
Mining Software Engineering Datag g g

Ahmed E. Hassan
Queen’s University

Tao Xie
North Carolina State UniversityQ y

www.cs.queensu.ca/~ahmed
ahmed@cs.queensu.ca

y
www.csc.ncsu.edu/faculty/xie

xie@csc.ncsu.edu

Some slides are adapted from tutorial slides co-prepared by
Jian Pei from Simon Fraser University, Canada

An up-to-date version of this tutorial is available at
http://ase.csc.ncsu.edu/dmse/

y

Ahmed E HassanAhmed E. Hassan

• NSERC/RIM Software Engineering
Research Chair Queen’s University, Canaday,

• Leads the SAIL research group at Queen’s
C h i f W k h Mi i S ft• Co-chair for Workshop on Mining Software
Repositories (MSR) from 2004-2006

• Chair of the steering committee for MSR

A. E. Hassan and T. Xie: Mining Software Engineering Data 2

Tao XieTao Xie

A i t t P f t N th C li St t• Assistant Professor at North Carolina State
University, USA

• Leads the ASE research group at NCSU
• PC Co-Chair of ICSM 2009 MSR 2011PC Co Chair of ICSM 2009 MSR 2011
• Co-organizer of 2007 Dagstuhl Seminar on

Mining Programs and ProcessesMining Programs and Processes

A. E. Hassan and T. Xie: Mining Software Engineering Data 3

AcknowledgmentsAcknowledgments

• Jian Pei, SFU
• Thomas Zimmermann Microsoft ResearchThomas Zimmermann, Microsoft Research
• Peter Rigby, U. of Victoria
• Sunghun Kim, HKUST
• John Anvik U of Victoria• John Anvik, U. of Victoria

A. E. Hassan and T. Xie: Mining Software Engineering Data 4

Tutorial GoalsTutorial Goals

• Learn about:
– Recent and notable research and researchers in mining

SE data
– Data mining and data processing techniques and how to

l th t SE d tapply them to SE data
– Risks in using SE data due to e.g., noise, project culture

• By end of tutorial, you should be able:
– Retrieve SE data
– Prepare SE data for mining
– Mine interesting information from SE data

A. E. Hassan and T. Xie: Mining Software Engineering Data 5

Mining SE DataMining SE Data

• MAIN GOAL
– Transform static record-

keeping SE data to active
data

– Make SE data actionable
by uncovering hiddenby uncovering hidden
patterns and trends

MailingsBugzilla MailingsBugzilla

Code ExecutionCVS

A. E. Hassan and T. Xie: Mining Software Engineering Data 6

repository tracesCVS

Mining SE DataMining SE Data

• SE data can be used to:
– Gain empirically-based understanding of p y g

software development
– Predict plan and understand various aspectsPredict, plan, and understand various aspects

of a project
Support future development and project– Support future development and project
management activities

A. E. Hassan and T. Xie: Mining Software Engineering Data 7

Overview of Mining SE DataOverview of Mining SE Data

programming defect detection testing debugging maintenance

ft i i t k h l d b d t i i

…

software engineering tasks helped by data mining

classification association/
patterns clustering …

data mining techniques

code
bases

change
history

program
states

structural
entities

bug
reports …

A. E. Hassan and T. Xie: Mining Software Engineering Data 8

bases history states entities
software engineering data

reports

Overview of Mining SE Datag
99 ASE
00 ICSE
05 FSE*2 99 FSE

ASE
PLDI
POPL
OSDI

99 FSE
01 ICSE

FSE
02 ISSTA

OSDI
06 PLDI

OOPSLA
KDD 99 ICSE

POPL
KDD

03 PLDI
04 ASE

07 ICSE*3
FSE*3
ASE
PLDI*2 04 ICSE

99 ICSE
02 ICSE
03 PLDI
05 FSE

PLDI

04 ASE
ISSTA

05 ICSE
ASE

06 ICSE

03 ICSE
06 ICSE

PLDI*2
ISSTA*2
KDD

08 ICSE

04 ICSE
05 FSE*2
06 ASE
07 ICSE*2

PLDI
06 ISSTA
07 ISSTA
08 ICSE*3

06 ICSE
FSE*2

07 PLDI
08 ICSE

06 ASE
07 ICSE

SOSP
08 ICSE

code
bases

change
history

program
states

structural
entities

bug
reports/nl …

08 ICSE 3 08 ICSE 08 ICSE

9

bases history states entities
software engineering data

reports/nl

A. E. Hassan and T. Xie: Mining Software Engineering Data

Overview of Mining SE DataOverview of Mining SE Data

programming defect detection testing debugging maintenance

ft i i t k h l d b d t i i

…

software engineering tasks helped by data mining

classification association/
patterns clustering …

data mining techniques

code
bases

change
history

program
states

structural
entities

bug
reports …

A. E. Hassan and T. Xie: Mining Software Engineering Data 10

bases history states entities
software engineering data

reports

Overview of Mining SE DataOverview of Mining SE Data

programming defect detection testing debugging maintenance

ft i i t k h l d b d t i i

…

software engineering tasks helped by data mining

99 ASE
00 ICSE

01 SOSP
04 OSDI

99 ICSE
01 ICSE*2

03 ICSE
PLDI*2

02 KDD
04 ICSE

05 FSE
PLDI
POPL

06 FSE

05 FSE*2
06 ICSE*2
07 ICSE*2

FSE*2

0 CS
FSE

02 ICSE
ISSTA
POPL

05 ICSE
FSE
ASE
PLDI

ASE
05 FSE

ASE*2
06 KDD06 FSE

OOPSLA
PLDI

07 FSE

FSE*2
ISSTA
PLDI*2
SOSP

POPL
04 ISSTA
06 ISSTA

PLDI
06 ICSE

FSE
07 ICSE

06 KDD
07 ICSE*3
08 ICSE*2

ASE
ISSTA
KDD

08 ICSE*3 ISSTA
PLDI

08 ICSE

11A. E. Hassan and T. Xie: Mining Software Engineering Data

Tutorial OutlineTutorial Outline

• Part I: What can you learn from SE data?
– A sample of notable recent findings for different p g

SE data types

• Part II: How can you mine SE data?
– Overview of data mining techniques
– Overview of SE data processing tools andOverview of SE data processing tools and

techniques

A. E. Hassan and T. Xie: Mining Software Engineering Data 12

Types of SE DataTypes of SE Data

• Historical data
– Version or source control: cvs, subversion, perforce
– Bug systems: bugzilla, GNATS, JIRA
– Mailing lists: mbox

• Multi-run and multi-site data
– Execution traces
– Deployment logs

• Source code dataSource code data
– Source code repositories: sourceforge.net, google code

A. E. Hassan and T. Xie: Mining Software Engineering Data 13

Historical DataHistorical Data

“History is a guide to navigation inHistory is a guide to navigation in
perilous times. History is who we are
and why we are the way we are.”

- David C McCullough- David C. McCullough

A. E. Hassan and T. Xie: Mining Software Engineering Data 14

Historical DataHistorical Data

• Track the evolution of a software project:
– source control systems store changes to the code
– defect tracking systems follow the resolution of defects
– archived project communications record rationale for

decisions throughout the life of a project
• Used primarily for record-keeping activities:

– checking the status of a bug
– retrieving old code

A. E. Hassan and T. Xie: Mining Software Engineering Data 15

Percentage of Project Costs
Devoted to Maintenance

95
100

85
90
95

Moad 90 Erlikh 00

75
80 Lientz & Swanson 81

Eastwood 93

65
70

Zelkowitz 79

McKee 1984

Port 98 Huff 90

Eastwood 93

60
1975 1980 1985 1990 1995 2000 2005

A. E. Hassan and T. Xie: Mining Software Engineering Data 16

Survey of Software Maintenance
Activities

P f ti dd f ti lit• Perfective: add new functionality
• Corrective: fix faultsCorrective: fix faults
• Adaptive: new file formats, refactoring

2 2

17 4

18.2

39 0

2.2

17.4
60.3

56.739.0

Lientz, Swanson, Tomhkins [1978]
Nosek, Palvia [1990]

Schach, Jin, Yu, Heller, Offutt [2003]
Mining ChangeLogs

A. E. Hassan and T. Xie: Mining Software Engineering Data 17

MIS Survey (Linux, GCC, RTP)

Source Control Repositoriesp

Source Control RepositoriesSource Control Repositories
A t l t• A source control system
tracks changes to
ChangeUnitsChangeUnits

• Example of ChangeUnits:
Fil (t)– File (most common)

– Function
Dependency (e g Call)– Dependency (e.g., Call)

• Each ChangeUnit:
Records the developer– Records the developer,
change time, change
message, co-changing Units

A. E. Hassan and T. Xie: Mining Software Engineering Data 19

g g g

Change PropagationChange Propagation
N R B Fi

Determine

New Req., Bug Fix “How does a change in one source code
entity propagate to other entities?”

Determine
Initial Entity
To Changeg

Change Determine
Oth E titi

Consult
G f No MoreC a ge

Entity Other Entities
To Change

Guru for
Advice

No More
Changes

For Each Entity

S t d E tit

A. E. Hassan and T. Xie: Mining Software Engineering Data 20

Suggested Entity

Measuring Change PropagationMeasuring Change Propagation

entitiespredicted
changed whichentities predictedPrecision

changedwhichentitiespredicted

entitiespredicted

entities changed
changed whichentities predictedRecall

• We want:
High Precision to avoid wasting time– High Precision to avoid wasting time

– High Recall to avoid bugs

A. E. Hassan and T. Xie: Mining Software Engineering Data 21

Guiding Change PropagationGuiding Change Propagation

• Mine association rules from change history
• Use rules to help propagate changes:Use rules to help propagate changes:

– Recall as high as 44%
P i i d 30%– Precision around 30%

• High precision and recall reached in < 1mthg p
• Prediction accuracy improves prior to a

release (i e during maintenance phase)release (i.e., during maintenance phase)

A. E. Hassan and T. Xie: Mining Software Engineering Data 22

[Zimmermann et al. 05]

Code Sticky NotesCode Sticky Notes

• Traditional dependency graphs and program
understanding models usually do not use g y
historical information

• Static dependencies capture only a static• Static dependencies capture only a static
view of a system – not enough detail!

• Development history can help understand
the current structure (architecture) of athe current structure (architecture) of a
software system

A. E. Hassan and T. Xie: Mining Software Engineering Data 23

[Hassan & Holt 04]

Conceptual & Concrete Architecture
(NetBSD)

Conceptual (proposed) Concrete (reality)

Why? Who?

A. E. Hassan and T. Xie: Mining Software Engineering Data 24

Why? Who?
When?
Where?

Investigating Unexpected Dependencies
Using Historical Code Changes

• Eight unexpected dependencies
• All except two dependencies existed since day one:

– Virtual Address Maintenance Pager

– Pager Hardware Translations

Which? vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)
depends on pager_map (in /src/sys/uvm/uvm_pager.c)

Who? cgd

When? 1993/04/09 15:54:59
Revision 1.2 of src/sys/vm/Attic/vm_map.c
from sean eric fagan:
it t k th t f d dl ki th

Why?

it seems to keep the vm system from deadlocking the
system when it runs out of swap + physical memory.
prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important is the pager process which should never

A. E. Hassan and T. Xie: Mining Software Engineering Data 25

important is the pager process, which should never
have to wait for a free page).

Studying Conway’s LawStudying Conway s Law

• Conway’s Law:
“The structure of a software system is a direct y

reflection of the structure of the development
team”

A. E. Hassan and T. Xie: Mining Software Engineering Data 26

[Bowman et al. 99]

Linux: Conceptual, Ownership,
Concrete

Conceptual
Architecture

Ownership
Architecture

Concrete
Architecture

A. E. Hassan and T. Xie: Mining Software Engineering Data 27

Source Control and Bug Repositoriesg p

Predicting BugsPredicting Bugs
St di h h th t t l it t i• Studies have shown that most complexity metrics
correlate well with LOC!
– Graves et al 2000 on commercial systemsGraves et al. 2000 on commercial systems
– Herraiz et al. 2007 on open source systems

• Noteworthy findings:y g
– Previous bugs are good predictors of future bugs
– The more a file changes, the more likely it will have

bugs in itbugs in it
– Recent changes affect more the bug potential of a file

over older changes (weighted time damp models)g (g p)
– Number of developers is of little help in predicting bugs
– Hard to generalize bug predictors across projects

unless in similar domains [N B ll t l 2006]

A. E. Hassan and T. Xie: Mining Software Engineering Data 29

unless in similar domains [Nagappan, Ball et al. 2006]

Using Imports in Eclipse to Predict
Bugs

71% of files that import 71% of files that import compilercompiler packages, packages,
had to be fixed later on.had to be fixed later on.

import org.eclipse.jdt.internal.compiler.lookup.*;
import org eclipse jdt internal compiler *;import org.eclipse.jdt.internal.compiler. ;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all files that import 14% of all files that import uiui packages, packages,
had to be fixed later on.had to be fixed later on.

A. E. Hassan and T. Xie: Mining Software Engineering Data 30

[Schröter et al. 06]

Don’t program on Fridays ;-)Don t program on Fridays ;-)

P t f b i t d i h f li

A. E. Hassan and T. Xie: Mining Software Engineering Data 31

Percentage of bug-introducing changes for eclipse
[Zimmermann et al. 05]

Classifying Changes as Buggy or
Clean
• Given a change can we warn a developer

that there is a bug in it?g
– Recall/Precision in 50-60% range

A. E. Hassan and T. Xie: Mining Software Engineering Data 32

[Sung et al. 06]

Project Communication – Mailing listsj g

Project Communication (Mailinglists)Project Communication (Mailinglists)

• Most open source projects communicate
through mailing lists or IRC channelsg g

• Rich source of information about the inner
workings of large projectsworkings of large projects

• Discussions cover topics such as future
plans, design decisions, project policies,
code or patch reviewscode or patch reviews

• Social network analysis could be performed
di i th d

A. E. Hassan and T. Xie: Mining Software Engineering Data 34

on discussion threads

Social Network AnalysisSocial Network Analysis
M ili li t ti it• Mailing list activity:
– strongly correlates with code

change activitychange activity
– moderately correlates with

document change activityg y
• Social network measures (in-

degree, out-degree, g , g ,
betweenness) indicate that
committers play a more
significant role in the mailing
list community than non-
committers

A. E. Hassan and T. Xie: Mining Software Engineering Data 35

committers [Bird et al. 06]

Immigration Rate of DevelopersImmigration Rate of Developers

• When will a developer be invited to join a
project? p j
– Expertise vs. interest

A. E. Hassan and T. Xie: Mining Software Engineering Data 36

[Bird et al. 07]

The Patch Review ProcessThe Patch Review Process

• Two review styles
– RTC: Review-then-commit
– CTR: Commit-then-review

80% t h i d• 80% patches reviewed
within 3.5 days and 50%
reviewed in <19 hrs

A. E. Hassan and T. Xie: Mining Software Engineering Data 37

[Rigby et al. 06]

Measure a team’s morale around
release time?

• Study the content of messages before and after a release
U di i f h t i t t l i t l• Use dimensions from a psychometric text analysis tool:
– After Apache 1.3 release there was a drop in optimism
– After Apache 2.0 release there was an increase in sociability

A. E. Hassan and T. Xie: Mining Software Engineering Data 38

After Apache 2.0 release there was an increase in sociability
[Rigby & Hassan 07]

Program Source CodeProgram Source Code

Code EntitiesCode Entities

Source data Mined info

Variable names and function names Software categories Variable names and function names g
[Kawaguchi et al. 04]

Statement seq in a basic block Copy-paste code
[Li et al. 04]

Set of functions, variables, and data
t ithi C f ti

Programming rules
[Li&Zh 05]types within a C function [Li&Zhou 05]

Sequence of methods within a Java
th d

API usages
[Xie&Pei 05]method [Xie&Pei 05]

API method signatures API Jungloids
[Mandelin et al 05]

A. E. Hassan and T. Xie: Mining Software Engineering Data 40

[Mandelin et al. 05]

Mining API Usage PatternsMining API Usage Patterns
H h ld API b d tl ?• How should an API be used correctly?
– An API may serve multiple functionalities
– Different styles of API usage– Different styles of API usage

• “I know what type of object I need, but I don’t know
how to write the code to get the object” [Mandelin g j [
et al. 05]
– Can we synthesize jungloid code fragments

automatically?automatically?
– Given a simple query describing the desired code in

terms of input and output types, return a code segment
• “I know what method call I need, but I don’t know

how to write code before and after this method
call” [Xie&Pei 06]

A. E. Hassan and T. Xie: Mining Software Engineering Data 41

call” [Xie&Pei 06]

Relationships btw Code EntitiesRelationships btw Code Entities

• Mine framework reuse patterns [Michail 00]
– Membership relationshipsp p

• A class contains membership functions
– Reuse relationships– Reuse relationships

• Class inheritance/ instantiation
• Function invocations/overriding• Function invocations/overriding

• Mine software plagiarism [Liu et al. 06]
– Program dependence graphs

A. E. Hassan and T. Xie: Mining Software Engineering Data 42

[Michail 99/00] http://codeweb.sourceforge.net/ for C++

Program Execution TracesProgram Execution Traces

Method-Entry/Exit StatesMethod-Entry/Exit States
G l i ifi ti (/ t diti)• Goal: mine specifications (pre/post conditions) or
object behavior (object transition diagrams)

• State of an object
– Values of transitively reachable fields

• Method-entry state
– Receiver-object state, method argument valuesj , g

• Method-exit state
– Receiver-object state updated method argumentReceiver object state, updated method argument

values, method return value
[Ernst et al 02] http://pag csail mit edu/daikon/

A. E. Hassan and T. Xie: Mining Software Engineering Data 44

[Ernst et al. 02] http://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] http://www.st.cs.uni-sb.de/models/

Other Profiled Program StatesOther Profiled Program States

• Goal: detect or locate bugs
• Values of variables at certain code locationsValues of variables at certain code locations

[Hangal&Lam 02]
– Object/static field read/write– Object/static field read/write
– Method-call arguments
– Method returns

• Sampled predicates on values of variablesp p
[Liblit et al. 03/05][Liu et al. 05]

[Hangal&Lam 02] http://diduce.sourceforge.net/
[Liblit et al 03/05] http://www cs wisc edu/cbi/

A. E. Hassan and T. Xie: Mining Software Engineering Data 45

[Liblit et al. 03/05] http://www.cs.wisc.edu/cbi/
[Liu et al. 05] http://www.ews.uiuc.edu/~chaoliu/sober.htm

Executed Structural EntitiesExecuted Structural Entities

• Goal: locate bugs
• Executed branches/paths def-use pairsExecuted branches/paths, def use pairs
• Executed function/method calls

– Group methods invoked on the same object
• Profiling optionsProfiling options

– Execution hit vs. count
E ti d ()– Execution order (sequences)

[Dallmeier et al 05] http://www st cs uni-sb de/ample/

A. E. Hassan and T. Xie: Mining Software Engineering Data 46

[Dallmeier et al. 05] http://www.st.cs.uni sb.de/ample/
More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

Q&A and breakQ&A and break

Part I ReviewPart I Review

• We presented notable results based on
mining SE data such as:g
– Historical data:

• Source control: predict co-changes• Source control: predict co-changes
• Bug databases: predict bug likelihood
• Mailing lists: gauge team morale around release time• Mailing lists: gauge team morale around release time

– Other data:
P d i API tt• Program source code: mine API usage patterns

• Program execution traces: mine specs, detect or
locate bugs

A. E. Hassan and T. Xie: Mining Software Engineering Data 48

locate bugs

Data Mining Techniques in SEg q

Part II: How can you mine SE data?
Overview of data mining techniques–Overview of data mining techniques

–Overview of SE data processing tools and
t h itechniques

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.

A. E. Hassan and T. Xie: Mining Software Engineering Data 50

Frequent ItemsetsFrequent Itemsets

• Itemset: a set of items
– E.g., acm={a, c, m} Transaction database TDB

• Support of itemsets
– Sup(acm)=3

TID Items bought
100 f d I

p()
• Given min_sup = 3, acm

is a frequent pattern

100 f, a, c, d, g, I, m, p
200 a, b, c, f, l, m, ois a frequent pattern

• Frequent pattern mining:
find all frequent patterns

300 b, f, h, j, o
400 b, c, k, s, p

find all frequent patterns
in a database 500 a, f, c, e, l, p, m, n

A. E. Hassan and T. Xie: Mining Software Engineering Data 51

Association RulesAssociation Rules

• (Time{Fri, Sat}) buy(X, diaper) buy(X,
beer))
– Dads taking care of babies in weekends drink

beerbeer
• Itemsets should be frequent

– It can be applied extensively
• Rules should be confidentRules should be confident

– With strong prediction capability

A. E. Hassan and T. Xie: Mining Software Engineering Data 52

A Simple CaseA Simple Case

Fi di hi hl l t d th d ll i• Finding highly correlated method call pairs
• Confidence of pairs helpsp p

– Conf(<a,b>)=support(<a,b>)/support(<a,a>)
• Check the revisions (fixes to bugs) find the• Check the revisions (fixes to bugs), find the

pairs of method calls whose confidences
have improved dramatically by frequenthave improved dramatically by frequent
added fixes

Th th t hi th d ll i th t– Those are the matching method call pairs that
may often be violated by programmers

A. E. Hassan and T. Xie: Mining Software Engineering Data 53

[Livshits&Zimmermann 05]

Conflicting PatternsConflicting Patterns

• 999 out of 1000 times spin_lock is
followed by spin unlocky p _
– The single time that spin_unlock does not

follow may likely be an errorfollow may likely be an error
• We can detect an error without knowing the

t lcorrectness rules

[Li&Zh 05 Li hit &Zi 05 Y t l 06]
A. E. Hassan and T. Xie: Mining Software Engineering Data 54

[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]

Detect Copy-Paste CodeDetect Copy-Paste Code

• Apply closed sequential pattern mining techniques
• Customizing the techniquesg q

– A copy-paste segment typically does not have big gaps
– use a maximum gap threshold to control

– Output the instances of patterns (i.e., the copy-pasted
code segments) instead of the patterns

– Use small copy-pasted segments to form larger ones
– Prune false positives: tiny segments, unmappable

segments, overlapping segments, and segments with
large gaps

[Li t l 04]
A. E. Hassan and T. Xie: Mining Software Engineering Data 55

[Li et al. 04]

Find Bugs in Copy-Pasted SegmentsFind Bugs in Copy-Pasted Segments

• For two copy-pasted segments, are the
modifications consistent?
– Identifier a in segment S1 is changed to b in

segment S2 3 times but remains unchangedsegment S2 3 times, but remains unchanged
once – likely a bug
The heuristic may not be correct all the time– The heuristic may not be correct all the time

• The lower the unchanged rate of an
identifier, the more likely there is a bug

[Li t l 04]
A. E. Hassan and T. Xie: Mining Software Engineering Data 56

[Li et al. 04]

Mining Rules in TracesMining Rules in Traces

• Mine association rules or sequential• Mine association rules or sequential
patterns S F, where S is a statement and

f fF is the status of program failure
• The higher the confidence, the more likely SThe higher the confidence, the more likely S

is faulty or related to a fault
U i l t t t t th l ft id f• Using only one statement at the left side of
the rule can be misleading, since a fault may
be led by a combination of statements
– Frequent patterns can be used to improve

A. E. Hassan and T. Xie: Mining Software Engineering Data 57

Frequent patterns can be used to improve
[Denmat et al. 05]

Mining Emerging Patterns in TracesMining Emerging Patterns in Traces

• A method executed only in failing runs is
likely to point to the defecty p
– Comparing the coverage of passing and failing

program runs helpsprogram runs helps
• Mining patterns frequent in failing program

b t i f t i iruns but infrequent in passing program runs
– Sequential patterns may be used

A. E. Hassan and T. Xie: Mining Software Engineering Data 58

[Dallmeier et al. 05, Denmat et al. 05]

Types of Frequent Pattern MiningTypes of Frequent Pattern Mining

• Association rules
– open close

• Frequent itemset mining
– {open, close}{ p , }

• Frequent subsequence mining
– open closeopen close

• Frequent partial order mining
Frequent graph mining

open

Frequent graph mining
Finite automaton mining read write

A. E. Hassan and T. Xie: Mining Software Engineering Data 59

close

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.

A. E. Hassan and T. Xie: Mining Software Engineering Data 60

Classification: A 2-step ProcessClassification: A 2-step Process

• Model construction: describe a set of
predetermined classes
– Training dataset: tuples for model construction

• Each tuple/sample belongs to a predefined class

– Classification rules, decision trees, or math formulae
• Model application: classify unseen objects

– Estimate accuracy of the model using an independent
test set

– Acceptable accuracy apply the model to classify
tuples with unknown class labels

A. E. Hassan and T. Xie: Mining Software Engineering Data 61

Model ConstructionModel Construction
Classification

Training
D t

Classification
Algorithms

Data

Classifier
(Model)

Name Rank Years Tenured
Mike Ass. Prof 3 No
Mary Ass. Prof 7 Yes
Bill Prof 2 Yes

IF rank = ‘professor’
OR years > 6
THEN d ‘ ’

Jim Asso. Prof 7 Yes
Dave Ass. Prof 6 No
A A P f 3 N

A. E. Hassan and T. Xie: Mining Software Engineering Data 62

THEN tenured = ‘yes’ Anne Asso. Prof 3 No

Model ApplicationModel Application

Classifier

Testing
U D t

g
Data Unseen Data

(J ff P f 4)(Jeff, Professor, 4)

Tenured?
Name Rank Years Tenured
Tom Ass Prof 2 No Tenured?Tom Ass. Prof 2 No

Merlisa Asso. Prof 7 No
George Prof 5 Yes

A. E. Hassan and T. Xie: Mining Software Engineering Data 63

Joseph Ass. Prof 7 Yes

Supervised vs. Unsupervised
Learning
• Supervised learning (classification)

– Supervision: objects in the training data set p j g
have labels

– New data is classified based on the training setNew data is classified based on the training set
• Unsupervised learning (clustering)

– The class labels of training data are unknown
– Given a set of measurements, observations, , ,

etc. with the aim of establishing the existence of
classes or clusters in the data

A. E. Hassan and T. Xie: Mining Software Engineering Data 64

GUI-Application StabilizerGUI-Application Stabilizer

• Given a program state S and an event e, predict
whether e likely results in a bug
– Positive samples: past bugs
– Negative samples: “not bug” reports

• A k-NN based approach
– Consider the k closest cases reported beforep
– Compare Σ 1/d for bug cases and not-bug cases, where

d is the similarity between the current state and the
reported states

– If the current state is more similar to bugs, predict a bug

A. E. Hassan and T. Xie: Mining Software Engineering Data 65

[Michail&Xie 05]

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.

A. E. Hassan and T. Xie: Mining Software Engineering Data 66

What is Clustering?What is Clustering?

• Group data into clusters
– Similar to one another within the same cluster
– Dissimilar to the objects in other clusters

Unsupervised learning: no predefined classes– Unsupervised learning: no predefined classes

Outliers
Cluster 1

Outliers

Cluster 2

A. E. Hassan and T. Xie: Mining Software Engineering Data 67

Clustering and CategorizationClustering and Categorization

• Software categorization
– Partitioning software systems into categoriesg y g

• Categories predefined – a classification
problemproblem

• Categories discovered automatically – a g y
clustering problem

A. E. Hassan and T. Xie: Mining Software Engineering Data 68

Software Categorization - MUDABlueSoftware Categorization MUDABlue

U d t di d• Understanding source code
– Use Latent Semantic Analysis (LSA) to find similarity

between software systemsbetween software systems
– Use identifiers (e.g., variable names, function names)

as features
• “gtk_window” represents some window
• The source code near “gtk_window” contains some GUI

operation on the windowoperation on the window

• Extracting categories using frequent identifiers
– “gtk window” “gtk main” and “gpointer” GTK– gtk_window , gtk_main , and gpointer GTK

related software system
– Use LSA to find relationships between identifiers

A. E. Hassan and T. Xie: Mining Software Engineering Data 69

p
[Kawaguchi et al. 04]

Data Mining Techniques in SEData Mining Techniques in SE

• Association rules and frequent patterns
• ClassificationClassification
• Clustering
• Misc.

A. E. Hassan and T. Xie: Mining Software Engineering Data 70

Other Mining TechniquesOther Mining Techniques

• Automaton/grammar/regular expression
learningg

• Searching/matching
C t l i• Concept analysis

• Template-based analysisTemplate based analysis
• Abstraction-based analysis

http://sites.google.com/site/asergrp/dmse/miningalgs

A. E. Hassan and T. Xie: Mining Software Engineering Data 71

http://sites.google.com/site/asergrp/dmse/miningalgs

How to Do Research in
Mi i SE D tMining SE Data

How to do research in mining SE
d tdata

W di d lt d i d f• We discussed results derived from:
– Historical data:

S t l• Source control
• Bug databases
• Mailing listsg

– Program data:
• Program source code

P ti t• Program execution traces

• We discussed several mining techniques
W di h t• We now discuss how to:
– Get access to a particular type of SE data

P th SE d t f f th i i d l i

A. E. Hassan and T. Xie: Mining Software Engineering Data 73

– Process the SE data for further mining and analysis

Source Control Repositoriesp

Concurrent Versions System (CVS)
Comments

A. E. Hassan and T. Xie: Mining Software Engineering Data 75

[Chen et al. 01] http://cvssearch.sourceforge.net/

CVS CommentsCVS Comments

di l

RCS files:/repository/file.h,v
Working file: file.h
head: 1.5
...• cvs log – displays

for all revisions and
description:

Revision 1.5
Date: ...

its comments for each
file

cvs comment ...

...

• cvs diff – shows
differences between

…
RCS file: /repository/file.h,v
…
9c9 10differences between

different versions of a
file

9c9,10
< old line

> new line
> another new linefile

• Used for program
understanding

> another new line

A. E. Hassan and T. Xie: Mining Software Engineering Data 76

understanding [Chen et al. 01] http://cvssearch.sourceforge.net/

Code Version HistoriesCode Version Histories
• CVS provides file versioning• CVS provides file versioning

– Group individual per-file changes into individual
transactions: checked in by the same author with thetransactions: checked in by the same author with the
same check-in comment within a short time window

• CVS manages only files and line numbers• CVS manages only files and line numbers
– Associate syntactic entities with line ranges

Filter o t long transactions not corresponding to• Filter out long transactions not corresponding to
meaningful atomic changes

E f t d b fi b h d i– E.g., features and bug fixes vs. branch and merging
• Used to mine co-changed entities

[Hassan& Holt 04 Ying et al 04]

A. E. Hassan and T. Xie: Mining Software Engineering Data 77

[Hassan& Holt 04, Ying et al. 04]
[Zimmermann et al. 04] http://www.st.cs.uni-sb.de/softevo/erose/

Getting Access to Source ControlGetting Access to Source Control
Th t l l d• These tools are commonly used
– Email: ask for a local copy to avoid taxing the project's

servers during your analysis and developmentservers during your analysis and development
– CVSup: mirrors a repository if supported by the

particular projectp p j
– rsync: a protocol used to mirror data repositories
– CVSsuck:

• Uses the CVS protocol itself to mirror a CVS repository
• The CVS protocol is not designed for mirroring; therefore,

CVSsuck is not efficientCVSsuck is not efficient
• Use as a last resort to acquire a repository due to its inefficiency
• Used primarily for dead projects

A. E. Hassan and T. Xie: Mining Software Engineering Data 78

Recovering Information from CVSRecovering Information from CVS

St+1StS1S0 ..

Traditional Extractor

F0 F1 Ft+1Ft..

Compare Snapshot Facts

Evolutionary Change Data

A. E. Hassan and T. Xie: Mining Software Engineering Data 79

Challenges in recovering information
from CVS

main() {
int a;
/* ll

helpInfo() {
errorString!

}

helpInfo(){
int b;
}/*call

help*/
helpInfo();

}
main() {

int a;

}
main() {

int a;helpInfo();
}

int a;
/*call
help*/

int a;
/*call
help*/p

helpInfo();
}

p
helpInfo();

}

V1:
Undefined func.

V2:
Syntax error

V3:
Valid code

A. E. Hassan and T. Xie: Mining Software Engineering Data 80

(Link Error)
y

CVS LimitationsCVS Limitations

• CVS has limited query functionality and is
slow

• CVS does not track co-changes
CVS t k l h t th fil l l• CVS tracks only changes at the file level

A. E. Hassan and T. Xie: Mining Software Engineering Data 81

Inferring Transactions in CVSInferring Transactions in CVS

• Sliding Window:
– Time window: [3-5mins on average][g]

• min 3mins
• as high as 21 mins for mergesas high as 21 mins for merges

• Commit Mails

A. E. Hassan and T. Xie: Mining Software Engineering Data 82[Zimmermann et al. 2004]

Noise in CVS TransactionsNoise in CVS Transactions

• Drop all transactions above a large
threshold

F B h ith l k t CVS• For Branch merges either look at CVS
comments or use heuristic algorithm
proposed by Fischer et al. 2003

A. E. Hassan and T. Xie: Mining Software Engineering Data 83

A Note about large commitsA Note about large commits

A. E. Hassan and T. Xie: Mining Software Engineering Data 84[Hindle et al. 2008]

Noise in detecting developersNoise in detecting developers
F d l i it i il• Few developers are given commit privileges

• Actual developer is usually mentioned in the
hchange message

• One must study project commit policies before
hi l ireaching any conclusions

A. E. Hassan and T. Xie: Mining Software Engineering Data 85[German 2006]

Source Control and Bug Repositoriesg p

BugzillaBugzilla

bill@firefox.org

A. E. Hassan and T. Xie: Mining Software Engineering Data 87Adapted from Anvik et al.’s slides

Sample Bugzilla Bug ReportSa p e ug a ug epo t
• Bug report imageg p g
• Overlay the triage questions

Assigned To: ?

Duplicate?

Reproducible?
Bugzilla: open source bug tracking tool

http://www.bugzilla.org/
[Anvik et al. 06]

A. E. Hassan and T. Xie: Mining Software Engineering Data 88

[Anvik et al. 06]
http://www.cs.ubc.ca/labs/spl/projects/bugTriage.html

Adapted from Anvik et al.’s slides

Acquiring Bugzilla dataAcquiring Bugzilla data

• Download bug reports using the XML export
feature (in chunks of 100 reports)(p)

• Download attachments (one request per
attachment)attachment)

• Download activities for each bug report (one
request per bug report)

A. E. Hassan and T. Xie: Mining Software Engineering Data 89

Using Bugzilla DataUsing Bugzilla Data

• Depending on the analysis, you might need to
rollback the fields of each bug report using the
stored changes and activities

• Linking changes to bug reports is more or less g g g
straightforward:
– Any number in a log message could refer to a bug y g g g

report
– Usually good to ignore numbers less than 1000. Some

issue tracking systems (such as JIRA) have identifiers
that are easy to recognize (e.g., JIRA-4223)

A. E. Hassan and T. Xie: Mining Software Engineering Data 90

So far: Focus on fixesSo far: Focus on fixes

fi i ti d i b 45635 [h i] ll
teicher 2003-10-29 16:11:01
fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for
loopholes any more, except for shell deactiviation

- hovers behave like normal ones:
- tooltips pop up below the controltooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

Fixes give only the Fixes give only the locationlocation of a defect,of a defect,
not when it was introducednot when it was introduced

A. E. Hassan and T. Xie: Mining Software Engineering Data 91

not when it was introduced.not when it was introduced.
[Sliwerski et al. 05 –

Slides by Zimmermann]

B i t d i hBug-introducing changes

FIXBUG INTRODUCING

...
if (foo!=null) {

FIX

if (foo!=null) {
...
if (foo==null) {

BUG-INTRODUCING

if (foo==null) { later fixed if (foo!=null) {
foo.bar();

...

if (foo!=null) {if (foo==null) {
foo.bar();

...

if (foo==null) { later fixed

BugBug--introducing changes are changes thatintroducing changes are changes thatBugBug introducing changes are changes that introducing changes are changes that
lead to problems as indicated by later fixes.lead to problems as indicated by later fixes.

A. E. Hassan and T. Xie: Mining Software Engineering Data 92

Life-cycle of a “bug”Life-cycle of a bug

fixes issues mentioned in bug 45635: [hovering] rollover hovers
- mouse exit detection is safer and should not allow for

loopholes any more except for shell deactiviation

BUG REPORT

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

FIX
CHANGE

BUG-INTRODUCING
CHANGE

A. E. Hassan and T. Xie: Mining Software Engineering Data 93

The SZZ algorithmThe SZZ algorithm

$ cvs annotate -r 1.17 Foo.java$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03): return i/0;
...

40: 1.14 (kate 23-May-03): return 42;
...

60: 1 16 (mary 10 Jun 03): int i=0;60: 1.16 (mary 10-Jun-03): int i=0;

1.11.1
88

FIXED BUG
42233

A. E. Hassan and T. Xie: Mining Software Engineering Data 94

The SZZ algorithmThe SZZ algorithm

$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03): return i/0;
...

40: 1.14 (kate 23-May-03): return 42;
...

60: 1 16 (mary 10 Jun 03): int i=0;60: 1.16 (mary 10-Jun-03): int i=0;

1.11.1
44

1.11.1
661.111.111.111.11 1.11.1

4 4
1.11.1
6 6

1.11.1
88

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO

A. E. Hassan and T. Xie: Mining Software Engineering Data 95

The SZZ algorithmThe SZZ algorithm

closedsubmitted

fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for

BUG REPORT

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

1.11.1
44

1.11.1
66

1.11.1
44

1.11.1
66

1.11.1
881.111.11 1.11.1

44
1.11.1
66

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO

BUG
INTRO

BUG
INTRO

REMOVE
FALSE POSITIVES

A. E. Hassan and T. Xie: Mining Software Engineering Data 96

FALSE POSITIVES

Project Communication – Mailing listsj g

Acquiring Mailing listsAcquiring Mailing lists

• Usually archived and available from the
project’s webpagep j p g

• Stored in mbox format:
Th b fil f t ti ll li t– The mbox file format sequentially lists every
message of a mail folder

A. E. Hassan and T. Xie: Mining Software Engineering Data 98

Challenges using Mailing lists data IChallenges using Mailing lists data I

• Unstructured nature of email makes
extracting information difficultg
– Written English

Multiple email addresses• Multiple email addresses
– Must resolve emails to individuals

• Broken discussion threads
Many email clients do not include “In-Reply-To”– Many email clients do not include In-Reply-To
field

A. E. Hassan and T. Xie: Mining Software Engineering Data 99

Challenges using Mailing lists data IIChallenges using Mailing lists data II

• Country information is not accurate
– Many sites are hosted in the US: y

• Yahoo.com.ar is hosted in the US

• Tools to process mailbox files rarely scale to• Tools to process mailbox files rarely scale to
handle such large amount of data (years of

ili li t i f ti)mailing list information)
– Will need to write your owny

A. E. Hassan and T. Xie: Mining Software Engineering Data 100

Program Source CodeProgram Source Code

Acquiring Source CodeAcquiring Source Code

• Ahead-of-time download directly from code
repositories (e.g., Sourceforge.net)
– Advantage: offline perform slow data processing and

mining
– Some tools (Prospector and Strathcona) focus on

framework API code such as Eclipse framework APIs
O• On-demand search through code search engines:
– E.g., http://www.google.com/codesearch
– Advantage: not limited on a small number of downloaded

code repositories
P t htt // b l b k l d / t

A. E. Hassan and T. Xie: Mining Software Engineering Data 102

Prospector: http://snobol.cs.berkeley.edu/prospector
Strathcona: http://lsmr.cs.ucalgary.ca/projects/heuristic/strathcona/

Processing Source CodeProcessing Source Code
U f i t ti l i / il t l• Use one of various static analysis/compiler tools
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)
B t ti d l d d d t b• But sometimes downloaded code may not be
compliable

E E li JDT htt // li /jdt/ f AST– E.g., use Eclipse JDT http://www.eclipse.org/jdt/ for AST
traversal

– E g use exuberant ctags http://ctags sourceforge net/ forE.g., use exuberant ctags http://ctags.sourceforge.net/ for
high-level tagging of code

• May use simple heuristics/analysis to deal with y p y
some language features [Xie&Pei 06, Mandelin et al. 05]
– Conditional, loops, inter-procedural, downcast, etc.

A. E. Hassan and T. Xie: Mining Software Engineering Data 103

Program Execution TracesProgram Execution Traces

Acquiring Execution TracesAcquiring Execution Traces

• Code instrumentation or VM instrumentation
– Java: ASM, BCEL, SERP, Soot, Java Debug Interface
– C/C++/Binary: Valgrind, Fjalar, Dyninst

• See Mike Ernst’s ASE 05 tutorial on “Learning from
executions: Dynamic analysis for softwareexecutions: Dynamic analysis for software
engineering and program understanding”

http://pag csail mit edu/~mernst/pubs/dynamic-tutorial-http://pag.csail.mit.edu/ mernst/pubs/dynamic tutorial
ase2005-abstract.html

A. E. Hassan and T. Xie: Mining Software Engineering Data 105

More related tools: http://ase.csc.ncsu.edu/tools/

Processing Execution TracesProcessing Execution Traces

• Processing types: online (as data is
encountered) vs. offline (write data to file)) ()

• May need to group relevant traces together
b d i bj t f– e.g., based on receiver-object references

– e.g., based on corresponding method entry/exit

• Debugging traces: view large log/trace files• Debugging traces: view large log/trace files
with V-file editor: http://www.fileviewer.com/

A. E. Hassan and T. Xie: Mining Software Engineering Data 106

Tools and Repositoriesp

Repositories Available OnlineRepositories Available Online
• Promise repository:• Promise repository:

– http://promisedata.org/
• Eclipse bug data: p g

– http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
• iBug

– http://www st cs uni-sb de/ibugs/http://www.st.cs.uni sb.de/ibugs/
• MSR Challenge (data for Mozilla & Eclipse):

– http://msr.uwaterloo.ca/msr2007/challenge/
htt // t l / 2008/ h ll /– http://msr.uwaterloo.ca/msr2008/challenge/

• FLOSSmole:
– http://ossmole.sourceforge.net/p g

• Software-artifact infrastructure repository:
– http://sir.unl.edu/portal/index.html

A. E. Hassan and T. Xie: Mining Software Engineering Data 108

Eclipse Bug Datap g

• Defect counts are listed
as counts at the plug-in,
package and compilation
unit levels.

• The value field
contains the actual
number of pre ("pre")number of pre- (pre)
and post-release defects
("post").
• The average ("avg")
and maximum ("max")
values refer to the
d f t f d i thdefects found in the
compilation units
("compilationunits").

A. E. Hassan and T. Xie: Mining Software Engineering Data 109

[Schröter et al. 06] http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

Metrics in the Eclipse Bug DataMetrics in the Eclipse Bug Data

A. E. Hassan and T. Xie: Mining Software Engineering Data 110

Abstract Syntax Tree Nodes in
Eclipse Bug Data
• The AST node

information can be
used to calculate
various metricsvarious metrics

A. E. Hassan and T. Xie: Mining Software Engineering Data 111

FLOSSmoleFLOSSmole
FLOSS l• FLOSSmole
– provides raw data about open source projects
– provides summary reports about open source projects– provides summary reports about open source projects
– integrates donated data from other research teams
– provides tools so you can gather your own datap y g y

• Data sources
– Sourceforge
– Freshmeat
– Rubyforge

ObjectWeb– ObjectWeb
– Free Software Foundation (FSF)
– SourceKibitzer

A. E. Hassan and T. Xie: Mining Software Engineering Data 112

SourceKibitzer
http://flossmole.org/

Example Graphs from FlossMoleExample Graphs from FlossMole

A. E. Hassan and T. Xie: Mining Software Engineering Data 113

Analysis ToolsAnalysis Tools
R• R
– http://www.r-project.org/
– R is a free software environment for statistical computing and graphicsp g g p

• Aisee
– http://www.aisee.com/
– Aisee is a graph layout software for very large graphs

• WEKA
– http://www cs waikato ac nz/ml/weka/– http://www.cs.waikato.ac.nz/ml/weka/
– WEKA contains a collection of machine learning algorithms for data

mining tasks
R idMi (YALE)• RapidMiner (YALE)
– http://rapidminer.com/

• More tools: http://ase csc ncsu edu/site/asergrp/dmse/resources

A. E. Hassan and T. Xie: Mining Software Engineering Data 114

• More tools: http://ase.csc.ncsu.edu/site/asergrp/dmse/resources

Data Extraction/Processing ToolsData Extraction/Processing Tools

K• Kenyon
– http://dforge.cse.ucsc.edu/projects/kenyon/

• Myln/Mylar (comes with API for Bugzilla
and JIRA)and JIRA)
– http://www.eclipse.org/myln/

• Libresoft toolset• Libresoft toolset
– Tools (cvsanaly/mlstats/detras) for recovering

data from cvs/svn and mailinglistsdata from cvs/svn and mailinglists
– http://forge.morfeo-project.org/projects/libresoft-

tools/
A. E. Hassan and T. Xie: Mining Software Engineering Data 115

tools/

KenyonKenyon

Extract
Automated
configuration
extraction

Save
Persist gathered
metrics & facts

Analyze
Query DB,
add new
facts

Compute
Fact extraction
(metrics, static
analysis)

Source
Control

extraction

Kenyon
Repository

facts

Analysis
Software

analysis)

Control
Repository

Filesystem

(RDBMS/
Hibernate)

A. E. Hassan and T. Xie: Mining Software Engineering Data 116

[Adapted from Bevan et al. 05]

Publishing AdvicePublishing Advice

• Report the statistical significance of your results:
– Get a statistics book (one for social scientist, not for

mathematicians)
• Discuss any limitations of your findings based on

the characteristics of the studied repositories:
– Make sure you manually examine the repositories. Do

not fully automate the process!
– Use random sampling to resolve issues about data noise

• Relevant conferences/workshops:
– main SE conferences, ICSM, ISSTA, MSR, WODA, …

A. E. Hassan and T. Xie: Mining Software Engineering Data 117

Mining Software RepositoriesMining Software Repositories
V ti h i SE• Very active research area in SE:
– MSR is the most attended ICSE event in last 7 yrs

• http://msrconf org• http://msrconf.org
– Special Issue of IEEE TSE 2005 on MSR:

• 15 % of all submissions of TSE in 2004
• Fastest review cycle in TSE history: 8 months

– Special Issue Empirical Software Engineering 2009
– MSR 2011!

A. E. Hassan and T. Xie: Mining Software Engineering Data 118

Q&AQ&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/
•What software engineering tasks can be helped by data mining?
•What kinds of software engineering data can be mined?
•How are data mining techniques used in software engineering?•How are data mining techniques used in software engineering?
•Resources

Example ToolsExample Tools

• MAPO: mining API usages from open source
repositories [Xie&Pei 06]repositories [Xie&Pei 06]

• DynaMine: mining error/usage patterns from
d i i hi t icode revision histories [Livshits&Zimmermann 05]

• BugTriage: learning bug assignments from g g g g g
historical bug reports [Anvik et al. 06]

A. E. Hassan and T. Xie: Mining Software Engineering Data 120

Demand-Driven Or NotDemand-Driven Or Not

Any-gold
mining

Demand-driven
mining

Examples DynaMine, … MAPO, BugTriage, …

Advantages Surface up only cases
that are applicable

Exploit demands to filter
out irrelevant informationthat are applicable out irrelevant information

Issues How much gold is
d h i th

How high percentage of
ld k ll?good enough given the

amount of data to be
mined?

cases would work well?

A. E. Hassan and T. Xie: Mining Software Engineering Data 121

mined?

Code vs Non-CodeCode vs. Non-Code

Code/
Programming Langs

Non-Code/
Natural Langs

Examples MAPO, DynaMine, … BugTriage, CVS/Code
comments, emails, docs

Advantages Relatively stable and
consistent

Common source of
capturing programmers’consistent

representation
capturing programmers
intentions

Issues What project/context-p j
specific heuristics to use?

A. E. Hassan and T. Xie: Mining Software Engineering Data 122

Static vs DynamicStatic vs. Dynamic

Static Data: code
bases, change histories

Dynamic Data: prog
states, structural profiles

Examples MAPO, DynaMine, … Spec discovery, …

Advantages No need to set up exec
environment;

More-precise info
environment;
More scalable

Issues How to reduce false How to reduce falseIssues How to reduce false
positives?

How to reduce false
negatives?
Where tests come from?

A. E. Hassan and T. Xie: Mining Software Engineering Data 123

Where tests come from?

Snapshot vs ChangesSnapshot vs. Changes

Code snapshot Code change history

Examples MAPO DynaMineExamples MAPO, … DynaMine, …

Advantages Larger amount of
available data

Revision transactions
encode more-focused

tit l ti hientity relationships
Issues How to group CVS

changes into transactions?changes into transactions?

A. E. Hassan and T. Xie: Mining Software Engineering Data 124

Characteristics in Mining SE DataCharacteristics in Mining SE Data
I lit f d t d t i• Improve quality of source data: data preprocessing
– MAPO: inlining, reduction

D Mi ll i ti– DynaMine: call association
– BugTriage: labeling heuristics, inactive-developer removal

R d i t ti tt tt t i• Reduce uninteresting patterns: pattern postprocessing
– MAPO: compression, reduction

DynaMine: dynamic validation– DynaMine: dynamic validation
• Source data may not be sufficient

D Mi i i hi t i– DynaMine: revision histories
– BugTriage: historical bug reports

A. E. Hassan and T. Xie: Mining Software Engineering Data 125

SE-Domain-Specific Heuristics are important

