
THE GRAPH IS THE MESSAGE:

DESIGN AND ANALYSIS OF AN UNCONVENTIONAL

CRYPTOGRAPHIC FUNCTION

Selim G. Akl

School of Computing, Queen's University

Kingston, Ontario K7L 3N6, Canada

akl@cs.queensu.ca

May 18, 2018

Abstract

An algorithm is described for encrypting a graph to be transmitted securely from a sender to a
receiver. In communications terminology, \the graph is the message": its vertices, its edges, and its edge
weights are the information to be concealed. The encryption algorithm is based on an unconventional
mapping, conjectured to be a trapdoor one-way function, designed for graphs. This function requires the
sender and the receiver to use a secret one-time encryption/decryption key. It is claimed that a malicious
eavesdropper with no knowledge of the key will be faced with a computational task requiring exponential
time in the size of the input graph in order to extract the original plaintext from the ciphertext carried
by the encrypted graph. A number of variants to the main algorithm are also proposed.

Keywords and phrases: cryptography, cryptanalysis, cryptology, encryption, decryption, secret
key, one-way function, trapdoor one-way function, graph, multigraph, plaintext, ciphertext, one-time
key, encryption algorithm, encryption scheme, public-key cryptosystem, malleability, confusion, di�u-
sion, graph database, homomorphic encryption, social networks, unconventional cryptographic function,
quantum cryptography protocol, molecular encoding.

1 Introduction

The last two decades, have seen a growing interest in linking the two �elds of graph theory and cryptography.
Previous work in this endeavor falls into two broad categories:

1. A number of researchers have used graphs as a tool for creating encryption keys, for producing cipher-
text from plaintext, for generating digital signatures, and for constructing hash functions [2, 6, 14, 16,
21, 22, 24, 26, 27, 28, 29]. Here, the graph has no contents as such, except for its own structure, and
graph traversal is the instrument for building separate cryptographic objects outside of the graph.

2. With the emergence of cloud computing, the focus has been on using homomorphic encryption [10, 15]
in order to encrypt graph databases stored in an untrusted location, thus allowing them to be searched
and operated upon in various ways without the need for decryption in the cloud [3, 4, 11, 12, 17, 25,
30, 31, 32]. Challenges to the security and e�ciency of this type of encryption are cited in [5, 8, 9, 20].

For a survey of previous work on graphs and cryptography, see [23].

This paper has a third and distinct motivation. We are concerned with encrypting graphs that are
transmitted from a sender to a receiver over an insecure channel. Speci�cally,

1. The di�erence here with the �rst aforementioned group of previous e�orts, is that the graph is not a
tool for performing other cryptographic functions. Rather, it is the graph itself that is being encrypted.
Indeed, the graph is the message.

2. The di�erence with the second group, is that the encrypted graph is not stored in a database, to be
repeatedly accessed and decrypted with the same key by a legitimate user, or cryptanalyzed by an
enemy, over long periods of time. Rather, the secrecy of the encrypted message carried by the graph
is vital only for a short period of time.

1

Technical Report 2018-635



The goal is to develop an encryption function that obeys two basic properties:

1. The encryption/decryption key is di�cult to break, and

2. Inverting the encryption function without knowledge of the key takes exponential time in the size of
the graph.

Throughout this paper, all graphs to be encrypted are simple, undirected, and complete, for ease of
presentation. Minor modi�cations allow the encryption algorithms presented here to handle graphs that
deviate from one or more of these characteristics. Similarly, we assume that the information to be encrypted
resides on the edges of the graph; the algorithms can be modi�ed to handle the cases where the information
resides in the vertices, instead of the edges, or in both the vertices and the edges.

We begin with a few de�nitions in Section 2. The proposed encryption algorithm for graphs is described
in Section 3, and an analysis of an exhaustive attack to break it follows in Section 4. Possible applications
of the algorithm are brie
y outlined in Section 5. Some alternative approaches for encrypting a graph are
discussed in Section 6. Concluding thoughts are o�ered in Section 7.

2 Definitions

Three concepts that pertain to the security and computational complexity of the proposed encryption algo-
rithm for graphs are de�ned in what follows.

2.1 One-way function

A mathematical function f is said to be a one-way function if and only if it obeys the following two conditions:

1. Given an argument x, it is computationally easy to obtain the value y = f(x), in the sense that the
computation can be completed in an amount of time that is at most polynomial in the size of x, while

2. Given a certain value y, it is on average computationally hard to invert f , that is, to obtain an x such
that x = f−1(y), in the sense that the computation can only be completed in an amount of time that
is exponential in the size of y, in the average case.

2.2 Trapdoor one-way function

A one-way function f is said to be a trapdoor one-way function if, when presented with a certain value y,
some additional knowledge allows the computation of an x such that x = f−1(y) to be easy, in the sense of
requiring an amount of time that is at most polynomial in the size of y.

2.3 One-time key encryption

A cryptographic system is said to use one-time key encryption if every plaintext is encrypted by means of
an entirely new key, and that key is never used again for encryption.

We conjecture that the encryption algorithm described in the following section is a trapdoor one-way
function, based on one-time key encryption. The algorithm features three graphs. The �rst graph stores,
in plaintext form, the message to be transmitted securely. In the second graph, which is an extension of
the �rst, one level of encryption is implemented. Finally, the second graph is compressed, completing the
encryption, and the resulting third graph, holding the message in ciphertext form, is transmitted. Our claim
in this paper is that a malicious eavesdropper with no knowledge of the encryption/decryption key will be
faced with a computational task requiring exponential time in the size of the input graph in order to extract
the original plaintext from the ciphertext carried by the encrypted graph.

2



3 Graph encryption and decryption

In this section we describe the processes of encrypting and decrypting a graph. The encryption process uses
three distinct graphs, constructed successively. It is based on an unconventional mapping, conjectured to be
a trapdoor one-way function, that is conceived especially for graph structures. Decryption only uses the last
of the three graphs, from which a subgraph is calculated. Both encryption and decryption employ the same
secret key.

3.1 The graph G1

Let G1 be a simple, complete, undirected, and weighted graph with a set of n1 vertices,

V1 = {v1, v2, . . . , vn1},

and a set of m1 edges,
E1 = {e1, e2, . . . , em1

}.

Note that, because G1 is complete, m1 = n1(n1 − 1)/2. We assume throughout this paper that all edge
weights are positive numbers. The weight of the edge (vi, vj) connecting the two vertices vi and vj in G1 is
denoted by wi,j . The graph G1 is constructed such that, among all of its subgraphs, the structure of one
particular subgraph and its edge weights represent information (a message M) that is to be sent securely
from a sender A to a receiver B. A secret encryption/decryption key K is shared by A and B. It is assumed
that only A and B have knowledge of K.

3.2 The graph G2

This is the �rst of two stages in encrypting the graph G1 (and consequently the message M). A set of
vertices and a set of weighted edges are added to G1, resulting in a new graph G2. The purpose of the new
vertices and the new edges is to conceal the identities of the vertices and edges of G1, as well as the values
of its edge weights. This is explained in what follows.

In order to encrypt M using K, the sender augments the graph G1 by adding to it a set of n vertices,

V = {vn1+1, vn1+2, . . . , vn1+n},

and a set of m weighted edges,
E = {em1+1, em1+2, . . . , em1+m}.

This yields a new graph G2 with a set of vertices V2 = V1 ∪ V containing n2 = n1 + n vertices, and a set of
edges E2 = E1 ∪ E containing m2 = m1 +m edges.

The key K consists of two components:

1. A sequence of quadruples

tk = (i, j, wE
i,j , oi,j), k = 1, 2, . . . ,m,

where

(a) i and j are the indices of two vertices vi and vj , respectively, such that both vi and vj belong to
V2, and (vi, vj) is a new undirected edge, member of the set E, to be added to G1 in order to
obtain G2,

(b) wE
i,j is the weight of the new edge (vi, vj), and

(c) oi,j is either equal to 0 or 1, representing addition or multiplication, respectively. The value of oi,j
is the same for all quadruples with the same i and j. The operation oi,j is used in the penultimate
step of encryption as explained in Section 3.3.

2. A random one-to-one mapping π, whose purpose is to hide the identities of the vertices from a malicious
eavesdropper. This function is used in the �nal step of encryption as described in Section 3.3.

3



3.2.1 About the encryption/decryption key

The key K is used only once. For each message M , a new encryption/decryption key is generated in tandem
by A and B using an agreed-upon uniform random-number generator and an agreed-upon seed. The seed
for each new key could be an agreed-upon datum from the morning's newspaper.

The common encryption/decryption key is created by the sender and the receiver synchronously but
consecutively. It is �rst produced by A when initiating the process of encrypting G1. The same key is later
produced by B upon receipt of the encrypted graph.

The process of creating K begins by generating the following quantities m times (each iteration produces
one of the m quadruples):

1. Two positive integers i and j, i 6= j, from the set {1, 2, . . . , n2} (note that the same pair (i, j) may
be generated by the random number generator for another quadruple, during another iteration of this
step, as called for by the algorithm),

2. A positive integer wE
i,j , and

3. A 0 or a 1 for oi,j (if the present pair (i, j) had already been generated for another quadruple, then
oi,j takes the same value, 0 or 1, assigned to oi,j in that previous quadruple).

The second and �nal step in creating K is to generate a set of random positive integers U = {u1, u2, . . . , un2}
for use in the mapping π.

Note that if A and B had never met before commencing to communicate and exchange encrypted messages
with the help of a secret key, then a public-key cryptosystem [13], or even (for increased security) a quantum
cryptography protocol [19], can be used initially to establish once and for all all the agreed-upon parameters
(namely, the random number generator, the method for generating seeds, and so on for all variables of the
encryption algorithm).

3.2.2 The multigraph

The addition of the n vertices V aims to hide the vertices of V1 in a larger set V2. Adding the m edges E
is designed to yield a multigraph G2, that is, a graph in which two vertices may be connected by multiple
edges; in fact, by adding m edges to G1, every pair of vertices in the resulting graph G2 is intended to be
connected by several edges. In order to achieve these two objectives, we take n and m to be su�ciently
large, but typically only a polynomial in n1; for example, n = (αn1)+β and m = (γn2(n2−1)/2)+ δ, where
α, β, γ, and δ are agreed-upon positive integers.

The weights of the edges added by K to G1 to create G2 are arbitrary (they are generated by a random
process) but of the same type and size as the original weights in G1.

3.3 The graph G3

Once multigraph G2 is constructed, the second stage of encryption begins. A new simple graph G3 is obtained
from G2 as follows. Every pair of vertices (vi, vj) in G2 are now connected in G3 by one edge whose weight
is either the sum (if oi,j = 0) or the product (if oi,j = 1) of the weights of all the edges connecting these
two vertices in the multigraph G2. In other words, all the edges between vi and vj in G2 are collapsed into
exactly one edge in G3, and the weight of that edge, denoted by Wi,j , encapsulates the collective weights of
all the edges it has now replaced. Note that graph G3 is a simple, undirected, and complete graph, that is,
every pair of its vertices are connected by exactly one edge. Its set of vertices is V3, where

V3 = V2 = {v1, v2, . . . , vn1 , vn1+1, vn1+2, . . . , vn1+n},

that is, G3 has n3 = n2 = n1 + n vertices, and its set of edges E3 consists of m3 = n2(n2 − 1)/2 edges.
The �nal step in encrypting G3 is to disguise its vertices. This is done using the one-to-one function π

which maps every index i, 1 ≤ i ≤ n3, of a vertex in V3, to a distinct element in the set of random positive
integers U . (It is worth observing that by obscuring the identity of each vertex vi, we are also hiding the
adjacency list of vi, that is, the identities of vi's immediate neighbors in G1. This property of the algorithm
gains even more relevance in those cases where the assumption made throughout this paper{that G1 is a
complete graph{does not hold.) Since the purpose of the mapping π is to confuse the eavesdropper, and

4



not the reader of this paper, we shall henceforth continue to refer to the vertices of G3 with their original
indices, namely, v1, v2, . . . , vn3 (as they are known to A and eventually recognized by B). The graph G3 is
now sent to the receiver B.

We also note in passing that, for simplicity, we have assigned to the variable oi,j only two interpreta-
tions, these being addition and multiplication. More generally, oi,j can denote any number of arithmetic
transformations when the edges of G2 connecting every pair of vertices (vi, vj) are collapsed to one edge in
G3. Speci�cally, when oi,j = 2, for example, Wi,j for (vi, vj) is to be computed from

Wi,j =W 0
i,j + (W 1

i,j × wi,j), if vi ∈ V1 and vj ∈ V1,

and Wi,j =W 0
i,j +W 1

i,j , otherwise,

where W 0
i,j is the sum of the weights of the edges in E connecting the two vertices vi and vj , that is,

W 0
i,j =

∑
(vi,vj)

wE
i,j ,

and W 1
i,j is the product of the weights of the edges in E connecting the two vertices vi and vj , that is,

W 1
i,j =

∏
(vi,vj)

wE
i,j .

More advanced transformations, including modular arithmetic, for example, are also possible, but require a
more involved process for creating the encryption/decryption key. This is particularly true given the present
context of one-time key encryption. In the next section we show how the receiver obtains the original message
M from G3.

3.4 Decryption

WhenG3 is received byB, the latter begins by deriving the value of n1 from n3 = n2 = n1+n = n1+(αn1)+β,
and the value of m from m = (γn2(n2− 1)/2)+ δ. The receiver can now generate the encryption/decryption
key K. Then B proceeds to recover G1 from G3 by applying the following steps, guided by K:

1. The mapping π restores to the vertices their initial identities. All new vertices added by K, and their
associated edges, are discarded from G3. The vertices remaining are the n1 vertices of G1, namely,
V1 = {v1, v2, . . . , vn1}.

2. The original weight of the original edge connecting a pair of vertices (vi, vj) in G1 is recovered by
computing

(a) wi,j =Wi,j −W 0
i,j , if oi,j = 0, or

(b) wi,j =Wi,j/W
1
i,j , if oi,j = 1.

Once G1 is recovered, a weighted subgraph of it is obtained using an agreed-upon graph algorithm, whose
running time is polynomial in n1. This could be, for example, an algorithm for computing the minimum
spanning tree of G1, or the shortest path between two vertices in G1, and so on. The resulting weighted
subgraph is guaranteed to be unique by construction of G1. It carries the information (the message M) that
the sender A intends to communicate to the receiver B. The exact nature of the message M is of secondary
interest in this paper.

4 Cryptanalysis

It is straightforward to see that the computations involved in both the encryption and decryption steps of
Section 3 require a running time of O(n21), that is, a polynomial in the size of the input graph G1. In this
section we analyze the computational complexity of the task faced by the cryptanalyst (also referred to as
the malicious eavesdropper, or \the enemy") in attempting to obtain the message M from the graph G3

without knowledge of the key K.

5



In the real world, cryptanalysts often have at their disposal some domain-dependent information about
the content of an encrypted message. This information may help them, on occasion, to extract part, if not
all, of the plaintext from the ciphertext. For example, it would be of great assistance to the enemy to learn
that every private communication between two parties always begins with the two words \TOP SECRET".
In a theoretical analysis, however, such intelligence is too nebulous to quantify, too imprecise to express
mathematically in a general setting. For the purpose of this study we assume, therefore, that the malicious
eavesdropper, while likely to be familiar with the context of the communication, does not possess any side
knowledge when attempting to obtain the exact plaintext message M from the ciphertext graph G3.

SinceK is never used more than once, and the availability of ancillary information is precluded, exhaustive
search appears to be the only option available to the cryptanalyst. The latter can reasonably assume that
the original message is hidden in (possibly a subgraph of) the plaintext graph (G1), which may itself be a
subgraph of the ciphertext graph (G3). The only option then is to enumerate all (not necessarily complete)
subgraphs of G3, and from each subgraph, considered a candidate for being G1, attempt to pry out a
meaningful message. Since every subgraph potentially holds a message which is valid in some sense, testing
a few subgraphs at random will not do. All subgraphs must be examined; none can be overlooked, none can
be missed, for it may contain the intended message M . Only when all such messages have been generated,
can one be selected which, when compared to all other messages considered, is without any doubt the correct
M .

Enumerating all possible subgraphs of G3, that is,

m3∑
x=1

(
m3

x

)
= 2m3 − 1 = 2n3(n3−1)/2 − 1

subgraphs, is a computation requiring exponential time in the size of the input. To this must be added the
time taken to generate a message from each subgraph enumerated. We do not attempt an analysis of the
computational complexity of this step which is very much dependent on the particular application.

Based on this analysis, we conjecture that the time complexity of obtainingM from G3 without knowledge
of K, that is, the complexity of inverting the graph encryption function, is always exponential in the size of
G3. We also note that, by the time M is found in this way, the value to the enemy of knowing it in a timely
manner would have been lost.

Formally, let fG be the function that maps the graph G1 to the graph G3, under the control of the key
K, as detailed in Sections 3.1{3.3; thus,

fG(G1,K) = G3.

Given G1 and K, it is computationally easy for the sender A to obtain G3 from fG(G1,K); as pointed out
above, this computation requires polynomial time in the size of G1. By construction, fG is invertible. Given
a graph G3, inverting fG means �nding a graph G1 such that:

G1 = f−1G (G3,K).

The receiver B has no di�culty, given G3 and K, to obtain G1 from f−1G (G3,K), a computation which is also
easy, requiring polynomial time in the size of G3, that is, polynomial time in the size of G1. We claim that
without knowledge ofK, fG is a one-way function, that is, evaluating f−1G (G3, ?) is computationally infeasible
for large values of n3 (the question mark symbol indicating absence of knowledge of K). Speci�cally, we
conjecture that computing f−1G (G3, ?) always requires exponential time in the size of G3. If this claim is true,
it would follow that fG is a trapdoor one-way function, the trapdoor here being K.

5 Applications

The encryption algorithm described in Section 3 would be useful in the encryption of the following graphs:

1. Geographic maps,
2. Communications networks,
3. Transportation infrastructures,
4. Industrial designs (e.g. integrated circuits),
5. Architectural plans,
6. Geometric constructs (e.g. Voronoi diagrams),

6



7. Organizational charts,
8. Information systems,
9. Processes in scienti�c domains (biology, chemistry, physics),
10. Text messages,

and so on, in any application where a graph is used to model an object, a concept, a real-life situation, or a
relation among various entities.

For most of the applications listed here, the input (plaintext) graph G1 may be quite large. As shown
in Section 6.1, the size of G1 somewhat grows even further when encrypted as G3. When several ciphertext
graphs are to be transmitted, the heavy tra�c coupled with the data overhead may cause the communication
network to become congested. This issue needs to be taken into consideration, and the parameters of the
algorithm in Section 3 must therefore be selected with care.

In the following section we discuss the case in which the encrypted graph G3 need not be transmitted,
thus mitigating the problems associated with graph size and network tra�c.

5.1 Graphs in databases

It is also interesting to note that the encryption algorithm of Section 3 could be used, if so needed, in
the context of the database application mentioned in Section 1. This application would, of course, violate
the one-time key property of the algorithm in Section 3, since, in this case, the encryption/decryption key
remains valid for long periods of time, and is used repeatedly for decryption. Furthermore, the data in such
an application would not possess the time-sensitive nature, a crucial characteristic in Section 3 of the data
carried by the graph to be encrypted. All the same, we include this option here, as detailed in the next few
paragraphs, in the interest of completeness. This will serve, as well, to illustrate the versatility of the basic
idea.

Suppose then that graph G1 is stored in the cloud, encrypted as G3. In this case, some queries can be
performed by legitimate users on the encrypted data without decrypting them. Only when the reply to the
query is received, does the legitimate user who knows the encryption/decryption key K obtain the plaintext.
Examples of such queries include straightforward ones, such as \What is the weight of the edge (vi, vj)?", as
well as more complex ones such as \Find the weight of a simple path between vi and vj that goes through
a given set of vertices", and \Find the weight of a spanning tree (or that of an Euler tour, or a Hamilton
cycle) over a given set of vertices". Whether the encrypted weight of one edge is returned (as in the �rst
query), or a sequence of edges and their encrypted weights are returned (as in the second and third queries),
the true weights are obtained using K. Similarly, queries that involve �nding neighborhoods or connected
entities, as in social networks, can easily be handled in the same way.

Certain database queries cannot be handled by the system as described. These include optimization
queries, such as \What is the shortest path between vi and vj that goes through a given set of vertices", or
\Find the minimum spanning tree over a given set of vertices". If answers to such queries are to be sought,
then care must be given at the outset, during the encryption stage, to the selection of wE

i,j and oi,j . Thus,
for example, we can deliberately set oi,j = 1 (that is, multiplication) for all 1 ≤ i ≤ n2 and 1 ≤ j ≤ n2, and
ensure that W 1

i,j has the same value for all 1 ≤ i ≤ n2 and 1 ≤ j ≤ n2. This allows the sum of two encrypted
edge weights to be equal to the encryption of the sum of the two original weights; thus,

(W 1
i,j × wi,j) + (W 1

j,k × wj,k) =W 1
i,j × (wi,j + wj,k).

Of course, an enemy would also know that calculating the shortest path in the encrypted graph reveals a
shortest path in the plaintext graph. However, the enemy will not know the true total weight of the shortest
path, nor the true identity of the (unencrypted) vertices on such path. In some circumstances, a typical
time-storage tradeo� can be achieved by computing and storing in the untrusted database a distance matrix
for the graph G1, in which entry (vi, vj) holds, in encrypted form, the total weight of the shortest path
between vi and vj (and, if necessary, the intermediate vertices along this path, if any, also in encrypted
form).

Finally, we note that typical database operations, such as insert, delete, and update, can be executed
without forcing a complete re-encryption of the database.

7



6 Discussion

It is said that cryptography is the process of applying confusion and diffusion to a plaintext in order to obtain
a corresponding ciphertext. In a classical encryption scheme, confusion is implemented by substitution, that
is, by using an encryption key to replace basic constituents of the plaintext (such as letters, symbols, bits,
and so on) by other objects of the same or another type, and then di�usion is implemented by permutation,
that is, by shu�ing these objects, also under the control of the encryption key.

In the algorithm proposed in Section 3 to encrypt a graph, di�usion is achieved by adding new vertices
and weighted edges to the original graph G1, thus obtaining the graph G2. Confusion is achieved by replacing
all the edges connecting two vertices in G2 with one edge whose weight combines the weights of the edges
it replaces, thus obtaining the graph G3. Confusion is also achieved by renaming the vertices of G3 before
sending it to B.

In the remainder of this section we discuss a possible implementation of the graph G3 and examine
alternative algorithms for encrypting a graph.

6.1 Implementation

The encryption algorithm of Section 3 does not specify in what form the graph G3 is transmitted to the
receiver. We can assume that A sends G3 to B as a data structure. For example, G3 can be organized as a
two-dimensional array whose rows and columns are labeled with the vertices in V3. Because the edges in E3

are undirected, only a triangular array is needed, having n3 − 1 rows labeled

v2, v3, . . . , vn1 , vn1+1, . . . , vn1+n,

and n3 − 1 columns labeled
v1, v2, . . . , vn1 , vn1+1, . . . , vn1+n−1.

The entry in position (vi, vj), i > j, of the triangular array, is the weight Wi,j of the edge (vi, vj). The
important point here is that, while G3 is sent in structured form, it does not reveal anything about the
structure or contents of G1 to anyone who does not know the key K.

Since G1 is a complete graph (besides being simple, undirected, and weighted), no other data structure for
its implementation is more e�cient than the triangular array just described in the previous paragraph. We
use this data structure in the remainder of this section as we explore alternative algorithms for encrypting
the input graph G1.

Finally, we note that, while the encrypted graph G3 is larger than its original version G1, the sizes of
both graphs di�er by a (relatively small) multiplicative constant. To wit, G1 and G3 have n1 and O(n1)
vertices, respectively. Similarly, both G1 and G3 have O(n

2
1) edges.

6.2 Alternative graph encryption algorithms

How does the algorithm of Section 3 di�er from other possible approaches for encrypting a graph G1? In what
follows we consider several such alternatives in the context of the application studied in this paper, namely,
that the graph travels from A to B, encrypted using a one-time key. The latter is generated separately by
A and B, when needed, by means of a random-number generator, as described in Section 3.2.1. It is to be
known exclusively by A and B and (by de�nition) is never to be used again to encrypt another message.

6.2.1 Encrypting the edges of each vertex separately

In the �rst approach, the one-time secret encryption/decryption key shared by the sender and the receiver is
a set of n1 coe�cient matrices {X1, X2, . . . , Xn1}, each with n1 − 1 rows and n1 − 1 columns, each of which
is associated with a distinct vertex of G1. Further, each of these matrices is non-singular and its entries are
all positive numbers.

Encryption proceeds as follows. For every vertex vi of G1, the weights of the n1 − 1 edges connecting vi
to its n1 − 1 neighbors, and represented by the vector

Yi =< wi,1, wi,2, . . . , wi,i−1, wi,i+1, . . . , wi,n1 >,

are encrypted using the (n1 − 1)× (n1 − 1) coe�cient matrix Xi. Thus, A computes the vector

Xi × Y T
i = ZT

i ,

8



and sends ZT
i to B.

Upon receipt of ZT
i , B who knows Xi, obtains Yi from

X−1i × ZT
i = Y T

i ,

or, equivalently, by solving n1 − 1 equations in the n1 − 1 unknowns wi,1, wi,2, . . . , wi,i−1, wi,i+1, . . . , wi,n1 ,

Xi × Y T
i = ZT

i .

The di�culty with this approach is that it reveals too much about the structure of G1 to an eavesdropper.
Also, each edge weight is encrypted twice and decrypted twice. Nonetheless, by using n1 distinct coe�cient
matrices, each to encrypt the weights associated with one of the n1 vertices, this approach has a better
chance to withstand cryptanalysis than the following simple variant.

6.2.2 Using a single coefficient matrix

Let R1 denote the weight matrix of graph G1, that is, the matrix whose entry at row vi and column vj is
the weight wi,j of the edge (vi, vj) connecting the two vertices vi and vj . In the encryption algorithm we
consider in this section, a single n1 × n1 coe�cient matrix Q1 is used to encrypt the entire weight matrix
R1 of the graph G1, by computing

Q1 ×R1 = S1.

Here, Q1 is non-singular and all of its entries are positive numbers. Now S1 is transmitted to the receiver.
The latter, who knows the one-time key Q1, recovers the weight matrix R1 from the obvious equation

R1 = Q−11 × S1,
or equivalently by solving n1(n1 − 1)/2 equations in n1(n1 − 1)/2 unknowns wi,j , i = 2, 3, . . . , n1 and
j = 1, 2, . . . , n1 − 1,

Q1 ×R1 = S1,

where the unknown weight matrix R1 is symmetric and wi,i = 0, for i = 1, 2, . . . , n1.
Note that if R1 is represented as a triangular array, as described in Section 6.1, then so are Q1, S1, and

Q−11 .
This algorithm is less secure than the one in Section 6.2.1, as the same coe�cient in Q1 is used to encrypt

several edge weights in R1.

6.2.3 Matrix confusion and diffusion

The algorithm we examine in this section for encrypting the graph G1 uses a one-time key L, which is a
triangular array with n1− 1 rows labeled 2, 3, . . . , n1, and n1− 1 columns labeled 1, 2, . . . , n1− 1. The entry
in position (i, j), i > j, of L holds the following values:

1. The �rst value ei,j is either a 0 or a 1,

2. The second and third are two positive integers ai,j and bi,j , respectively.

Key L encrypts G1's weight matrix R1, stored as a triangular array. The result is an n1 × n1 matrix D
with entries di,j , 1 ≤ i, j ≤ n1. Let ci,j , 1 ≤ i, j ≤ n1, be a random positive integer, of the same magnitude
as ai,jwi,j + bi,j , 1 ≤ j < i ≤ n1. Encryption proceeds as follows, for i > j:

1. If ei,j = 0 then di,j = ai,jwi,j + bi,j and dj,i = cj,i,

2. If ei,j = 1 then di,j = ci,j and dj,i = ai,jwi,j + bi,j .

Finally, for i = j, di,i = ci,i.
In other words, the n1(n1 − 1)/2 elements of R1 are stored in D, encrypted using ai,j and bi,j , and

scattered using ei,j , with ci,j creating further confusion. Having computed D, the sender expedites it to the
receiver. The latter, who knows L, ignores all the ci,j entries, and decrypts the relevant entries of D.

The algorithm in this section aims to bring together the advantages of the algorithms presented in Section
6.2.1 and Section 6.2.2, by o�ering a combination of simplicity and security. Like other algorithms in this
discussion, however, it provides the eavesdropper with a glimpse into the structure of G1.

9



6.2.4 Encrypting at the binary level

In its most basic digital form, the graph G1 (that is, its vertices, its edges, and its edge weights), is seen
as a string M1 consisting only of 0s and 1s, whose length is denoted by N1. The string M1 is obtained by
concatenating the rows of the weight matrix R1 of G1 into a one-dimensional array, and expressing its entries
in binary notation. For this representation of G1, encryption will employ a one-time key K1, also of length
N1 bits. The graph G1 is encrypted by computing the bit-wise Exclusive-OR of M1 and K1,

C1 =M1 ⊕K1,

which is sent to B. The latter recovers M1 from

M1 = C1 ⊕K1.

In other words, B has no di�culty in recovering G1 (in binary notation!). The problem facing B is that
the string M1 presents the graph G1 in an entirely unstructured form. The receiver needs to make sense of
a string M1 of N1 bits, and derive from it the graph structure of G1. This necessarily means that A must
somehow communicate some information to B, relating to the number of vertices, number of edges, and
nature of the edge weights of the graph represented by M1. Whether this information is sent in encrypted
form separately from C1, or it is included in M1 and is sent as part of the ciphertext C1, the trick is to avoid
introducing a weakness that a malicious eavesdropper might be able to exploit pro�tably over time and over
a succession of distinct graphs G1 sent from A to B.

We also note that this algorithm is not adaptable to the application in Section 5.1, in particular when
certain optimization operations, such as computing a minimum spanning tree or a shortest path, are to be
performed in the cloud. These computations will not be possible because the sum of two encrypted edge
weights, is not necessarily equal to the encryption of the sum of the two original weights:

(wi,j ⊕K1) + (wj,k ⊕K1) 6= (wi,j + wj,k)⊕K1.

6.2.5 The spider web

In this �nal variant of the algorithm of Section 3, we return to some of the ideas used in that algorithm, and
apply them with a twist. The sender A obtains a new graph G′ from the input graph G1 with the help of
an encryption/decryption key K ′, and sends it to the receiver B. The steps for creating G′ are detailed in
what follows.

Step 1: For each edge (vi, vj) connecting the two vertices vi and vj , where i > j and 1 ≤ i, j ≤ n1, in G1,
a set Vi,j of ` new vertices,

Vi,j = {v1i,j , v2i,j , . . . , v`i,j},

is inserted on (vi, vj) between vi and vj , thus splitting (vi, vj) arbitrarily into a set Ei,j of `+1 segments,
each of which is now a new edge,

Ei,j = {(vi, v1i,j), (v1i,j , v2i,j), . . . , (v`i,j , vj)}.

These edges replace the original edge (vi, vj). Their respective weights,

w
(1)
i,j , w

(2)
i,j , . . . , w

(`+1)
i,j ,

add up to wi,j the weight of the original edge (vi, vj). The edges created in this step form the set

E′1 =
⋃
i>j

Ei,j , 1 ≤ i, j ≤ n1.

Given that G1 has n1(n1 − 1)/2 edges, the total number of vertices added is `n1(n1 − 1)/2, forming
the set,

10



V ′1 =
⋃
i>j

Vi,j , 1 ≤ i, j ≤ n1.

The graph G′ therefore has n′ = n1 + `n1(n1 − 1)/2 vertices in the set V ′ = V1 ∪ V ′1 .

Step 2: Each vertex in V ′ is now connected to all other vertices with which it does not already share an
edge; let this new set of edges thus introduced be E′′. This yields the set E′ = E′1 ∪E′′ of edges of G′
of size n′(n′ − 1)/2.

Step 3: The weight w
(p)
i,j , for i > j, 1 ≤ i, j ≤ n1, and 1 ≤ p ≤ `+ 1, of each edge added in Step 1, that is,

the weight of each edge in E′1, is encrypted as w′
(p)
i,j by means of two numbers a

(p)
i,j and b

(p)
i,j ; thus,

w′
(p)
i,j = a

(p)
i,j w

(p)
i,j + b

(p)
i,j .

As well, all edges created in Step 2, that is, the edges in E′′, are assigned random weights.

Step 4: The �nal step in encrypting G1 is to use a mapping π′ (similar to the mapping π of Section 3.3) in
order to disguise the identities of the vertices in V ′.

The encryption/decryption key K ′ consists of a sequence of pairs (a
(p)
i,j , b

(p)
i,j ), where i > j, 1 ≤ i, j ≤ n1,

and 1 ≤ p ≤ ` + 1, and the mapping π′. Note also that ` is an initially agreed-upon parameter of this
algorithm. This allows B upon receiving G′ to recover n1 from n′ = n1 + `n1(n1 − 1)/2. The receiver now
generates K ′ (as described in Section 3.2.1) and proceeds to identify the original vertices and the weights of
the original edges. This algorithm is simpler than the algorithm of Section 3. However, unlike the algorithm
of Section 3, its resistance to a potential cryptanalytic threat is generally more di�cult to analyze.

7 Conclusion

The problem addressed in this paper is that of encrypting a graph to be transmitted privately from a sender
A to a receiver B. The two communicating parties are assumed to share an encryption/decryption key to
be used only once. The main algorithm described in Section 3 and its variants discussed in Section 6.2 are
simple, e�cient, and (one hopes) resistant to cryptanalysis. They also enjoy the property of being easily
modi�ed, if so required; the basic idea of each encryption algorithm can be readily extended for e�ciency or
security purposes.

The cryptosystems of Sections 3 and 6.2 protect A and B from a passive eavesdropper, that is, one who
simply listens to their communications. They can also safeguard against an active eavesdropper, that is,
one who injects spurious data into a message. An example of this attack is provided by the algorithm of
Section 6.2.4. When encryption is at the binary level, an active eavesdropper can change the ciphertext C1

to another ciphertext C2, so that the plaintext message M2 obtained by B is di�erent from, but very closely
related to, the message M1 sent by A. Thus, with knowledge that

C1 =M1 ⊕K1,

but without any knowledge of M1, the eavesdropper can create an encryption of a message M2, where

M2 =M1 ⊕ P1,

for any binary string P1, by intercepting C1, computing

C2 = C1 ⊕ P1 = (M1 ⊕K1)⊕ P1 = (M1 ⊕ P1)⊕K1 =M2 ⊕K1,

and sending C2 to B. This property, known as malleability, is a common weakness plaguing almost all classical
cryptosystems, with rare exceptions [7]. There are ways to detect such intrusion. Most cryptosystems,
including all the ones in this paper, possess the ability to incorporate a digital signature [1], thereby allowing
the sender of a message, as well as the message itself, to be authenticated.

This research began as an attempt to solve an open problem in the theory of computation: To �nd a
function that is provably one-way. The exploration led to graph theory, and a search for a problem that forces

11



any solution to necessarily require the enumeration of all subgraphs of a given graph. From there, it was
only a small step to cryptography, and the potential discovery of a trapdoor one-way function, computing
the inverse of which is hypothesized to have a complexity that is exponential in the size of the input.

Of course, this is not the �rst time that functions that are believed to be one-way are used in cryptography.
In fact, the security of most, if not all, modern classical cryptosystems rests upon the unproven assumption
that �nding the inverse of the functions on which encryption is based, is computationally intractable [13].

Time will tell whether these conjectures are true. Time will also tell whether unconventional platforms
may some day be used in the representation and secure transmission of graphs [18]. For example, molecules
can be considered graphs. Speci�cally, proteins have a three-dimensional geometric structure, which is held
together by connections between the atoms in the molecule. These connections are either electric or covalent
and they vary in strength. Thus, the force that binds two atoms is the weight of the graph edge between
these two atoms. In addition, protein folding is controlled by restrictions on the angles between edges in the
graph, and these restrictions could express certain graph characteristics. Proteins also have the ability to
add or delete edges. These observations suggest that hiding a secret message inside a protein is perhaps a
future possibility. This way, we would have come full circle: Graphs, traditionally used as representations of
physical entities, could ultimately be embodied by these physical entities themselves.

Acknowledgments

I am grateful to Pat Martin, Marius Nagy, Naya Nagy, and Kai Salomaa for their helpful comments.

References

[1] Akl, S.G., Digital signatures: A tutorial survey, IEEE Computer, Vol. 16, No. 2, 1983, pp. 15{24.

[2] Al Etaiwi, W.M., Encryption algorithm using graph theory, Journal of Scientific Research & Reports,
Vol. 19, No. 3, 2014, pp. 2519{2527.

[3] Brickell, J. and Shmatikov, V., Privacy-preserving graph algorithms in the semi-honest model, in:
ASIACRYPT 2005, Roy, B. (ed.), LNCS 3788, 2005, pp. 236{252.

[4] Cao, N., Yang, Z., Wang, C., Ren, K., and Lou, W., Privacy-preserving query over encrypted graph-
structured data in cloud computing, Thirty-First IEEE International Conference on Distributed Com-
puting Systems, 2011, pp. 393{402.

[5] Cao, Z. and Liu, L., On the weakness of fully homomorphic encryption, arXiv:1511.05341 [cs.CR]

[6] Charles, D.X., Lauter, K.E., and Goren, E.Z., Cryptographic hash functions from expander graphs,
Journal of Cryptology, Vol. 22, No. 1, 2009, pp. 93{113.

[7] Dolev, D., Dwork, C., and Naor, M., Nonmalleable cryptography, SIAM Journal of Computing, Vol.
30, No. 2, 2000, pp. 391{437.

[8] El Makkaoui, K., Ezzati, A., and Beni Hassane, A., Challenges of using homomorphic encryption
to secure cloud computing, Proceedings of the International Conference on Cloud Technologies and
Applications, 2015, pp. 1{7.

[9] Frederick, R., Core concept: Homomorphic encryption, Proceedings of the National Academy of Science,
Vol. 112, No. 28, 2015, pp. 8515{8516.

[10] Gentry, C., Computing arbitrary functions of encrypted data, Communications of the ACM, Vol. 53,
No. 3, 2010, pp. 97{105

[11] Gerbracht, S., Possibilities to encrypt an RDF-graph, IEEE Third International Conference on Infor-
mation and Communication Technologies: From Theory to Applications, 2008, pp. 1{6.

[12] Kasten, A., Scherp, A., Armknechet, F., and Krause, M., Towards search on encrypted graph data,
Proceedings of the International Conference on Society, Privacy and the Semantic Web, 2013, pp.
46{57.

12



[13] Katz, J. and Lindell, Y., Introduction to Modern Cryptography (2nd edition), CRC Press, Boca Raton,
2015.

[14] Kinoshita, H., An image digital signature system with ZKIP for the graph isomorphism, Proceedings
of the IEEE International Conference on Image Processing, 1996, pp. 247{250.

[15] Lauter, K. and Naehrig, M., Can homomorphic encryption be practical? Proceedings of the Third ACM
Cloud Computing Security Workshop, New York, 2011, pp. 113{124.

[16] Maricq, A., Applications of Expander Graphs in Cryptography.
https://www.whitman.edu/Documents/Academics/Mathematics/2014/maricqaj.pdf

[17] Meng, X., Kamara, S., Nissim, K., and Kollios, G., GRECS: Graph encryption for approximate short-
est distance queries, Proceedings of the Twenty-Second ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 504{517.

[18] Nagy, N., Personal communication, May 2018.

[19] Nagy, N., Nagy, M., and Akl, S.G., Carving secret messages out of public information, Journal of
Computer Science, Vol. 11, No. 1, 2015, pp. 64{70.

[20] Nguyrn, P.Q., Breaking fully-homomorphic-encryption challenges, in: CANS 2011, Lin, D. et al. (Eds.),
LNCS 7092, 2011, pp. 13{14.

[21] Petit, C., On graph-based cryptographic hash functions, Th�ese soutenue en vue de l'obtention du grade
de Docteur en Sciences Appliqu�ees, Universit�e Catholique de Louvain, Louvain-la-Neuve, Belgique,
May 2009.

[22] Polak, M., Roma�nczuk, U., Ustimenko, V., and Wr�oblewska, A., On the applications of extremal graph
theory to coding theory and cryptography, Electronic Notes in Discrete Mathematics, Vol. 43, 2013,
pp. 329{342.

[23] Priyadarsini, P.L.K., A survey on some applications of graph theory in cryptography, Journal of Discrete
Mathematical Sciences and Cryptography, Vol. 18, No. 3, 2015, pp. 209{217.

[24] Samid, G., Denial cryptography based on graph theory, U.S. Patent 6823068 B1, 2004.

[25] Sharma, S., Powers, J., and Chen, K., Privacy-preserving spectral analysis of large graphs in public
clouds, Proceedings of the 11th ACM Asia Conference on Computer and Communications Security,
2016, pp. 71{82.

[26] Sz�oll�osi, L., Marosits, T., Feh�er, G., and Recski, A., Fast digital signature algorithm based on subgraph
isomorphism, in: CANS 2007, Bao, F. et al. (Eds.), LNCS 4856, 2007, pp. 34{46.

[27] Ustimenko, V.A., Graphs with special arcs and cryptography, Acta Applicandae Mathematicae, Vol.
74, 2002, pp. 117{153.

[28] Ustimenko, V.A., On graph-based cryptography and symbolic computations, Serdica Journal of Com-
puting, Vol. 1, 2007, pp. 131{156.

[29] Ustimenko, V.A. and Khmelevsky, Y., Walks on graphs as symmetric or asymmetric tools to encrypt
data, South Pacific Journal of Natural Sciences, Vol. 20, 2002, pp. 34{44.

[30] Wang, Q., Ren, K., Du, M., Li, Q., and Mohaisen, A., SecGDB: Graph encryption for exact shortest dis-
tance queries with e�cient updates, Twenty-First International Conference on Financial Cryptography,
2017, pp. 79{97.

[31] Xie, P. and Xing, E., CryptGraph: Privacy preserving graph analytics on encrypted graph.
arXiv:1409.5021 [cs.CR]

[32] Yuan M., Chen, L., Yu, P.S., and Mei, H., Privacy preserving graph publication in a distributed
environment, World Wide Web, Vol. 18, No. 5, 2015, pp. 1481{1517.

13


