
Will My Patch Make It? And How Fast?
Case Study on the Linux Kernel

Yujuan Jiang, Bram Adams
MCIS, Polytechnique Montréal, Canada
{yujuan.jiang,bram.adams}@polymtl.ca

Daniel M. German
University of Victoria, Canada

dmg@uvic.ca

Abstract—The Linux kernel follows an extremely distributed
reviewing and integration process supported by 130 developer
mailing lists and a hierarchy of dozens of Git repositories for
version control. Since not every patch can make it and of those
that do, some patches require a lot more reviewing and integra-
tion effort than others, developers, reviewers and integrators need
support for estimating which patches are worthwhile to spend
effort on and which ones do not stand a chance. This paper cross-
links and analyzes eight years of patch reviews from the kernel
mailing lists and committed patches from the Git repository to
understand which patches are accepted and how long it takes
those patches to get to the end user. We found that 33% of the
patches makes it into a Linux release, and that most of them need
3 to 6 months for this. Furthermore, that patches developed by
more experienced developers are more easily accepted and faster
reviewed and integrated. Additionally, reviewing time is impacted
by submission time, the number of affected subsystems by the
patch and the number of requested reviewers.

I. INTRODUCTION

Integration of code changes into a project’s main repository
is an open source developer’s ultimate goal, since it marks
the first step towards inclusion in an official product release.
An open source project like the Linux kernel, for example,
integrates between 8,000 and 12,000 patches in a new release,
contributed by more than 1,000 developers [1]. Those patches
only represent the “lucky few”. Studies on Apache and other
open source systems have shown how only 40% of the patches
considered for integration eventually succeed [2], [3], [4].

One of the major reasons for the relatively low success rate
of integration is the complexity of this process. The patches
first need to pass a gate-keeper who performs a review of the
code [2], [5], [6], before the code is merged by an integrator
(e.g., release engineer) into the corresponding branch of the
open source project [7], [8], [9]. Code reviews fail when
a patch does not implement a relevant, working feature or
bug fix, or when the project’s development guidelines are not
followed [10]. The actual integration (merging) fails when the
patch interacts incorrectly with other patches or the merging
process creates too many merge conflicts [11]. In case of
integration issues, the developer needs to go back to the
drawing board and try to integrate the code again. In the worst
case, a patch will be rejected time and time again until the
developer eventually gives up.

As a result, the integration process looks like a black box
to most developers, with unpredictable outcome. Everyone
knows the stories of disgruntled developers, even experienced

ones, whose changes did not make it after putting months of
work into them (e.g., [12], [13]). Even major projects like the
Google Android mobile platform have problems getting their
Linux kernel modifications integrated into the official kernel
version [11]. Yet, determining up front whether a patch will
make it, and how long it will take, is a grey area. Research
on code reviews has shown how small patches [6], [4] sent by
experienced developers [2] are more likely to be accepted by
the reviewers, but it is not clear if these characteristics play
the same role during the actual integration of the patch with
other patches. Similarly, the impact of these characteristics on
the time it takes to get a patch into a release is unclear.

This paper studies the relation of patch characteristics with
(1) the probability of acceptance into an official release and
(2) the time between submitting a patch for review and
acceptance. We also analyze if these relations change over
time. Our empirical analysis is based on eight years of patch
review data and version control data from the Linux kernel
project, which is a 20 year-old, popular open source system
containing more than 15 MLOC of source code. We address
the following research questions:

RQ1) What percentage of submitted patches has been inte-
grated successfully, and how much time did it take?

Around 33% of patches are accepted. Reviewing time
has been dropping down to 1–3 months, while inte-
gration time steadily has been increasing towards 1–3
months, bringing the total time to 3–6 months.

RQ2) What kind of patch is accepted more likely?
Developer experience, patch maturity and prior subsys-
tem churn play a major role in patch acceptance, while
patch characteristics and submission time do not.

RQ3) What kind of patch is accepted faster?
Reviewing time is impacted by submission time, the
number of affected subsystems, the number of sug-
gested reviewers and developer experience, while in-
tegration time is impacted by the same attributes as
patch acceptance.

First, we provide background about the Linux kernel inte-
gration process (Section II), followed by an explanation of our
case study methodology (Section III). Section IV presents the
results of our case study, followed by a discussion of threats
to validity (Section V). We finish the paper with related work
(Section VI) and the conclusion (Section VII).



contributor 1 linux-usb

maintainer
contributor 2 lkml

linux-scsicontributor 3

Linus Torvalds Linux 3.5

subsystem 
maintainer 1

subsystem
maintainer 2

reviewing integration staging

Fig. 1. Linux kernel development process. Contributor 1’s patch is rejected
during reviewing, and contributor 2’s patch is rejected during integration, but
contributor 3’s patch makes it into the next Linux release (version 3.5).

II. BACKGROUND

The Linux kernel open source project started out as a one-
man project by Linus Torvalds in 1991, but quickly exploded
into one of the hallmark projects of open source development.
Since early on, kernel development is managed by a strict hier-
archy of experienced kernel developers under the leadership of
Linus Torvalds, who has the final decision about incorporating
a source code patch into the kernel. Figure 1 illustrates the
lifecycle of a kernel patch [10].

A developer first needs to send a request for comments
(RFC) to a kernel subsystem’s mailing list to get input on a
new idea for a feature or bug fix. After fleshing out the design,
the developer implements it and sends the resulting patch or
patch set (series of collaborating patches) to the subsystem’s
mailing list and/or the global Linux Kernel Mailing List
(LKML). Through email discussion, the subsystem maintainer
and other experts review the patch. The developer then needs
to incorporate any feedback and re-submit his patch (set),
otherwise the patch does not get through the reviewing stage.

Once all reviewers are happy, the subsystem maintainer
commits the final patch to his Git repository. Other main-
tainers, developers and beta-testers tracking the maintainer’s
repository now become aware of the patch and can provide
additional reviews. This will also expose integration conflicts,
i.e., other patches that break because of the new patch.
Again, the developer needs to act on these conflicts to avoid
not getting through integration. If the kernel maintainers are
sufficiently confident about the patch, Linus Torvalds might
consider incorporating it into the official Linux kernel release.
This only happens during a release’s “merge window”, a
period of roughly two weeks following the previous release.
Afterwards, small bug fixes are still possible until the next
release occurs (every 2 or 3 months [1]).

This paper uses the terminology of Figure 1 to denote the
duration of each major phase. Reviewing time is the time
from a developer’s patch submission until the patch’s commit
by a subsystem maintainer. Integration time is the time from a
patch’s commit by a subsystem maintainer until its merge into
Linus Torvalds’ repository. Finally, staging time is the time
from a patch’s merge into Linus Torvalds’ repository until the
next kernel release.

III. METHODOLOGY

In order to address our three research questions, we studied
the acceptance rate of patches submitted by email, as well as
their reviewing, integration and staging time. We now explain
the different steps used for our study.

A. Data Extraction

Since the Linux kernel integration activities (Figure 1) are
spread out across mailing lists and Git repositories, we need
to mine both data sources, then try to match the patches inside
the emails to commits inside the repositories.

There is one global mailing list (LKML), and 130 more
specialized kernel-related lists. These mailing lists are archived
online [14] in the form of textual mbox files. We obtained
access to the mbox files of 2005 until 2012, then used the
MailMiner tool [15] to process these files into a relational
database, with tables containing the email messages and their
metadata. We did not analyze email attachments, since the
Linux kernel developer guidelines dictate that all patches are
inlined into the email body(i.e., attachments are not reviewed).
Unfortunately, we were not able to find reliable heuristics that
link threads related to (different versions of) the same patch
to each other, since no official guidelines exist regarding the
title of such email threads.

The source code repository data is better structured. Since
the 2.6.12 kernel (June 26, 2005), the kernel uses the Git
distributed source control system where each developer and
maintainer has a copy of the whole project repository. Since
we only need to analyze which patches make it into an official
release, we only have to clone and mine Linus Torvalds’ repos-
itory [16]. This repository contains all commit information
of accepted patches from June 26, 2005 to December 31,
2012, including information like the original commit date by a
subsystem maintainer and the merge date into Linus Torvalds’
repository. Note that we do not have information about patches
that made it to a maintainer’s repository, but never to Linus
Torvalds’ repository (the second example in Figure 1).

B. Linking the Patches in Emails to Git Commits

To obtain information on which patches are accepted by
Linus Torvalds, we had to link the patches in the mailing
list emails to the commits in Linus Torvalds’ Git repository.
Similar to Bird et al. [17], we did not directly link a full
patch to a Git commit, because of “cherry-picking”. This is
a common integration activity where an integrator only picks
the interesting parts of a patch and ignores the rest. Large
patches risk not being merged completely, or maybe not in
one Git commit. Hence, we split a patch into one or more
chunks, with each chunk containing all changes of the patch
to one file. If a patch undergoes multiple versions in one email
thread (we cannot track versions across threads), we tried to
link each patch version to the Git repository.

The actual linking between chunks and commits is based
on checksum matching. After splitting into chunks, we filter
out the unchanged code lines of a submitted chunk, remove all
white space and capitalization, then concatenate all lines into



one line. After prepending the relative path name of the file
changed by the chunk, we calculate the MD5 checksum. We
perform the white space, capitalization and concatenation to
deal with small changes done to a chunk before merging, and
the path name prepending to avoid false positive matches with
similar changes to other files. We perform the same procedure
to the commits in the Git repository (after splitting them into
chunks), then match the MD5 checksums of submitted chunks
and Git chunks. We only link to the closest Git chunk in time
that follows the submitted chunk. Overall, 47% of the chunks
in the mailing lists could be mapped to Git commits.

We found that patch chunks, i.e., all changes in a patch to
one particular file, are a good compromise between granularity
and patch identity. We evaluated the recall of the chunk
linking mechanism on a sample of 3,000 email threads from
the linux-tips mailing list, which contains the actual Git
commit identifier for an accepted patch. Our linking approach
had a recall of around 75%. We then performed a random
sampling of 100 emails (50% linked and 50% not linked by
our linking mechanism) across all mailing lists, to obtain a
confidence interval for the mechanism’s precision, with length
10% and a 95% confidence level. We found that our technique
had a precision of 100%±10%. These numbers provide us
confidence that our linking mechanism is sufficiently accurate.

Finally, to map back from the chunk level to the patch level,
we analyzed each patch’s chunks and considered a patch to be
accepted if at least one of its chunks was mapped to a Git com-
mit. The patch’s reviewing, integration and staging time are the
corresponding times for the first chunk that was accepted by
Linus Torvalds. This makes sense, since one accepted chunk
is enough for a developer to know that his work will appear
(at least partially) in the next release.Using the last accepted
chunk would also lead to more outliers. Of the 348,184 Git
commits in Linus Torvalds’ repository, 256,284 were actual
patch submissions (i.e., non-merge commits authored by other
people than the committer), and we could map 190,931 of
those commits (74.5%) to a patch submission email.

C. Measuring Patch Characteristics

In order to study the relation between patch characteris-
tics and (time to) acceptance, we need to define a list of
relevant characteristics. Initially, we based ourselves on a list
of guidelines published by the Linux Foundation to support
kernel developers in getting their patches accepted [10]. Some
of these guidelines, such as whether or not a developer has
used the “checkpatch.pl” tool before submitting her patch to
a mailing list, could not be measured easily. Others, such as
whether the patch is small enough or was sent to the right
mailing list, were straightforward to measure. We extended
this set of metrics with additional metrics, such as whether a
patch fixes a bug or proposes a new feature.

Table I shows all metrics that we used during our study,
including the type of metric, the data source from which we
calculated it and a short description. They are grouped into
five dimensions, and an additional group of dependent metrics.
Most of the metrics are straightforward to understand, hence

we only discuss some of them in more detail. We consider a
review to be each email in a thread that replies to an email
with a patch, but only until the next patch in that thread or
the end of the thread.

Developers sometimes want one or more specific persons to
review their patches, often the maintainer of a subsystem. To
(try to) achieve this, they add those persons’ email addresses
as the CC addressees of the email (in order of importance). We
measure the number of CC-ed people, and also check whether
the first CC-ed reviewer indeed committed chunks of the patch.

Since the time in between Linux releases varies between 2
and 3 months, the merge window can also vary in time. As
Linus Torvalds determines by himself when the merge window
ends, we could not identify the exact dates. Instead, we divided
the period in between two subsequent releases into 4 periods
(“quarters”), and report for each patch the rel_quarter in
which the patch was submitted to a mailing list for review.

To identify the most specific mailing list for a particular
patch, we analyzed all patches of each mailing list, and
counted the number of patches modifying each subsystem.
We assigned the most changed subsystem to each mailing
list. A subsystem here corresponds to a subdirectory in the
kernel code base, such as “kernel” and “net/ipv4”. We did not
go deeper than 2 levels of subdirectories, since otherwise the
subdirectories became too specific.

To tag a patch as being a bug fix, we used a traditional,
simple heuristic: We searched in the patch’s log message
for the words “bug” and/or “fix” (case-insensitive). More
advanced techniques exist [18], and we plan to experiment
with these in future work.

Furthermore, to identify if a patch is part of a patch
set, we used the naming convention suggested by the Linux
Foundation [10]. Messages that are part of a patch set should
contain the term “PATCH” (case-insensitive) and a marker of
the form “5/20”, which means that this email is patch 5 out of
20. We check all subsequent threads of the same author within
one hour to see if other messages contain “PATCH” and “20”.
Using a 1-hour window for each email suffices since manual
browsing of patches showed that patch set emails follow each
other very closely. We cannot check for threads with exactly
the same subject, since different patches in a patch set typically
have specific subjects for that patch. If all patches of a patch
set end up in the same thread, we consider the reviews in the
thread to be shared by all patches in the set.

Finally, we only calculate the reviewing, integration and
staging time for fully accepted patches. Patches that failed
reviewing or went through reviewing, but not through integra-
tion, do not have any of these three metrics. For the patches
that made it to Linus Torvalds, we measured the shortest
time from the initial maintainer commit until a merge commit
performed by Torvalds that brings the patch into his repository.

D. Data Analysis

To address the three research questions, we performed
empirical analysis on the metrics that we collected, and also
built decision tree models. A decision tree is a tree where



TABLE I
OVERVIEW OF THE METRICS AND DIMENSIONS USED. THE SUPERSCRIPT AFTER THE NAME IS THE RESEARCH QUESTION IN WHICH IT WAS USED.

metric name type source explanation
E

xp
er

ie
nc

e

msg_exp2,3 numeric mbox Number of patches sent by author in earlier threads.
commit_exp2,3 numeric git Number of accepted Git commits thus far by the author.

E
m

ai
l

year/month/week/day1,3 nominal email Year/Month/Week of the year/Day of the week on which patch was sent.

nr_ccs2,3 numeric email Number of people CCed by email.

msg_length2,3 numeric email Number of lines of email text excluding patch lines.

rel_quarter2,3 nominal email Quarter of release window in which patch is submitted.

thr_first2,3 boolean thread Is this email the first one of the current thread?

first_patch2,3 boolean thread Is this first patch in thread?

thr_volume2,3 numeric thread Number of email messages between start of current thread and current patch.

thr_part2,3 numeric thread Number of people participating in current thread until current patch.

thr_time2,3 numeric thread Discussion time (seconds) between start of current thread and patch.

right_venue2,3 boolean patch Is the patch sent to the most specific mailing list for the changed subsystem?
lkml_first2,3 boolean thread Was the first email sent to the general-purpose LKML list?

R
ev

ie
w

nr_reviewers2,3 numeric thread Number of different people sending review messages.

nr_reviews2,3 numeric thread Number of review messages.

response_time2,3 numeric thread Time in seconds from patch to first review message.
first_response_time2,3 thread patch Time in seconds from first patch in thread to first review message.

Pa
tc

h

bug_fix2,3 boolean patch Is patch a bug fix?

chunks_in3 numeric git #chunks in patch accepted by Linus Torvalds.

chunks_out3 numeric git #chunks in patch rejected by Linus Torvalds.

size2,3 numeric patch Patch churn (sum of added and removed lines).

spread2,3 numeric patch Number of files changed by patch.

spread_subsys3 numeric patch Number of subsystems changed by patch.

nth_try2,3 numeric thread What version of this patch are we (relative to this thread)?

commit_sub2,3 numeric git Number of previously accepted patches modifying the changed subsystem (prior churn).
patch_set2,3 boolean email Is this patch part of a larger patch set?

C
om

m
it committer3 numeric git Number of different committers for the chunks of this patch.

cc_is_rev13 boolean git Is name of committer same as name of first CC-ed reviewer?
cc_is_rev3 numeric git Number of chunks where the name of committer is same as name of first CC-ed reviewer.

D
ep

en
de

nt

accepted1,2 boolean git Was this patch accepted by Linus Torvalds?

reviewing_time1,3 numeric email/git Time between patch submission and first commit by a kernel maintainer.

integration_time1,3 numeric git Time between first commit by a kernel maintainer to acceptance by Linus Torvalds.

staging_time1,3 numeric git Time between acceptance by Linus Torvalds and the next release.

total_time1,3 numeric email/git Time between patch submission and the release in which the patch appeared.
missed2 numeric email Number of missed kernel releases since patch submission for an accepted patch.

every node is a condition such as “size>50?” and one takes a
different path based on the evaluation of the condition for
a particular patch. The leaves of the tree correspond to a
classification such as “accept” or “reject”. We provide more
explanation when discussing the individual research questions.

In order to improve the performance of the models and to
make the values easier to interpret, we discretize the reviewing
and integration time variables. For example, it does not really
make a difference whether a patch will take 13 or 14 days to
review, but it does make a huge difference if a patch will take a
month instead of a day. After analyzing histograms of the data,
we decided to discretize the time data into the following bins:
“instantly”, “within hour”, “within day”, “within week”,
“within month”, “within quarter”, “within half year”,
“within year” and “took ages”.

IV. CASE STUDY RESULT

This section presents the results of our three research
questions. For each question, we present its motivation, the
analysis approach and a discussion of our findings.

RQ1: What percentage of submitted patches has been inte-
grated successfully, and how much time did it take?

Motivation: Existing reports about Linux kernel develop-
ment show that in between 8,000 and 12,000 patches are
accepted into each current kernel release, authored by more
than 1,000 developers [1]. Although this illustrates the huge
scale of development for the Linux kernel, not much is known
about the success rate of patches submitted to the kernel. How
many patches are actually submitted, and how many eventually
make it? Of those who make it, how much time do they



2005 2006 2007 2008 2009 2010 2011 2012

accepted/rejected patches

year

pe
rc

en
ta

ge
 o

f p
at

ch
es

0

20000

40000

60000

80000

100000

120000

28.63
28.7

27.03

32.83 32.79 33.87
33.55 30.74

71.37

71.3

72.97

67.17
67.21 66.13

66.45

69.26

% accepted by linus
% rejected by linus

Fig. 2. Number of accepted patches. The numbers in the bars correspond to
the percentage of accepted or rejected patches.

need until they are integrated into the next kernel releases?
How much of that time is spent on reviewing compared to
integration effort? The answers to these questions provide
insight into the process, output, productivity and effectiveness
of collaborative open source development at massive scale in
the Linux project.

Approach: We compute the number of accepted and rejected
patches that were sent to a kernel mailing list between 2005
and 2012 and measure the total time it took for the accepted
patches to end up in a release, as well as the reviewing,
integration and staging time.

Findings: The yearly number of submitted patches to
kernel mailing lists keeps on increasing. Figure 2 shows that,
starting in 2005, the number of submitted patches discussed
on the mailing list has kept on increasing, with a temporary
slowdown from 2008 to 2010. The numbers are staggering:
In 2013 alone 136,932 patches were submitted to Linux
mailing lists. Even though the number of submitted patches
has increased, the percentage of accepted patches has remained
between 27 and 34% (see Figure 2). The rest (more than 66%)
have not made it, but it is hard to know why they were refused.
This might be due to some patches being reworked and
resubmitted, others still being discussed for consideration, and
some might simply be ignored and never applied. Therefore,
it is important to know what is the expected time it takes to
have a patch incorporated into the kernel.

Patches take 3-to-6 months towards inclusion in a kernel
release. With respect to the total time it takes a patch to
be released as part of the kernel, Figure 3 tells us that
in 2005, most of the accepted patches took between 1-to-3
months. Afterwards, the time most patches took grew to 3-
to-6 months, remaining relatively stable from 2007–2012. To
better understand this, we have decomposed the total time into
reviewing, integration and staging time, and analyzed each of
them separately.

The distribution of reviewing time has become shorter
(Figure 4(a)), with more patches being reviewed within a day

2005 2006 2007 2008 2009 2010 2011 2012

year

pe
rc

en
ta

ge
 o

f a
cc

ep
te

d 
pa

tc
he

s 
of

 e
ac

h 
ye

ar

0
20

40
60

80

instantly
within_hour
within_day

within_week
within_month
within_quarter

within_half_year
within_year
took_ages

Fig. 3. Total time for a patch to occur in an official release.

and a shift from 1-to-3 months to within 1-week-to-1-months.
At the same time, less patches take longer than one month to
be reviewed. A non-parametric Kruskal-Wallis test, followed
by pairwise Mann-Whitney tests with a confidence level of
0.05 (using Bonferroni correction) confirmed the changes in
reviewing time. This suggests that Linux has improved its
reviewing process over time. Either reviewers became more
efficient, or the patches became easier to review.

On the other hand, the time of integration has slowed
down. Figure 4(b) shows that in 2005 almost 60% of patches
were committed directly (“instantly”) to the Linux kernel by
Linus Torvalds and almost 80% made it within a day, while in
2012 only about 10% were integrated within a day. There is
a clear increase of the percentage of patches taking a month
or even a quarter to be integrated. Again, a non-parametric
Kruskal-Wallis test, followed by pairwise Mann-Whitney tests
with a confidence level of 0.05 (using Bonferroni correction)
confirmed these changes in integration time.

These observations can only be explained by Linus Torvalds
applying less and less patches over time. We tested this
assumption by computing the proportion of commits authored
by other developers but directly committed by Linus Torvalds
relative to all non-merge commits. Starting in 2005, he has
committed yearly 39%, 30%, 21%, 11%, 7%, 5%, 4% and
4% of all non-merge commits. In 2005, 4,508 patches were
accepted for which Linus made 5,623 commits authored by
others, while in 2012, there were 42,088 patches accepted and
Linus committed others’ work only 2,370 times. Similarly, the
number of other committers who commit changes authored by
another person has grown from 64 to 261. This suggests that
Linus is integrating patches less (in addition to developing less
himself), delegating this task to others in order to cope with
the overall growth in patches. Similar observations were made
elsewhere [1].

To understand whether the speed-up of reviewing time and
slow-down of integration time is due to changes in develop-
ment style, we analyzed characteristics of the patches that were
reviewed and/or integrated. We found that the size of patches
has changed, dropping initially from a median size of 61 lines
of code in 2005 to 29 lines in 2007, then increasing again up



2005 2006 2007 2008 2009 2010 2011 2012

year

pe
rc

en
ta

ge
 o

f a
cc

ep
te

d 
pa

tc
he

s 
of

 e
ac

h 
ye

ar

0
10

20
30

40

(a) Reviewing time

2005 2006 2007 2008 2009 2010 2011 2012

year

pe
rc

en
ta

ge
 o

f a
cc

ep
te

d 
pa

tc
he

s 
of

 e
ac

h 
ye

ar

0
10

20
30

40
50

60
70

instantly
within_hour
within_day

within_week
within_month
within_quarter

within_half_year
within_year
took_ages

(b) Integration time

2005 2006 2007 2008 2009 2010 2011 2012

year

pe
rc

en
ta

ge
 o

f a
cc

ep
te

d 
pa

tc
he

s 
of

 e
ac

h 
ye

ar

0
20

40
60

80
10

0

(c) Staging time

Fig. 4. Distributions of times for patches

to a median of 77 in 2012 (87 in 2011). These larger patches
are affecting more files as well, since the median number of
changed files increased from 3 to 4. Finally, the percentage
of bug fix patches has dropped continuously from 24% to
16%, i.e., more patches contain feature enhancements instead
of bug fixes. This provides an explanation of the growing size
of patches as well as the longer time it takes to integrate these
more complex patches. It is not clear why reviewing is not
affected by this.

Staging time is fixed at 1–3 months. Figure 4(c) shows
how most of the patches got in within one quarter. Indeed, the
time in between releases has been set to a fixed number of
weeks by Linus Torvalds, i.e., it is a management decision.
In addition, patches are only merged into Linus Torvalds’
repository roughly the first two weeks after the previous
releases. Commits sent outside this merge window are ignored
until the next release’s merge window. Only in 2007, many
patches took more than half a year to be accepted. Since
staging time is dictated, we do not consider it in this paper.

The reviewing time is becoming shorter and shorter, seem-
ingly at the expense of a longer integration time. However,
the total acceptance time does not change too much.

RQ2: What kind of patch is accepted more likely?

Motivation: In RQ1, we found that the accepted patches rep-
resent only around 30% of all submitted patches. Furthermore,
it takes several months before knowing that a patch has passed
review, and even more time before knowing that it is accepted
by Linus Torvalds. Hence, in the worst case, developers can
lose a lot of time working on and maintaining a patch that
will never make it. Even worse, they could find themselves
having to choose between different bugs to fix or features
to implement. The same problem applies to maintainers and
integrators, who are buried under a large load of incoming
patches and need to separate the wheat from the chaff. Thus,
RQ2 examines the characteristics of successful patches.

Approach: As we saw in RQ2 that Linux has a release every
2 or 3 months [1], i.e., roughly once every quarter, we build
decision trees for every 3 months of development. In order to
understand the characteristics of accepted patches, we build

TABLE II
SIGNIFICANT ATTRIBUTES FOR PATCH ACCEPTANCE.

Attribute Influence
msg_exp Smaller value leads to acceptance.

commit_exp Larger value leads to acceptance.
thr_part Larger value lead to acceptance.
nth_try Larger value leads to acceptance.

commit_sub Smaller value leads to acceptance.

decision tree models with the metrics in Table I as independent
variables and accepted as dependent variable. This results
into 32 decision tree models from 2005 to 2012.

For each model, we use 10-fold cross-validation to obtain
more accurate performance measures. The data basically is
split into 10 folds, and we use each fold once as test set
with the other folds as training set. This generates 10 trees for
each quarter. We use precision (how many patches classified
as “accepted” really were “accepted”?) and recall (of all
“accepted” patches, how many did we classify as “accepted”?)
to measure the performance of the decision trees. As baseline
to compare the performance to, we use a zeroR model, i.e., a
model that always predicts “accepted”. For example, if there
are 13% accepted patches, then a zeroR model would have a
prediction and recall of 13%.

Then, we analyze the most influential metrics in the models
using top node analysis, i.e., we look up the metrics that occur
in the conditions of the top 2 levels of each decision tree, since
they contain the most decisive information regarding patch
acceptance. To visualize the results of top node analysis across
all quarters, we use heat maps. These are plots with time as the
X axis and the metrics as the Y axis. For a particular quarter
and metric a cell is non-white if that metric was a top node in
at least one of the 10 trees of that quarter. The darker the cell
(light grey up to black), the more trees contained the metric
in their top 2 levels.

Findings: We are able to build high-performing models
with up to 73% precision and recall. The precision values
of our models range from 52% to 73% with an average of
66.28%, compared to 40.41% for the zeroR models (between
17% and 48%). Similarly, for recall we see that the recall
values of our models range from 63% to 73% with an average
of 68.47%, compared to 40.41% for the zeroR models.



Fig. 5. Top node analysis results for the patch acceptance models (RQ2).

Developer experience, patch maturity and prior subsys-
tem churn are the major factors impacting acceptance of
a patch. Figure 5 shows the top node analysis results of the
decision trees for patch acceptance, while Table II lists the 5
most impacting metrics overall with their interpretation.

The top two metrics (msg_exp and commit_exp) relate
to developer experience. Developers who have had a commit
being merged into Linus Torvalds’ repository before have a
higher chance of getting their patch accepted, presumably
since they have more experience with the creation and develop-
ment process of kernel patches, and maybe a higher standing in
the community. Surprisingly, having posted more emails (and
hence reviews) to mailing lists before has a negative impact on
acceptance. It is not clear why this is the case. We hypothesize
that those experts might be working on more complex features,
which are more risky and prone to rejection. However, more
work is needed to verify this hypothesis.

The third and fourth most important metrics are related
to patch maturity, i.e., the amount of reviewing discussion
preceding a patch submission (thr_part) and the number of
previous iterations of the patch in the same thread (nth_try).
Unsurprisingly, the more mature a patch, the higher the
probability of acceptance.

The fifth most important metric relates to the number of
previous commits to the changed subsystem, i.e., the subsys-
tem’s prior churn (commit_sub). According to the data, the
more popular a subsystem is in the Git commits, the lower the
probability that a new patch will make it. It is not clear what
exactly this implies. It might refer to the fact that subsystems
that see lots of change are harder to keep up with, causing
new patches to be outdated by the time they are proposed.
Alternatively, it could mean that there is a lot of duplicate
work going on, with multiple developers trying to compete for
the same features. More analysis is needed to fully understand
the impact of this observation.

Among all the above attributes, only the top 2 experience
attributes can be controlled by developers by participating
more actively in the kernel community. This helps them learn

more about kernel development, and to earn the trust of other
developers and maintainers. The other 3 attributes are hard to
manipulate for a developer.

The major metrics vary over time. We can see how
no metric is important in all 8 studied years. Instead, there
seem to be roughly three phases in Figure 5, i.e., 2005/2006,
2007/2008 and 2009–2012. Phases one and three especially
value metrics on patch maturity, patch characteristics, review
activity and experience, whereas phase two especially focuses
on review activity. We suspect the change in phase two at the
end of 2008 to coincide with the introduction in February 2008
of the linux-next integration repository. This repository was
introduced to test how a patch would merge with the current
version of the Linux kernel, in order to avoid that patches only
are merged six months later by Linus and fail at that time. As
such, linux-next aimed to increase acceptance rate and reduce
integration time through faster feedback.

Patch characteristics, time of submission and review
response time do not play a major role in patch acceptance.
Looking at the white areas in Figure 5, we can see that patch
characteristics like size, spread and whether a patch is sent in
one piece or has been split into smaller parts (patch set) only
played a role initially. This contradicts existing work [6], [4],
as well as the Linux Foundation’s guidelines [10]. The time in
a release quarter (rel_quarter) does not play a role either,
and neither does the quantity and responsiveness of reviews.

The most important metrics for patch acceptance are chang-
ing all the time. We find that the patches of experienced
developers, mature patches and patches in subsystems with
less prior churn are easier to be accepted.

RQ3: What kind of patch is accepted faster?

Motivation: Similar to the motivation for RQ2, we find
that some patches took much longer than others to arrive
to Linus Torvalds’ repository. For developers, maintainers
and integrators, it is important to understand which patch
properties determine reviewing and integration time. Hence,
we will analyze only patches that eventually were merged by
Linus Torvalds.

Approach: Similar to RQ2, we build decision tree models
for each quarter. This time the dependent variable is either the
discretized reviewing time or integration time. We again use
10-fold cross-validation for the reviewing time and integra-
tion time models, followed by top node analysis. Instead of
precision and recall for each of the 9 outcomes, we compute
the global accuracy, i.e., the percentage of correctly classified
patches (across the 9 outcomes) relative to all patches.

Findings: The reviewing and integration time models
obtain an accuracy of up to 70% and 76%, resp., and again
evolve over time. The accuracy values for the reviewing time
model fluctuate between 53% and 70% (mean of 59%), while
for the integration time they fluctuate between 62% and 76%
(mean of 68.4%). Although the models evolve over time, we
observe more noise in the top node heat maps (Figure 6 and
Figure 7) compared to the acceptance models. It is hard to spot



Fig. 6. Top node analysis results for reviewing time.

Fig. 7. Top node analysis results for integration time.

different phases, except for the reviewing time models, where
the experience-based metrics at the top stop being influential.
It is unclear why this is the case (linux-next only applies to
integration, not to reviewing).

For reviewing time, a variety of dimensions is influential.
Figure 6 and Table III show the following top 6 influential
dimensions: Prior subsystem churn, time, patch characteristics,
reviewers and experience. Contrary to the model in RQ2, most
of these attributes (except the prior subsystem churn) can
be directly influenced by a developer. Prior subsystem churn
plays a rather complicated role, changing its impact across
different quarters. Since bugs need to be fixed irrespective
of a subsystem, one cannot really tweak this attribute. On
the contrary, the week of the year in which one submits a
patch for review plays a significant role. This is tied to the
merge window of a release, i.e., the period in which the new
submissions are solicited. If timed properly, a submission of
a patch will arrive in time for a merge window, otherwise it
might be delayed at least an entire cycle until the next release
merge.

TABLE III
SIGNIFICANT ATTRIBUTES FOR REVIEWING TIME.

Attribute Influence
commit_sub Impact varies a lot across time, but in recent

years larger values lead to shorter time.
week Larger value leads to longer reviewing time.

chunks_out Larger value leads to longer reviewing time.
spread_subsys Larger value leads to longer reviewing time.
committer As the reviewing time increases, the number

of committers first increases, then decreases.
nr_ccs Larger value leads to longer reviewing time.

commit_exp Larger value leads to shorter reviewing time.

TABLE IV
SIGNIFICANT ATTRIBUTES FOR INTEGRATION TIME.

Attribute Influence
msg_exp Larger value leads to shorter integration time.

commit_exp Larger value leads to shorter integration time.
thr_first “true” value leads to shorter integration time.
nth_try In early years, having more iterations leads to shorter

integration time, but recently the opposite holds.
commit_sub Larger value leads to shorter integration time.

Various patch characteristics, such as the spread of a
patch and the number of chunks in it play an important role.
In fact chunks_out represents the number of chunks that
were not committed in the end, i.e., the chunks that were
ruled out during reviewing or integration. Deciding about
this indeed takes up quite some reviewing time. This brings
us to the reviewing dimension (committer and nr_ccs).
committer corresponds to the number of different peo-
ple committing (and hence probably involved in reviewing)
chunks of a patch, whereas nr_ccs refers to the number
of people suggested as reviewer by putting them into the
list of cc-ed email addresses. Hence, the choice of reviewers
indeed plays an important role in reviewing time [2]. Finally,
experience again plays a major role.

Surprisingly, some metrics that do not play a role are
whether a patch fixed a bug (we expected bugs to be expe-
dited), nor whether the patch had been posted to a specific
mailing list for a subsystem vs. the global LKML. This finding
contradicts the Linux Foundation guidelines [10].

For integration time, the same dimensions are influential
as for probability of acceptance. In Table IV, the only
difference is that a high msg_exp this time leads to shorter
integration, whereas it decreased the probability of acceptance
(RQ2). Furthermore, experience plays a much larger role for
integration than for reviewing. The fact that the models for
acceptance and integration value the same attributes suggests
that integration plays an essential role in patch acceptance,
maybe more than reviewing by itself.

Developers can reduce reviewing time by controlling the
submission time, the number of affected subsystems by the
patch, the number of reviewers CCed on the mailing list
submission, and by being more active in the community.
Gaining experience through active participation in the open
source community is also linked to shorter integration time.



V. THREATS TO VALIDITY

We now discuss the threats to validity of our study, follow-
ing common guidelines for empirical studies [19].

Construct validity threats concern the relation between
theory and observation. We use decision trees to find important
relations between a rich set of metrics and patch acceptance
(time). Since these models are not perfect (precision, recall and
accuracy below 100%) and are statistical in nature, they might
not correspond to actual relations or actions in the development
process. Although qualitative analyses are needed to validate
these models, we built many models across time and observed
various recurring phenomena, giving us confidence that the
models do provide major indications about the relations.
Furthermore, our selection of metrics is based on guidelines
provided by the Linux Foundation [10], enhanced with other
patch-related metrics.

Threats to internal validity concern our selection of subject
systems, tools, and analysis method. The automatic mapping
between email patches and Git commits contains many dif-
ferent steps that might introduce noise. First, the mailing
list archives typically contain incomplete information (such
as emails that are not clearly linked to a thread, which
even specialized tools cannot resolve perfectly [15]. Second,
the chunk-based linking approach cannot handle changes to
identifier names (contrary to Bird et al. [17]). Also, even
though the chunk-level is sufficiently coarse-grained, it is still
possible that similar changes are made to the same file in
a short timespan, for example on different clones in a file.
However, our linking approach obtained a high precision and
recall when evaluated on a sample of the data. Third, Git
does not retain information about the name of the repository
or branch where a commit originated, and it even allows
developers to change (clean up) the history of changes in order
to make later integration easier [20]. This might affect the
heuristics and other techniques used to calculate the integration
time of a commit.

Threats to external validity concern the possibility to gen-
eralize our results. Since we have only studied one large open
source system, we cannot generalize our findings to other
open and closed source projects, even in the same domain.
Furthermore, since Git is a flexible version control system that
can be used in various setups, we also need to take care when
extrapolating our findings to other projects using Git. Hence,
more case studies on other projects are needed.

VI. RELATED WORK

Our work is related to previous studies on reviewing pro-
cesses in open source projects, on software integration and on
prediction of bug fixing time.

Rigby et al. [6] studied reviewing practices in the Apache
open source system, and compared these to those of a com-
mercial system. Between January 1997 and October 2005, the
Apache mailing list contained 9,216 review email messages for
2,603 patches. They found that small, independent, complete
patches are most successful, whereas we found that size only
plays a role for reviewing time, whereas patch sets do not play

a major role. 50% of the patches are reviewed in less than 19
hours, whereas for Linux this takes 1–3 months. Finally, Rigby
et al. found that 44% of the submitted patches eventually were
accepted, compared to 33% in our study.

Weissgerber et al. [4] studied contributions in two small
open source systems (196 and 1,628 patches respectively,
changing 6% of all files in the systems), and also found that
around 40% of the contributions are accepted. Similar to Rigby
et al., they find that smaller patches have a higher probability
of being accepted. Most of the patches are accepted in the
repository within one week (61% even within three days).
Since they looked at CVS repositories, a commit automatically
corresponds to a chunk (one file change). These chunks were
mapped to mailing list patches by looking for the changed
lines in the files (irrespective of their order), whereas we
concatenated all changed lines and removed all whitespace
and capitalization to improve performance. One quarter of the
accepted patches took less than one day for reviewing and
integration, half were accepted within one week, and one third
took longer than two weeks. No relation between patch size
and the time towards acceptance could be found. Similarly,
we only found a link between patch size and reviewing time,
but not with integration time.

Baysal et al. [2] studied reviewing effort in the Mozilla
project. Contrary to the previous two studies and our study,
Mozilla uses a modern web-based system (Bugzilla) to manage
review requests, comments and their outcome. On average,
78% of the reviewed patches made it through reviewing, but
only around 60% of those (i.e., 47% in total) eventually
make it into the code repository, which is slightly higher
than the other studies. Similar to us, ore contributors have a
higher probability of getting their patches accepted in the code
repository, although experience does not impact the outcome
of the reviewing phase (it does impact the reviewing time in
our case). Similar to Linux, people can suggest reviewers and
this choice plays an important role to avoid having a patch
end up to be rejected. Mozilla patches that make it into the
code base took 4.5 days before the switch to rapid release,
and 2.7 now for core developers (slightly less time for casual
developers). For the Linux kernel, this can take up 3–6 months.

Our work differs from the work above in multiple ways.
First off, we studied the whole integration process, i.e., not just
reviewing. Furthermore, we studied the relation between more
than thirty metrics and patch acceptance (time) and how this
relation evolves over time. Finally, Linux has a much deeper
hierarchical structure of contributors and maintainers, whereas
projects like Apache and Mozilla are relatively flat. As a
consequence, the time to get through reviewing or merging
is much shorter than is the case for Linux, and the impact of
merging becomes more important.

Regarding software integration, various researchers have
studied the impact of branch structure (e.g., the hierarchical
structure of source code repositories in Linux) on software
quality. Bird et al. [7] proposed a what-if analysis that allows
to identify harmful, redundant branches in order to simplify
the branching structure. Such simplification can avoid merge



conflicts (incompatible changes in the two versions of the code
base), which inflate integration time. In their case study on a
large commercial system, such a simplification was able to
reduce integration time by up to 9 days. Shihab et al. [9]
found how a mismatch between the branching structure and a
company’s organizational structure can increase post-release
failure rate. This is why Linux kernel development uses a
distributed version control system.

Brun et al. [8] studied different kinds of merging conflicts,
and identified four major reasons why integration can be risky:
(1) The integrator did not develop the code herself, (2) the
patches to merge often contain too many changes in one big
lump, (3) merging typically happens a relatively long time
after the actual development, and (4) most of the serious
conflicts are due to semantical instead of textual issues. We
indeed found evidence for these four reasons in Linus.

Our models to explain the reviewing and integration time
are related to the work on bug fix time prediction, where, based
on a bug report, the time for fixing this bug report is predicted.
Guo et al. [21] built models to predict which Windows 7 bugs
would be fixed. The precision and recall of those models were
around 65%. They found that having more people following
the status of a bug improves the probability of the bug being
fixed. Similarly, having submitted bugs before that ended up
being fixed improves the chances of getting a bug fixed in
the future, i.e., experience plays an important role. We made
similar observations for our models of acceptance (time).

Giger et al. [22] found that post-submission data of bug re-
ports such as the number of comments or number of interested
people improves the accuracy of bug fix time prediction mod-
els. However, in our models, adding the number of reviewers
and the number of reviews did not make a significant change.
Finally, Zhang et al. [23] build a model to predict the time
between assignment of a bug report and the time when bug
fixing starts. This corresponds to the time between sending an
email talking about a new idea for a feature and sending an
email with the patch implementing the idea. However, since
related email threads are hard to link to each other, we were
not able to build models for this incubation time.

VII. CONCLUSION

Given the complexity of code integration, and its opaque
nature for most developers, we studied the characteristics
of patches that could explain patch acceptance and review-
ing/integration time. We performed a study on the Linux kernel
mailing lists and Git repository, and found that reviewing and
integration are two relatively independent processes. Devel-
oper experience, patch maturity and prior subsystem churn
play a major role in patch acceptance and integration time,
while submission time, the number of affected subsystems,
the number of contacted reviewers and developer experience
correlate the most with reviewing time. The one common thing
in the three kinds of models is developer experience, i.e., there
seems to be no substitute for active participation in an open
source project while learning the project’s ins and outs.

ACKNOWLEDGMENTS

We thank Amatul Mohosina for her initial work on this
topic, and Richard Ellis for kindly providing us access to the
Linux kernel mailing list mbox files.

REFERENCES

[1] J. Corbet, G. Kroah-Hartman, and A. McPherson, “Linux kernel
development: How fast it is going, who is doing it, what they
are doing, and who is sponsoring it,” http://go.linuxfoundation.org/
who-writes-linux-2012, April 2012.

[2] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The secret
life of patches: A firefox case study,” in Proc. of the 19th Working Conf.
on Reverse Engineering (WCRE), 2012, pp. 447–455.

[3] P. C. Rigby and D. M. German, “A preliminary examination of code
review processes in open source projects,” University of Victoria, Tech.
Rep. DCS-305-IR, January 2006.

[4] P. Weissgerber, D. Neu, and S. Diehl, “Small patches get in!” in Proc.
of the intl. working conf. on Mining Software Repositories (MSR), 2008,
pp. 67–76.

[5] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: the apache server,” in Proc. of the 22nd
Intl. Conf. on Software Engineering (ICSE), 2000, pp. 263–272.

[6] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in ICSE ’08:
Proc. of the 30th Int. Conf. on Soft. Eng., 2008, pp. 541–550.

[7] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in Proc. of the ACM SIGSOFT 20th intl. symp. on the
Foundations of Software Engineering (FSE), 2012, pp. 45:1–45:11.

[8] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of
collaboration conflicts,” in Proc. of Foundations of Software Engineering
(FSE), 2011, pp. 168–178.

[9] E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching
strategies on software quality,” in Proc. of the Intl. Symp. on Empirical
Software Engineering and Measurement (ESEM), 2012, pp. 301–310.

[10] J. Corbet, “How to participate in the linux community,” http://ldn.
linuxfoundation.org/book/how-participate-linux-community, July 2008.

[11] G. Kroah-Hartman, “Android and the linux kernel community,” http:
//www.kroah.com/log/linux/android-kernel-problems.html, Feb 2010.

[12] J. Andrews, “Linux: Cml2, esr & the lkml,” http://kerneltrap.org/node/
17, February 2002.

[13] A. Mills, “Why i quit: kernel developer con kolivas,” http://apcmag.com/
why i quit kernel developer con kolivas.htm, July 2007.

[14] R. Ellis, “http://www.spinics.net/lists/,” last accessed in January 2012.
[15] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on the

risks of using off-the-shelf techniques for processing mailing list data,”
in Proc. of the 25th IEEE Intl. Conf. on Software Maintenance (ICSM),
2009, pp. 539–542.

[16] L. Torvalds, “git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git,”
last accessed in January 2012.

[17] C. Bird, A. Gourley, and P. Devanbu, “Detecting patch submission and
acceptance in oss projects,” in Proc. of the 4th Int. Workshop on Mining
Software Repositories (MSR), 2007, p. 26.

[18] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,” in
Proc. of the 2012 Intl. Conf. on Soft. Eng. (ICSE), 2012, pp. 386–396.

[19] R. K. Yin, Case Study Research: Design and Methods - Third Edition,
3rd ed. SAGE Publications, 2002.

[20] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in Proc. of the 6th
Intl. Working Conf. on Mining Software Repositories (MSR), 2009, pp.
1–10.

[21] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Charac-
terizing and predicting which bugs get fixed: an empirical study of
microsoft windows,” in Proc. of the 32nd ACM/IEEE Intl. Conf. on
Software Engineering (ICSE) - Volume 1, 2010, pp. 495–504.

[22] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proc. of the 2nd intl. workshop on Recommendation Systems for
Software Engineering (RSSE), 2010, pp. 52–56.

[23] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study on
factors impacting bug fixing time,” in Proc. of the 19th Working Conf.
on Reverse Engineering (WCRE), 2012, pp. 225–234.

http://go.linuxfoundation.org/who-writes-linux-2012
http://go.linuxfoundation.org/who-writes-linux-2012
http://ldn.linuxfoundation.org/book/how-participate-linux-community
http://ldn.linuxfoundation.org/book/how-participate-linux-community
http://www.kroah.com/log/linux/android-kernel-problems.html
http://www.kroah.com/log/linux/android-kernel-problems.html
http://kerneltrap.org/node/17
http://kerneltrap.org/node/17
http://apcmag.com/why_i_quit_kernel_developer_con_kolivas.htm
http://apcmag.com/why_i_quit_kernel_developer_con_kolivas.htm
http://www.spinics.net/lists/

	Introduction
	Background
	Methodology
	Data Extraction
	Linking the Patches in Emails to Git Commits
	Measuring Patch Characteristics
	Data Analysis

	Case Study Result
	Threats to Validity
	Related Work
	Conclusion
	References

