–496, 2008.

[17] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou.
Sample-based software defect prediction with active
and semi-supervised learning. Automated Software
Engineering, 19(2):201–230, June 2012.

[18] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer
learning for cross-company software defect prediction.
Information and Software Technology, 54(3):248–256,
Mar. 2012.

[19] C. Mair and M. Shepperd. The consistency of
empirical comparisons of regression and analogy-based
software project cost prediction. In Proceedings of the
2005 International Symposium on Empirical Software
Engineering, pages 10 pp.–, 2005.

[20] T. McCabe. A complexity measure. IEEE
Transactions on Software Engineering, SE-2(4):308 –
320, Dec. 1976.

[21] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann,
and D. Cok. Local vs. global models for effort
estimation and defect prediction. In Proceedings of the
2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 343–351, 2011.

[22] T. Menzies, A. Dekhtyar, J. Distefano, and
J. Greenwald. Problems with precision: A response to
“comments on ‘data mining static code attributes to
learn defect predictors’”. IEEE Transactions on
Software Engineering, 33(9):637–640, 2007.

[23] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering, 33(1):2–13,
2007.

[24] A. Mockus. Amassing and indexing a large sample of
version control systems: Towards the census of public
source code history. In Proceedings of the 6th IEEE
International Working Conference on Mining Software
Repositories, pages 11 –20, may 2009.

[25] A. Mockus and L. Votta. Identifying reasons for
software changes using historic databases. In
Proceedings of the 16th International Conference on
Software Maintenance, pages 120–130, 2000.

[26] N. Nagappan, T. Ball, and A. Zeller. Mining metrics
to predict component failures. In Proceedings of the
28th International Conference on Software
Engineering, pages 452–461, 2006.

[27] J. Nam, S. J. Pan, and S. Kim. Transfer defect
learning. In Proceedings of the 35th International
Conference on Software Engineering, pages 382–391,

2013.

[28] F. Peters, T. Menzies, and A. Marcus. Better cross
company defect prediction. In Proceedings of the 10th
Working Conference on Mining Software Repositories,
pages 409–418, 2013.

[29] R. Premraj and K. Herzig. Network versus code
metrics to predict defects: A replication study. In
2011 International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages
215–224, 2011.

[30] F. Rahman, D. Posnett, and P. Devanbu. Recalling
the ”imprecision” of cross-project defect prediction. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, FSE ’12, pages 61:1–61:11, 2012.

[31] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu.
Sample size vs. bias in defect prediction. In
Proceedings of the 15th European Software
Engineering Conference and the 21th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, ESEC/FSE ’13, 2013.

[32] J. Romano, J. D. Kromrey, J. Coraggio, and
J. Skowronek. Appropriate statistics for ordinal level
data: Should we really be using t-test and cohen’s d
for evaluating group differences on the nsse and other
surveys? In Annual Meeting of the Florida Association
of Institutional Research, pages 1–33, February 2006.

[33] D. J. Sheskin. Handbook of Parametric and
Nonparametric Statistical Procedures, Fourth Edition.
Chapman & Hall/CRC, Jan. 2007.

[34] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proceedings of the 2nd
International Workshop on Mining Software
Repositories, pages 1–5, 2005.

[35] B. Turhan, T. Menzies, A. B. Bener, and
J. Di Stefano. On the relative value of cross-company
and within-company data for defect prediction.
Empirical Software Engineering, 14(5):540–578, Oct.
2009.

[36] R. K. Yin. Case Study Research: Design and Methods
- Third Edition. SAGE Publications, 3 edition, 2002.

[37] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E.
Hassan. How does context affect the distribution of
software maintainability metrics? In Proceedings of
the 29th IEEE International Conference on Software
Maintainability, pages 350 – 359, 2013.

[38] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In
Proceedings of the 30th international conference on
Software engineering, pages 531–540, 2008.

[39] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In
Proceedings of the 12th European Software
Engineering Conference and the 17th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, ESEC/FSE ’09, pages 91–100, 2009.

[40] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In Proceedings of the
International Workshop on Predictor Models in
Software Engineering, PROMISE ’07, pages 9–15,
2007.

