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Abstract

Two data items a and b are stored on an untrusted database in their encrypted forms E(a) and E(b),
respectively. It is required that the encryption function be fully homomorphic, that is, E must satisfy the
conditions E(a)+E(b) = E(a+b) and E(a)×E(b) = E(a×b). This would allow the owner of the data, as
well as an untrusted party operating the database on behalf of the owner, to perform operations directly
on the encrypted data without the need for decryption. We propose a general framework that allows
the derivation of such fully homomorphic functions. Two implementations of the general framework are
then described that, in addition to being secure, enjoy the property of being e�cient to compute.

1 Introduction

Let X = {x1, x2, . . . , xn} be a �nite set of nonnegative integers representing data to be stored securely on an
untrusted cloud service. It is not necessary, though possible, that the set X be stored locally by its owner.
The data are encrypted in order to protect the secrecy and integrity of their information. It is required that
the data be manipulated remotely and directly in their encrypted form through addition and multiplication
operations, such that the sum/product of two encrypted data results in the encryption of the sum/product
of the original values. In other words, let E be the encryption function, de�ned over the set Z of all integers.
For any two elements of X, for example, xi and xj used henceforth for illustration, we need to have:

E(xi) + E(xj) = E(xi + xj)

and
E(xi)× E(xj) = E(xi × xj).

This means that both the domain and the range of the function E are equipped each with an addition and
a multiplication. Such algebraic systems are called rings in mathematics and the encryption function E is
then what is called a ring homomorphism. In cryptography, an encryption function E satisfying the two
equalities above is said to be fully homomorphic.

Ever since the idea of homomorphic encryption was articulated over forty years ago [15], several homomor-
phic encryption schemes have been developed, ranging from so-called `partial' or `somewhat' homomorphic
encryption schemes to fully homomorphic encryption schemes; see, for example, [2, 6, 7, 8, 14], and for sur-
veys [1, 5, 12]. These schemes vary widely in terms of the intricacy of their algorithms, their computational
requirements, and the security they provide [3, 4, 11, 13].

In this paper we prove that, if we deal with a ring having a reasonable notion of division (like the ring
of integers), then the function associating to each element of the ring its remainder upon division by a �xed
element (namely, the secret encryption key) can be used as an e�cient and secure encryption homomorphism.
We derive a general framework for fully homomorphic encryption, and illustrate the general approach with
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two speci�c implementations. The resulting cryptosystems, one for integers and one for polynomials possess
the important property of allowing an arbitrary number of additions and multiplications to be performed,
in any order, on the encrypted data.

The remainder of the paper is organized as follows. Section 2 o�ers some mathematical preliminaries and
provides a description of our general framework for fully homomorphic encryption. Two implementations of
the general framework are proposed is Section 3. Some closing thoughts are presented in Section 4.

2 The mathematical setting

For the bene�t of completeness, we begin with some background from Algebra. This is followed by a
presentation of our proposed general framework.

2.1 Algebraic preliminaries

In mathematics, a ring is a set with two algebraic operations, addition and multiplication, satisfying a set
of axioms. Typical examples of rings are the set Z of integers or the set of all square matrices of a �xed size
with integral entries. Here, we deal only with commutative rings, that is, rings A such that, for any a, b ∈ A,
we have a× b = b× a.

In order to have a reasonable concept of division, we need a further condition: our commutative ring
must be what is called an integral domain, namely if two elements a, b ∈ A are nonzero, then their product
a× b is nonzero. Examples of integral domains are the set Z of integers, or the sets R[t],Z[t] of polynomials
in one undeterminate t with real, or integral coe�cients, respectively.

An integral domain A is called an Euclidean domain if it admits a so-called valuation, that is a map ϕ
from the set of nonzero elements of A to the set of natural numbers N such that:

1. If a, b are two nonzero elements of A, then ϕ (a) ≤ ϕ (a× b)

2. If a ∈ A is arbitrary and b ∈ A is nonzero, then there exist q, r ∈ A such that a = q× b+ r with either
r = 0 or ϕ (r) < ϕ (b) .

That is, Euclidean domains are integral domains in which division is possible. The elements q, r in
condition 2. above are respectively called the quotient and the remainder of the division of a by b. It
is important to observe that in a general Euclidean domain, quotient and remainder are not necessarily
unique. This is the case if and only if the valuation ϕ satis�es the following additional condition: if a, b are
two nonzero elements of A, then ϕ(a+ b) ≤ max {ϕ (a) , ϕ (b)} .

An example of an Euclidean domain is the set Z of integers, with valuation function ϕ(a) = |a| for a 6= 0. If
one assumes moreover that the remainder is nonnegative, then division has unique quotients and remainders.
An example of an Euclidean domain where division has unique quotients and remainders (without additional
hypothesis) is the set R[t] of polynomials in one undeterminate t with real coe�cients, with valuation function
ϕ(p) = deg(p) the degree of p. On the other hand, Z[t] is not an Euclidean domain: one can only divide by
polynomials whose leading coe�cient is 1 or -1, but then, the quotient and the remainder are unique.

We shall freely use concepts and results about integral domains and division as can be found in any
algebra book, see, for example, [9].

2.2 A general framework for fully homomorphic encryption

Let A be an Euclidean domain having unique quotients and remainders, and the secret encryption key m be
a �xed element of A. The latter is known only to the owner of the data X and stored safely locally. Then m
generates the ideal Am consisting of all multiples a×m with a ∈ A and therefore the quotient ring A/Am
consisting of all residual classes of elements of A modulo m.

Elements of this quotient ring can be identi�ed with elements r of A such that r = 0 or ϕ (r) < ϕ (m) .
However, if one does so, addition and multiplication of such elements have to be performed modulo m, that
is, if r, r′ are such that ϕ (r) < ϕ (m) and ϕ (r′) < ϕ (m) , then r+r′ is by de�nition the remainder of division
of the sum of r, r′ in A upon division by m. Similarly, r × r′ is the remainder of division of the product of
r, r′ in A upon division by m.

Consider the function E : A → A/Am mapping each element of A onto the residual class modulo m
containing it. Using the identi�cation above, one can alternatively map each x ∈ A onto an element x′ such
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that x = x′ + q × m with either x′ = 0 or ϕ (x′) < ϕ (m) . Because the remainder x′ is unique, this is a
well-de�ned function with values in A/Am.

This function is well-known to be a ring homomorphism, called the projection of A onto A/Am. We give
the proof for the bene�t of the reader. Let xi, xj ∈ A, then E (xi + xj) is the class containing the remainder
of the division of xi + xj by m. However, xi + xj = xi

′ + xj
′ + (qi + qj) ×m. Therefore, this remainder is

the same as that of xi
′ + xj

′ = E (xi) + E (xj) . Hence E (xi + xj) = E (xi) + E (xj) in A/Am. One proves
in exactly the same manner that E (xi) × E (xj) = E(xi × xj). One also has E(1) = 1, even though this is
not needed.

The function E is surjective but by no means injective, thus it is not an isomorphism of rings. Nonethe-
less, decryption can easily be performed. Indeed, knowledge of m, q, x′ allows an easy computation of
x = x′ + q × m. It is worth observing here that all operations mod m are to be performed by the user
(owner of the data set X) locally, at a secure location. To emphasize, no mod m operation is performed
on the cloud facility, for this would necessarily divulge m. Finally, note that, even if the key m is divulged,
its knowledge does not su�ce to �nd x from the knowledge of x′: one needs absolutely to know the quotient q.

3 Fully homomorphic implementations

In what follows we present two implementations of the general framework of Section 2.2.

3.1 Integer encryption

Assume �rst that the data set X is a subset of the set Z of integers and a positive integer m be the secret
key. Let Zm be the ring of classes of integers modulo m, identi�ed with its full set of representatives
{0, 1, . . . ,m− 1} , namely, the possible remainders of division of an integer by m. We de�ne E to be the
composition of the inclusion map of X into Z with the projection of Z onto Zm thus, if x ∈ X, we let

E(x) = x′

be the remainder of the division of x by m, that is, x′ is the unique integer such that 0 ≤ x′ ≤ m − 1 and
x = x′ + q ×m, where q denotes the quotient of x by m. In particular, x′ is equivalent to x modulo m.

The image E(x), namely the remainder x′, is then stored on the cloud. In order to be able to recover
x later, the user also stores the quotient q locally. In most applications, however, q can instead be stored
on the cloud. In this case, all the quotients qi, 1 ≤ i ≤ n, corresponding to all the elements xi of X, are
encrypted (each individually) using a symmetric-key encryption algorithm and a single secret key held by
the user; see, for example, [10]. Note that the algorithm used for this purpose need not be homomorphic.

As proved in Section 2.2 above, E is a ring homomorphism. Therefore if xi and xj are to be added
or multiplied, then their images xi

′ and xj
′ are operated upon. The user computes xi

′ + xj
′ or xi

′ × xj
′

remotely. The same operations can be performed by anyone acting on behalf of the user. Note here that
the mod m operation is not performed on the result of the sum or product. Both xi

′ + xj
′ and xi

′ × xj
′ are

stored on the cloud for later use.

3.1.1 Decryption of xi
′ + xj

′ and xi
′ × xj

′

At a later time, the user may wish to recover xi + xj or xi × xj from xi
′ + xj

′ and xi
′ × xj

′, respectively.
Using

xi + xj = (xi
′ + qi ×m) + (xj

′ + qj ×m) = (xi
′ + xj

′) + (qi + qj)×m

and

xi × xj = (xi
′ + qi ×m)× (xj

′ + qj ×m) = (xi
′ × xj

′) + (xi
′ × qj + xj

′ × qi + qi × qj ×m)×m

the results are obtained locally.
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3.1.2 Space requirements

In what follows we do not concern ourselves with whether the input data, that is, the setX = {x1, x2, . . . , xn}
is or is not stored locally by the user at the user's facility. Instead, we focus on the storage needed by the
encryption algorithm. If q1, q2, . . . , qn are to be stored at the user's end, then the local space requirements
are linear in n. Otherwise, the only space needed is to store the secret key m, and this is constant. On the
cloud, space at least quadratic in n will be required if all pairs of elements in X will be involved in arithmetic
operations, the results of which need to be stored. It could be as high as exponential in n if all subsets of X
are operated on individually.

It is helpful to observe here that no encrypted value stored on the cloud (namely, xi
′, xj

′, xi
′ + xj

′,
xi

′× xj
′, and so on) is ever larger than its unencrypted counterpart (namely, xi, xj , xi + xj , xi× xj , and so

on).

3.1.3 Time requirements

For a positive integer d, assuming that all integers in X are of O(d) digits, each of the computations needed
in this implementation, namely, computing xi

′, xj
′, xi

′+xj
′, xi

′×xj
′, and so on, as well as decrypting each

of these values, requires O(d2) time.

3.1.4 Security

The fully homomorphic cryptosystem for integers is secure as long as the numbers m and {q1, q2, . . . , qn} are
kept secret. This is true, for excluding the possibility of extraneous information being available (a threat to
any and all cryptosystems), xi cannot be derived from xi

′ without knowledge of qi and m.

3.1.5 Example of fully homomorphic encryption for integers

Let xi = 17, xj = 24, and m = 5.
We have xi = 2 + (3 × 5), xj = 4 + (4 × 5), xi

′ = 2, qi = 3, xj
′ = 4, and qj = 4. Since xi

′ + xj
′ = 6

and xi
′ × xj

′ = 8, we have xi + xj = 6 + (3 + 4) × 5 = 41, which is indeed 17+24, and xi × xj =
8 + ((2× 4) + (4× 3) + (3× 4× 5))× 5 = 408, which is indeed 17× 24.

In closing, we note that while the cryptosystem of this section is intended for nonnegative integers, it
can be easily adapted for negative integers (for example, if −17 = 3 − (4 × 5), we have that −17 modulo 5
is equivalent to 3, and therefore −17 is encrypted as 3), as well as for rational numbers (here a rational r
is expressed as a reduced fraction r = x/y, and treated as two integers x and y, each of which is encrypted
separately to yield x′ and y′, respectively).

3.2 Polynomial encryption

We now assume that the data set X is a subset of the set R[t] of polynomials in t with real coe�cients. Fix
a polynomial m considered as the secret key. Let B = R[t]/R[t]m, identi�ed with the set of polynomials of
degree less that the degree of m. We de�ne E to be the composition of the inclusion map of X into R[t] with
the projection of R[t] onto B, thus, if x ∈ X, we let

E(x) = x′

be the remainder of the division of x by m, that is, x′ is the unique polynomial which is either zero or of
degree less than the degree of m and x = x′ + q×m, where q denotes the quotient of x by m. In particular,
x′ is equivalent to x modulo m.

If we wish X to be a subset of the set Z[t] of polynomials in t with integral coe�cients, we must assume
m to have leading coe�cient 1 (or -1), then the de�nition proceeds as before.

We note here that the analyses of space requirements, time requirements, and security presented in
Sections 3.1.2, 3.1.3, and 3.1.4 in connection with the cryptosystem for integers, apply to the current cryp-
tosystem as well.
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3.2.1 Example of fully homomorphic encryption for polynomials

Let A = Z [t] be the ring of polynomials in t with integral coe�cients. Given the polynomial m = t−1, then,
for any polynomial x, there exists a unique polynomial x′ such that x = x′ + q ×m with x′ either zero or of
degree less than the degree of x. Since the degree of m = t− 1 is one then x′ is a constant, easily proven to
equal the evaluation x (1) of the polynomial x when t = 1.

4 Conclusion

Homomorphic cryptography is expected to make signi�cant gains in importance as the volume of data stored
by individuals, businesses, and organizations on untrusted databases increases dramatically over the next few
years. Simultaneously, the search for a fully homomorphic encryption scheme that is conceptually simple,
computationally e�cient and cryptographically secure will continue.

In this paper we have presented a general approach for fully homomorphic encryption, as well as two
speci�c implementations of homomorphic cryptosystems, one for integers and one for polynomials. We
believe that our proposed systems enjoy the desirable properties of simplicity, e�ciency and security, and
represent a modest contribution to this growing and exciting �eld.
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