Presentation - XSnippet: Mining for Sample Code

Tao Xia November 8, 2006

Motivation

Programming Context

Parent Context

- CP(m) is the parent context of method m.
- CP(m) includes superclass and interfaces implemented by the class which m belongs to.
- All methods in one class share the same parent context.

Type Context

- CT(m) is the type context of method m.
- CT(m) includes sets of types for inherited fields, local fields, and lexically visible types within the scope of m

Snippets Queries

- Generalized instantiation query
 - Input a type t, returns the set of all snippets that instantiate the type t

 $IQ_G(t_q) = \forall s \in S : scontainst_q instantiation$

Snippets Queries

- Type based instantiation query
 - Input a type t and the type context CT(m), returns the set of all snippets which t is instantiated from some type tc from CT(m)

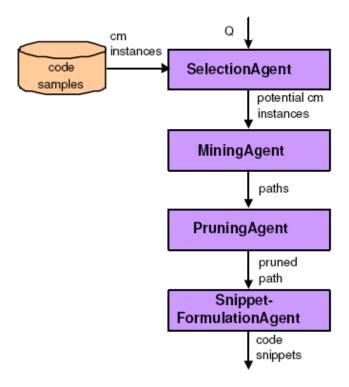
$$\mathcal{IQ}_T(t_q,\mathcal{CT}(\mathbf{m})) = \exists s \in \mathcal{IQ}_G(t_q) : \mathcal{T}(s) \cap \mathcal{CT}(\mathbf{m})$$

Snippets Queries

- Parent-based instantiation query
 - Input a type t and the parent context CP(m), returns the set of all snippets which the class of the snippet and the class of m either inherit from the same class or implement the same interfaces

$$\mathcal{IQ}_P(t_q, \mathcal{CP}(\mathbf{m})) = \exists s \in \mathcal{IQ}_G(t_q) : \mathcal{CP}(s) \cap \mathcal{CP}(\mathbf{m})$$

Source Code Model


- Only analyse source code text is not sufficient.
- Example:
 - getViewPart().getWorkbenchWindow().getSel ectionService().addSelectionListener(this)
 - In the code, an object of type
 ISelectionService is instantiated, but the type
 ISelectionService is not denoted.

Source Code Model

- Node types. (All instantiate objects are recorded)
 - type node, object node, method node
- Edge types
 - Class structure: inheritance, implement, and composite edge.
 - Class behaviour: method, assignment, and parameter edge.

Snippet Mining

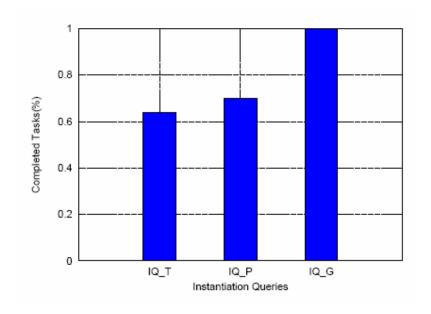
 Mining all code snippets that satisfy a given user query Q.

Snippet Mining

- Selection Agent
 - Select code models based on input query
- Mining Agent
 - BFSMINE algorithm
- Pruning Agent
 - Removes duplicate paths, no-co paths (e.g. IType a = null;), non-compatible and non-executable paths

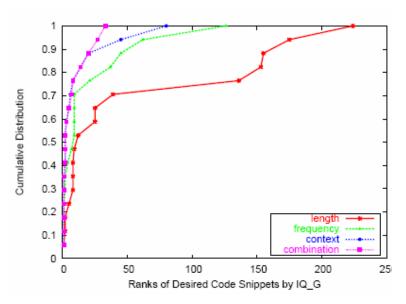
Ranking Snippets

- Ranking by length
 - Line of code
- Ranking by frequency
 - Number of times a code snippet appears
- Ranking by context
 - Context match measure, Mp match measure between parents,
 Mct match measure between the lexically visible types


$$\mathcal{M}_{CT}(Q, s) = \frac{\mathcal{M}_{P}(Q, s) + \mathcal{M}_{VT}(Q, s)}{2}$$

Snippets Example

Code Snippets	$\begin{array}{c} {\rm Length\ Heuristic} \\ {\rm (a)} \end{array}$	Frequency Heuristic (b)	Context Heuristic (c)
A. ISelection selection; IStructuredSelection ss = (IStructuredSelection) selection; Object obj = ss.getFirstElement(); IJavaElement je = (IJavaElement) obj; IJavaElement ije = je.getAncestor(IJavaElement.COMPILATION_UNIT); ICompilationUnit cu = (ICompilationUnit) ije	5	1	4
 B. ISelection selection; IStructuredSelection ss = (IStructuredSelection) selection; Object obj = ss.getFirstElement(); IFile f = (IFile) obj; IJavaElement ije = JavaCore.create(f); ICompilationUnit cu = (ICompilationUnit) ije; 	6	2	5
C. IEditorPart editor; IEditorInput input = editor.getEditorInput(); IWorkingCopyManager manager = JavaUI.getWorkingCopyManager(); ICompilationUnit cu = manager.getWorkingCopy(input);	3	4	1
D. JavaEditor editor; Object editorInput = SelectionConverter.getInput(editor); ICompilationUnit unit = (ICompilationUnit) editorInput;	1	3	2
E. Map fMap; IEditorInput input; Object obj = fMap.get(input); ICompilationUnit unit = (ICompilationUnit) obj;	2	5	6
F. JavaPlugin jp = JavaPlugin.getDefault() IWorkingCopyManager manager = jp.getWorkingCopyManager(); CompilationUnitEditor editor; IEditorInput iei = editor.getEditorInput; ICompilationUnit unit = manager.getWorkingCopy(iei);	4	6	3


Hypothesis 1

Generalized queries provides better coverage of tasks than specialized query. (type and parent based)

Hypothesis 2:

 Context-sensitive ranking heuristic provides better ranks for best-fit code snippets than context independent heuristics.
 Similarly, context-independent heuristic degrade sharply with the increase in repository size

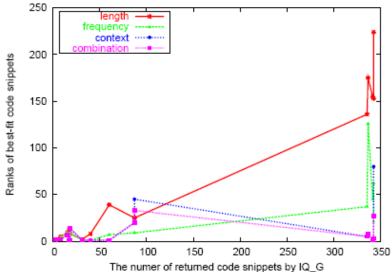


Figure 23: Variation in the Average Rank for the Best-Fit Code Snippet with Increasing Code Snippet Results. Results reported for \mathcal{IQ}_G .

Hypothesis 3:

 Specialized queries combined with context-sensitive ranking heuristics provide better rank ordering for best-fit code snippets than generalized queries using context-sensitive ranking heuristics

	1^{st}	2^{nd}	3^{rd}
IQ_T	5	0	1
IQ_P	4	1	1
IQ_G	3	2	1

Table 2: Distribution of the Best-Fit Ranks for Different Query Types.

- Hypothesis 4: The XSnippet system provides significant assistance to developers, enabling them to efficiently complete a large variety of programming tasks.
- Hypothesis 5: The context-dependent approach of the XSnippet system allows developers to complete more tasks than other previously proposed approaches.

Feedback

Positive

- Mining both explicit and implicit object instantiations
- Provides useful snippets
- Improves developers performance

Negative

- BFSMINE section is not easy to understand
- **—**?