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Abstract

The quantum model of computation not only offers entirely new
ways to manipulate information, but also allows information process-
ing tasks to be formulated in unconventional, genuine quantum me-
chanical terms. We show that the task of distinguishing among en-
tangled quantum states combines entanglement and non-determinism
in a way that makes the quantum solution impossible to simulate on
any classical machine (even one equipped with the same measurement
capabilities as the quantum computational device). A new class of
information processing tasks is thus uncovered whose members are
readily carried out by a quantum computer, yet are impossible to per-
form on any classical machine (whether deterministic or probabilistic).
In the broad, unconventional context created by quantum mechanics,
the computational power of a quantum computer is therefore strictly
greater than that of a classical computer.

*This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada.



1 Introduction

Is a quantum computer strictly more powerful than a classical one? Are there
information processing tasks for which only a machine based on quantum
mechanical principles is naturally suited? What are the limitations when
trying to simulate a quantum process on a classical computing machine?

These questions have concerned researchers in quantum computation
and quantum information theory ever since the field originated. Despite
the impressive advancements made in the quantum computation and quan-
tum information areas, the fundamental question about the relative power
of a quantum computer with respect to its classical counterpart is still not
fully answered. Perhaps this is partly due to the multitude of contexts (or
paradigms) in which such a question might be asked. Consequently, there
may not be a single answer.

In this paper, we analyze the relation between the quantum and the clas-
sical models of computation from the broad perspective offered by quantum
mechanics. Non-determinism and operating on entangled quantum states
can each be successfully simulated on a machine whose functioning obeys
the laws of classical physics. However, we show in this paper that there are
problems merging non-determinism and entanglement in such a way that
a solution based on classical means is no longer possible. Distinguishing
among entangled quantum states forms the basis for a whole class of prob-
lems requiring information manipulation that are only solvable by a machine
endowed with the power of quantum computing. This demonstrates that the
limitations of the classical model of computation are purely physical and a
computer operating through quantum means is strictly more powerful than
a conventional one.

In the following section we try to review and make explicit some of the
contexts in which the comparison between the classical and the quantum
computer took place. This will help emphasize the variety of angles under
which the problem can be attacked and also put our approach (given in
section 3) into perspective. The definition of the quantum distinguishability
problem, its efficient quantum solution and the attempted classical solution
are also presented in section 3. Two examples of information processing
tasks based on the distinguishability of entangled quantum states are given
in section 4. Section 5 offers some conclusions about the nature of the relation
between a quantum and a classical machine, in terms of their computational
powers.



2 A review of previous results

The first step towards an analytical investigation of the computational power
specific to a quantum mechanical device was the elaboration of a model that
should be abstracted away from any particular physical realization. The
breakthrough came when David Deutsch described the operation of a uni-
versal quantum computer Q, a model of computation inspired by the classical
Turing machine, but whose functioning obeys the principles of quantum me-
chanics. Even in this early paper [8], several features are identified with
respect to which the Quantum Turing Machine is superior to any classical
device.

2.1 True randomness

The first example given is the generation of true random numbers. In par-
ticular, valid programs are shown to exist for Q that deal with arbitrary
irrational probabilities, a feature that the universal Turing machine 7 could
not truly match. It could only simulate such discrete finite stochastic sys-
tems with arbitrary accuracy, provided it has access to a “random oracle”,
which really cannot be implemented by classical means.

2.2 Entanglement

But the property of Q that cannot be even approximately simulated by any
classical system is the generation of entangled (or non-separable) states like
7 (010) + [1]1)) (1)

V2 '
The strong correlations exhibited by the two qubits composing state (1)
are only characteristic to the quantum resource known as entanglement, and
they are simply beyond the scope of any classical Turing machine. Bell’s

theorem [2] is a mathematical formulation of the fact that no classical system
can reproduce the statistical results obtained by measuring these two qubits.

2.3 Quantum speed-up

As another argument intended to prove the superior computational power of
the Quantum Turing Machine, Deutsch provides an example which demon-



strates how quantum parallelism can be used to speed up computation. Quan-
tum parallelism refers to the capability of a quantum computer to evaluate a
function f(z) for exponentially many different values of x in the time it takes
a classical computer to evaluate the function for just one value. This is pos-
sible due to the quantum mechanical principle of the superposition of states.
Deutsch exploited this feature and devised an example in which quantum par-
allelism augmented with interference can “beat” a classical computer. Thus,
given a function f: {0,1} — {0, 1}, he presented a quantum algorithm able
to compute f(0) @ f(1) in a single evaluation of the function f.

Later, Deutsch’s algorithm was generalized by Deutsch and Jozsa [9],
who addressed the n-bit case by allowing the domain of f to be the set of
all integers in the interval [0,2" — 1]. In just one evaluation of the function
f, the Deutsch-Jozsa algorithm is able to determine whether f is constant
or perfectly balanced (the latter property meaning that f maps exactly half
of the input values in the domain to the image 0, and the other half to 1).
Although the problem seems somewhat contrived, with no immediate prac-
tical applications, this was the first example in which the quantum computer
achieved an exponential speed-up over the classical one (note that a classical
Turing machine needs an exponential number of evaluations of f in order to
make the decision between constant and perfectly balanced).

The same superiority of the quantum computer was proved by Shor’s
factorization algorithm [16], only this time for a problem of huge practical
importance. Factoring large integers and computing discrete logarithms in
quantum polynomial time threatens the security of a large class of public-
key cryptographic systems in use today. For a classical computer these tasks
remain intractable, despite remarkable advances that could only bring their
running time to a sub-exponential level [12]. So, in the context of essentially
speeding up the computation for some problems, we can affirm that a quan-
tum computer is definitely more powerful than a classical one. However, we
should keep in mind that these problems can also be solved by the universal
Turing Machine, given enough time (even if this time is more than the age
of the Universe).

2.4 Quantum simulations

Another class of tasks at which quantum computers could naturally outper-
form any classical machine is simulating quantum mechanical systems occur-
ring in Nature. As the size (number of constituents) of a quantum system
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increases, the number of variables required to describe the state of the sys-
tem grows exponentially. So, in order to store the quantum state of a system
with n distinct components, a classical computer would need some ¢" bits
of memory, with the constant ¢ depending upon the system being simulated
and the desired accuracy of the simulation. Furthermore, calculating its evo-
lution over time would require the manipulation of a huge matrix, involving
" x " bits. As Feynman noted in 1982 [10], this is prohibitively inefficient
for a simulator observing the laws of classical physics. On the other hand,
a machine that worked by quantum means would intrinsically make a much
more efficient simulator, requiring only a linear number of qubits.

Following the same logic, it is not difficult to envisage a classical Tur-
ing machine that simulates an arbitrary quantum circuit, if one does not
care about efficiency. The simulation in [3] requires space, and therefore
time, exponential in the number of qubits in the quantum circuit. Bernstein
and Vazirani [5] have given a simulation that takes polynomial space, but
exponential time. The lack of an efficient classical simulation of a quantum
computer induced the idea that a quantum computing machine may be inher-
ently faster and therefore strictly more powerful. However, any computation
a quantum computer can perform, by applying a series of unitary evolutions
to its quantum register, can be replicated (even if highly inefficiently) by a
Deterministic Turing Machine (DTM). Similarly, a Probabilistic Turing Ma-
chine (PTM) can simulate the inherent probabilistic nature of a quantum
measurement operation.

For the unacquainted reader, we state that when measuring a qubit
|Y) = «|0) + §|1) with respect to the standard basis for quantum com-
putation {|0),|1)}, we get either the result 0 with probability |«|?, or the
result 1 with probability |3|>. Furthermore, measurement alters the state of
a qubit, collapsing it from its superposition of |0) and |1) to the specific state
consistent with the result of the measurement. For example, if we observe i)
to be in state |0) through measurement, then the post-measurement state of
the qubit will be |0), and any subsequent measurements (in the same basis)
will yield 0 with probability 1.

2.5 QTM versus DTM and PTM

The contest between the quantum and the classical computer can also be
judged from these two points of view: comparing the Quantum Turing Ma-
chine (QTM) with a DTM or a PTM. The Deutsch-Jozsa algorithm, for



instance, achieves an impressive speed-up over a DTM, but the problem is
also easy for a PTM, which can solve it very quickly with high probability.

The first hint that QTMs might be more powerful than PTMs was given
by Bernstein and Vazirani, who showed how to sample from the Fourier
spectrum of any Boolean function on n bits in polynomial time on a QTM [5].
No algorithm was known to replicate this result on a PTM. Then, Berthiaume
and Brassard were able to construct an oracle, relative to which a decision
problem exists that could be solved with certainty in polynomial time in the
worst case on a quantum computer, but could not be solved classically in
probabilistic expected polynomial time, if errors were not tolerated [6]. In
the same paper, they also show that there is a decision problem solvable in
exponential time on a QTM and in double exponential time on all but finitely
many instances on any DTM. These two results, besides being a victory of
quantum computers over classical machines (deterministic or probabilistic)
also prove that the power of quantum computation cannot simply be ascribed
to the indeterminism inherent in quantum theory.

2.6 Quantum vs. classical complexity

The great hope for quantum computers at the inception of the quantum
paradigm of computation was that they would be able to make N P-complete
problems tractable. Relative to this criterion, we still don’t know whether a
quantum machine is more powerful than a classical one, in spite of Shor’s re-
sults concerning factorization and computing discrete logarithms. The trou-
ble is that neither of these two problems is known to be N P-complete, despite
the general belief that they are not in P. Furthermore, the current belief is
that a quadratic improvement in the running time may be the best we can
get out of a quantum computer in these kinds of tasks [15].

The relative power of quantum computers with respect to classical ones
can also be couched in the relationships between classical and quantum com-
plexity classes. In this sense, the complexity classes BPP (Bounded error
Probability in Polynomial time) and its quantum analogue BQP have at-
tracted a lot of interest. Proving that BPP C BQP is regarded as proving
that quantum computers are strictly more powerful than classical computers.
This may be quite non-trivial to demonstrate, since BPP C BQP implies
that P is not equal to PSPACE, a result that many researchers have unsuc-
cessfully attempted to prove. However, if we adopt a non-classical approach
and allow the input to be described in non-classical terms (genuine quantum



mechanical terms, in our case) then we can show that the set of problems
solvable efficiently by a classical computer (deterministic or probabilistic) is
strictly included in the set of problems having an efficient quantum solution.

2.7 Super-Turing computations

We end this exposition of working hypotheses, when comparing quantum
and classical computers, with the most “exotic” cases. Some researchers
have shown that there are quantum processes which can be used to compute
the solution to Turing uncomputable (or undecidable) problems. Calude and
Pavlov [7] describe a mathematical quantum device that is able to determine
with a pre-established precision whether an arbitrary program halts or not.
Kieu [11] uses quantum adiabatic processes to provide a single, universal pro-
cedure, taking the form of a quantum algorithm that solves Hilbert’s tenth
problem (which has been shown to be equivalent to Turing’s halting problem).
The essence of these results is that there exist mathematical constructions,
built within the framework provided by the physical theory of quantum me-
chanics, which are powerful enough to tackle with success problems that have
been proved to be out of the capabilities of the Turing machine.

A few observations have to be made with respect to the features em-
powering these quantum “hypercomputers”. They manage to compute the
“uncomputable” by eluding in one way or another the finiteness condition
[1]. The method employed by Calude and Pavlov (a quadratic form of an
iterated map acting on randomly chosen vectors, the latter viewed as special
trajectories of two Markov processes working in two different scales of time)
encodes the whole data into an infinite superposition. Kieu too works with
a dimensionally infinite Hilbert space in his quantum adiabatic algorithm.
However, he argues that the number of dimensions is only required to be
sufficiently large, but finite.

Furthermore, an important common characteristic of both algorithms is
their probabilistic nature. The answer they give to a problem has only a
certain probability to be the correct one. This probability can be made arbi-
trarily close to 1, but it can never reach 1 as long as the quantum procedure
is only allowed to run for a finite amount of time. Finally, we note that
the models of computation capable of such performances are mathematical
objects with no constructive indications being offered to attempt the experi-
mental realization of such a machine (assuming this thing is possible). From
this point of view, they can rather be characterized as quantum “hypercom-



puters”, as opposed to a “standard” quantum computer, capable of running
Shor’s algorithm, for example.

3 Our approach

Let us now describe the terms under which we compare, in this paper, the
quantum computer with the classical computer. The quantum machine is
assumed to have a set of quantum gates that is universal for quantum com-
putation (although for our purposes the controlled-NOT and Hadamard gates
will suffice), together with the ability to perform single-qubit measurements
in the standard computational basis {|0), |1)}. This description corresponds
to a standard quantum computer that can have various physical realizations.

On the other hand, the classical computer in consideration is a conven-
tional computing device whose capabilities match those of the Universal Tur-
ing Machine. Due to the nature of the problems addressed in this paper, the
classical computing machine is augmented with the same measurement capa-
bilities as the quantum computer. After all, quantum measurements in the
standard computational basis are just a means of acquiring classical infor-
mation (about quantum states).

In the context delimited by these specifications, we can identify a whole
class of information processing tasks which clearly separate the quantum
computer from its classical counterpart in terms of computability.

3.1 Quantum distinguishability

At the heart of this class of problems is the task of distinguishing among
entangled quantum states. The general formulation of the problem is given
in the following. Suppose we have a quantum system composed of n qubits
whose state is not known exactly. What we know with certainty is that the
system can be described by one of the following 2" entangled states:

1
=(|000-+-0) & [111---1)),

(|000---1) =+ [111---0)),

Y-
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The challenge for the two candidate computers is to correctly identify the
state of the system resorting to all their measurement and computational
abilities. Alternatively, the problem can also be formulated as a function
computation (evaluation), with the unknown quantum state as the input and
the corresponding index (between 0 and 2" — 1) as the output. We have to
say from the very beginning that this function is computable. The 2" states
in (2) are perfectly distinguishable since they form an orthonormal basis for
the state space corresponding to the n-qubit system. Note, in particular,
that the case n = 2 corresponds to the distinguishability of the four Bell (or
EPR) states, which is the key feature in achieving superdense coding [4].

The immediate, theoretical solution to this problem is to perform a single
joint measurement of the whole system by defining each of the 2" states that
are to be distinguished to be a projector associated with the measurement
operation. Although mathematically this is a perfectly valid solution, it is
very difficult in practice to perform such a joint measurement, even for the
simplest case involving only two qubits [13]. Furthermore, as it was shown in
[14], if a joint measurement of all qubits in the system is not feasible, then no
solution is better than measuring each qubit individually, one after the other.
Of course, in this way we will not be able to distinguish between quantum
states that differ only through a relative phase factor, like %(|000 - 0) +

111---1)) and —5(|000---0) — [111---1)), for example. But note that this
is the best that can be achieved, given the measurement capabilities of both
the classical and quantum computer.

However, if we resort to their processing capabilities, the situation changes.
Unitary operators preserve inner products, so any unitary evolution of the
system described by (2) will necessarily transform it into another orthonor-
mal basis set. Therefore, a unitary transformation must exist that will allow
a subsequent measurement in the standard computational basis without any
loss of information. The following result shows that such a transformation
not only exists, but that in fact it can be implemented efficiently.

(J011---1) =+ [100---0)).

Theorem 1 The transformation between the following two orthonormal ba-
sis sets for the state space spanned by n qubits:
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Figure 1: Quantum circuit for Theorem 1.

%(|ooo---o>+|111---1>) > 1000---0),
%(|000---0>—|111---1>) s J111---1),
%(|000---1>+|111---0>) s [000---1),
%(|ooo---1>—|111---0>) s [111---0),

(3)
%(|o11---1>+|1oo---o>) s Jo11---1),
1

7(1011---1) ~ [100---0)) > 100---0).

can be realized by a quantum circuit comprising only a linear number of
controlled-NOT and Hadamard gates.

Proof

It is easy to check that the circuit depicted in Figure 1 performs the required
quantum transformation for the case n = 4. The generalization to an ar-
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bitrary number of qubits is straightforward. In the general case the circuit
consists of 2n — 2 controlled-NOT gates and one Hadamard gate. Due to
its symmetric nature, the same quantum circuit can also perform the inverse
transformation, from the normal computational basis set to the entangled
basis set. O

By applying the transformation realized by this circuit, the quantum
computer can disentangle the qubits composing the system and thus make
the act of measuring each qubit entirely independent of the other qubits. This
will ensure obtaining the correct answer to the distinguishability problem
100% of the time. In other words, the function is efficiently computable (in
quantum linear time) by a quantum computer.

Can the classical computer replicate the operations performed by the
quantum machine? We know that a classical computer cam simulate (even if
inefficiently) the continuous evolution of a closed quantum system (viewed as
a quantum computation in the case of an ensemble of qubits). So, whatever
unitary operation is invoked by the quantum computer, it can certainly be
simulated mathematically on a Turing machine. The difference resides in
the way the two machines handle the uncertainty inherent in the input. The
quantum computer has the ability to transcend this uncertainty about the
quantum state of the input system by acting directly on the input in a way
that is specific to the physical support employed to encode or describe the
input. The classical computer, on the other hand, lacks the ability to process
the information at its original physical level, thus making any simulation at
another level futile exactly because of the uncertainty in the input.

We have to emphasize that had the input state been perfectly determined,
then any transformation applied to it, even though quantum mechanical
in nature, could have been perfectly simulated using the classical means
available to a Turing machine. However, in our case, the classical computer
does not have a description of the input in classical terms and can only try
to obtain one through direct measurement. This will in turn collapse the
entanglement in the input state, leaving the classical computer with only
a 50% probability of correctly identifying the original quantum state. This
means that the problem cannot be solved classically, not even by a PTM.
There is no way to improve the 50% error rate of the classical approach to
distinguish among the 2" states.

So this problem tells us that what draws the separation line between a
quantum and a classical computer, in terms of computational power, is not
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the ability to extract information from a quantum system through measure-
ments, but the ability to process information at the physical level used to
represent it. For the distinguishability problem discussed, this is the only
way to deal with the non-determinism introduced by entanglement.

4 Some consequences

Distinguishing among entangled quantum states forms the basic building
block for a series of information processing tasks that can only be accom-
plished by a quantum computer. Here are two such examples.

4.1 Conveying quantum information through a classi-
cal channel

The first one addresses the problem of transmitting unknown quantum in-
formation through a classical channel. In the general case, when we have no
knowledge whatsoever about the quantum state to be transmitted, the task
is obviously impossible. It requires a classical description of the quantum
state, which cannot be obtained since a quantum measurement would ruin
the original state and cloning an unknown quantum state was proven to be
impossible.

Quantum teleportation actually requires the existence of a classical chan-
nel between the source and the destination, so it could be interpreted as
the transmission of an unknown quantum state through a classical channel.
There is an important point to make, however. Quantum teleportation refers
only to a single qubit and requires an EPR state to be shared by the sender
and the receiver prior to the teleportation. This entangled pair of qubits is
actually a resource that will be consumed in the process. The same argument
can be formulated in the case of another task that is not possible through
classical means, namely, superdense coding. Unlike these remarkable appli-
cations of entanglement as a physical resource, the information processing
tasks investigated in this paper do not assume the creation and distribution
of entanglement in order to be completed.

After this necessary clarification, we note that the problem investigated
in our first example is unsolvable (in its most general formulation) by both
our classical and quantum computers. However, if we restrict the unknown
quantum state to be a member of the set (2), then the task is only out of
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the capabilities of the classical machine. The quantum computer can still
use the circuit in Figure 1 to obtain a “label” of the original quantum state
in classical terms, which can be subsequently transmitted via the classical
channel. At the other end, the same quantum circuit can reconstruct the
original quantum state, based on the classical information received.

4.2 Protecting quantum information from classical at-
tacks

The second example is taken from the field of cryptography and gives a more
plastic representation of the physical limitations of a classical computer to
process information. A simple protocol may be devised to enable the trans-
mission of information through a quantum channel, without any possibility of
eavesdropping from a third party resorting only to the computational power
of a classical computer. For this purpose, each pair of qubits transmitted
through the channel encodes one bit of information in the following way:
75(100) +]11)) and 5(|01) + [10)) represent a 0 bit, while 5(]00) — [11))
and %(|01> — |10)) represent the bit 1. No single-qubit measurements are
better than just flipping a coin in order to guess the bit transmitted, so no
information whatsoever can be gained by the classical machine.

The quantum computer would be in the same situation if it would re-
sort only to its measurement abilities. However, the quantum computer can
first “evolve” the Bell basis into the normal computational basis (using the
quantum circuit from Figure 1 for the case n = 2) and then identify the bit
transmitted by reading the measurement outcome for the first qubit. Note
that this protocol can be generalized to “beat” any classical computer en-
dowed with finite measuring capabilities. If the classical computer is able to
perform a joint measurement of k qubits (where k is unbounded, but finite)
then it suffices to encode a bit of information into the relative phase of an
entangled quantum state comprising k£ + 1 qubits. In this way, the informa-
tion conveyed through the quantum channel is safely kept out of reach for
the classical computer, due to its limitations in processing information at the
very physical level chosen to embody it.
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5 Conclusions

When he devised the Quantum Turing Machine as the first abstract model
of quantum computation, David Deutsch already pointed to some features
that set it apart from the classical Turing machine: intrinsic genuine non-
determinism and entanglement. Naturally, these features have created a lot
of speculations about the superiority of the quantum computer in terms of
computability and complexity. Consequently, the computational powers of
the quantum and classical machine have been evaluated and compared in a
variety of contexts.

This paper shows that there is a whole class of information processing
tasks relative to which a clear separation line exists between quantum com-
puters and classical computers with respect to their computational powers.
The set of problems solvable by classical means is therefore strictly smaller
than the set of functions computable through quantum means. At the heart
of this separation lies a problem (namely, distinguishing among entangled
quantum states) that combines uncertainty and entanglement in a way that
renders a classical simulation of the quantum solution impossible. Otherwise,
taken separately, uncertainty can be dealt with (through measurements) in
the absence of entanglement, while entanglement, as a particular case of su-
perposition, can be simulated by a classical machine for the purpose of com-
putation (due to the linearity of the unitary operators describing quantum
transformations).

While quantum measurements are certainly required to distinguish among
different quantum states, this is most emphatically not what gives the Quan-
tum Turing Machine the advantage over the classical Turing machine. Also,
this superiority is not due to some theoretical property specific to “hyper-
computers”, which breaks in one way or another the finiteness condition by
implicitly assuming some form of unlimited computational resources. It is
also not a matter of complexity, the ability to solve problems much faster
than it is possible classically. This paper shows that quantum computers are
better than classical ones (whether deterministic or probabilistic) in terms
of computability (function evaluation) due to the power conferred to their
computations by the way they represent information at the physical level.

Classical physics is just a particular, trivial case of quantum mechanics.
Sometimes, information encoded in genuine quantum mechanical terms can-
not be successfully manipulated unless the computing device has the power
to process this information directly at the physical level used to represent
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it. The properties of the physical level chosen to embody information in
a computational model ultimately determine its computational capabilities
and power. The limitations of the classical Turing machine are therefore
purely physical. So, is a machine that computes following the principles of
quantum mechanics really more powerful than a computing device designed
in accord with classical physics? We think that the answer is definitely af-
firmative. And the difference is made by those problems, defined in purely
quantum mechanical terms, whose quantum solutions are impossible to be
simulated classically.
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