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Tutorial GoalsTutorial Goals

• Learn about:
– Recent and notable research and researchers in mining 

SE data
– Data mining and data processing techniques and how to 

l th t SE d tapply them to SE data
– Risks in using SE data due to e.g., noise, project culture

• By end of tutorial, you should be able:
– Retrieve SE data 
– Prepare SE data for mining
– Mine interesting information from SE data
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Mining SE DataMining SE Data

• MAIN GOAL
– Transform static record-

keeping SE data to active
data

– Make SE data actionable 
by uncovering hiddenby uncovering hidden 
patterns and trends

MailingsBugzilla MailingsBugzilla

Code ExecutionCVS
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repository tracesCVS



Mining SE DataMining SE Data

• SE data can be used to:
– Gain empirically-based understanding of p y g

software development
– Predict plan and understand various aspectsPredict, plan, and understand various aspects 

of a project
Support future development and project– Support future development and project 
management activities
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Overview of Mining SE DataOverview of Mining SE Data

programming defect detection testing debugging maintenance

ft i i t k h l d b d t i i

…

software engineering tasks helped by data mining

classification association/
patterns clustering …

data mining techniques

code 
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change
history

program
states

structural
entities

bug
reports …
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bases history states entities
software engineering data
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Overview of Mining SE DataOverview of Mining SE Data
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bases history states entities
software engineering data

reports

Overview of Mining SE DataOverview of Mining SE Data
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Tutorial OutlineTutorial Outline

• Part I: What can you learn from SE data?
– A sample of notable recent findings for different p g

SE data types

• Part II: How can you mine SE data?
– Overview of data mining techniques 
– Overview of SE data processing tools andOverview of SE data processing tools and 

techniques
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Types of SE DataTypes of SE Data

• Historical data
– Version or source control: cvs, subversion, perforce 
– Bug systems: bugzilla, GNATS, JIRA
– Mailing lists: mbox

• Multi-run and multi-site data
– Execution traces
– Deployment logs

• Source code dataSource code data
– Source code repositories: sourceforge.net, google code
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Historical DataHistorical Data

“History is a guide to navigation inHistory is a guide to navigation in 
perilous times. History is who we are 
and why we are the way we are.” 

- David C McCullough- David C. McCullough
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Historical DataHistorical Data

• Track the evolution of a software project: 
– source control systems store changes to the code 
– defect tracking systems follow the resolution of defects
– archived project communications record rationale for 

decisions throughout the life of a project
• Used primarily for record-keeping activities: 

– checking the status of a bug
– retrieving old code
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Percentage of Project Costs 
Devoted to Maintenance
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Survey of Software Maintenance 
Activities

P f ti dd f ti lit• Perfective: add new functionality
• Corrective: fix faultsCorrective: fix faults
• Adaptive: new file formats, refactoring 

2 2

17 4

18.2

39 0

2.2

17.4
60.3

56.739.0

Lientz, Swanson, Tomhkins [1978]
Nosek, Palvia [1990]

Schach, Jin, Yu, Heller, Offutt [2003]
Mining ChangeLogs
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MIS Survey (Linux, GCC, RTP)

Source Control Repositoriesp



Source Control RepositoriesSource Control Repositories
A t l t• A source control system 
tracks changes to 
ChangeUnitsChangeUnits

• Example of ChangeUnits:
Fil ( t )– File (most common)

– Function
Dependency (e g Call)– Dependency (e.g., Call)

• Each ChangeUnit:
Records the developer– Records the developer, 
change time, change 
message, co-changing Units
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g g g

Change PropagationChange Propagation
N  R   B  Fi

Determine

New Req.,  Bug Fix “How does a change in one source code 
entity propagate to other entities?”

Determine
Initial Entity 
To Changeg

Change Determine
Oth  E titi

Consult
G  f  No MoreC a ge

Entity Other Entities
To Change

Guru for 
Advice

No More
Changes

For Each Entity

S t d E tit
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Suggested Entity

Measuring Change PropagationMeasuring Change Propagation

entitiespredicted
changed  whichentities predictedPrecision 

changedwhichentitiespredicted

entitiespredicted

entities changed
changed whichentities predictedRecall 

• We want:
High Precision to avoid wasting time– High Precision to avoid wasting time

– High Recall to avoid bugs
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Guiding Change PropagationGuiding Change Propagation

• Mine association rules from change history
• Use rules to help propagate changes:Use rules to help propagate changes:

– Recall as high as 44%
P i i d 30%– Precision around 30%

• High precision and recall reached in < 1mthg p
• Prediction accuracy improves prior to a 

release (i e during maintenance phase)release (i.e., during maintenance phase)
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[Zimmermann et al. 05]

Code Sticky NotesCode Sticky Notes

• Traditional dependency graphs and program 
understanding models usually do not use g y
historical information

• Static dependencies capture only a static• Static dependencies capture only a static 
view of a system – not enough detail!

• Development history can help understand 
the current structure (architecture) of athe current structure (architecture) of a 
software system
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[Hassan & Holt 04]

Conceptual & Concrete Architecture
(NetBSD)

Conceptual (proposed) Concrete (reality)

Why? Who?
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Why? Who?
When? 
Where?



Investigating Unexpected Dependencies 
Using Historical Code Changes

• Eight unexpected dependencies
• All except two dependencies existed since day one:

– Virtual Address Maintenance  Pager

– Pager  Hardware Translations

Which? vm_map_entry_create (in src/sys/vm/Attic/vm_map.c) 
depends on  pager_map (in /src/sys/uvm/uvm_pager.c) 

Who? cgd 

When? 1993/04/09 15:54:59 
Revision 1.2 of src/sys/vm/Attic/vm_map.c 
from sean eric fagan:  
it t k th t f d dl ki th

Why?  

it seems to keep the vm system from deadlocking the 
system when it runs out of swap + physical memory. 
prevents the system from giving the last page(s) to 
anything but the referenced "processes" (especially 
important is the pager process which should never
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important is the pager process, which should never 
have to wait for a free page). 

 

Studying Conway’s LawStudying Conway s Law

• Conway’s Law:
“The structure of a software system is a direct y

reflection of the structure of the development 
team”
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[Bowman et al. 99]

Linux: Conceptual, Ownership, 
Concrete

Conceptual 
Architecture

Ownership
Architecture

Concrete
Architecture
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Source Control and Bug Repositoriesg p

Predicting BugsPredicting Bugs
St di h h th t t l it t i• Studies have shown that most complexity metrics 
correlate well with LOC!
– Graves et al 2000 on commercial systemsGraves et al. 2000 on commercial systems
– Herraiz et al. 2007 on open source systems

• Noteworthy findings:y g
– Previous bugs are good predictors of future bugs
– The more a file changes, the more likely it will have 

bugs in itbugs in it
– Recent changes affect more the bug potential of a file 

over older changes (weighted time damp models)g ( g p )
– Number of developers is of little help in predicting bugs
– Hard to generalize bug predictors across projects 

unless in similar domains [N B ll t l 2006]
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unless in similar domains [Nagappan, Ball et al. 2006]

Using Imports in Eclipse to Predict 
Bugs

71% of files that import 71% of files that import compilercompiler packages, packages, 
had to be fixed later on.had to be fixed later on.

import org.eclipse.jdt.internal.compiler.lookup.*;
import org eclipse jdt internal compiler *;import org.eclipse.jdt.internal.compiler. ;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all files that import 14% of all files that import uiui packages, packages, 
had to be fixed later on.had to be fixed later on.

A. E. Hassan and T. Xie: Mining Software Engineering Data 30

[Schröter et al. 06]



Don’t program on Fridays ;-)Don t program on Fridays ;-)

P t f b i t d i h f li
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Percentage of bug-introducing changes for eclipse
[Zimmermann et al. 05]

Classifying Changes as Buggy or 
Clean
• Given a change can we warn a developer 

that there is a bug in it?g
– Recall/Precision in 50-60% range
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[Sung et al. 06]

Project Communication – Mailing listsj g

Project Communication (Mailinglists)Project Communication (Mailinglists)

• Most open source projects communicate 
through mailing lists or IRC channelsg g

• Rich source of information about the inner 
workings of large projectsworkings of large projects

• Discussions cover topics such as future 
plans, design decisions, project policies, 
code or patch reviewscode or patch reviews

• Social network analysis could be performed 
di i th d
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on discussion threads

Social Network AnalysisSocial Network Analysis
M ili li t ti it• Mailing list activity:
– strongly correlates with code 

change activitychange activity
– moderately correlates with 

document change activityg y
• Social network measures (in-

degree, out-degree, g , g ,
betweenness) indicate that 
committers play a more 
significant role in the mailing 
list community than non-
committers
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committers [Bird et al. 06]

Immigration Rate of DevelopersImmigration Rate of Developers

• When will a developer be invited to join a 
project? p j
– Expertise vs. interest
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[Bird et al. 07]



The Patch Review ProcessThe Patch Review Process

• Two review styles
– RTC: Review-then-commit
– CTR: Commit-then-review

80% t h i d• 80% patches reviewed 
within 3.5 days and 50% 
reviewed in <19 hrs
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[Rigby et al. 06]

Measure a team’s morale around 
release time?

• Study the content of messages before and after a release
U di i f h t i t t l i t l• Use dimensions from a psychometric text analysis tool:
– After Apache 1.3 release there was a drop in optimism
– After Apache 2.0 release there was an increase in sociability
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After Apache 2.0 release there was an increase in sociability
[Rigby & Hassan 07]

Program Source CodeProgram Source Code

Code EntitiesCode Entities

Source data Mined info

Variable names and function names Software categories Variable names and function names g
[Kawaguchi et al. 04]

Statement seq in a basic block Copy-paste code 
[Li et al. 04]

Set of functions, variables, and data 
t ithi C f ti

Programming rules
[Li&Zh 05]types within a C function [Li&Zhou 05]

Sequence of methods within a Java 
th d

API usages 
[Xie&Pei 05]method [Xie&Pei 05] 

API method signatures API Jungloids 
[Mandelin et al 05]
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[Mandelin et al. 05]

Mining API Usage PatternsMining API Usage Patterns
H h ld API b d tl ?• How should an API be used correctly?
– An API may serve multiple functionalities
– Different styles of API usage– Different styles of API usage

• “I know what type of object I need, but I don’t know 
how to write the code to get the object” [Mandelin g j [
et al. 05]
– Can we synthesize jungloid code fragments 

automatically?automatically?
– Given a simple query describing the desired code in 

terms of input and output types, return a code segment
• “I know what method call I need, but I don’t know 

how to write code before and after this method 
call” [Xie&Pei 06]
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call” [Xie&Pei 06]

Relationships btw Code EntitiesRelationships btw Code Entities

• Mine framework reuse patterns [Michail 00] 
– Membership relationshipsp p

• A class contains membership functions
– Reuse relationships– Reuse relationships

• Class inheritance/ instantiation
• Function invocations/overriding• Function invocations/overriding

• Mine software plagiarism [Liu et al. 06] 
– Program dependence graphs
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[Michail 99/00] http://codeweb.sourceforge.net/ for C++



Program Execution TracesProgram Execution Traces

Method-Entry/Exit StatesMethod-Entry/Exit States
G l i ifi ti ( / t diti )• Goal: mine specifications (pre/post conditions) or 
object behavior (object transition diagrams)

• State of an object
– Values of transitively reachable fields

• Method-entry state
– Receiver-object state, method argument valuesj , g

• Method-exit state
– Receiver-object state updated method argumentReceiver object state, updated method argument 

values, method return value
[Ernst et al 02] http://pag csail mit edu/daikon/
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[Ernst et al. 02] http://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] http://www.st.cs.uni-sb.de/models/

Other Profiled Program StatesOther Profiled Program States

• Goal: detect or locate bugs
• Values of variables at certain code locationsValues of variables at certain code locations 

[Hangal&Lam 02]
– Object/static field read/write– Object/static field read/write
– Method-call arguments
– Method returns 

• Sampled predicates on values of variablesp p
[Liblit et al. 03/05][Liu et al. 05]

[Hangal&Lam 02] http://diduce.sourceforge.net/
[Liblit et al 03/05] http://www cs wisc edu/cbi/
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[Liblit et al. 03/05] http://www.cs.wisc.edu/cbi/
[Liu et al. 05] http://www.ews.uiuc.edu/~chaoliu/sober.htm

Executed Structural EntitiesExecuted Structural Entities

• Goal: locate bugs
• Executed branches/paths def-use pairsExecuted branches/paths, def use pairs
• Executed function/method calls

– Group methods invoked on the same object
• Profiling optionsProfiling options

– Execution hit vs. count
E ti d ( )– Execution order (sequences)

[Dallmeier et al 05] http://www st cs uni-sb de/ample/
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[Dallmeier et al. 05] http://www.st.cs.uni sb.de/ample/
More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

Q&A and breakQ&A and break

Part I ReviewPart I Review

• We presented notable results based on 
mining SE data such as:g
– Historical data:

• Source control: predict co-changes• Source control: predict co-changes
• Bug databases: predict bug likelihood
• Mailing lists: gauge team morale around release time• Mailing lists: gauge team morale around release time

– Other data: 
P d i API tt• Program source code: mine API usage patterns

• Program execution traces: mine specs, detect or 
locate bugs
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locate bugs



Data Mining Techniques in SEg q

Part II: How can you mine SE data?
Overview of data mining techniques–Overview of data mining techniques 

–Overview of SE data processing tools and 
t h itechniques

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.
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Frequent ItemsetsFrequent Itemsets

• Itemset: a set of items
– E.g., acm={a, c, m} Transaction database TDB

• Support of itemsets
– Sup(acm)=3

TID Items bought
100 f d I

p( )
• Given min_sup = 3, acm

is a frequent pattern

100 f, a, c, d, g, I, m, p
200 a, b, c, f, l, m, ois a frequent pattern

• Frequent pattern mining: 
find all frequent patterns

300 b, f, h, j, o
400 b, c, k, s, p

find all frequent patterns 
in a database 500 a, f, c, e, l, p, m, n
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Association RulesAssociation Rules

• (Time{Fri, Sat})  buy(X, diaper)  buy(X, 
beer))
– Dads taking care of babies in weekends drink 

beerbeer
• Itemsets should be frequent

– It can be applied extensively
• Rules should be confidentRules should be confident

– With strong prediction capability
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A Simple CaseA Simple Case

Fi di hi hl l t d th d ll i• Finding highly correlated method call pairs
• Confidence of pairs helpsp p

– Conf(<a,b>)=support(<a,b>)/support(<a,a>)
• Check the revisions (fixes to bugs) find the• Check the revisions (fixes to bugs), find the 

pairs of method calls whose confidences 
have improved dramatically by frequenthave improved dramatically by frequent 
added fixes

Th th t hi th d ll i th t– Those are the matching method call pairs that 
may often be violated by programmers
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[Livshits&Zimmermann 05]

Conflicting PatternsConflicting Patterns

• 999 out of 1000 times spin_lock is 
followed by spin unlocky p _
– The single time that spin_unlock does not 

follow may likely be an errorfollow may likely be an error
• We can detect an error without knowing the 

t lcorrectness rules

[Li&Zh 05 Li hit &Zi 05 Y t l 06]
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[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]



Detect Copy-Paste CodeDetect Copy-Paste Code

• Apply closed sequential pattern mining techniques 
• Customizing the techniquesg q

– A copy-paste segment typically does not have big gaps 
– use a maximum gap threshold to control

– Output the instances of patterns (i.e., the copy-pasted 
code segments) instead of the patterns

– Use small copy-pasted segments to form larger ones
– Prune false positives: tiny segments, unmappable 

segments, overlapping segments, and segments with 
large gaps

[Li t l 04]
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[Li et al. 04]

Find Bugs in Copy-Pasted SegmentsFind Bugs in Copy-Pasted Segments

• For two copy-pasted segments, are the 
modifications consistent?
– Identifier a in segment S1 is changed to b in 

segment S2 3 times but remains unchangedsegment S2 3 times, but remains unchanged 
once – likely a bug
The heuristic may not be correct all the time– The heuristic may not be correct all the time

• The lower the unchanged rate of an 
identifier, the more likely there is a bug 

[Li t l 04]
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[Li et al. 04]

Mining Rules in TracesMining Rules in Traces

• Mine association rules or sequential• Mine association rules or sequential 
patterns S  F, where S is a statement and 

f fF is the status of program failure
• The higher the confidence, the more likely SThe higher the confidence, the more likely S 

is faulty or related to a fault
U i l t t t t th l ft id f• Using only one statement at the left side of 
the rule can be misleading, since a fault may 
be led by a combination of statements
– Frequent patterns can be used to improve
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Frequent patterns can be used to improve
[Denmat et al. 05]

Mining Emerging Patterns in TracesMining Emerging Patterns in Traces

• A method executed only in failing runs is 
likely to point to the defecty p
– Comparing the coverage of passing and failing 

program runs helpsprogram runs helps
• Mining patterns frequent in failing program 

b t i f t i iruns but infrequent in passing program runs
– Sequential patterns may be used
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[Dallmeier et al. 05, Denmat et al. 05]

Types of Frequent Pattern MiningTypes of Frequent Pattern Mining

• Association rules
– open  close

• Frequent itemset mining
– {open, close}{ p , }

• Frequent subsequence mining
– open closeopen  close

• Frequent partial order mining
Frequent graph mining

open

Frequent graph mining
Finite automaton mining read write
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close

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.
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Classification: A 2-step ProcessClassification: A 2-step Process 

• Model construction: describe a set of 
predetermined classes
– Training dataset: tuples for model construction

• Each tuple/sample belongs to a predefined class

– Classification rules, decision trees, or math formulae
• Model application: classify unseen objects

– Estimate accuracy of the model using an independent 
test set

– Acceptable accuracy  apply the model to classify 
tuples with unknown class labels
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Model ConstructionModel Construction
Classification

Training
D t

Classification
Algorithms

Data

Classifier
(Model)

Name Rank Years Tenured
Mike Ass. Prof 3 No
Mary Ass. Prof 7 Yes
Bill Prof 2 Yes

IF rank = ‘professor’
OR years > 6
THEN d ‘ ’

Jim Asso. Prof 7 Yes
Dave Ass. Prof 6 No
A A P f 3 N
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THEN tenured = ‘yes’ Anne Asso. Prof 3 No

Model ApplicationModel Application

Classifier

Testing
U D t

g
Data Unseen Data

(J ff P f 4)(Jeff, Professor, 4)

Tenured?
Name Rank Years Tenured
Tom Ass Prof 2 No Tenured?Tom Ass. Prof 2 No

Merlisa Asso. Prof 7 No
George Prof 5 Yes
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Joseph Ass. Prof 7 Yes

Supervised vs. Unsupervised 
Learning
• Supervised learning (classification)

– Supervision: objects in the training data set p j g
have labels

– New data is classified based on the training setNew data is classified based on the training set
• Unsupervised learning (clustering)

– The class labels of training data are unknown
– Given a set of measurements, observations, , ,

etc. with the aim of establishing the existence of 
classes or clusters in the data
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GUI-Application StabilizerGUI-Application Stabilizer

• Given a program state S and an event e, predict 
whether e likely results in a bug
– Positive samples: past bugs
– Negative samples: “not bug” reports

• A k-NN based approach
– Consider the k closest cases reported beforep
– Compare Σ 1/d for bug cases and not-bug cases, where 

d is the similarity between the current state and the 
reported states

– If the current state is more similar to bugs, predict a bug
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[Michail&Xie 05]

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.
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What is Clustering?What is Clustering?

• Group data into clusters
– Similar to one another within the same cluster
– Dissimilar to the objects in other clusters

Unsupervised learning: no predefined classes– Unsupervised learning: no predefined classes

Outliers
Cluster 1

Outliers

Cluster 2
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Clustering and CategorizationClustering and Categorization

• Software categorization
– Partitioning software systems into categoriesg y g

• Categories predefined – a classification 
problemproblem

• Categories discovered automatically – a g y
clustering problem
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Software Categorization - MUDABlueSoftware Categorization MUDABlue

U d t di d• Understanding source code
– Use Latent Semantic Analysis (LSA) to find similarity 

between software systemsbetween software systems
– Use identifiers (e.g., variable names, function names) 

as features
• “gtk_window” represents some window
• The source code near “gtk_window” contains some GUI 

operation on the windowoperation on the window

• Extracting categories using frequent identifiers
– “gtk window” “gtk main” and “gpointer” GTK– gtk_window , gtk_main , and gpointer   GTK 

related software system
– Use LSA to find relationships between identifiers
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p
[Kawaguchi et al. 04]

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.
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Other Mining TechniquesOther Mining Techniques 

• Automaton/grammar/regular expression 
learningg

• Searching/matching
C t l i• Concept analysis

• Template-based analysisTemplate based analysis
• Abstraction-based analysis

http://sites.google.com/site/asergrp/dmse/miningalgs
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http://sites.google.com/site/asergrp/dmse/miningalgs

How to Do Research in 
Mi i SE D tMining SE Data



How to do research in mining SE 
d tdata

W di d lt d i d f• We discussed results derived from:
– Historical data:

S t l• Source control
• Bug databases
• Mailing listsg

– Program data: 
• Program source code

P ti t• Program execution traces

• We discussed several mining techniques
W di h t• We now discuss how to:
– Get access to a particular type of SE data

P th SE d t f f th i i d l i
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– Process the SE data for further mining and analysis

Source Control Repositoriesp

Concurrent Versions System (CVS) 
Comments
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[Chen et al. 01] http://cvssearch.sourceforge.net/

CVS CommentsCVS Comments

di l

RCS files:/repository/file.h,v
Working file: file.h
head: 1.5
...• cvs log – displays 

for all revisions and 
description:
----------------------------
Revision 1.5
Date: ...

its comments for each 
file

cvs comment ...
----------------------------
...

• cvs diff – shows 
differences between

…
RCS file: /repository/file.h,v
…
9c9 10differences between 

different versions of a 
file

9c9,10
< old line
---
> new line
> another new linefile

• Used for program 
understanding

> another new line
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understanding [Chen et al. 01] http://cvssearch.sourceforge.net/

Code Version HistoriesCode Version Histories
• CVS provides file versioning• CVS provides file versioning

– Group individual per-file changes into individual 
transactions: checked in by the same author with thetransactions: checked in by the same author with the 
same check-in comment within a short time window

• CVS manages only files and line numbers• CVS manages only files and line numbers
– Associate syntactic entities with line ranges

Filter o t long transactions not corresponding to• Filter out long transactions not corresponding to 
meaningful atomic changes

E f t d b fi b h d i– E.g., features and bug fixes vs. branch and merging
• Used to mine co-changed entities

[Hassan& Holt 04 Ying et al 04]
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[Hassan& Holt 04, Ying et al. 04]
[Zimmermann et al. 04] http://www.st.cs.uni-sb.de/softevo/erose/

Getting Access to Source ControlGetting Access to Source Control
Th t l l d• These tools are commonly used
– Email: ask for a local copy to avoid taxing the project's 

servers during your analysis and developmentservers during your analysis and development
– CVSup: mirrors a repository if supported by the 

particular projectp p j
– rsync: a protocol used to mirror data repositories
– CVSsuck: 

• Uses the CVS protocol itself to mirror a CVS repository
• The CVS protocol is not designed for mirroring; therefore, 

CVSsuck is not efficientCVSsuck is not efficient 
• Use as a last resort to acquire a repository due to its inefficiency
• Used primarily for dead projects
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Recovering Information from CVSRecovering Information from CVS

St+1StS1S0 ..

Traditional Extractor

F0 F1 Ft+1Ft..

Compare Snapshot Facts

Evolutionary Change Data
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Challenges in recovering information 
from CVS

main() {
int a;
/* ll

helpInfo() {
errorString!

}

helpInfo(){
int b;
}/*call

help*/
helpInfo();

}
main() {

int a;

}
main() {

int a;helpInfo();
}

int a;
/*call
help*/

int a;
/*call
help*/p

helpInfo();
}

p
helpInfo();

}

V1:
Undefined func.

V2:
Syntax error

V3:
Valid code
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(Link Error)
y

CVS LimitationsCVS Limitations

• CVS has limited query functionality and is 
slow

• CVS does not track co-changes
CVS t k l h t th fil l l• CVS tracks only changes at the file level

A. E. Hassan and T. Xie: Mining Software Engineering Data 81

Inferring Transactions in CVSInferring Transactions in CVS

• Sliding Window:
– Time window: [3-5mins on average][ g ]

• min 3mins 
• as high as 21 mins for mergesas high as 21 mins for merges 

• Commit Mails
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Noise in CVS TransactionsNoise in CVS Transactions

• Drop all transactions above a large 
threshold

F B h ith l k t CVS• For Branch merges either look at CVS 
comments or use heuristic algorithm 
proposed by Fischer et al. 2003
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A Note about large commitsA Note about large commits
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Noise in detecting developersNoise in detecting developers
F d l i it i il• Few developers are given commit privileges 

• Actual developer is usually mentioned in the 
hchange message

• One must study project commit policies before 
hi l ireaching any conclusions
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Source Control and Bug Repositoriesg p

BugzillaBugzilla

bill@firefox.org

A. E. Hassan and T. Xie: Mining Software Engineering Data 87Adapted from Anvik et al.’s slides

Sample Bugzilla Bug ReportSa p e ug a ug epo t
• Bug report imageg p g
• Overlay the triage questions

Assigned To: ?

Duplicate?

Reproducible?
Bugzilla: open source bug tracking tool

http://www.bugzilla.org/
[Anvik et al. 06]
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[Anvik et al. 06] 
http://www.cs.ubc.ca/labs/spl/projects/bugTriage.html

Adapted from Anvik et al.’s slides

Acquiring Bugzilla dataAcquiring Bugzilla data

• Download bug reports using the XML export 
feature (in chunks of 100 reports)( p )

• Download attachments (one request per 
attachment)attachment)

• Download activities for each bug report (one 
request per bug report)
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Using Bugzilla DataUsing Bugzilla Data

• Depending on the analysis, you might need to 
rollback the fields of each bug report using the 
stored changes and activities 

• Linking changes to bug reports is more or less g g g
straightforward: 
– Any number in a log message could refer to a bug y g g g

report
– Usually good to ignore numbers less than 1000. Some 

issue tracking systems (such as JIRA) have identifiers 
that are easy to recognize (e.g., JIRA-4223)
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So far: Focus on fixesSo far: Focus on fixes

fi i ti d i b 45635 [h i ] ll
teicher      2003-10-29 16:11:01
fixes issues mentioned in bug 45635: [hovering] rollover 
hovers
- mouse exit detection is safer and should not allow for 
loopholes any more, except for shell deactiviation

- hovers behave like normal ones:
- tooltips pop up below the controltooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

Fixes give only the Fixes give only the locationlocation of a defect,of a defect,
not when it was introducednot when it was introduced
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not when it was introduced.not when it was introduced.
[Sliwerski et al. 05 –

Slides by Zimmermann]

B i t d i hBug-introducing changes

FIXBUG INTRODUCING

...
if (foo!=null) {

FIX

if (foo!=null) {
...
if (foo==null) {

BUG-INTRODUCING

if (foo==null) { later fixed if (foo!=null) {
foo.bar();

...

if (foo!=null) {if (foo==null) {
foo.bar();

...

if (foo==null) { later fixed

BugBug--introducing changes are changes thatintroducing changes are changes thatBugBug introducing changes are changes that introducing changes are changes that 
lead to problems as indicated by later fixes.lead to problems as indicated by later fixes.
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Life-cycle of a “bug”Life-cycle of a bug

fixes issues mentioned in bug 45635: [hovering] rollover hovers
- mouse exit detection is safer and should not allow for 

loopholes any more except for shell deactiviation

BUG REPORT

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

FIX
CHANGE

BUG-INTRODUCING
CHANGE
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The SZZ algorithmThe SZZ algorithm

$ cvs annotate -r 1.17 Foo.java$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03):     return i/0;
...

40: 1.14 (kate 23-May-03):     return 42;
...

60: 1 16 (mary 10 Jun 03): int i=0;60: 1.16 (mary 10-Jun-03):     int i=0;

1.11.1
88

FIXED BUG
42233
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The SZZ algorithmThe SZZ algorithm

$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03):     return i/0;
...

40: 1.14 (kate 23-May-03):     return 42;
...

60: 1 16 (mary 10 Jun 03): int i=0;60: 1.16 (mary 10-Jun-03):     int i=0;

1.11.1
44

1.11.1
661.111.111.111.11 1.11.1

4      4      
1.11.1
6 6 

1.11.1
88

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO
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The SZZ algorithmThe SZZ algorithm

closedsubmitted

fixes issues mentioned in bug 45635: [hovering] rollover 
hovers
- mouse exit detection is safer and should not allow for 

BUG REPORT

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

1.11.1
44

1.11.1
66

1.11.1
44

1.11.1
66

1.11.1
881.111.11 1.11.1

44
1.11.1
66

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO

BUG
INTRO

BUG
INTRO

REMOVE 
FALSE POSITIVES
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FALSE POSITIVES



Project Communication – Mailing listsj g

Acquiring Mailing listsAcquiring Mailing lists

• Usually archived and available from the 
project’s webpagep j p g

• Stored in mbox format:
Th b fil f t ti ll li t– The mbox file format sequentially lists every 
message of a mail folder
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Challenges using Mailing lists data IChallenges using Mailing lists data I

• Unstructured nature of email makes 
extracting information difficultg
– Written English

Multiple email addresses• Multiple email addresses
– Must resolve emails to individuals

• Broken discussion threads
Many email clients do not include “In-Reply-To”– Many email clients do not include In-Reply-To  
field
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Challenges using Mailing lists data IIChallenges using Mailing lists data II

• Country information is not accurate
– Many sites are hosted in the US: y

• Yahoo.com.ar is hosted in the US

• Tools to process mailbox files rarely scale to• Tools to process mailbox files rarely scale to 
handle such large amount of data (years of 

ili li t i f ti )mailing list information)
– Will need to write your owny
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Program Source CodeProgram Source Code

Acquiring Source CodeAcquiring Source Code

• Ahead-of-time download directly from code 
repositories (e.g., Sourceforge.net)
– Advantage: offline perform slow data processing and 

mining
– Some tools (Prospector and Strathcona) focus on 

framework API code such as Eclipse framework APIs
O• On-demand search through code search engines:
– E.g., http://www.google.com/codesearch
– Advantage: not limited on a small number of downloaded 

code repositories
P t htt // b l b k l d / t
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Prospector: http://snobol.cs.berkeley.edu/prospector
Strathcona: http://lsmr.cs.ucalgary.ca/projects/heuristic/strathcona/



Processing Source CodeProcessing Source Code
U f i t ti l i / il t l• Use one of various static analysis/compiler tools 
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)
B t ti d l d d d t b• But sometimes downloaded code may not be 
compliable 

E E li JDT htt // li /jdt/ f AST– E.g., use Eclipse JDT http://www.eclipse.org/jdt/ for AST 
traversal

– E g use exuberant ctags http://ctags sourceforge net/ forE.g., use exuberant ctags http://ctags.sourceforge.net/ for 
high-level tagging of code

• May use simple heuristics/analysis to deal with y p y
some language features [Xie&Pei 06, Mandelin et al. 05]
– Conditional, loops, inter-procedural, downcast, etc.
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Program Execution TracesProgram Execution Traces

Acquiring Execution TracesAcquiring Execution Traces

• Code instrumentation or VM instrumentation
– Java: ASM, BCEL, SERP, Soot, Java Debug Interface
– C/C++/Binary: Valgrind, Fjalar, Dyninst

• See Mike Ernst’s ASE 05 tutorial on “Learning from 
executions: Dynamic analysis for softwareexecutions: Dynamic analysis for software 
engineering and program understanding”

http://pag csail mit edu/~mernst/pubs/dynamic-tutorial-http://pag.csail.mit.edu/ mernst/pubs/dynamic tutorial
ase2005-abstract.html
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More related tools: http://ase.csc.ncsu.edu/tools/

Processing Execution TracesProcessing Execution Traces

• Processing types: online (as data is 
encountered) vs. offline (write data to file)) ( )

• May need to group relevant traces together
b d i bj t f– e.g., based on receiver-object references

– e.g., based on corresponding method entry/exit

• Debugging traces: view large log/trace files• Debugging traces: view large log/trace files 
with V-file editor: http://www.fileviewer.com/
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Tools and Repositoriesp

Repositories Available OnlineRepositories Available Online
• Promise repository:• Promise repository: 

– http://promisedata.org/
• Eclipse bug data: p g

– http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
• iBug

– http://www st cs uni-sb de/ibugs/http://www.st.cs.uni sb.de/ibugs/
• MSR Challenge (data for Mozilla & Eclipse):

– http://msr.uwaterloo.ca/msr2007/challenge/
htt // t l / 2008/ h ll /– http://msr.uwaterloo.ca/msr2008/challenge/

• FLOSSmole:
– http://ossmole.sourceforge.net/p g

• Software-artifact infrastructure repository:
– http://sir.unl.edu/portal/index.html
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Eclipse Bug Datap g

• Defect counts are listed 
as counts at the plug-in, 
package and compilation 
unit levels. 

• The value field 
contains the actual 
number of pre ("pre")number of pre- ( pre ) 
and post-release defects 
("post"). 
• The average ("avg") 
and maximum ("max") 
values refer to the 
d f t f d i thdefects found in the 
compilation units 
("compilationunits"). 
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[Schröter et al. 06] http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

Metrics in the Eclipse Bug DataMetrics in the Eclipse Bug Data
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Abstract Syntax Tree Nodes in 
Eclipse Bug Data
• The AST node 

information can be 
used to calculate 
various metricsvarious metrics
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FLOSSmoleFLOSSmole
FLOSS l• FLOSSmole
– provides raw data about open source projects 
– provides summary reports about open source projects– provides summary reports about open source projects 
– integrates donated data from other research teams 
– provides tools so you can gather your own datap y g y

• Data sources
– Sourceforge
– Freshmeat
– Rubyforge

ObjectWeb– ObjectWeb
– Free Software Foundation (FSF)
– SourceKibitzer
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SourceKibitzer 
http://flossmole.org/

Example Graphs from FlossMoleExample Graphs from FlossMole
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Analysis ToolsAnalysis Tools
R• R
– http://www.r-project.org/
– R is a free software environment for statistical computing and graphicsp g g p

• Aisee
– http://www.aisee.com/
– Aisee is a graph layout software for very large graphs

• WEKA
– http://www cs waikato ac nz/ml/weka/– http://www.cs.waikato.ac.nz/ml/weka/
– WEKA contains a collection of machine learning algorithms for data 

mining tasks
R idMi (YALE)• RapidMiner (YALE)
– http://rapidminer.com/

• More tools: http://ase csc ncsu edu/site/asergrp/dmse/resources
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• More tools: http://ase.csc.ncsu.edu/site/asergrp/dmse/resources



Data Extraction/Processing ToolsData Extraction/Processing Tools

K• Kenyon
– http://dforge.cse.ucsc.edu/projects/kenyon/

• Myln/Mylar (comes with API for Bugzilla 
and JIRA)and JIRA)
– http://www.eclipse.org/myln/

• Libresoft toolset• Libresoft toolset
– Tools (cvsanaly/mlstats/detras) for recovering 

data from cvs/svn and mailinglistsdata from cvs/svn and mailinglists
– http://forge.morfeo-project.org/projects/libresoft-

tools/
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tools/

KenyonKenyon

Extract
Automated
configuration
extraction

Save 
Persist gathered 
metrics & facts

Analyze
Query DB, 
add new 
facts

Compute
Fact extraction
(metrics, static 
analysis)

Source 
Control

extraction

Kenyon 
Repository 

facts

Analysis 
Software

analysis)

Control 
Repository

Filesystem

(RDBMS/
Hibernate)
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[Adapted from Bevan et al. 05]

Publishing AdvicePublishing Advice

• Report the statistical significance of your results:
– Get a statistics book (one for social scientist, not for 

mathematicians) 
• Discuss any limitations of your findings based on 

the characteristics of the studied repositories:
– Make sure you manually examine the repositories. Do 

not fully automate the process!
– Use random sampling to resolve issues about data noise

• Relevant conferences/workshops: 
– main SE conferences, ICSM, ISSTA, MSR, WODA, …
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Mining Software RepositoriesMining Software Repositories
V ti h i SE• Very active research area in SE:
– MSR is the most attended ICSE event in last 7 yrs

• http://msrconf org• http://msrconf.org
– Special Issue of IEEE TSE 2005 on MSR:

• 15 % of all submissions of TSE in 2004
• Fastest review cycle in TSE history: 8 months

– Special Issue Empirical Software Engineering 2009
– MSR 2011!
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Q&AQ&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/
•What software engineering tasks can be helped by data mining?
•What kinds of software engineering data can be mined?
•How are data mining techniques used in software engineering?•How are data mining techniques used in software engineering?
•Resources

Example ToolsExample Tools

• MAPO: mining API usages from open source 
repositories [Xie&Pei 06]repositories [Xie&Pei 06]

• DynaMine: mining error/usage patterns from 
d i i hi t icode revision histories [Livshits&Zimmermann 05]

• BugTriage: learning bug assignments from g g g g g
historical bug reports [Anvik et al. 06]
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Demand-Driven Or NotDemand-Driven Or Not

Any-gold 
mining

Demand-driven 
mining

Examples DynaMine, … MAPO, BugTriage, …

Advantages Surface up only cases 
that are applicable

Exploit demands to filter 
out irrelevant informationthat are applicable out irrelevant information

Issues How much gold is 
d h i th

How high percentage of 
ld k ll?good enough given the 

amount of data to be 
mined?

cases would work well?
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mined?

Code vs Non-CodeCode vs. Non-Code

Code/
Programming Langs

Non-Code/
Natural Langs

Examples MAPO, DynaMine, … BugTriage, CVS/Code 
comments, emails, docs

Advantages Relatively stable and 
consistent

Common source of 
capturing programmers’consistent 

representation
capturing programmers  
intentions

Issues What project/context-p j
specific heuristics to use?
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Static vs DynamicStatic vs. Dynamic

Static Data: code 
bases, change histories

Dynamic Data: prog 
states, structural profiles

Examples MAPO, DynaMine, … Spec discovery, …

Advantages No need to set up exec 
environment;

More-precise info
environment;
More scalable

Issues How to reduce false How to reduce falseIssues How to reduce false 
positives?

How to reduce false 
negatives?
Where tests come from?
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Where tests come from?

Snapshot vs ChangesSnapshot vs. Changes

Code snapshot Code change history

Examples MAPO DynaMineExamples MAPO, … DynaMine, …

Advantages Larger amount of 
available data

Revision transactions 
encode more-focused 

tit l ti hientity relationships
Issues How to group CVS 

changes into transactions?changes into transactions?
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Characteristics in Mining SE DataCharacteristics in Mining SE Data
I lit f d t d t i• Improve quality of source data: data preprocessing
– MAPO: inlining, reduction

D Mi ll i ti– DynaMine: call association
– BugTriage: labeling heuristics, inactive-developer removal

R d i t ti tt tt t i• Reduce uninteresting patterns: pattern postprocessing
– MAPO: compression, reduction

DynaMine: dynamic validation– DynaMine: dynamic validation
• Source data may not be sufficient

D Mi i i hi t i– DynaMine: revision histories
– BugTriage: historical bug reports
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SE-Domain-Specific Heuristics are important


