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Abstract 

Tensegrity (tensional integrity) is a structural principle where rigid elements (struts) under 

compression are held together by a network of elastic elements (cables) under tension. Tensegrity 

structures have many applications in modelling the natural world. Tensegrity research has been applied to 

fields including robotics, art, architecture, and biology. In recent years, computer simulation has been 

introduced as a tool to allow researchers to design, build, and simulate tensegrity structures. Structures 

designed both as physical models and in simulation software can require several iterations of fine 

adjustments.  

 

In this thesis, we develop a form-finding application to reduce the iterative adjustments required 

when designing a tensegrity structure. Form-finding is the process of finding a structural configuration 

capable of a state of self-stressed equilibrium – when tension and compression stabilize the structure. Our 

form-finding application uses a tensegrity structure that is not necessarily in an equilibrium state 

represented as a graph as input, and produces either (a) failure when no equilibrium state is possible, or 

(b) a fully attributed labeled graph of a tensegrity structure in an equilibrium state. In this thesis, we use 

an efficient fitness function and genetic algorithms to find the stable state of a tensegrity structure. 

Through our form-finding application, we aim to promote the use of computer simulation, and 

collaboration between tensegrity researchers. 
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Chapter 1 

Introduction 

Tensegrity (tensional integrity) is a structural principle where rigid elements under 

compression are held together by a network of elastic elements under tension. Typically, the rigid 

elements of a tensegrity structure are composed of wood or metal struts, while the elastic 

elements are composed of rubber or steel cables (Figure 1).  The simultaneous forces of tension 

and compression within a tensegrity structure allow the structure to maintain a state of self-

stressed equilibrium, making the structure both strong and flexible. 

 

Tensegrity structures have beneficial properties including high strength-to-weight ratios, 

the capability to fold flat for transportation, and a high resilience to impact. The appealing 

properties of tensegrity structures have made tensegrity an area of interest in several domains 

including architecture, biology, and robotics. Section 2.3 summarizes the applications of 

tensegrity structures, while Section 2.4 summarizes the benefits of tensegrity structures. 

 

The manual design and construction of tensegrity structures is a time consuming and 

expensive process. The design of tensegrity structures can be difficult to visualize for many 

researchers. Often, tensegrity structures require many fine adjustments to create a successful 

model. Computer simulation allows researchers to design and construct tensegrity structures in a 

simulated environment, and analyze a structure’s interactions with its environment in a virtual 

setting (Section 2.6). The use of computer simulation makes design and modifications of 

tensegrity structures easier than when using physical models alone. 
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Designing efficient tensegrity structures can be a challenge in both physical and 

simulated environments. It is not uncommon for a researcher to design a tensegrity structure, only 

for it to partially or entirely collapse once exposed to simulation. In a physical setting, this can be 

both challenging and frustrating for tensegrity builders since the entire structure needs to be 

assembled again with several fine adjustments. Using computer simulation, it can also be a 

challenge to find an exact balance of tension and compression that keeps the tensegrity structure 

from collapsing. Even when a tensegrity structure does not collapse, fine tuning is often still 

required to obtain the desired model. For example, when designing a tensegrity model of the leg 

and foot, Tom Flemons spends several weeks of fine adjustments to find the right balance to 

produce the desired alignment of toes and ankle (Figure 2).  

 

In this thesis, we aim to augment the design process by developing a form-finding 

application to find an equilibrium configuration for the tensegrity structures being simulated 

(Chapter 7). Our form-finding application builds upon existing form-finding methods used for 

membrane shell and tensegrity structures. Our application also has compatibility with widely used 

tensegrity simulation platforms: The NASA Tensegrity Robotics Toolkit and PushMePullMe3D. 

Currently neither simulation platform has the capability for automated tensegrity form-finding. 

Our application aims to reduce the iterative design process and fine adjustments otherwise 

required to simulate a tensegrity structure. By introducing a form-finding application compatible 

with NTRT and PushMePullMe3D, we augment the user experience when designing tensegrity 

structures using computer simulation. 
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Self-stressed equilibrium is a state where the internal tension of cables within a tensegrity 

structure allows all of the struts to be suspended, resulting in equilibrium of internal forces within 

the structure. In this thesis, we use form-finding algorithms to obtain design parameters and self-

stressed equilibrium for a given tensegrity structure. 

 

Form-finding is a technique used in structural engineering to find a particular 

configuration within a design space: a configuration that is in a state of equilibrium under given 

constraints. Form-finding is a well-established field in structure engineering, with applications to 

a range of structures including shell structures and tensegrity structures (Chapters 3 and 6). 

Within this broad research field, both physical and numerical approaches have been taken to 

solve form-finding. For example, a physical approach for finding the shape of a shell structure is 

done by suspending wet fabric and inverting that shape; these catenary shapes are materially 

efficient structures with a balance of tension and compression [1]. In Chapter 3, we examine 

numerical approaches to form-finding: Pucher’s method and the force-density method 

summarized in Ariane Fund’s thesis [1]. In Chapter 6, we examine Yamamoto’s method for form-

finding using genetic algorithms [2]. 

 

Currently, tensegrity simulation platforms including NTRT and PushMePullMe3D do not 

provide automated form-finding algorithms. For example, in PushMePullMe3D, a tutorial video 

illustrates the manual process of experimentation used for form-finding of grid shell structures 

(https://www.youtube.com/watch?v=K-0nHT0GeBM). Our work to add form-finding algorithms 

to simulation platforms shows promise for improving the design and construction process, 

simulation results, and adoption of computer simulation.  

 

https://www.youtube.com/watch?v=K-0nHT0GeBM
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In this thesis we develop a platform-independent form-finding application for tensegrity 

structures. The application is developed with compatibility for two simulation platforms: NTRT 

and PushMePullMe3D (Section 2.6). 

 

 

Figure 1 A 3-strut tensegrity prism showing the connectivity of struts and cables. Image 

from Wikimedia Commons [3]. 

 

 

Figure 2 Tom Flemons tensegrity model of the foot and leg. © 2017 Tom Flemons, 

reproduced by permission. 
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1.1 Thesis Contributions 

This thesis proposes a platform-independent tensegrity form-finding application, with 

extendable compatibility for NTRT and PushMePullMe3D. In the process of developing a 

tensegrity form-finding application, several contributions were made in this thesis. 

 

1.1.1 Contribution 1: Identify the need for form-finding of tensegrity structures 

Several conversations with tensegrity researchers such as Tom Flemons allowed us to 

identify the need for tensegrity form-finding to reduce the time and effort spent making iterative 

adjustments for stability. To augment the tensegrity design process, we design a stand-alone 

automated tensegrity form-finding application, compatible with widely used simulation platforms 

NTRT and PushMePullMe3D (Chapter 7). To determine fitness of tensegrity structures, our 

application provides generalized fitness functions for tensegrity structures. To allow customizable 

support for tensegrity researchers, we also provide the ability for user defined fitness functions 

for tensegrity structure form-finding.  

 

Conversations with Dr. Richard Gordon (theoretical biologist and tensegrity researcher) 

and Tom Flemons (expert tensegrity researcher and builder) helped identify the challenges of 

tensegrity construction, design, and simulation. Years of email correspondence between Dr. 

Blostein and Tom Flemons were used to compile requirements and challenges for simulating 

biomechanical tensegrity structures. Skype tutorials and weekly discussions were conducted 

between our research group and Dr. Gordon to identify requirements and challenges for tensegrity 

simulation in cell biology. Based on our conversations with Tom Flemons and Dr. Gordon, we 

elicited a set of software requirements for simulating tensegrity models in biomechanics and cell 

biology. 
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During our Skype sessions with Dr. Gordon and attempts to replicate Flemons’ models, 

we identified that structures can collapse in a simulated environment if there is an imbalance 

between tension and compression. Tensegrity structures collapsing because they are not at 

equilibrium also holds true for physical modelling of tensegrity structures – a common challenge 

faced by tensegrity builders like Tom Flemons. Often, when designing and simulating a 

tensegrity structure in NTRT or PushMePullMe3D, users have to iteratively adjust the structure’s 

prestress, topology, and parameters (such as resting length for a cable) to prevent it from 

collapsing. By making these iterative adjustments, the structure can obtain a state of self-stressed 

equilibrium.  

 

1.1.2 Contribution 2: Identify simulation support for augmenting tensegrity design 

Within the scope of this thesis, we analyze common challenges faced during the 

tensegrity design process by our research group and close collaborators; namely Dr. Richard 

Gordon and Tom Flemons. With these challenges we formulate requirements and simulation 

goals for our research group primarily focusing on usability, extendibility, and quality of 

simulation. With emphasis on these three aspects, we survey multiple state-of-the-art simulation 

platforms capable of supporting tensegrity structures including NTRT and PushMePullMe3D 

(Section 2.6). For this thesis, we identify PushMePullMe3D as a candidate simulation platform 

based on usability, extendibility, and quality of simulation . Since PushMePullMe3D is a 

proprietary software, our research group established a collaboration and an NDA/IP agreement 

with Dr. Gennaro Senatore, the author of PushMePullMe3D. Collaboration with Dr. Senatore 

allowed us to gain access to PushMePullMe3D source code to build upon the requirements of 

Tom Flemons and Dr. Richard Gordon for tensegrity modelling. 
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1.1.3 Contribution 3: Survey state-of-the-art form-finding algorithms 

Form-finding was found as a solution for obtaining a structure capable of self-stressed 

equilibrium. After identifying form-finding as a solution to one of our problems a literature 

review of state-of-the-art form-finding algorithms and applications to tensegrity structures was 

conducted (Chapters 4 and 6). By reviewing literature on form-finding, we were able to identify 

suitable methods for developing a form-finding framework to support the tensegrity design 

process.  

 

1.1.4 Contribution 4: Prototype implementation of a form-finding application 

To create a framework for tensegrity form-finding we extensively studied the works of 

Fund (2008) and Yamamoto (2011) [1, 2]. Fund analyzes existing numerical approaches to form-

finding of membrane shell structures, with many concepts that are applicable to tensegrity 

structures (Chapter 3). Yamamoto uses genetic algorithms coupled with the force-density method 

to address form-finding specifically for tensegrity structures (Chapter 6). During this thesis 

research, both these methods were carefully implemented in MATLAB to further understand the 

mechanics of these approaches, the results of these investigations can be found in Chapters 3 and 

6. 

 

In this thesis we propose a platform-independent genetic algorithm based form-finding 

application for tensegrity structures. Our proposed approach expands on the ideas from Fund and 

Yamamoto’s works as well as other state of the art approaches to tensegrity form-finding 

(Chapter 7). This contribution also defines a representation of tensegrity structures new to our 

research group, based on approaches from the literature (Chapter 4). Together, the proposed 

form-finding application and tensegrity structure representation serve as a major contribution in 
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this thesis, promoting collaboration and adoption of tensegrity simulation software in the field of 

tensegrity research. 
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Chapter 2 

Tensegrity Structures: Definition, History, and Applications 

Tensegrity structures were first used in art and architecture as early as the 1960s by 

Buckminister Fuller and Kenneth Snelson. The field of tensegrity has since grown, as it has been 

applied to domains including robotics, biology, and structural mechanics. This chapter provides 

background on the definition, benefits, and practical applications of tensegrity structures. 

 

2.1 Defining a Tensegrity Structure: Assumptions and Constraints 

Tensegrity is a structural principle where a network of elastic elements under tension 

suspend compressed rigid elements. Tensegrity structures exhibit a flexible and resilient balance 

of tension and compression by obtaining a state of self-stressed equilibrium. When an outside 

force is applied to a tensegrity structure, the entire structure deforms slightly as it moves into a 

new state of equilibrium; this global response makes tensegrity structures highly resistant to 

impact. Typically tensegrity structures are constructed using metal or wood struts connected by 

steel or rubber cables.  

 

Tensegrity structures obtain their stability through the continuous network of tension 

counteracted by the discontinuous compression. The tension and compression of a tensegrity 

structure is clearly visible as struts float in a network of cables; this is sometimes referred to as 

floating compression [4]. In a pure tensegrity structure, struts are not allowed to be in contact 

with each other, and each node is connected to exactly one strut [5, 6]. Skelton and de Oliveira 

refer to pure tensegrity structures as class 1 tensegrity structures [6]. Sometimes, pure tensegrity 

structures are not sufficient for the desired application. Increasing the number of struts connected 

at each node can be a solution to overcome these challenges. If a tensegrity structure has two 
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struts connected to some nodes, it is referred to as a class 2 tensegrity structure. This typology 

continues for class 3 tensegrity structures, where three struts can be connected at a node [6]. In 

this thesis, we consider class 1 tensegrity structures for simplicity.  

 

 Tensegrity structures are supported by a balance of their internal tensile and compressive 

forces, making them self-stressed. A valid tensegrity structure is balanced by its self-sustaining 

internal forces, without reliance on external supports or forces. When a tensegrity structure is 

balanced by its internal forces, it is known to be in a state of self-stressed equilibrium [2, 7].  

 

Tensegrity structures consist of a network of continuous tension complemented by 

discontinuous compression. The continuous tension is made up by the network of cables within 

the structure. This network should be continuous with each node connected to two or more 

cables. The struts of a tensegrity structure should be discontinuous, suspended by the tension of 

the cables. With a continuous network of cables suspending the struts, the struts of a tensegrity 

structure should not touch each other when at rest.  

 

In this thesis, we place the following constraints on defining a valid tensegrity structure. 

These criteria are met by all structures that can be discovered by our form-finding method. 

• Class 1 Tensegrity Structure: Each node can be connected to exactly one strut, 

known as a class 1 tensegrity structure. Thus, strut-strut connections are assumed to 

be invalid in our application. By considering only class 1 tensegrity, we eliminate 

boundary constraints required for form-finding of higher class tensegrity structures 

with multiple struts connected at a node [6]. 
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• Struts are infinitely rigid: Struts cannot be deformed or bent regardless of load 

exerted. This constraint is placed on tensegrity structures in our application for 

simplicity in the methods used for form-finding.  

 

2.2 Tensegrity Structures as a Graph 

In this thesis, we describe tensegrity structures using terminology from graph theory. 

Each connective element (strut or cable) of the tensegrity structure is represented as an edge, 

while each connection point is represented as a node. Edges are labeled as strut or cable, 

corresponding to their physical properties. Edge attributes provide information about material 

properties. For example, each edge can have attributes length, stiffness, and radius. Node 

attributes provide spatial location information such as 𝑥, 𝑦, and 𝑧 coordinates in 3-space. Figure 3 

illustrates the representation of a tensegrity structure as a graph. 

 

  In this thesis, form-finding takes a partially-unattributed graph as input, producing as 

output either (a) failure when no equilibrium state is possible, or (b) a fully attributed labeled 

graph of a tensegrity structure in an equilibrium state. Form-finding methods often differ in exact 

input and output: some methods do not require length attributes for edges or spatial coordinates 

for nodes, while these attributes are essential in other methods. Chapters 3 and 6 provide more 

details on form-finding methods. 
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Figure 3 Representation of a tensegrity structure as a graph showing nodes and edges in 3D. 

Figure adopted from Wikimedia Commons and annotated by Nuwan Perera [8]. 

 

2.3 Applications of Tensegrity 

Tensegrity research has been applied to a number of research disciplines including art, 

architecture, biology and robotics. 

 

Kenneth Snelson, a tensegrity pioneer and artist, was influential in introducing tensegrity 

as an art form. Tensegrity has been used in sculptures showing the balance of tension and 

compression within structures. Many artistic applications of tensegrity are coupled with 

architectural and structural applications of tensegrity [9]. 

 

Tensegrity structures have been used in a number of structural engineering and 

architecture applications. The resiliency of tensegrity structures makes them appealing for 

structures that are subject to environmental stresses such as wind and earthquakes [9]. Some 

applications of tensegrity structures include bridges, signal towers, and dome roofs (Figure 4 and 

5). For example, the Kurilpa Bridge in Brisbane, Australia is a tensegrity based bridge (Figure 5). 
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These applications of tensegrity continue to be investigated for adaptive structure and structural 

mechanics research. 

 

In biology, many researchers have investigated the use of tensegrity to model biological 

structures from anatomical structures to cellular structures [10]. Researchers such as Tom 

Flemons have investigated tensegrity for modelling anatomical structures and the interactions 

between connective tissue and bones within the human body (Figure 6) [11, 12]. In microbiology, 

tensegrity structures have been used to model the cytoskeleton, the structural framework of a cell, 

as well as structures within the cell by researchers such as Dr. Richard Gordon and Dr. Donald 

Ingber [13, 14]. The use of tensegrity structures in biology shows potential to aid in 

understanding mechanical interactions within anatomical structures and cells, and their effects in 

sports injuries and diseases respectively. 

 

In robotics, tensegrity research has been prominent for space exploration robotics. 

Research by NASA has shown promise in the use of tensegrity robotics for space exploration 

using the Superball (Figure 7). Tensegrity robotics research has also made contributions to 

tensegrity simulation through the NASA Tensegrity Robotics Toolkit and machine learning for 

tensegrity control [15, 16]. Tensegrity is appealing to robotics research because of its resiliency, 

ability to fold easy for transportation, and energy efficiency by efficient use of materials [11, 15, 

17]. 

 

Since tensegrity research is used in a number of application domains, there is promise for 

interdisciplinary collaboration to improve the quality of tensegrity simulation. Promoting 

collaboration and accessibility to tensegrity simulation will enable advancement in the field of 

tensegrity research. 
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Figure 4 Tensegrity Needle Tower by Kenneth Snelson. Photo by BAR Photography, 

Tensegrity Wiki [18]. 

 

 

Figure 5 Kurilpa tensegrity bridge in Brisbane Australia. Image from Wikimedia Commons 

[19]. 
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Figure 6 Tom Flemons full body tensegrity model. © 2017 Tom Flemons, reproduced by 

permission. 

 

 

 

Figure 7 NASA Superball tensegrity robot. Image from Wikimedia Commons [20]. 
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2.4 Benefits of Tensegrity Structures 

Tensegrity structures have many characteristics that make them an appealing paradigm for 

modelling structures in fields such as biology, robotics, art, and architecture. Many conventional 

models built by humans place emphasis on compression and do not focus on the tensile elements 

of a structure [17]. For example, a brick wall is mostly constructed using the compression forces 

of bricks with little to no tension within the structure. In the natural world, compressive forces are 

often counterbalanced by tensile components. For example, fascial tissue (tension) interacts with 

the bones (compression) of the human body [10, 11, 21].  

 

The balance of tension and compression within a tensegrity structure provides appealing 

properties for applications in many research areas. Some benefits of tensegrity structures are 

described below. 

• Resiliency: Tensegrity structures have high structural resiliency, allowing the structure to 

absorb impact, and return to a state of equilibrium [11]. When external forces are exerted 

on a tensegrity structure, the structure can propagate forces through its tensile network 

preventing permanent deformation.  If a tensegrity structure is subject to local 

deformation, although slightly degraded, it can still maintain function [5]. This degree of 

structural resiliency is appealing in many structural engineering and robotic applications 

when tensegrity structures are subject to impacts causing deformation; in contrast, rigid 

structures often cannot return to an equilibrium state. 

• Fold flat for transportation: Unlike stiff structures, compressive elements of a tensegrity 

structure are discontinuous allowing the structure to be folded flat for transportation [11, 

17, 22]. The ability to fold flat for transportation and return to a state of self-stress 

equilibrium is an appealing property for applications where transportation costs can be 

expensive such as space robotics. 
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• Light-weight: Tensegrity structures are composed of strut and cable elements. These 

elements are often lighter weight than fully rigid structures [11, 22]. 

• Easy to simulate: Compared to other structures like fluids, tensegrity structures are easier 

to simulate due to the mechanics of struts and cables. Furthermore, assuming that only 

axial forces occur within a tensegrity structure and struts cannot bend, simplifies the 

simulation process for tensegrity structures without compromising the integrity of the 

simulation [17, 22]. 

 

The appealing properties of tensegrity structures creates interest from many domains, 

resulting in a collaborative and interdisciplinary field.  

 

2.5 Manual Construction of Tensegrity Structures 

Tensegrity structures are conventionally designed and assembled by manually connecting 

struts and cables; this is often done by a tensegrity building expert. Even for a simple tensegrity 

structure such as the 3-strut prism, a careful assembly process is required since all components of 

the structure must be connected together before the desired state of self-stress is obtainable. Most 

tensegrity structures used in research are intricate, and require many iterations of adjustments 

before receiving a desired outcome. Thus, designing and constructing tensegrity structures 

suitable for research applications can be challenging; especially for designers new to tensegrity 

research. To augment the process of manual tensegrity construction, some researchers have 

created computer simulation tools for tensegrity modelling. 
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2.6 Computer Simulation of Tensegrity Structures 

Computer simulation of tensegrity structures aims to address the challenges faced by 

researchers during manual construction. The use of computer simulation aims to allow 

researchers to develop structures quickly, increase collaboration, and produce precise quantitative 

results. 

 

Computer simulation allows researchers to design and simulate rapid prototypes of 

tensegrity structures with reduced effort and cost compared to physical model building. In a 

physical model, any change in the connectivity of a tensegrity structure could require the entire 

structure to be disassembled and reconstructed. This process diverts time and effort away from 

conducting experiments with their structures. Simulation makes connectivity changes easier, 

because structures can be modified within the simulation engine. Once a desired structure is 

designed, the structure can be simulated to see whether or not it behaves as the researcher 

expects. If the structure meets the design criteria, it can then be built as a physical tensegrity 

model for further experimentation. 

 

In addition to physical modelling, computer simulation fosters collaboration between 

tensegrity researchers. Unlike physical models which can take a long time to replicate and share, 

computer simulation allows tensegrity structures to be stored as data files which can be easily 

replicated and shared among tensegrity researchers. By promoting collaboration, increased 

adoption of computer simulation is a key to advancing the field of tensegrity research. 

 

Unlike physical modelling, the use of physics in computer simulation means that precise 

values are computed throughout the simulation. Values such as tension within a cable can be 

difficult to obtain from a physical model, but are easy to access in a simulation engine. The use of 
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computer simulation can allow researchers to report more quantitative metrics on tensegrity 

structures by exploiting the calculations made by the physics engine. Ensuring that physics 

simulation properly captures the mechanical behavior of a physical model can be established 

through validation procedures such as those reported by Caluwaerts et al [15]. 

 

This thesis work has examined two simulation platforms capable of simulating tensegrity 

structures The NASA Tensegrity Robotics Toolkit (NTRT) and PushMePullMe3D. 

 

2.6.1 The NASA Tensegrity Robotics Toolkit 

The NASA Tensegrity Robotics Toolkit (NTRT) is an open-source platform used for 

simulating tensegrity structures, with an emphasis on tensegrity for space robotics. NTRT is 

compatible with Linux and employs the Bullet Physics Engine for simulation.  

 

Currently, NTRT does not support a graphical user interface for installation or designing 

tensegrity structures. In order to use NTRT coding knowledge is required; shell scripting is 

required to install the platform and knowledge of C++ is required to create tensegrity structures. 

This is a challenge for many tensegrity researchers coming from backgrounds that do not possess 

programming skills. 

 

NTRT is developed for simulating tensegrity robotics; placing constraints on the 

simulation engine for robotic structures [16]. Therefore, the physics simulation used by NTRT can 

be a limitation for researchers applying tensegrity to other domains such as biology. 

 

Although NTRT can be a limitation for some researchers and research domains, the 

simulation platform has a large user-base focused on tensegrity research. The prominent user-
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base makes NTRT a valuable resource for tensegrity researchers when using and developing 

simulation for tensegrity. Overall, NTRT provides researchers with an efficient simulation 

platform for conducting tensegrity research for space robotics. 

 

2.6.2 PushMePullMe3D 

PushMePullMe3D is a simulation platform developed in Java by mechanical engineer 

Gennaro Senatore. PushMePullMe3D is available as a part of Expedition Workshed, an online 

collection of learning materials for engineering students, and teachers. PushMePullMe3D is free 

to use available as a Java Network Launch Protocol (JNLP) application. However, the source 

code for PushMePullMe3D is proprietary and Queen’s University created an NDA/IP agreements 

in order for us to gain access. Although PushMePullMe3D is a platform targeted at education, it 

is a valuable simulation tool for many tensegrity researchers. 

 

The proprietary code of PushMePullMe3D has led to a clean software design and 

architecture, making future extensions easier to facilitate. This can be attributed to the limited 

number of developers working on PushMePullMe3D. However, with the limited number of 

developers, obtaining development support can be more challenging than open-source platforms 

like NTRT.  

 

The user interface of PushMePullMe3D allows researchers to design and adjust 

tensegrity structures in a graphical user interface (GUI). The intuitive GUI is a beneficial tool for 

researchers with limited programming knowledge, making them more comfortable and likely to 

adopt computer simulation. 
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As a contribution to this thesis, we identify PushMePullMe3D as a candidate platform for 

carrying out future tensegrity research and established a research agreement to access the 

platform’s source code. By identifying PushMePullMe3D as a candidate platform, this thesis has 

laid the groundwork for future extension to PushMePullMe3D as a tensegrity research simulation 

engine. 
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Chapter 3 

Form-Finding Structures 

Humans have been using intuition and experimentation to develop efficient and 

optimized structures for many centuries. Form-finding formalizes the development of efficient 

and optimized structures using algorithms and numerical methods [1]. Form-finding is a 

technique used in structural engineering for finding a structural configuration that is in an 

equilibrium shape [1, 2, 7]. Although network, membrane shell, and tensegrity structures present 

themselves very differently, many of the underlying concepts from their form-finding methods 

are transferrable between these types of structures. This chapter provides an overview of form-

finding structures, specifically looking at form-finding of membrane shell structures, a topic 

covered extensively by Ariane Fund [1]. 

 

3.1 Form-Finding of Membrane Shell Structures 

This section outlines form-finding of membrane shell structures. A membrane shell 

structure is a curved shell with small thickness relative to its other dimensions. Ideally a 

membrane shell structure is capable of supporting both tensile and compressive loads [23]. Shell 

structures can be seen in the construction of large dome roofs used for stadiums or airports [1].  

 

 Heinz Isler pioneered the thin-shell concrete construction by studying the catenary 

behavior of suspended fabric. A catenary curve is the shape assumed when a cable is hanging 

under its own weight, fixed between two points. Isler performed the design process by hanging 

wet fabric and letting it freeze; or soaking fabric in cement mix and letting it dry. The sagged 

form results in a catenary curve by the tension under its own weight; when inverted, the sheet 

forms a structural shell in compression [1].  
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 The goal of form-finding is to automate Isler’s process and other similar processes for 

structure design. Instead of hanging fabric, form-finding aims to use an algorithm to find the 

shape of the structure. To find the desired shape, the user supplies a known external load that is to 

be applied to the shell. The desired shape has been achieved when the structure is rigid and there 

are no bending or shear forces, only tension and compression [1]. The final shape is determined 

by the specified external load, changing based on the change in load.  

 

 Ariane Fund’s thesis examines the difference between two form-finding methods for 

membrane shell structures: Pucher’s method and the force-density method. Fund creates a 

MATLAB based form-finding program to determine an equilibrium shape of a membrane shell 

structure based on the location of external supports and a specified stress pattern [1].  

 

3.1.1 Pucher’s Method 

Pucher’s method uses Pucher’s equation to perform form-finding of membrane shell 

structures. Pucher’s equation reduces multiple force-equilibrium equations into one differential 

equation [1, 24]. Pucher’s equation is expressed as a function of membrane stress and elevation at 

each point [1].  

 

For Pucher’s method, nodes are labelled as fixed nodes and internal nodes. Fixed nodes 

are specified by 𝑥, 𝑦, and 𝑧 so they cannot be moved in any direction. Internal nodes are specified 

by only 𝑥 and 𝑦 coordinates, allowing displacement in the 𝑧 direction. The method uses finite 

element analysis and triangular elements to determine the 𝑧 coordinates for each internal node 

when loads are applied in a vertical direction [1]. 
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3.1.2 Force-Density Method 

The force-density method for form-finding uses the force-to-length ratio at each edge of 

the tensegrity structure to find a state of equilibrium [1, 7]. Using the force-density method, the 

structure is at equilibrium when the sum of all forces at each node is equal to zero [7].  

 

The force-density method uses a 2-dimensional topology graph representing a pin-jointed 

network of edges in a plane (Figure 8). Along with the topology graph, a list of force-densities at 

each edge, and the 𝑥, 𝑦 and 𝑧 coordinates of each fixed node of the structure are also given as 

input. Each free node has an external load defined in 3-dimensional space. The output of the 

force-density method consists of 𝑥, 𝑦 and 𝑧 coordinates for each free node in the structure and the 

forces at each edge. Figure 8 illustrates the results of the force density method on a membrane 

shell structure [1]. 
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Figure 8 Sample form-finding of a membrane shell structure using the force density method 

implemented by the MATLAB code in Fund's thesis. Perspective, Elevation 1, and Elevation 

2 show different angles of the output shell structure. Plan shows the topology graph input of 

the shell structure. The four corners of the membrane shell structure are fixed nodes 

anchored to the ground producing an inverted catenary curve. Figure 4-4 from [1]: 

Reproduced with permission from Ariane Fund. 

 

3.2 Application of Form-Finding to Tensegrity 

Form-finding of shell structures is an established area of research, providing useful 

insights for applying form-finding to tensegrity structures. Tensegrity structures and shell 

structures share many similarities such as developing internal forces of both tension and 

compression. However, there exists an important difference: shell structures require external 

supports, while tensegrity structures are supported by a state of self-stressed equilibrium. This 

section looks at Fund’s work on form-finding of shell structures with potential ways to adapt 

these methods for tensegrity structures. As described below, many methods in the field of 
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tensegrity form-finding are influenced by methods from form-finding for membrane shell 

structures. 

 

Based on Fund’s thesis, Pucher’s method would not be suitable for applications to 

tensegrity form-finding [1]. In Pucher’s method, some fixed nodes are required, and free nodes 

must be fixed in the 𝑥 and 𝑦 directions with movement only in the 𝑧 direction during form-

finding. This is not suitable for tensegrity structures where all nodes are free and can be moved in 

any direction. 

 

The force-density method can be adapted for tensegrity form-finding. When applied to a 

shell-structure, the force density method uses a combination of fixed and free nodes. To adapt the 

force-density method for tensegrity structures, all nodes must be free. Unlike Pucher’s method, 

the force-density method allows coordinates of free nodes to be moved in the 𝑥, 𝑦, and 𝑧 

directions [1].  

 

Several previous researchers have applied the force-density method to tensegrity form-

finding [2, 25, 26, 27]. The form-finding methods proposed in the literature have not been made 

available in widely used simulation platforms, where researchers can use these advancements in 

tensegrity research. Currently both NTRT and PushMePullMe3D do not have the ability for 

automated form-finding. This thesis gives tensegrity researchers access to automated form-

finding capabilities compatible with PushMePullMe3D and planned compatibility with NTRT.  

 

In other approaches to tensegrity form-finding, the force-density method has also been 

coupled with machine learning approaches such as Monte Carlo simulations and genetic 

algorithms. 
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Li et al perform Monte Carlo simulation for tensegrity form-finding [28]. This method 

has been successful; however, Monte Carlo simulation is often a computationally expensive 

process. Li et al capitalize on the effectiveness of Monte Carlo for large tensegrity structures [28]. 

 

Many researchers use genetic algorithms and evolutionary computing for tensegrity form-

finding [2, 26, 29, 30, 31, 32]. Often genetic algorithm approaches to tensegrity form-finding 

focus on a particular type of tensegrity structure. For example, both Yamamoto et al and Gan et al 

focus on the form-finding of irregular tensegrity structures (tensegrity structures with asymmetric 

topologies) [2, 28, 31]. Using genetic algorithms, researchers including Yamamoto et al are faced 

with difficulties to guarantee convergence [2]. Although genetic algorithms can be challenging to 

implement for tensegrity form-finding, they often require less computational time than Monte 

Carlo simulation. Since most tensegrity structures taken as input are assumed to be close to a 

stable state, the genetic algorithm should not be a computationally expensive process for the user. 

In this thesis, we develop a form-finding approach for tensegrity structures using genetic 

algorithms (Chapter 7).  Chapter 5 summarizes genetic algorithms, while Chapter 6 summarizes 

Yamamoto’s approach to tensegrity form-finding using genetic algorithms. 

 

Providing widely-available implementations of these form-finding methods would allow 

researchers to exploit the advances in tensegrity design automation. This thesis provides 

tensegrity researchers with automated form-finding capabilities compatible with 

PushMePullMe3D and planned compatibility with NTRT. 
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Chapter 4 

Representation of Tensegrity Structures 

Our tensegrity form-finding application must represent tensegrity structures in a human 

readable and computationally efficient format. Tensegrity structures have different 

representations across platforms and disciplines within the literature. The differences in 

representation of tensegrity structures is a challenge for collaboration and validation of methods 

between researchers. This chapter summarizes mathematical and computational representations of 

tensegrity structures. 

 

A tensegrity structure can be described as an undirected graph. Each edge of the graph is 

labeled as a strut or cable. Each edge has attributes such as length, stiffness, and radius. For 

mathematical benefits in form-finding approaches, each edge of a tensegrity structure can be 

given a directionality, to create a directed graph [2, 7, 25, 26, 31]. Section 4.1 describes a 

topology graph representation of tensegrity structures. Section 4.2 describes a mathematical 

representation of tensegrity structures. 

 

4.1 Non-planar Topology Graphs for Tensegrity Structures 

The connectivity of a tensegrity structure can be represented as a topology graph. Ariane 

Fund’s thesis illustrates the use of topology graphs for the abstract representation of membrane 

shell structures (Figure 9) [1]. With minor modifications, Fund’s representation of topology 

graphs can be used for the abstract representation of tensegrity structures. 
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Fund represents the topology graph of a membrane shell structure as the connectivity in 

the 𝑥-𝑦 plane. For membrane shell structures, all node inputs (fixed and free nodes) for form-

finding are specified with 𝑥 and 𝑦 coordinates, while the form-finding solves for 𝑧 coordinates of 

free nodes [1, 7]. For membrane shell structures, the topology graph is constrained such that two 

edges cannot intersect – so edges connect adjacent nodes vertically, horizontally or diagonally. 

This provides an aerial view of the structure to represent its connectivity. 

 

For topology graphs to effectively represent tensegrity structures, the graphs must be 

non-planar allowing intersections in the 𝑥-𝑦 plane. The reason that planar topology graphs suffice 

for shell membrane structures is because the shell structures have additional constraints provided 

for fixed nodes, preventing overlap in edges. Tensegrity structures do not have fixed nodes, 

instead they require enough edges to create a full 3-dimensional surface shape. This forms a non-

planar graph when projected onto the 𝑥-𝑦 plane. 

 

Topology graphs provide researchers with an abstract representation of tensegrity 

structures during the design and construction process. However, a different computational 

representation is needed to support the mathematical operations that form-finding algorithms 

perform on the coordinates, nodes, and edges of a tensegrity structure. Section 4.2 outlines the 

mathematical representation of a tensegrity structure, a representation which can be derived from 

the topology graph shown in this section. In this thesis, we choose to represent the graph as a 

matrix-vector combination based on literature surveyed in the field of tensegrity form-finding [2, 

25, 26, 31]. 
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Figure 9 Planar topology graph used as input for form-finding of membrane shell 

structures in Fund's thesis. Reproduced with permission from Ariane Fund [1]. 

 

4.2 Mathematical Representation of a Tensegrity Structure 

For tensegrity form-finding methods, including the force-density method, it is important 

for tensegrity structures to be represented mathematically. The mathematical representation 

allows computations such as vector and matrix multiplication to be carried out to determine 

characteristics of the tensegrity structure being examined. These computations are essential in the 

tensegrity form-finding process. This section outlines the notation and mathematical 

representation of tensegrity structures. The mathematical notation used in this thesis is a common 

notation with influence from notation used by several papers including those by Yamamoto, Gan, 

Koohestani, and Estrada [2, 25, 26, 31]. Developing a common notation used in this thesis 

required careful consideration to the specifications of different tensegrity form-finding 

algorithms. 
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Mathematically, a tensegrity structure can be defined using a matrix-vector combination. 

As described in more detail below, the matrix represents each edge of the tensegrity structure and 

the connectivity of the edge between two nodes. The vector attributes each edge with a type, strut 

or cable. Together the matrix-vector combination is able to define a tensegrity structure. This 

approach can be seen in many tensegrity form-finding approaches [2, 17, 31, 30, 33]. 

 

The connectivity matrix, 𝐶, describes the connectivity of a tensegrity structure, the 

connection of nodes by each edge. In a generalized form, tensegrity structures have 𝑛 nodes and 𝑏 

edges. In the connectivity matrix, each row represents an edge, while each column represents a 

node. So the connectivity matrix is of size 𝑏 by 𝑛. The connectivity contains -1 and 1 to indicate 

nodes connected at an edge and its directionality (Figure 10). Tensegrity structures are 

represented in this way as directed graphs because of the computations required in the force-

density method for form-finding [7]. Directionality of a tensegrity graph can be assigned 

arbitrarily, such as going from -1 to 1 in a clockwise direction.  

 

The force-density (also referred to as tension coefficient) vector, �⃗�, describes the type of 

each edge of the tensegrity structure, strut or cable. The vector labels each edge with a tension 

coefficient, describing the tension at a given edge. For struts, which are rigid, the force-density 

value is labelled -1 [2]. Cables are given force-densities greater than 0, although some methods 

assume force-densities of 1 for all cables [2, 31].  

 

Figure 11 provides an example of a connectivity matrix and force-density vector. Based 

on the matrix-vector combination, it is possible to estimate nodal coordinates for a tensegrity 

structure [7, 25]. 



 

32 

 

 

 

Figure 10 Example of an edge connected by two nodes and its representation in a 

connectivity matrix. Figure created by Nuwan Perera adopted by work from Gan et al [31]. 

 

 

 

Figure 11 Connectivity matrix and tension coefficient vector representing a tensegrity 3-

prism (right). Figure created by Nuwan Perera adopted from work by Yamamoto et al [2]. 
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Symbol Description Type 

𝑏 Number of edges Integer 

𝑛 Number of nodes Integer 

𝑑 Dimensionality of tensegrity 

structure 

𝑑 =  3 

𝐶 Connectivity matrix where 

element 𝑘 is connected 

between nodes 𝑖 and 𝑗 by -1 to 

1. 

Matrix of size 𝑏 × 𝑛 

�⃗� Tension coefficient vector Vector of size 𝑏 × 1 

Table 1 Summary of notation for representing a tensegrity structure. 
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Chapter 5 

Genetic Algorithms 

Genetic algorithms are a class of evolutionary algorithms inspired by biological processes 

in evolution and genetics [34]. Genetic algorithms are an effective solution for optimization 

problems with a large search space. This makes the use of genetic algorithms well-suited for 

form-finding of tensegrity structures, where the search space greatly increases with the number of 

nodes.  

 

This chapter provides a general review of genetic algorithms as background for the 

Chapter 6 summary of existing work in tensegrity form-finding using genetic algorithms, and the 

approach to form-finding developed in this thesis in Chapter 7. 

 

The operations of a genetic algorithm are inspired by biological concepts from natural 

selection. In a genetic algorithm, a population of individuals are created, where only the ‘fittest’ 

individuals from the population are selected to the next generation. The next generation is 

generated by genetic operations aiming to inherit the best traits from its parent generation. This 

process continues until an individual or multiple individuals satisfy the fitness measure specified, 

a local optimum in the search space. 

 

Genetic algorithms typically have three key operations known as genetic operators: 

mutation, crossover and selection [34]. In genetic algorithms, the genetic operators (mutation, 

selection, and crossover) are applied to the population to create diverse individuals, similar to 

genetics in biology [35].  
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• Mutation is a process in which an individual’s gene(s) are randomly altered with 

intent of perhaps increasing its fitness (Figure 12). Mutations can be either 

advantageous or disadvantageous to an individual; changing its characteristics from 

its parent [34]. 

• Crossover is a process in which two individuals of a previous generation are 

‘hybridized’ to create a new individual analogous to biological reproduction (Figure 

13). The goal of crossover is to create a more ‘fit’ individual by taking the best 

qualities in its ‘parents’ [34]. 

• Selection is a process in which the individuals of the population are compared 

against some fitness function. Fitness functions provide feedback to the genetic 

algorithm on the favorability of an individual and its proximity to the optimum or 

goal state. The ‘fittest’ individuals, being those who score highest according to the 

fitness function, are then selected to be used in the next generation [34]. 

 

To apply genetic operators, it is important that the data is represented as a chromosome 

encoded in a vector or string. Often the data used for a genetic algorithm is not natively 

represented as a vector or string, so a conversion or encoding needs to occur. The conversion of 

data into a chromosome is known as chromosome encoding. This allows genetic operators, 

specifically mutation and crossover, to be applied to the data creating diversity in the population. 

 

Overall, genetic algorithms are an efficient technique for solving optimization problems 

in a large search space such as tensegrity form-finding [2, 26, 31, 33]. 
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Figure 12 Example of mutation operation of genetic algorithms. Figure created by Nuwan 

Perera. 

 

 

 

Figure 13 Example of crossover operation of genetic algorithms. Figure created by Nuwan 

Perera. 
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Chapter 6 

Yamamoto’s Form-Finding Using Genetic Algorithms 

This chapter outlines the use of genetic algorithms for tensegrity form-finding based on 

work by Yamamoto et al. To understand state of the art in tensegrity form-finding, we conducted 

an extensive review and implementation of work by Yamamoto et al [2]. This chapter reviews the 

work done by Yamamoto et al, which is reimplemented and further extended in our form-finding 

approach in Chapter 7.  

 

Yamamoto’s method uses the force-density method with genetic algorithms for form-

finding of tensegrity structures. As a contribution in this thesis, a detailed analysis and 

implementation of Yamamoto et al’s method was performed to understand the state of the art in 

tensegrity form-finding using genetic algorithms. Within the same research group, Gan et al 

extend the work of Yamamoto, providing many clarifications to the process of tensegrity form-

finding and improving the fitness measures used in the original paper. This chapter outlines the 

genetic algorithm approach to tensegrity form-finding proposed by Yamamoto et al (2011) and 

extended by Gan et al (2015) [2, 31]. 

 

In both these papers, form-finding is defined as the process of finding a structural 

configuration capable of a state of self-stressed equilibrium. Self-stress equilibrium is obtained 

when all struts are suspended by the cables of the structure, creating an internal state of 

equilibrium between tension and compression forces [31, 36]. Both the methods by Yamamoto 

and Gan perform form-finding on an attributed tensegrity structure. Yamamoto and Gan both use 

genetic algorithms during the form-finding process to adjust strut length, cable length, and 

connectivity of the structure to obtain a configuration for self-stressed equilibrium. If such a 
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configuration exists, then both methods report success and produce an attributed tensegrity 

structure with 𝑥, 𝑦 and 𝑧 coordinates describing a state of self-stressed equilibrium [2, 31].  

 

 These methods have constraints and assumptions for the tensegrity form-finding problem. 

In Yamamoto’s method, it is assumed that all struts are denoted by a tension coefficient of -1 

while all cables are denoted by a tension coefficient of 1 [2].  This means that all cables share the 

same mechanical properties, and all struts share the same mechanical properties.  

 

 Further sections of this chapter outline the mechanics of Yamamoto’s form-finding 

method using genetic algorithms. 

 

6.1 Algorithm Input 

Yamamoto’s method takes an attributed tensegrity structure as input. As mentioned 

above, Yamamoto uses genetic algorithms during the form-finding process to adjust strut length, 

cable length, and the connectivity of the structure to obtain a configuration capable of self-

stressed equilibrium. 

 

As described in Chapter 4, the attributed tensegrity structure is represented by the 

connectivity matrix 𝐶 and tension coefficient vector 𝑡. The connectivity matrix represents the 

connectivity of edges between nodes. The tension coefficient vector represents the tension for 

each edge in the tensegrity structure. Using these inputs, Yamamoto’s method is capable of 

determining 𝑥, 𝑦, and 𝑧 coordinates of the nodes in a tensegrity structure.  
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6.2 Fitness Functions 

The use of fitness functions to determine whether or not a tensegrity structure is in a state 

of self-stressed equilibrium is essential for form-finding using genetic algorithms. For tensegrity 

form-finding, fitness functions determine how close the tensegrity structure is to a state of self-

stressed equilibrium.  

 

To obtain a robust fitness function, Yamamoto uses the sum of multiple fitness functions 

[2]. By using multiple fitness functions, independent aspects of the tensegrity structure can be 

taken into account to analyze the overall fitness of the structure.  

 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓1 + 𝑓2 + 𝑓3 

 

This chapter uses notation consistent with that presented in Chapter 4. A summary of 

notation is provided by Table 1 in Chapter 4. 

 

6.2.1 Fitness Function 1: Self-Stressed Equilibrium 

The first fitness function, 𝑓1, determines whether or not the tensegrity structure is capable 

of a state of self-stressed equilibrium. The use of self-stressed equilibrium is a well-established 

method for tensegrity form-finding stemming from the force-density method proposed by Schek 

in the 1970s for mesh and shell structures, and further applied to tensegrity structures by several 

other researchers [2, 7, 17, 25, 30, 33, 37]. 

 

Using 𝐶 and �⃗�,  Yamamoto computes the force-density matrix 𝐷. The force-density 

matrix represents the force-density values throughout the tensegrity structure [7, 37, 38]. 

 

𝐷 = 𝐶𝑇𝑑𝑖𝑎𝑔(�⃗�)𝐶 
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The force-density matrix can be used to approximate 3-dimensional node coordinates for 

the tensegrity structure using Schur decomposition [2, 25, 31]. The first three eigenvectors of 

matrix 𝑈 represent the 𝑥, 𝑦, and 𝑧 coordinates of the tensegrity structure in 3-dimensional space. 

 

𝐷 = 𝑈𝑇𝑉𝑈 

[�⃗� �⃗� 𝑧] = [𝒖𝟏⃗⃗ ⃗⃗ ⃗ 𝒖𝟐⃗⃗ ⃗⃗ ⃗ 𝒖𝟑⃗⃗ ⃗⃗ ⃗]  

 

Using the 3-dimensional coordinates and connectivity matrix of the tensegrity structure, 

Yamamoto computes the equilibrium matrix 𝐴. The equilibrium matrix provides insight into 

whether or not the tensegrity structure being examined is capable of a state of self-stressed 

equilibrium. 

 

𝐴 =  [

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶�⃗�)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶�⃗�)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑧)

] 

 

When the singular tension coefficients of 𝐴 approach zero, the structure approaches a 

state of self-stressed equilibrium. Yamamoto computes the singular tension coefficients by 

applying singular value decomposition to the equilibrium matrix.  

 

𝑆𝑉𝐷(𝐴) = 𝑈𝑉𝑊𝑇 
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The bottom right corner of matrix 𝑉 determines whether or not the tensegrity structure is 

in a state of self-stressed equilibrium, fitness value 𝑓1 [2, 31]. 

 

𝑓1 = 𝑉𝑒𝑛𝑑,𝑒𝑛𝑑 

 

6.2.2 Fitness Function 2: Connectivity at a node 

For a tensegrity structure to be capable of self-stressed equilibrium, it is important for 

each node to have an appropriate number of connections. Yamamoto denotes the maximum 

number of connections at a node as 𝑁𝐶. To determine whether connectivity at each node is 

sufficient Yamamoto defines the fitness function 𝑓2. When 𝑓2 approaches zero, connectivity at 

each node is satisfied. 

 

𝑓2 = ∑ |(𝑁𝐶 −  ∑|𝐶(𝑖, 𝑗)|

𝑏

𝑖=1

)|

𝑛

𝑗=1

 

 

6.2.3 Fitness Function 3: Struts at a node 

For a tensegrity structure to be capable of self-stressed equilibrium, each node should 

only have one strut. For a class 1 tensegrity structure to be stable, each node should be connected 

to exactly one strut (Refer to 2.1 for definition of class 1). To determine whether each node has a 

strut, Yamamoto defines fitness function 𝑓3 as follows [2]. 

 

First, Yamamoto computes the number of elements at all nodes denoted 𝐶𝑇.  

 

𝐶𝑇 = 𝑑𝑖𝑎𝑔(𝑞0⃗⃗⃗⃗⃗)𝑇|𝐶| 
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Yamamoto uses 𝐶𝑇 to compute the fitness value 𝑓3, which minimizes to zero when each node is 

connected to exactly one strut. 

 

𝑓3 =  ∑ |𝑁𝑆 − ∑ 𝐶𝑇(𝑖, 𝑗)

𝑏

𝑖=1

| 

𝑛

𝑗=1

 𝑤ℎ𝑒𝑟𝑒 𝑁𝑆 = 𝑁𝐶 − 2 

 

6.3 Chromosome Encoding of Tensegrity Structures 

Chromosome encoding is an important part of using genetic algorithms. Yamamoto 

proposes a chromosome encoding method for tensegrity structures using the connectivity matrix 

𝐶 and force-density vector  �⃗�.  Yamamoto’s approach uses two chromosomes to represent a 

tensegrity structure: a chromosome for the connectivity matrix, and a chromosome for the tension 

coefficient vector. 

 

In the connectivity matrix, each row of the matrix connects two nodes by an edge within 

the tensegrity structure. Yamamoto labels each row of the matrix as a letter. Yamamoto labels 

each edge of the tensegrity with a letter. When crossover and mutation are applied, these letters 

are permuted to create new individuals in the population. 

 

Similar to the connectivity matrix, each row of the tension coefficient vector represents 

an edge in the tensegrity structure. Yamamoto transforms the tension coefficient vector into a 

string where each value corresponds to an edge with a related tension coefficient. To generate 

diversity in the population, the indices of the tension coefficients are permuted through genetic 

operators. 

 



 

43 

 

6.4 Summary of Yamamoto’s Method 

Yamamoto’s method takes an attributed tensegrity structure that is not guaranteed to be 

capable of self-stressed equilibrium; and returns an attributed tensegrity structure and 

corresponding node coordinates in a state of self-stress equilibrium. Yamamoto uses genetic 

algorithms to adjust cable lengths, strut lengths, and connectivity for obtaining a state of self-

stressed equilibrium.  

 

Although Yamamoto’s work provides inspiration towards the design of our approach 

explained in Chapter 7, the work presented by Yamamoto has several limitations in our research 

area. In Yamamoto’s method, topology and edge labels (strut or cable) can be changed during the 

genetic algorithm process for form-finding – only the number of edges remains the same. These 

changes to the input tensegrity structure would not be feasible in our application (Chapter 7), and 

would be a considerable limitation to our method. In our proposed method, we assume the 

tensegrity structure given as input contains correct topology and edge labels, as we adjust edge 

attributes (resting length, strut length), and node coordinates. 

 

Figure 14 provides a flowchart overview of Yamamoto’s method. 
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Figure 14 Flowchart illustrating the workflow used by Yamamoto for tensegrity form-

finding using genetic algorithms. Figure by Nuwan Perera based on careful investigation of 

work by Yamamoto et al [2]. 
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Chapter 7 

Designing a Genetic Algorithm Approach for Tensegrity Form-Finding 

In this chapter we design a stand-alone application for tensegrity form-finding using 

genetic algorithms. The goal of our application is to reduce iterative adjustments made by 

researchers when constructing tensegrity structures using simulation support. Our application 

promotes collaboration and the use of simulation by supporting both NTRT and 

PushMePullMe3D platforms. Currently, neither platform supports automated form-finding 

algorithms, thus requiring iterative adjustments by the user. The iterative adjustment process 

when constructing tensegrity structures is often time consuming and frustrating for researchers. 

Although algorithms for tensegrity form-finding applications have been proposed in the literature, 

implementations are often not available. Therefore, tensegrity researchers cannot capitalize on the 

benefits of these advances, and rely on experimentation alone.  

 

Our approach to form-finding focuses on reducing the amount of iterative adjustments 

required to tension, compression, and node coordinates within a structure. For example, when 

building a full body tensegrity model such as that shown in Figure 6 (Chapter 1), our application 

will adjust node coordinates to provide the structure with a stable state, or whether a stable state is 

impossible for the given topology and edge labels. With future extensions, our application will 

also support user defined fitness functions such as constraints on the spacing of toes within the 

structure being designed. Using these features, our application aims to be the framework for 

augmenting the design process for tensegrity structures. 

 

In this chapter we propose an efficient design for a tensegrity form-finding application. 

Our approach takes inspiration from many proposed algorithms in the field of form-finding. In 
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our approach, we aim to provide an efficient application that can be executed on an average 

personal computer (4GB RAM, Intel i5-6300U). The efficiency of the force-density method, 

allows the application to reach a large audience of users and find stable states of tensegrity 

structures quickly.  

 

7.1 Application Design Considerations 

Several considerations were taken into account during the design of our tensegrity form-

finding application. We want our software to be easy to extend, compatible with several 

simulation platforms, and easy to use. Our application achieves some of these conditions by using 

MATLAB. 

 

 MATLAB is a proprietary programming language used for numerical computing, created 

by MathWorks. Although MATLAB is an expensive development tool, many institutions hold 

licenses for the product, making it accessible to most developers in tensegrity research. Using 

MATLAB allows us to exploit the efficiency of built-in functions for numerical methods. 

Examples of built-in functions include singular value decomposition and matrix multiplication.  

 

 The use of built-in functions allows our code to be short with few files. The compactness 

of the software makes it easier for other developers to extend or customize our application. To 

promote collaboration and extensions to our application, sample source code of our fitness 

function can be found in Appendix A, full source code is available online through a GitHub 

repository. 

 

 By using MATLAB, our application is not constrained to a single simulation platform; 

rather it can work with data files from any platform as long as a compatible parser is built. If the 
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simulation platform does not have a parser available, the availability of our code allows other 

researchers to extend the MATLAB application. By creating a stand-alone application for 

tensegrity form-finding, we can overcome NDA/IP issues presented by some simulation 

platforms since the datafiles are usually based on open-source formats even if the simulation 

source code is proprietary. 

 

Although MATLAB is a proprietary tool to develop on, it can be executed for free by 

users who do not possess licenses by compiling the MATLAB program. The compiled MATLAB 

accepts the data file saved from the simulation platform, computes the form-finding for a self-

stressed state, and if possible, returns the self-stressed tensegrity structure. Since our MATLAB 

application will be multi-platform, free to use, and does not require programming knowledge; it 

should be accessible to most of our users. Figure 14 shows the user interface input of our form-

finding application. 

 

 Based on our criteria for a stand-alone tensegrity form-finding application, we decided 

that MATLAB would be a suitable programming language. 
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Figure 15 MATLAB input user interface for our tensegrity form-finding application. Figure 

by Nuwan Perera. 

 

7.2 Design Assumptions for the Prototype Implementation 

Since tensegrity form-finding is a very broad area of research, we impose assumptions to 

constrain our application. The assumptions made by our applications aims to provide sufficient 

form-finding to as many users as possible. 

• A valid tensegrity structure is given as input. We assume that the tensegrity 

structure given to the application as input is valid, according to the criteria we define 

in Section 2.1. 

• The tensegrity structure is unactuated. Tensegrity structures can be equipped with 

actuators that change the length of struts and cables to generate motion. In tensegrity 

robotics, machine learning can be used to discover actuation patterns [15]. Actuation 

of tensegrity structures is beyond the scope of this thesis. 
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• The connectivity given as input is correct. We assume that the connectivity given 

as input to the form-finding application is the desired output. 

 

7.3 Algorithm Inputs 

To perform form-finding, the algorithm uses a tensegrity structure created in a simulation 

platform, either NTRT or PushMePullMe3D. The structures are accepted into our application as a 

represented file. For NTRT, this can be a YAML representation, the markup language used by the 

platform. For PushMePullMe3D, this can be .dxf, a common format used to represent CAD 

models.   

 

The markup files are then parsed to a representation similar to that shown in Fund’s work 

[1]. Each tensegrity structure is represented by a force-density vector �⃗�, edge-node matrix 𝐶𝑂𝑁𝑁, 

number of nodes 𝑛, and 𝑥, 𝑦, 𝑧 coordinates of the each node. In other methods, initial node 

coordinates are unknown [2, 26, 31, 39]. Unlike these methods, we use node coordinate 

information from the simulation engine as a part of our form-finding input. The use of initial 

𝑥, 𝑦, 𝑧 coordinates often results in shorter runtime for the form-finding application, as the 

structure is close to its desired state of self-stressed equilibrium.  
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Symbol Description Type 

𝑛 Number of nodes Integer 

𝐶𝑂𝑁𝑁 Edge-node matrix [𝑒𝑑𝑔𝑒 #, 𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2] 

Matrix of size 𝑏 × 𝑛 

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 Node coordinate matrix  [𝑥, 𝑦, 𝑧] 

�⃗�0 Initial force-density vector Vector of size 𝑏 × 1 

Table 2 Summary of input parameters for our prototype implementation of the tensegrity 

form-finding application. 

 

7.4 Design of Tensegrity Form-Finding Approach 

Our form-finding approach takes inspiration from Fund’s and Yamamoto’s algorithms [1, 

2]. Unlike Fund’s and Yamamoto’s methods, our algorithm can make use of initial node 

coordinates. The node coordinates of each structure are contained within the data file being 

passed into our application. In our approach, we exploit this additional information to accelerate 

and improve the form-finding process. 

 

To compute the force-density and equilibrium matrices, we convert the edge-node matrix, 

𝐶𝑂𝑁𝑁, into a connectivity matrix 𝐶 as explained in Section 4.2. The connectivity matrix 

represents each edge as a row, and each node as a column, where edge 𝑘 connects node 𝑖 to 𝑗 by a 

connection from 1 to -1 (Figure 10). We choose to use the edge-node matrix as an intermediate 

storage form because its representation is very similar to both .yaml and .dxf representations. This 

makes the form-finding process transparent for both developers and users.  

 

Using the connectivity matrix, we compute the force density matrix 𝐷. This approach is 

analogous to the force-density methods shown by both Fund and Yamamoto [1, 2]. 

𝐷 = 𝐶𝑇𝑑𝑖𝑎𝑔(𝑞0⃗⃗⃗⃗⃗)𝐶 
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Similarly, we compute the equilibrium matrix 𝐴, which determines whether or not the 

tensegrity structure is in a state of self-stressed equilibrium. Unlike Yamamoto’s method, we 

have access to �⃗�, �⃗�, and 𝑧 coordinates from the initial design of the tensegrity structure. So we do 

not need to solve for these coordinates before computing the equilibrium matrix . 

 

𝐴 =  [

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶�⃗�)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶�⃗�)

𝐶𝑇𝑑𝑖𝑎𝑔(𝐶𝑧)

] 

 

If the tensegrity structure is in a state of self-stressed equilibrium, the equilibrium matrix 

multiplied by the force-density vector will be equal to zero [2, 31, 26, 39]. 

 

𝐴�⃗� = 0⃗⃗ 

 

To determine if the tensegrity structure is acceptable, we solve for the force-density 

vector �⃗�. Since the equilibrium condition is a homogenous system, multiple solutions for �⃗� could 

exist. To solve for �⃗� we use singular value decomposition (SVD). 

 

𝑈𝑆𝑉𝑇 = 𝑆𝑉𝐷(𝐴) 

 

The resulting force-density vector �⃗� is the last column of the singular matrix 𝑉. 

 

 The vector �⃗� represents the force-density at each edge; the magnitude of the force density 

corresponds to the tension at a given edge. If the value of �⃗� is positive the corresponding edge is a 
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tensile element, and the edge is a cable. If the value of �⃗� is negative, the corresponding edge has 

no tension, and the edge is a strut. 

 

 If the strut and cable configuration of �⃗� matches the configuration of 𝑞0⃗⃗⃗⃗⃗ the tensegrity 

structure will be self-stressed during simulation. If the strut and cable configurations do not 

match, the tensegrity structure will not be self-stressed during simulation (Figure 16). 

  

 If the tensegrity structure is not acceptable, a genetic algorithm is used to approximate 

better �⃗�, �⃗�, and 𝑧 coordinates for the tensegrity structure. Section 7.5 presents the genetic 

algorithms used for adjusting tensegrity structures to obtain self-stressed equilibrium. 
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Figure 16 Resulting force-density vector example. Left: shows a tensegrity structure at self-

stressed equilibrium, where the configuration of struts are unchanged. Right: shows an 

extra strut added and changed configuration indicating a failed tensegrity structure. Figure 

by Nuwan Perera. 

 

7.5 Genetic Algorithms for Structure Adjustment 

Genetic algorithms are used to find possible solutions for problems with large search 

spaces. Tensegrity form-finding presents a vast search space. Even for a simple 3-prism 

tensegrity structure, there are many possible configurations – although most configurations 

produce invalid tensegrity structures.   

 

If the tensegrity structure is not self-stressed, the equilibrium equation will not be equal 

to zero when the new force-density vector �⃗� is used. We use the sum of the result of the 

equilibrium equation 𝑟 as the fitness value for evaluating the success of our tensegrity structure. 
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When a structure is capable of self-stressed equilibrium the 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 should minimize to 

zero. 

 

𝐴�⃗� = 𝑟 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 𝑆𝑈𝑀(𝑎𝑏𝑠(𝑟)) 

 

 Based on the success criteria, the genetic algorithm will create a population using 

crossover and mutation. The fittest individuals in the population will be selected to create the 

resulting tensegrity structure. 

 

 For efficient computation of genetic algorithms, we use the MATLAB Optimization 

Toolbox. The Optimization Toolbox is a built-in facility MATLAB that allows users to define 

fitness function and execute genetic algorithms. Although the MATLAB toolbox is used, the 

chromosome encodings, representations, and operations closely resemble those in Chapter 5. 

Figure 17 also provides further high-level details about the genetic algorithm used in our method. 

The use of the toolbox improves the efficiency of our genetic algorithm implementation 

compared to a manual implementation. 

 

7.6 Output of Form-Finding Application 

Once a feasible tensegrity structure is found, it is returned to the user using the same 

representation as the input given. For example, if a .dxf file was given as input, the user will 

receive a .dxf file returned as output. The new file will contain a tensegrity structure that is 

capable of self-stressed equilibrium. It is possible that parameters within the simulation platform 

such as damping and prestress could need adjustment for the structure to be stable. Simulation 
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parameter information is not obtainable through current data representations so these factors 

cannot be accounted for in the form-finding process. 

 

Figure 17 shows a flowchart of our form-finding method similar to the flowchart of 

Yamamoto’s method shown in Figure 14. 
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Figure 17 Figure of our tensegrity form-finding application presented in Chapter 7. 
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Chapter 8 

Results and Analysis of Tensegrity Form-Finding 

In this chapter, we present the results and prototype implementation of our tensegrity 

form-finding application. We also provide an analysis of our findings and limitations in our 

current implementation of the form-finding application.  

 

8.1 Limitations of Our Prototype Implementation of Tensegrity Form-Finding 

In this thesis, we implement the fitness function and genetic algorithm component of our 

designed form-finding application from Chapter 7.  

 

Developing a robust tensegrity form-finding application is a challenging task. Several 

months were spent reviewing the literature for published form-finding approaches, and 

implementing these proposed approaches [1, 2, 25, 31] . Fund’s thesis work provided clear 

explanations of form-finding for shell structures as well as well described MATLAB code for 

testing both the force-density method and Pucher’s method for shell structures. Aside from 

Fund’s thesis, other publications do not make their source code publicly available [1]. However, 

Fund’s approach is for the form-finding of shell structures, and requires considerable 

modifications to work for tensegrity structures. For example, both publications by Yamamoto and 

Gan do not have source code publicly available [2, 31]. During this thesis we attempted to acquire 

source code for both methods through communication with the authors; however, this was not 

made available. The absence of source code made the reimplementation of Yamamoto’s and 

Gan’s tensegrity form-finding approaches a challenging and time consuming task [2, 31]. After 

careful implementation, we experienced several ambiguities re-implementing the works of both 

Yamamoto and Gan [2, 31].  
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Our design of a tensegrity form-finding application outlined in Chapter 7 takes 

inspiration from several existing form-finding methods. During implementation, several months 

were spent understanding the numerical methods involved in tensegrity form-finding. Our 

prototype implementation is able to successfully conduct form-finding for 2-dimensional 

tensegrity structures. Even after months of investigation, the prototype implementation has 

instabilities when applied to 3-dimensional structures. The limitations of our implementation led 

to unexpectedly poor results for some test cases. Two limitations that affected the functionality of 

our program are: the free variables present when fixed nodes are eliminated, and the homogenous 

properties of the equilibrium equation. 

 

Although our prototype has limitations in functionality, it still provides a good foundation 

for future work in tensegrity simulation and form-finding research. Proof of concept is provided 

by successfully conducting form-finding on 2-dimensional tensegrity structures. Instabilities for 

3-dimensional structures can be attributed to the equations and numerical instabilities faced in 3-

dimensions. 

 

Unlike membrane shell structures, tensegrity structures do not have fixed nodes [39]. 

This creates several free variables in the force-density method. The free variables lead to many 

possible solutions to the system of equations because they make the force-density equation a 

homogenous system.  

 

𝐷 [�⃗� �⃗� 𝑧] = 0⃗⃗ 

 

Some researchers including Lee et al use genetic algorithms to find the best solution to the force-

density equation [33].   
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 Similar to the force-density equation, the self-stressed equilibrium equation is also a 

homogenous system. The homogenous system means that the equation can have multiple 

solutions. For the force-density method, this means we can obtain multiple solutions to the force-

density equation. Our MATLAB implementation and design method returns the smallest non-zero 

solution. This is often not the best solution to be used for form-finding of tensegrity structures; 

for example, it might be a rigid non-tensegral structure where most of the edges are struts. 

 

Ongoing attempts are being made to overcome the drawbacks of the homogenous 

systems, but so far none have resolved the stability problems for 3-dimensional cases. The best 

results were produced by taking the smallest non-zero solution by using singular value 

decomposition.  

 

Other researchers have also noted challenges with tensegrity form-finding in areas of 

numerical stability and convergence. Most current tensegrity form-finding approaches limit the 

algorithms to very specific cases of tensegrity structures: regular or irregular tensegrity structures, 

symmetric tensegrity structures, multiple states of self-stress [31, 33, 37]. 

 

Significant effort and time was spent implementing an efficient fitness function, thus 

limiting the time available to address the numerical instability problems and produce a fully 

robust form-finding application within the scope of this thesis. 
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8.2 Validating the Form-Finding Algorithm 

To illustrate the strengths and limitations of our prototype implementation, we use four 

test cases: a 2-dimensional tensegrity ‘X’, a self-stressed 4-strut tensegrity structure, a self-

stressed 3-strut tensegrity prism, and an unstable 3-strut tensegrity prism. The 2-dimensional 

tensegrity ‘X’ allows us to validate the correctness of the algorithm in two dimensions. The 4-

strut tensegrity structure is chosen for testing to compare against other methods such as the form-

finding method proposed by Gan [31] . The 3-strut prism is chosen as a test case because of its 

simplicity; it is the most basic form of a 3-dimensional tensegrity structure, thus making a good 

test case to verify the correctness of our algorithm. 

 

In this section, we present the results of our fitness function, to determine whether or not 

a tensegrity structure is currently capable of self-stressed equilibrium. The results from this 

section illustrate the strengths and limitations of our current implementation of the form-finding 

application. Section 8.3 provides an analysis of the results presented in this section. 

 

8.2.1 Results: 2-strut Tensegrity ‘X’ 

To validate the correctness of our approach, we use a 2-strut tensegrity ‘X’, a 2-

dimensional tensegrity structure similar to that used by Moored and Bart-Smith [40]. The correct 

output of a 2-dimensional tensegrity ‘X’ can be computed manually for verification. Table 3, 4, 

and 5 show the input parameters for a 2-dimensional tensegrity ‘X’, which satisfies the condition 

𝐴�⃗� = 0⃗⃗. 
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Number of Nodes (n) = 4 

 

x y 

0 1 

0 0 

 1 0 

 1 1 

Table 3 Input x and y parameters for a 2-strut tensegrity 'X' in 2-dimensional space. 

 

 

q0 

1 

1 

1 

1 

-1 

-1 

Table 4 Input force-density vector for a tensegrity 'X' in 2-dimensional space. 

 

 

 

Edge # Node 1 Node 2 

1 

2 

3 

4 

5 

6 

1 

2 

3 

1 

1 

2 

2 

3 

4 

4 

3 

4 

Table 5 Input connectivity of a 2-strut tensegrity 'X'. 
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8.2.2 Results: 4-strut Tensegrity Prism 

The 4-strut tensegrity prism used in the tensegrity form-finding approach by Gan et al is 

used to validate our proposed form finding application [31]. Tables 6, 7, and 8 show the input 

parameters. Table 9 shows the output force-density vector returned by the fitness function. 

 

Number of Nodes (n) = 8 

 

 

x y z 

-0.04699 -0.61277 -0.39280 

-0.10034 -0.26753  0.36964 

 0.46218 -0.15565  0.36840 

 0.50295  0.101945 -0.18404 

-0.63877 -0.23305 -0.02637 

-0.33470  0.33128  0.48001 

-0.29177  0.47038  -0.06329 

-0.01584  0.36591 -0.55163 

Table 6 Input x, y, z parameters for tensegrity form-finding based on a stable 4-strut 

tensegrity structure from Gan et al. 
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q0 

1.5331 

3.2160 

4.9010 

1.6192 

2.8350 

1.8900 

1.7700 

1.3200 

3.4200 

2.7530 

1.6500 

5.0500 

-3.1600 

-2.0000 

-3.7120 

-3.2504 

Table 7 Input force-density vector for tensegrity form-finding based on a stable 4-strut 

tensegrity structure from Gan et al. 
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Edge # Node 1 Node 2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

1 

2 

3 

1 

5 

6 

7 

5 

1 

2 

3 

4 

1 

2 

3 

4 

2 

3 

4 

4 

6 

7 

8 

8 

5 

6 

7 

8 

6 

7 

8 

5 

Table 8 Edge-node matrix based on a stable 4-strut tensegrity structure by Gan et al. 
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q 

 0.1498 

 0.2113 

 0.4138 

 0.1342 

 0.2272 

 0.1908 

 0.1169 

 0.0978 

 0.2938 

 0.2858 

 0.0994 

 0.4302 

-0.2824 

-0.1815 

-0.2900 

-0.2689 

Table 9 Output force-density vector result from tensegrity form-finding application for 4-

strut tensegrity structure. 
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8.2.3 Results: Stable 3-strut Tensegrity Prism 

The stable 3-strut tensegrity prism is created in PushMePullMe3D (Figure 18). The data 

from the .dxf file is used as input data for our tensegrity form-finding application. Tables 10, 11, 

and 12 show the input parameters. Table 13 shows the output force-density vector returned by the 

fitness function. 

 

Number of Nodes (n) = 6 

 

 

 

Figure 18 Stable tensegrity 3-prism created in PushMePullMe3D. 
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x y z 

159.42 138.82 0.00 

-56.91 31.85 220.33 

-45.79 206.23 0.00 

155.17 72.02 219.99 

-1.56 5.19 0.00 

14.35 235.56 220.39 

Table 10 Input x, y, z parameters for tensegrity form-finding based on a stable 3-strut 

tensegrity prism. 
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q0 

-1 

-1 

-1 

 1 

 1 

 1 

 1 

 1 

 1 

 1 

 1 

Table 11 Input force-density vector for tensegrity form-finding based on a stable 3-strut 

tensegrity prism. 
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Edge # Node 1 Node 2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

3 

5 

1 

1 

1 

2 

2 

2 

3 

4 

4 

2 

4 

6 

3 

5 

6 

3 

4 

5 

6 

6 

5 

Table 12 Edge-node matrix based on a stable 3-strut tensegrity prism. 
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q 

0.3032 

-0.3030 

0.0002 

0.2496 

-0.3604 

-0.3482 

0.0002 

-0.2503 

-0.3065 

0.3068 

0.3612 

0.34848 

Table 13 Output force-density vector result from tensegrity form-finding application. 
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8.2.4 Results: Unstable 3-prism 

To validate that our application can identify unstable tensegrity structures, we create a 

tensegrity 3-prism that collapses when simulation is applied in PushMePullMe3D (Figure 19). 

The data from the .dxf file is used as input data for our tensegrity form-finding application. Tables 

14, 15, and 16 show the input parameters. Table 17 shows the output force-density vector 

returned by the fitness function. 

Number of Nodes (n) = 6 

 

 

Figure 19 An unstable 3-prism tensegrity structure collapsing in PushMePullMe3D. The 

buckling of the cables (purple) is shown as the structure collapses. 
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x y z 

-100.00 0.00 0.00 

100.00 0.00 200.00 

-29.53 114.73 -3.50 

-29.53 85.27 196.50 

8.89 99.98 13.67 

8.89 100.02 213.67 

Table 14 Input x, y, z parameters for tensegrity form-finding based on an unstable 3-strut 

tensegrity prism. 
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q0 

-1 

-1 

-1 

 1 

 1 

 1 

 1 

 1 

 1 

 1 

 1 

Table 15 Input force-density vector for tensegrity form-finding based on an unstable 3-strut 

tensegrity prism. 
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Edge # Node 1 Node 2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

3 

5 

1 

1 

1 

2 

2 

2 

3 

4 

4 

2 

4 

6 

3 

5 

6 

3 

4 

5 

6 

6 

5 

Table 16 Edge-node matrix based on an unstable 3-strut tensegrity prism. 
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q 

-0.5107 

-0.0076 

-0.2536 

-0.0606 

0.3840 

0.4937 

0.2645 

0.1589 

0.3072 

-0.2890 

-0.0769 

-0.0244 

Table 17 Output force-density vector result from tensegrity form-finding application. 
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8.3 Analysis of Results 

This section presents the analysis of our results from Section 8.2.  

 

8.3.1 Stable 2-Strut Tensegrity ‘X’ 

For the 2-strut tensegrity ‘X’, our equation satisfies the equilibrium condition of 𝐴�⃗� =  0⃗⃗. 

In general, our algorithm is able to robustly conduct 2- tensegrity form-finding for 2-dimensional 

problems. 

 

8.3.2 Stable 4-Strut Tensegrity Structure 

Our form-finding application showed that the 4-strut tensegrity structure presents 

expected results as the form-finding fitness function identified the correct placement of cables 

and struts. When simulated, this structure resulted in a self-stressed tensegrity structure, meaning 

that our form-finding application was successful. However, the force-density values returned by 

the form-finding application is not consistent with the known output values published by Gan et 

al [31]. The values are different because multiple solutions exist to the equilibrium equation, and 

our approach does not always find the best solution to the equilibrium equation. When a close to 

zero solution is found, our approach gets stuck in a local minimum; a limitation of our current 

algorithms numerical stability. 

 

8.3.3 Stable 3-Strut Tensegrity Prism 

For the stable 3-strut tensegrity prism we designed in PushMePullMe3D, the tensegrity 

structure was not determined to be stable by our form-finding application. The resulting force-

density vector increases the number of struts required from 3 struts (truth) to 5 struts. Although 

this would create a stable structure, this is not a tensegrity structure. This means that our 3-strut 

prism test case fails. Section 8.3 presents possible explanations for this failure. 
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8.3.4 Unstable 3-Strut Tensegrity Prism 

For the unstable 3-strut tensegrity prism we designed in PushMePullMe3D, the tensegrity 

structure was not determined to be stable by our form-finding application. The resulting force-

density vector increases the number of struts required from 3 struts (truth) to 8 struts. This is a 

possible solution producing a stable structure, however, this result is not a valid tensegrity 

structure. Increased iterations and fine adjustment of 𝑥, 𝑦, 𝑧 coordinates could result in a valid 

tensegrity structure.  

 

8.4 Limitations of our Form-Finding Application 

Based on our results presented in this chapter, limitations of our implementation are 

apparent. Many of our 3-dimensional cases presented in this chapter did not produce successful 

results. This is attributed to numerical instabilities present in our implementation. The equilibrium 

equation we present in Chapter 7 has multiple solutions since it is a homogeneous system of 

equations. Finding a suitable non-zero solution to this problem presented instabilities and 

challenges for our implementation. In our approach, we use singular value decomposition (SVD) 

to find the smallest non-zero solution. In some cases, SVD can return expected results (Section 

8.2.2), however, in other cases, the results can be unexpected (Section 8.2.3). Therefore, our 

solution presented is not entirely robust.  

 

In an attempt to improve robustness of our approach, we consulted with Dr. Keith 

Moored from Lehigh University at the Conference on Biopropulsion of Adaptive Systems, 

Queen’s University Biological Station, July 23-26, 2018. Dr. Moored’s PhD work involved 

mechanical engineering and tensegrity structures [40]. From these conversations, we were not 

able to improve the robustness of our approach; however, his suggestion to test the 2-dimensional 

case of the tensegrity ‘X’ (Section 8.2.1), showed correctness of our approach. 
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 To continue improving the robustness of our approach and overcome numerical 

instabilities, expertise in mechanical engineering is required. If added expertise solves our 

numerical instabilities, we provide a useful contribution to future work in tensegrity form-finding 

and simulation research (Section 9.2). 

 

  



 

79 

 

Chapter 9 

Conclusion 

This thesis surveys the state of the art in tensegrity form-finding, and presents the design 

and implementation of a tensegrity form-finding application using genetic algorithms. The 

underlying goal of this thesis is to improve the usability of tensegrity simulation software by 

augmenting the design process used for tensegrity structures. Our form-finding application aims 

to augment the design process for tensegrity researchers by reducing the number of iterative 

adjustments required to obtain for a tensegrity structure that satisfies the designer. 

 

9.1 Summary of Contributions 

This thesis makes several contributions to the field of tensegrity research, and its 

intersection with computer science. Here we reiterate the contributions presented in Section 1.1. 

 

9.1.1 Identify the need for form-finding of tensegrity structures 

Tensegrity structures are highly intricate and difficult to construct. Many researchers can 

spend weeks or months constructing physical tensegrity structures. Once these structures are 

constructed, they still might not be considered successful for the experiment. Computer 

simulation shows promise for advancing tensegrity research; reducing the cost of construction, 

providing better results, increasing access and promoting collaboration. 

 

The intricacies of tensegrity construction creates a challenge for many researchers in both 

physical construction and computer simulation. Based on several conversations with tensegrity 

researchers including Tom Flemons and Dr. Richard Gordon on the challenges of tensegrity 
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research, we determined that a computational approach should be taken for obtaining a state of 

self-stressed equilibrium. Often researchers will design tensegrity structures for an experiment, 

only for the structure to collapse during simulation. Tensegrity structures collapse when they are 

not in a state of self-stressed equilibrium. For some researchers, obtaining a state of self-stressed 

equilibrium can take weeks or months of iterative adjustments. Computational approaches for 

iterative adjustment through form-finding shows promise in reducing the amount of iterative 

adjustments required by the researcher when designing a tensegrity structure. The computational 

approach taken in this thesis is the development of a machine learning based tensegrity form-

finding application (Chapter 7).  

 

9.1.2 Identify Simulation Support for Augmenting Tensegrity Design 

This thesis contributes to the research of Dr. Blostein’s research group at Queen’s 

University by identifying a candidate tensegrity simulation platform for future research. 

 

Several simulation platforms are capable of simulating tensegrity structures. In this 

thesis, we identify the simulation platform suitable for the research of our research group and 

collaborators: Dr. Dorothea Blostein, Dr. Richard Gordon, and Tom Flemons. In selecting a 

platform for simulation, we extensively surveyed both NTRT and PushMePullMe3D. In this 

thesis, we choose PushMePullMe3D because of its monolithic software architecture, intuitive 

user interface, and ability to support extensions. 

  

Unlike NTRT which is open-source, the source-code for PushMePullMe3D is proprietary, 

requiring legal agreements for development. Through this thesis, we continue collaboration with 

Dr. Gennaro Senatore, the creator of PushMePullMe3D. Establishing collaboration with Dr. 
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Senatore has been a considerable contribution to our research group, bringing in structural and 

mechanical engineering expertise.  

 

Selecting PushMePullMe3D as the primary simulation platform for our research group 

has created a foundation for future tensegrity research. By improving the quality of 

PushMePullMe3D we also promote collaboration and accessibility for tensegrity research and 

simulation.  

 

9.1.3 Survey State-of-the-Art Form-Finding Algorithms 

Form-finding is an approach for finding states of equilibrium for a tensegrity structure. In 

this thesis, we review multiple form-finding approaches. Form-finding was first proposed by 

Schek in 1974 for membrane shell structures. In Chapter 3, we summarize two form-finding 

methods used for membrane shell structures: Pucher’s method and the force-density method [1]. 

Although Schek’s force-density method is designed for membrane shell structures, a modified 

method is used for tensegrity form-finding. 

 

With several free variables present, tensegrity structures are less constrained than 

membrane shell structures (no free nodes, all forces are internal). Researchers have taken 

different approaches to overcome these free variables for tensegrity form-finding. Two common 

approaches taken are numerical and analytical approaches, and the use of machine learning. For 

this thesis, considerable effort was spent understanding the mathematics and mechanics of many 

tensegrity form-finding algorithms. In Chapter 6, we outline a machine learning approach for 

tensegrity research by Yamamoto et al. 
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9.1.4 Design and Prototype Implementation of a Tensegrity Form-Finding Application 

To address the challenges of tensegrity structure design, we design a form-finding 

application for tensegrity structures (Chapters 7 and 8). The design of our application is based on 

the state of the art in tensegrity form-finding research, including inspiration from Schek’s force-

density method and modern machine learning approaches to form-finding. 

 

The goal of our form-finding application is to augment the design process for tensegrity 

structures in computer simulation. We use form-finding to reduce the amount of fine iterative 

adjustments required by researchers to obtain a self-stressed tensegrity structure that will not 

collapse when simulated. The application designed in this thesis also aims to be the first 

automated form-finding application for tensegrity simulation, compatible with both NTRT and 

PushMePullMe3D. Currently, both platforms conduct form-finding mainly through manual 

experimentation. The introduction of an automated form-finding algorithm can improve the user 

experience and quality of simulations for tensegrity researchers. 

 

Although the form-finding application in this thesis has limited functionality, we lay a 

foundation for future research in tensegrity form-finding and computer simulation. Our 

application shows promise to improve the design process for tensegrity researchers, improving 

the user experience for researchers who would otherwise be deterred from computer simulation. 
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9.2 Future Work 

The design and implementation of a tensegrity form-finding application, requires 

expertise in several areas including computer science, mechanical engineering, structural 

engineering, and a knowledge of tensegrity structures. This thesis lays the groundwork for future 

extensions, improvements, and collaboration for tensegrity research.  

 

 The form-finding approach proposed in this thesis has limited functionality for 3-

dimensional cases, so as it stands the prototype would produce inadequate results for end users. 

Although the results are limited in this application, we set the groundwork for future work in 

building in a stand-alone tensegrity form-finding application. With more mathematics and 

mechanical engineering expertise during implementation, our prototype can be expanded to 

conduct form-finding on 3-dimensional tensegrity structures.  

 

Once the form-finding algorithms in the prototype have been made robust, the application 

can be extended to allow users to extend new parsers and define their own fitness functions for 

tensegrity structures. These additional features would provide added benefit for researchers who 

have intermediate to advanced programming skills looking for increased functionality from our 

form-finding application. Particularly good extensions would be the addition of compatibility 

with CAD design software such as SketchUp and Rhino 3D. These two platforms are commonly 

used to design tensegrity structures within our research group as well as by the broader research 

community. 

 

Further research can also explore the search space of tensegrity form-finding using other 

searching and machine learning methods such as simulated annealing or Monte Carlo simulation. 
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Our form-finding application, provides a good starting point for promoting the use of 

computer simulation in tensegrity research as we aim to reduce the fine iterative adjustments 

required for this process. 
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Appendix A 

This appendix contains a copy of the source code for the 3-dimensional case fitness function 

described in Chapter 7. 

function [ fitness ] = tensegrity_FDM_fitness(n, CONN, q, coordinates ) 

%TENSEGRITY_FDM_FITNESS This function determines whether or not a 

%tensegrity structure is self-stressed, thus at self-stressed equilibrium. 

%   We use to force density method (Schek (1974), Fund (2008)) to determine 

%   whether or not a tensegrity structure is at self-stressed equilibrium 

% 

% Input variables:  

% C - Connectivity matrix 

% n - number of nodes 

% q - force-density vector 

% coordinates - x,y,z nodal coordinates of tensegrity structure 

% 

% 

% Output variable: 

% fitness - determines the fitness of the structure 

% The output should minimize to zero for a self-stressed structure 

[m,~] = size(CONN); 

C = zeros(m,n); 

% Populate Connectivity Matrix C 

for j = 1:m 

    r = CONN(j,2); 

    C(j,r) = 1; 

    s = CONN(j,3); 

    C(j,s) = -1; 

end 

 

x = coordinates(:,1); 

y = coordinates(:,2); 

z = coordinates(:,3); 

  

% Compute self-equilibrium matrix 

A = [C'*diag(C*x); C'*diag(C*y); C'*diag(C*z);]; 

 

% Solve for Aq = 0 using SVD 

[~,~,V] = svd(A); 

new = V(:, end); 

  

fitness = sum(abs(A*new)); 

  

end 

 


