Please work on these problems and be prepared to share your solutions with classmates in class on Monday January 19. Assignments will not be collected for grading.

Programming

Write a program in the language of your choosing (I recommend Python) and verify that it works on the sample data (using the on-line Rosalind platform). For each problem be prepared to tell us why you think your algorithm is correct (whether you program worked on the sample data or not). Also provide an estimate of the time and space complexity of your algorithm.

Creating a Restriction Map:

http://rosalind.info/problems/pdpl/

Problems

These questions come from *An Introduction to Bioinformatics Algorithms* by Neil C. Jones and Pavel A. Pevzner.

Problem 4.1: Write an algorithm that, given a set X, calculates the multiset ΔX.

Problem 4.2: Consider the partial digest

$L = \{1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 9, 9, 10, 11, 12, 15\}$

Solve the Partial Digest problem for L (that is, find X such that $\Delta X = L$).

Problem 4.3: Write an algorithm that, given an n-element set, generates all m-element subsets of this set. For example, the set $\{1, 2, 3, 4\}$ has six two-element subsets $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 3\}$, and $\{3, 4\}$. How long will your algorithm take to run?

Problem 4.4: Write an algorithm that, given an n-element multiset, generates all m-element subsets of this set. For example, the set $\{1, 2, 2, 3\}$ has four two-element subsets $\{1, 2\}, \{1, 3\}, \{2, 3\}$, and $\{2, 2\}$. How long will your algorithm take to run?

BONUS: Can you find an example for which the Partial Digest algorithm of section 4.3 uses exponential time?