Automated Verification of Role-based Access Control Security Models
Recovered from Dynamic Web Applications

Manar H. Alalfi

James R. Cordy

Thomas R. Dean

School of Computing, Queen’s University
Kingston, Canada
{alalfi, cordy, dean}@cs.queensu.ca

Abstract—This paper presents an original Model-Driven-
Engineering (MDE) approach to support the verification and
testing of security properties in dynamic web applications.
Based on a previously recovered UML-based fine-grained
security model, the approach begins by transforming the model
into a Prolog-based formal model. The Prolog model is then
checked to verify whether the application conforms to specified
access control security properties. We demonstrate the use of
our method on the popular open source bulletin board system
PhpBB 2.0, in the context of three test scenarios: testing for
unauthorized access, web application security maintenance,
and web application re-engineering.

I. INTRODUCTION

Software systems are becoming increasingly complex and
interconnected, which increases the challenge in keeping
them secure and reliable. Vulnerabilities have been found
in critical infrastructure in healthcare, finance, energy and
defence. Methods have been proposed to check for vulner-
abilities such as SQL injection and cross-site scripting [27],
but none attempt to detect broken access control.

Our previous work [5] presents a survey of models and
methods for web application verification and testing. While
many methods check static properties of web applications,
and some check dynamic features, none is able to model
the access control features of dynamic web applications. To
address this lack, our own analysis framework [3] automat-
ically recovers a UML Role-Based Access Control (RBAC)
security model from dynamic web applications.

In this paper we use source transformation to transform
this access control security model into a formal model
implemented in Prolog. The TXL language [14], primarily
used for source code transformation and design recovery, has
recently been applied to model transformation [25, 21] and
offers the scalability and flexibility we require. Although
there are several available tools to transform from UML
models into formal ones (e.g., UML2Alloy [10], XMI2SMV
[11]), none is both complete and UML 2.0 compliant.

We have chosen Prolog to check for access control
security conformance primarily for its ability to handle large
scale industrial software models [29]. Opoka et al. [12] show
that Prolog performance in model analysis is better than that
provided by the Object Constraint Language (OCL). Storrle

[29] provides a thorough comparison with other tools and
approaches for UML model analysis.

The key contributions of this paper are:

« A scalable approach and tool to transform and formally
analyze recovered web application security models us-
ing Prolog.

o A case study of the security analysis of a real produc-
tion system, PhpBB 2.0, in three analysis scenarios.

We give an overview of our overall framework in Section
II, and Section III presents the details of our approach. In
Section IV we discuss the correctness and completeness of
our analysis, and in Section V we demonstrate it on an
example system, PhpBB 2.0. Section VII discusses related
work. Finally, Section VIII concludes the paper and presents
possible future work.

II. SECURITY ANALYSIS FRAMEWORK

Our security analysis framework [3] (Figure 1) comprises
two main phases. The first phase (Figure 1 (A,B)) uses
an automated role mining process for the dynamic web
application, in which roles and related information, such as
permissions, constraints, and resources are identified. This
process is based on a combination of static and dynamic
analysis, using pattern matching to identify relevant security
elements. In previous papers [2, 4, 6, 7, 8] we have described
the approaches and tools that support this phase.

In the second phase (Figure 1 (C,D)), we use an MDE
approach to construct a UML-based RBAC [1] security
model from the security elements identified in the first
phase. This phase is based on model transformation and
composition, and makes use of structural and behavioural
models recovered by the static and dynamic reverse engi-
neering approaches of the first phase. The final step in this
framework, Figure 1 (D), is the subject of this paper.

The RBAC security model recovered from a dynamic web
application using our approach conforms to the SecureUML
meta-model [9]. RBAC [1] was introduced in 1992 as a
means to restrict access to the operations provided by a
system based on the role of the user. RBAC has subsequently
been adopted by several popular software platforms, such
as the Java Platform Enterprise Edition (Java EE) [27]. In

Behavioral Model
Reverse-
Engineering

Structural Model
Reverse-
Engineering

Static
nformatio

Dynamic
@

A I (©)

Figure 1.

RBAC, a permission represents the right to perform a re-
stricted operation, and a role represents a set of permissions
that can be granted to users and groups of computer systems.
RBAC permissions represent security-sensitive operations,
as opposed to the security-sensitive data accessed by the
system. When a user attempts a restricted operation, the user
must be in a role that includes the necessary permissions.

SecureUML is an implementation of the Model Driven
Security approach [9], a specialization of Model Driven
Architecture. It explicitly integrates security aspects into
the application’s models and provides support for model
transformation. The approach has been proposed to bridge
the representation gap between the graphical languages used
for specifying the application’s design models, such as
UML, and the textual languages used to specify the security
models. It is built on a modular schema that comprises three
basic elements: a language for security policy specification,
a language for design model construction, and a dialect for
defining integration points in the preceding languages. The
abstract syntax for SecureUML is based on the RBAC meta-
model. It defines a meta-model that extends RBAC with
authorization constraints to enable formal specification of
access control policies that depend on dynamic aspects of
the system, such as the access date or values of the system’s
environment variables.

The modeling notation for SecureUML is based on a
UML profile that uses UML stereotypes and tagged values
to represent the abstract syntax elements in the meta-model
schema. Users, groups, and roles are represented as classes
with stereotypes < User >, < Group > and < Role >
respectively, and permission is represented as an association
class with a <« Permission > stereotype.

Figure 2 shows an example of a SecuretUML model for
a web forum application. The diagram shows two users in
different roles who are permitted different sets of actions
based on their roles. Bob, who is an anonymous user, is
permitted to access the forum entities using read operations.
So, Bob can access a forum via ViewForum(), read a forums’
topics via ViewTopic(), read topic posts via ViewTPosts(), and
can register in a forum. Alice, who is a registered user of
the forum, can not only perform all the operations available

Security Model
Construction

Model
Transformation and
Formal Verification

Class
Diagram

Sequence
Diagram

(D)

Overview of our dynamic web application security analysis framework

to Bob but is also permitted write access to the forum. Thus,
she can also reply to posts via RPostReply(), edit her own
posts using EditSelfPost(), and so on.

III. APPROACH

In this paper, we present SecureUML2Prolog, a tool that
automatically transforms a serialized SecureUML model
into a formal Prolog model that can then be analyzed
using Prolog queries. We define a set of mappings between
SecureUML meta-model constructs and Prolog facts, and
then use Prolog queries to check for role-based security
concerns in the target application.

Our method is based on model transformations imple-
mented in the TXL source transformation language [14].
We begin by defining a TXL grammar for the input Se-
cureUML serialization, and a second (“override”) grammar
for our target Prolog format. The main grammatical form
([program] in TXL) allows both, but expects the Prolog part
to be empty on input and full on output, and vice-versa for
the SecureUML part. We used the TXL producer-consumer
translation paradigm to make a set of transformation rules
to “produce” the Prolog output while “consuming” the
SecureUML input.

The transformation begins by parsing the SecureUML
serialization to insure its conformance with its meta-model,
with an initially empty Prolog output. It then replaces this
entire input by constructing the Prolog output beginning with
an empty set of Prolog facts and transforming it into the
Prolog representation of the input SecureUML model.

As an example of the source transformation implemen-
tation, Figure 3 shows a TXL rule for transforming a
SecureUML permission’s action and condition into Prolog
facts. The initial deconstructor pattern matches the Se-
cureUML syntax to recognize an ownedOperation element
and identifies the attributes of the action. The constructors
PermActionF and PermActionconst then generate Pro-
log facts for the action and its condition, which are appended
to the Prolog factbase using the replace-by transformation
clause.

<<Role>
Anonymous User

<<User>>
Bob

<Subject Assignment>>

<<Role>>
Registered User

SessionID: String

<<User>> ’
Alice

<<Permission>>
AnonymousPerm

ViewFs(): Forum
ViewTs(): Topics
ViewTPosts():Posts
Register():String

<<Entity>> <<Entity>>
Forum Topics
ForumiD: int TopiclD: Int
<<Entity>>
= Posts
<<Permission>> | PostiD: int |
RegisteredPerm ost:n

RPostReply: Posts
EditSelfPost(): Posts
DeleteSelfPost()::Posts
AddPoll: Posts
SubmitVote(): Posts
Logout():Forum

Figure 2. An example SecureUML model

function IsPermAction PermissionID [charlit] RoleID [id]

OwnedOperation [owned_operation]

deconstruct OwnedOperation
<ownedOperation ’'xmi:type = "uml:Operation"
'xmi:id = AttribID [stringlit]
"name = OpName [stringlit]
"precondition = PreconID [stringlit] >
OwnedAttrib [XMItokenx]
</ownedOperation>

construct CharOpName [charlit]
_ [+ OpName]

construct PermActionF [Factdot]

'permActionAssign (RoleID, PermissionID, CharOpName) .

construct PermActionconst [Factdotx]
_ [IsPermActionConst OwnedAttrib PermissionID RoleID]

replace * [Factdotx]
PermActionsFactsSoFar [Factdot«]
by
PermActionsFactsSoFar [. PermActionF]
[. PermActionconst]

RoleHierarchy relation is not automatically identified,
so we do not map it in our target Prolog fact-base.
The automated identification of the hierarchy relation
is part of our planned future work. For Role elements
of the SecuretUML model, our tool generates facts for
application roles and user assignments, such as:

— appRole (RoleNum, RoleName) : Represents the appli-
cation roles and takes as parameter the name of the role.
Example: appRole (1, ”Admin”).

— user (UserName) : Represents the application users,
and takes as parameter the user name or id. Example:
user ("Alice”).

— userAssign (UserName, RoleNum) : Represents the as-
signment of users to roles, and takes as parameter the
role and user name. Example: userAssign (”Alice”, 1).

end function e Permission facts: The second part of the meta-model,

Figure 4(B), has two model elements: the set of Per-

Figure 3. A sample TXL source transformation rule for generating missions and AuthorizationConstraints, and three re-

permission facts from SecureUML model elements

Our tool generates the following categories of facts, based

on mappings of each of the elements of the SecureUML
meta-model (Figure 4) to Prolog.

e Role facts: The leftmost side of the secureUML meta-

model Figure 4(A), presents the Role model element
and two relations: RoleHierarchy and userAssignment.
The model recovery aspect of our framework generates
a separate SecureUML Role element for each role
assigned to a specific user name for a specific session.
A RoleNum attribute is added to all Prolog facts
generated from the transformation process in order to
bind them to the roles representing them. Currently, the

lations: PermissionAssignment, ActionAssignment, and
ConstraintAssignment. These are mapped into the fol-
lowing Prolog facts:

— perm (RoleNum , PermissionID) : Represents each appli-
cation permission. Takes as parameter the role number
and the application permission id. Example:
perm (1, 'phpbb_forumsPerm’).

— permActionConst (RoleNum, PermissionlD, ActionlDIn-
Code, Constraint) : Represents application permission
constraints and takes as parameter the permission id, the
action id in code and the action constraints. Example:
permActionConst (1, ’phpbb_forumsPerm’, 366, ’fo-
rum_id = $forum_id’).

— rolePermAssign (RoleNum, RolelD, PermissionID)
Represents the application’s role permission assign-

RoleHierarchy
+superrole

Role PermissionAssignment Permission ActionAssignment
+givesaccess * = +isassigned +acce
+subrole|@ detault: Boolean |1 +haspermission | @ default: Boolean [+ “+subordinatedac

- ResourccAssignment
Action [+action +resource| Resource

s
1.* 1

* [+hasrole +constraius | [ActionHicrarchy

UscrAssignment ConstraintAssignment
* | tincludes +isconstraintby | 0.1 +eomposileaction
User AuthorizationConstraint [CompositeAction | [AtomicAction |
I i

& body: String L 1 !

@ & language: String © @

Figure 4. The SecureUML meta-model (adapted from [9])

ments. Takes as parameter the permission id and the
role id. Example: rolePermAssign (1, ’Anonymous’, 'ph-
pbb_forumsPerm’).

— permActionAssign (RoleNum, PermissionID, ActionID-
InCode, ActionName) : Represents the application’s
permission action assignments. Takes as parameter,
the permission id and the permission atomic actions
IDs and names. Example: permActionAssign (1, ’ph-
pbb_forumsPerm’, 366, Select (viewforum, forum_id =
$forum_id)’).

o Action facts: The third part of the meta-model, Figure

4(C), presents three model elements and their relations,
representing the set of application Actions, where the
granularity of the action (whole entity, attributes or
association) and the type of access (read or write) is
identified by CompositeAction and AtomicAction model
elements. This category of security model elements is
mapped into the following Prolog facts:

— permActionType (RoleNum, PermissionlD, ActionlDIn-
Code, ActionType) : Represents the permission action
types, that is, whether they are read or write operations.
Example: permActionType (1, 'phpbb_topicsPerm’, 404,
"Update’).

— permResourceAssign (RoleNum, permissionlD, Resour-
celD) : Represents application’s permission resource
assignments. Takes as parameter the permission id and
the resource id. Example: permResourceAssign (1, 'ph-
pbb_forumsPerm’, 'phpbb_forums’).

e Secure resource facts: The last part of Figure 4(D)

shows the secured Resource model element. In the
SecureUML notation, the representation of resources
is left open, so that developers can decide later which
elements of the system should be considered secure and
which should have access constraints. These elements
are defined using a dialect. In our model recovery
framework, we identify and recover secure resources
from the web applications under test and represent them
as an ER diagram. Facts resulting from this category
are the application’s secure resources (entities), their
attributes, and their relationships, such as:

— entity (RoleNum, ResourcelD) : Represents the appli-
cation’s secure resources. Takes as parameter the role
number and the resource name. Example: entity (I,
"'phpbb_forums’).

— entityAttrib (RoleNum, EntityName, Attrib) : Repre-
sents the application’s resource attributes. Takes as
parameter the role number, the resource name and
its attribute names. Example: entityAttrib (1, ’ph-
pbb_users’, username’).

— entityAssociation (RoleNum, entityName, Association-
ID1, AssociationID2 (PK)) : Represents relations be-
tween the application’s resources. Takes as parameter the
role number, the resource name, and the relation’s end
names including key attribute(s). Example: entityAsso-
ciation (1, 'phpbb_forums’, 'phpbb_auth_access’, 'ph-
pbb_auth_access(forum_id)’).

o Dynamic and contextual facts: This category of Prolog

facts represents environment information, such as ex-
ecution timestamps, server environment variable ac-
cesses, and so on from the recovered model. Facts from
this category are represented as a set of parameters
associated with the set of Action model elements pre-
sented in Figure 4(C).

— permActionTimeS (RoleNum, PermissionlD, ActionlD,
Timestamp) : Represents an application action times-
tamp. Takes as parameter the role number, the per-
mission id, the Action id and the execution times-
tamp for the action. Example: permActionTimeS (1,
"'phpbb_forumsPerm’, 366, 1249518435).

— permActionlnPage (RoleNum, PermissionlD, ActionlD,
PagelD) : Represents an action’s location in the code,
that is, which page it is associated with. Example:
permActionlnPage (1, 'phpbb_forumsPerm’, 366, 365).

— Return (RoleNum , ReturnAttribs, pagelD) : Represents
attributes returned from interacting with the secured
resources. Takes as parameter the role number, the
returned attributes, and the id of the page that has the in-
teraction. Example: Return (1, 'u.user_id, u.username’,
365).

IV. CORRECTNESS AND COMPLETENESS OF THE
RECOVERED MODEL

A question that arises when analyzing security aspects
of an application using a formal model is the correctness
and completeness of the model. One of the advantages of
using a formal source transformation system for deriving
and exploring security models from source code is that it
is easier to reason about these properties of the tools. By
contrast with a hand-coded analyzers implemented in Java
or C, source transformation rules can be tested and verified
piecewise.

Because source transformations are based on parsing
technology, the well-formedness of the results is guaranteed.
TXL transformation rules are simply incapable of producing
a result that does not conform to the syntactic forms of the
target grammar/meta-model. The question of the semantic
soundness of the constructed security model is also made
simpler using a source transformation technique. Rather
than having to reason about an entire hand-coded analysis
program all at once, each TXL source transformation rule
can be considered independently of the others. Whether the
entire transformation is correct then becomes just a question
of whether the set of rules forms a complete transformation,
which can be checked separately. In our system this question
is addressed by separating the process into a sequence
of separate source transformation steps. Because each step
yields a concrete intermediate text file representation that the
next step parses as input, erroneous or incomplete results
of a step are typically caught immediately by the next
step. For example, if the data model extracted from the
web application’s schema is missing anything, there will be
unresolved links when integrating the models that will make
this fact immediately evident in the next transformation step.

Using source transformation rules to analyze the schema,
source code and behavioral models also assists in guarantee-
ing completeness. For example, the TXL parser syntactically
identifies all references to the SQL database in the source
code, and the transformation rule for analyzing them simply
transforms them to an instrumented form. The question
of whether we have missed any database interactions in
the extracted model is therefore easy to evaluate, simply
by counting the number of SQL interactions in the model
and comparing it to the number identified by the parser in
the source. Dynamic behavioral completeness is handled by
including coverage counters in the instrumentation, imple-
mented using the DWASTIC tool discussed in [7].

V. EXPERIMENT

In the remainder of this paper we demonstrate our frame-
work on PhpBB 2.0, a popular internet bulletin board sys-
tem, in the context of three scenarios. Our system currently
works on web applications built using Apache, PHP and
MySQL. Apache is the most deployed web server on the
internet with a 65% market share [24]. PHP, used on more

than 20 million websites [26], has been the most popular
server-side scripting language for years. And MySQL is the
fastest-growing database in the industry, with more than 10
million active installations and 65,000 daily downloads [23].
However, our approach is not tied to these choices, and could
be applied to other technologies as well.

VI. TESTING SCENARIOS

In this experiment, we examine three sets of users (roles):
anonymous users, registered users and the administrator.
The web application under test is explored twice, once to
collect the application’s form inputs, and a second time to
do the actual navigation using automated form filling. We
developed site exploration test cases to implement each of
these automated navigations using WATIR, Web Application
Testing In Ruby, an open-source family of Ruby libraries for
automating website exploration [30]. We tailored versions of
each exploration for each of the three roles.

The first exploration dynamically collects all of the appli-
cation’s form inputs, and creates an Excel spreadsheet with
entries for each of these inputs. Each row in the spreadsheet
includes fields for the input’s ID, name, type, and value.
Figure 5 describes the algorithm for this first site exploration.
The resulting spreadsheet is used to later fill in the value
fields for each form input.

The second WATIR site exploration test case uses the
spreadsheet to fill the application’s input forms while navi-
gating the application. The navigation process is similar to
that described in the algorithm shown in Figure 5, but instead
of collecting form inputs, it searches for forms’ input IDs
in the navigated pages, and chooses values for the matched
fields from the spreadsheet to populate the form.

A. Testing for Unauthorized Access

Many web applications try to implement access control
polices using obscurity, where sensitive links are not pre-
sented to unauthorized users. This method of protection
is not sufficient since attackers may be able to access
the hidden URLs, knowing that sensitive information and
operations lie behind them. In this testing scenario we show
how our framework can be used to check for unauthorized
access to application resources. Specifically, we check if
an anonymous user can access any unauthorized content of
PhpBB2.0 using the links that an administrator can see when
accessing the same forum.

To check for this vulnerability, we first implement and
run the WATIR test case that explores and dynamically
collects all the links and form inputs in all the PhpBB
2.0 pages of the administrator role, and stores them in a
spreadsheet. We excluded administrator visits to the admin-
istration panel itself, which includes the forum’s manage-
ment’s tasks. Using the data collected in the spreadsheet,
we ran a second WATIR test case that uses this data to
navigate the forum as an anonymous user. The execution

Algorithm CollectFormInputs

Input: The URL of the home page of a web application

Output: A spreadsheet with the application’s forms elements
(ids, types, and values)

Create a new Spreadsheet: SpS

Create a new internet Explorer (IE) instance: IE_ins

Point the instance to the web application under test

collect_formElements()

collect all links in the current page: Lns

navigate(Lns)

function collect_formElements() {

for each Form element(FE): text field, button, radio button,

hidden field in the current page do {

9. insert a new raw in SPS (FE name, FE ID, FE type, FE value)

10. if the test case is for a non Anonymous user then{

11. if (a username text field) and

S o

12. (a passward textfield) exist in the current page then
13. { username.value = registeredUser_username

14. passward.value = registeredUser_passward

15. if the login button exist

16. press the login button } } }

17. }% end function

18. function navigate (Lns: list of links)

19. for each link(I) in Lns do

20. { click link I

21. collect all links in the page generated from link I: Lns2
22. collect_formElements()

23. Navigate(Lns2)

24. }

Figure 5. The CollectFormInputs algorithm for collecting the
application’s form input elements

trace collected for the anonymous user attempting to access
administrator links and data is fed to our previous PHP2XMI
[4] and WAFA [6] tools to generate a sequence diagram to
reflect this behaviour. We then used our PHP2SecureUML
[8] to generate the SecureUML models, finally, we used
the SecureUML2Prolog tool of this paper to generate the
corresponding formal Prolog fact base for the scenario.
The goal is compare the access control facts collected in
this scenario with those collected for a legitimate visit of an
anonymous user to the forum. In other words, we want to
know what resources the anonymous user can access if he
accidentally got to see and use the part of the user interface
only intended to be available to users with higher privileges,
such as registered users and administrators. To evaluate this
we implemented and ran Prolog queries to compute the
set differences in page access, server environment variable
access, and access to application entities. Figure 6 shows
some of the Prolog queries used to implement this goal,
specifically to compute the set difference in page accesses.
The rule AccessAdmin_Actions (RoleNamel, RoleName?2),
where RoleNamel = Anonymous and RoleName2 = Anony-
mous_Using_Administrator_Links, executes another Prolog
query, rolePagesActionList(), on each role and collects the
results in Bag and Bag?2 respectively. The remBag() function

o

% computes role actions per page access role

PagesActions (RoleName, PageName, PageID, ActionID, RList):-—
appRole (RoleNum, RoleName),

pageNameID (RoleNum, PageName, PagelD),

return (RoleNum, RList, ActionID, PagelD).

o

% computes a set of actions lists for a specific role
PagesActionsList (RoleName, Bag) :-—
setof ([PageName, ActionID, RList, PagelD],
rolePagesActions (RoleName, PageName ,PagelD,
ActionID, RList), Bag).

% computes the actions set difference between two roles
AccessAdmin_Actions (RoleNamel, RoleName?2) :-—
rolePagesActionsList (RoleNamel, Bag),
rolePagesActionsList (RoleName2, Bag2),
remBag (Bag2, Bag, [], Result)
printlists (Result).

Figure 6. Prolog rules to check for unauthorized access to
application entities

then computes the set difference between Bag2 and Bag,
gathering the results in the Result set, and the rolePagesAc-
tionList() computes the set of Actions allowed for each role,
grouped by page. Query results are presented in Table I.

From the results of the Prolog queries, we can see that
PhpBB 2.0 reacts to attempted access to unauthorized pages
in three different ways:

1) Attempted access to some pages is redirected to the
login page. Examples are access to the posting pages
(225), privmsg pages (257), adminindex page (794),
and the search pages (324). The Last eight entries in
Table I show these redirections to the login page.

2) Other pages are not properly protected, as they are not
redirected to the login page. Instead, an error message
is returned, such as “invalid session ID”. Access to the
modcp (145) pages, shown in Table I, are examples on
this case.

3) Some pages are not protected at all, thus a guest user
can access the pages and execute all actions associated
with them. Access to faq (18), index (109), and the last
posting (255) page are examples of this case.

In addition to pages, we can also use our Prolog model to
test for potential anonymous user access to secured server
environment variables, actions, entities and attributes of the
web application. Table II shows the result of executing the
Prolog set difference query on server environment variables,
and Table III shows the result of executing the Prolog set
difference query on the application actions, entities and
attributes.

A particular risk of anonymous user unauthorized access
to SQL statements, such as those shown in Table III, is
enabling the unauthorized user to build on these privileges
to launch another kind of attack, such as an SQL injection
attack. In SQL injection, the attacker tries to modify the
logic of SQL statements that accept unsanitized inputs to
break the system and possibly take over site administration.

PID \PfName P_Parameter Link Name PhpBB React|
18faq ?mode=bbcode BBCode Full Access

109|index ?mark=forums Mark all forums read |Full Access

126|login ?logout=true , sid=fd3c.. Log out [alalfi] Full Access

145 \modcp ?f=2 , sid=0f206abbbc.. moderate this forum |Error Msg

145 |modcp ?f=2 , start=0, sid=0f2.. moderate this forum |Error Msg

145 |modcp ?mode=ip , p=5, t=3, sid=fd3.. |View IP address of |Error Msg

145 |modcp ?t=3 , mode=delete , sid=0f20.. |Delete this topic Error Msg

145 |modcp ?t=3 , mode=lock , sid=fd3c29.. |lock this topic Error Msg

145 |modcp ?t=3 , mode=move , sid=0f2.. [Move this topic Error Msg

145 |modcp ?t=3 , mode=split , sid=fd3.. Split this topic Error Msg

225 |posting ?mode=delete , p=5, sid=0f2.. |Delete this post Error Msg

225 |posting ?mode=editpost , p=5 Edit/Delete this post |Error Msg

225 posting ?mode=newtopic , f=2 new topic Forced login

225 |posting ?mode=quote , p=5 Reply with quote Forced login

225 |posting ?mode=reply , t=3 post reply Forced login

225 |posting ?mode=smilies view moreEmoticons |Full Access

257 |privmsg ?folder=inbox , mode=read , Inbox Forced login
p=1

257 |privmsg ?folder=inbox , sid=fd3c.. Log in to check your |Forced login

private messages

257 |privmsg ?folder=outbox Outbox Forced login

257 |privmsg ?folder=savebox Savebox Forced login

257 |privmsg ?folder=sentbox Sentbox Forced login

257 |privmsg ?mode=post newpost Forced login

324 |search ?search_id=egosearch View your posts Forced login

324 |search ?search_id=newposts View posts since last [Forced login

visit

391 |viewtopic ?t=3, start=0 , postdays=0 , Full Access
postorder=asc , highlight=

391 |viewtopic ?t=3 , watch=topic , Watch this topic for |Full Access
start=0 , sid=fd3c.. replies

794 ladminindex |?sid=fd3c.. Forced login

126 |login ?redirect=admin/index.php , Redirection
sid=67f7242f6

126 |login ?redirect=posting.php , Redirection
mode=newtopic , f=2

126 |login ?redirect=posting.php , Redirection
mode=quote , p=5

126 |login ?redirect=posting.php , Redirection
mode=reply , t=3

126 |login ?redirect=privmsg.php , Redirection
folder=inbox , mode=post

126 |login ?redirect=privmsg.php , Redirection
folder=inbox , mode=read , p=1

126 |login ?redirect=search.php , Redirection
search_id=egosearch

126 |login ?redirect=search.php , Redirection
search_id=newposts

Table T
UNAUTHORIZED PAGE ACCESS WITH PARAMETERS FOR A
GUEST USER ATTEMPTING TO ACCESS ADMININSTRATOR LINKS

In Table IIT we have uncovered examples of such a possibil-
ity in PhpBB 2.0, with potential anonymous user access to
administrator SQL statements in the actions with ActionIDs
152, 157, 226, 227, 228, 329, 341 and 393.

B. Web application maintenance

Our framework can also be used for maintenance of role-
based web application security. For example, this can be
useful when the testing engineer has identified an access
control security feature that is presently permitted to a
specific role, and would like to disable this feature. Our
framework can help by locating all the pages and database
statements that allow this feature, as a step towards fixing
the code to prevent this access in future.

As an example, in PhpBB 2.0 we have noticed that an
anonymous user is allowed to see registered users’ profile
information, a feature that may lead to a privacy violation for
forum members. We executed a Prolog query that searches

PID |P_Name |Var |Http Var_Name |Var_Assign Http Var |Http Var
ID Value Type
18 |[faq 19 |mode bbcode GETDT
109 |index 119 c $viewcat 1 GETDT
109 |index 120 |mark $mark_read forums GETDT
145 |modcp 191 [f $forum_id 2 GETDT
145 |modcp 193 |p $post_id 5 GETDT
145 |modcp 200 |t $topic_id 3 GETDT
145 |modcp 209 |confirm $confirm POSTDT
145 |modcp 210 |start $start 0 GETDT
145 |modcp 211 |mode $mode ip GETDT
145 |modcp 215 |sid $sid 0f206abbb |GETDT
225 |posting 235 |mode $ $var delete GETDT
225 |posting 238 |p $ $var 5 GETDT
257 |privmsg |306 |p $privmsg_id 1 GETDT
257 |privmsg |308 |p $privmsgs_id 1 GETDT
319 |profile 320 |sid $sid fd3c29892 |GETDT
324 |search 348 |search_author |$search_author |alalfi GETDT
324 |search 350 |search_id $search_id egosearch |GETDT
365 |viewforum |380 |mark $mark_read topics GETDT
391 |viewtopic |413 |postorder $post_order asc GETDT
Table II

UNAUTHORIZED SERVER ENVIRONMENT VARIABLE ACCESS
FOR A GUEST ATTEMPTING TO ACCESS ADMININSTRATOR LINKS

IPID |P_Name |Action |Action return-value |Action_constraint

145 |modcp 152 t . topic_id = $topic_id and f .

forum_id =t . forum_id

f.forum_id, f.forum_name,
f.forum topics

145 |modcp 157 [forum_name, forum_topics forum_id = $forum_id

225 |posting 226 * forum_id = $forum_id

225 |posting 227 f.*, t.topic_status, t.topic_title,
t.topic_type

t . topic_id = $topic_id and f .
forum_id =t . forum_id

225 |posting 228 |f.*, t.topic_id, t.topic_status,
t.topic_type, t.topic_first_post_id, ...
p.post_id, p.poster_id, p.enable_html,..
p.enable_smilies,

pt.post_subject, pt.post_text,...
u.username, u.user_id, u.user_sig,...

p . post_id = $post_id and

t . topic_id = p . topic_id and

f . forum_id = p . forum_id and
pt . post_id = p . post_id and
u . user_id = p . poster_id

225 |posting 868 lemoticon, code, smile_url

324 |search 329 post_id poster_id IN ($matching_userids)

324 |search 336 [topic_id topic_replies = 0 and

topic_moved_id = 0

324 |search 341 pt.post_text, pt.bbcode_uid,
pt.post_subject, p.*, f.forum_id,
f.forum_name, t.*, u.username,
u.user_id, u.user_sig,

u.user_sig_bbcode_uid

p . post_id IN ($search_results)
and pt. post_id = p . post_id
and f . forum_id = p . forum_id
and p . topic_id =t . topic_id
and p . poster_id = u . user_id

388 |viewonline [389 [forum_name, forum_id

388 |viewonline (390 u.user_id, u.username, u . user_id = s . session_user_id
u.user_allow_viewonline,u.user_level, |and s . session_time >=
s.session_logged_in, s.session_time, |(time () - 300)
s.session_page, s.session_ip

391 |viewtopic (393 t.topic_id t2 . topic_id = $topic_id and t .

forum_id = t2 . forum_id and t .
topic_moved_id =0 and t.
topic_last_post_id > t2 .
topic_last_post_id

Table IIT
UNAUTHORIZED SQL STATEMENT ACCESS FOR A GUEST USER
ATTEMPTING TO ACCESS AN ADMINISTRATOR’S LINKS

for profile information in all accesses represented in the
recovered model of a registered user. The query returns
information on all pages in the registered role that permit
such access, and identifies SQL statements that retrieve this
information. Identifying the pages and SQL statements that
allow this feature will help the software engineer to update
the code to restrict the guest access. Figure 7 shows one of
the Prolog queries used to implement this goal, and Table IV
shows the result of these queries, identifying all anonymous
user actions that can gain access to registered user email
addresses and what pages and links allow that access.

% search for pages & actions that allow a user
to access other user emails
anon_email_retrieved(PageID, PageName,
ActionID, AcTS, RoleName) :-—
appRole (RolNum, RoleName),
return (RolNum, SellList, ActionID, PagelD),
split_string(SelList, ’, ', SelAtoms),
member (user_viewemail, SelAtoms),
pageNameID (RolNum, PageName, PagelD),
permActionTimeS (RolNum, _, ActionID, AcTS).

o©

Figure 7. Prolog rule to check for access to user email addresses

PID \Page_Name |Action |Action return-value \Action_constraint
ID
109 |index 140 username, user_id, user_id<>-1
- user_viewemail, user_posts, ORDER BY $order_by
139 mgmberllst user_regdate,user_from,
257 |privmsg user_website, user_email,
319 |profile user_icq, user_aim,
user_yim, user_msnm,
user_avatar,....
user_avatar_type,
324 |search 400 u.username, u.user_id, p . topic_id = $topic_id
126 Jlogin u.user_posts, u.user_from, |$limit_posts_time
u.user_website, and pt . post_id = p . post_id
145 ”_“)dCF’ _ u.user_email, u.user_icq, |and u . user_id = p . poster_id
391 |viewtopic u.user_aim, u.user_yim,
u.user_regdate,
u.user_msnm,
u.user_viewemail,....
225 |posting 863 u.user_id, u.user_email, tw . topic_id = $topic_id and
u.user_lang tw . user_id NOT IN
($userdata [user_id], - 1,
$row [ban_userid])
and tw . notify_status = 0
and u . user_id = tw . user_id
Table IV

LIST OF ALL PAGES AND ACTIONS THAT PERMIT ACCESS TO A
USER’S EMAIL ADDRESS

C. Web application Reengineering

In PhPBB 2.0 administrator management tasks are pro-
tected by providing a valid administrator username and pass-
word on the login page. Users who provide such information
can then access all the forum management tasks. This is
implemented by performing role validation at the beginning
of each restricted page using a call to the pagestart()
PHP function. The function implements the validation using
session information, deciding on the allowed level of access.
Figure 6 shows the source code of the PageStart.php file and
highlights the part of it that is responsible for controlling
access.

To address this issue along with the fact that many web
applications’ access control is implemented using obscurity,
such applications need to be reengineered to employ a strict
security model not only at the level of page access but also at
the level of server environment variable access and access to
application entities and attributes. Using our Prolog model,
by commenting out the code in pagestart(), an anonymous
user was able to access all the administrator management
pages, given the URL for them. With this modification, the
results of the query of Figure 6 yield an exhaustive list of
all of the ways that the anonymous user could gain such

<?php
it (! defined ("IN_PHPBB"))
{

die (“"Hacking attempt');

b

define ("IN_ADMIN®, true);

include ($phpbb_root_path. “common. " .$phpEx) ;
$userdata = session_pagestart ($user_ip, PAGE_INDEX);
init_userprefs ($userdata);

if (! $userdata ["session_logged_in"])

redirect (append_sid (“login.$phpEx
?redirect=admin/index.$phpEx", true));
3

else
it ($userdata ["user_level™] != ADMIN)

message_die (GENERAL_MESSAGE, $lang ["Not_admin™]);
}i’f ($HTTP_GET_VARS ["sid"] != $userdata ["session_id"])
redirect (“index.$phpEx?sid="_$userdata ["session_id"]);
if (! $userdata ["session_admin®])

redirect (append_sid ('login.$phpEx
?redirect=admin/index.$phpEx&admin=1", true));

3
if (empty ($no_page_header))
include ("./page_header_admin.".$phpEx);

b
ob_flush Q;
?>

Figure 8. The PageStart.php file in PhpBB 2.0. Code that controls
access to administration management pages is highlighted.

access, by page, resource, and action, providing the security
engineer with all of the changes that would need to be made
to localize security checking in the application.

In general, the security models generated by our frame-
work can also be reviewed by a security engineer either by
using any modeling tool that supports UML2.0 (such as RSA
[18]), or by exploring the generated Prolog representation of
the security model using queries. Either way the engineer
can easily explore scenarios to check for the absence of
legitimate access or the existence of unauthorized access
to the web application as a result of changes or planned
changes to the code. Since the recovered model provides
fined-grained access information down to the level of the
application’s entities’ attributes, the software engineer can
also explore the potential effect of a proposed update to the
access model, either by updating the security model or by
updating the Prolog representation.

Once the security model is revised to reflect the new
access control requirements, it can be used to restructure the
application’s database schema such that the security check is
employed on every access to any of the application’s entities’
attributes. Database access in the web application can be
updated accordingly based on the new database structure.
This is made possible by the unique numbering generated
by our framework and associated with each SQL statement
and server environment variable reference in any of the
application’s server pages.

VII. RELATED WORK

Several methods in the literature propose tools for the
translation of UML diagrams to formal models that can be
checked using formal verification tools. In the context of web
application verification, Castelluccia et al. [11] and Sciascio
et al. [16] use the Canollen model to build a diagram for the
web application to verify its design. The authors implement
a component, XMI2SMYV, that converts UML diagrams in
XMI format into a Web Application Graph (WAG). The
WAG can be translated into an SMV model, which is then
given to the NuSMV model checker [13].

Bordbar and Anastasakis [10] use the Alloy [15] con-
straint solver to find bugs in interaction between the user
and the browser in web applications. They designed a
model translation tool, UML2Alloy, which maps from their
proposed UML diagram, Abstract Description of Interaction,
to an Alloy model, which can then be verified using the
Alloy analyzer. Other model translation tools are discussed
in [17].

In access control analysis research, Letarte and Merlo
[20] use static analysis to extract a binary role model
from PHP code, or more specifically from PHP database
statements. The approach then checks if the recovered model
is restrictive or permissive. Change of authorization level in
the code is modeled using an inter-procedural control flow
graph. The approach accounts for only two roles, admin and
user, for which access to database statements may or may not
be granted. It uses an application-dependent authorization
pattern, and lacks for correspondence to source code.

Koved et al. [19] propose an approach to automatically
compute access rights requirements in Java 2.0 applications
and specifically for mobile code such as applets and servlets.
The authors use context sensitive data and control flow
analysis to construct an Access Right Invocation graph rep-
resenting the authorization model of the code. This enables
identification of classes in each path that contain a call to
the Java 2.0 security authorization subsystems.

Pistoia et al. [28] propose an approach to detect incon-
sistencies in an application’s RBAC policy. They statically
construct a call graph to represent the flow of authorization
by over-approximating method calls in the application and
identifying access-restricted methods. The graph forms the
basis of several security analyses, including whether the ap-
plication’s RBAC security policy is restrictive or permissive.

Mendling et al. [22] propose a meta-model based integra-
tion approach to enhance the security features of Business
Process Management Systems that operate via Web Services
(BPEL). The authors use an XSTL transformation script to
extract roles and permissions from a BPEL process definition
based on a proposed mapping. The extracted information
is stored in XML, which can be imported into the tool
xoRBAC, which enables the definition and enforcement of
RBAC policies and constraints for web services.

In the area of web applications, many model-based testing
techniques have been proposed. However, the main focus has
been on testing structural, dynamic, or interaction aspects of
web applications rather than on security testing or access
control properties. A state of the art discussion of these
techniques can be found on our recent survey [5].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach and a tool
to analyze RBAC security models automatically recovered
from existing dynamic web applications. We used source
transformation technology in SecureUML2Prolog to trans-
form the recovered SecureUML models into Prolog. The
resulting formal models can be used to check RBAC security
properties in the application under test. We demonstrated our
method on a production web application, PhpBB 2.0, and
illustrated its use in security analysis, testing, maintenance
and reengineering. In future work we are planning to conduct
a larger scale evaluation to better test the effectiveness of our
method, and to extend and adapt our framework to address
other security analysis tasks.

ACKNOWLEDGMENTS

This work is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by
the IBM Canada Centre for Advanced Studies.

REFERENCES

[1] Gail-Joon Ahn and Ravi S. Sandhu. Role-based au-
thorization constraints specification. ACM Trans. Inf.
Syst. Secur., 3(4):207-226, 2000.

[2] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. SQL2XMI: Reverse Engineering of UML-
ER Diagrams from Relational Database Schemas. In
WCRE, pages 187-191, 2008.

[3] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. A Verification Framework for Access Control
in Dynamic Web Applications. In C3S2E, pages 109—
113, 20009.

[4] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean.
Automated Reverse Engineering of UML Sequence
Diagrams for Dynamic Web Applications. In ICSTW,
pages 295-302, 2009.

[5] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean.
Modeling methods for web application verification and
testing: State of the art. Software Testing, Verification
and Reliability, 19(4):265-296, 2009.

[6] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. WAFA: Fine-grained Dynamic Analysis of Web
Applications. In WSE, pages 41-50, 2009.

[7] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. Automating Coverage Metrics for Dynamic Web
Applications. In CSMR, pages 51-60, 2010.

[8] Manar H. Alalfi, James R. Cordy, and Thomas R.
Dean. Recovering Role-based Access Control Security
Models from Dynamic Web Applications. In ICWE,
pages 121-136, 2012.

[9] David A. Basin, Manuel Clavel, and Marina Egea. A
decade of model-driven security. In SACMAT, pages
1-10, 2011.

[10] Behzad Bordbar and Kyriakos Anastasakis. MDA and
Analysis of Web Applications. In TEAA, volume 3888
of LNCS, pages 44-55. Springer, 2005.

[11] Daniela Castelluccia, Marina Mongiello, Michele Ruta,
and Rodolfo Totaro. WAVer: A Model Checking-based
Tool to Verify Web Application Design. Electr. Notes
Theor. Comput. Sci., 157(1):61-76, 2006.

[12] Joanna Chimiak_Opoka, Michael Felderer, Chris Lenz,
and Christian Lange. Querying UML Models using
OCL and Prolog: A Performance Study. ICSTW, pages
81-88, 2008.

[13] Alessandro Cimatti, Edmund M. Clarke, Fausto
Giunchiglia, and Marco Roveri. NUSMV: A New
Symbolic Model Checker. Int. Journal on Soft. Tools
for Tech. Transfer STTT, 2(4):410-425, 2000.

[14] James R. Cordy. The TXL source transformation lan-
guage. Science of Computer Programming, 61(3):190—
210, 2006.

[15] Daniel Jackson. Alloy: A New Technology for Soft-
ware Modelling. In TACAS, volume 2280 of LNCS,
page 20. Springer, 2002.

[16] Eugenio Di Sciascio, Francesco M. Donini, Marina
Mongiello, Rodolfo Totaro, and Daniela Castelluccia.
Design Verification of Web Applications Using Sym-
bolic Model Checking. In ICWE, volume 3579 of
LNCS, pages 69-74. Springer, 2005.

[17] Maria Encarnacién Beato Gutiérrez, Manuel Barrio-
Solérzano, Carlos Enrique Cuesta Quintero, and Pablo
de la Fuente. UML automatic verification tool with
formal methods. Electr. Notes Theor. Comput. Sci,
127(4):3-16, 2005.

[18] IBM Corp. Rational Software Architect 7.0, last access
October 2011.

[19] Larry Koved, Marco Pistoia, and Aaron Kershenbaum.
Access rights analysis for Java. In OOPSLA, pages
359-372, 2002.

[20] Dominic Letarte and Ettore Merlo. Extraction of Inter-
procedural Simple Role Privilege Models from PHP
Code. In WCRE, pages 187-191, 2009.

[21] Hongzhi Liang and Jiirgen Dingel. A Practical Evalua-
tion of Using TXL for Model Transformation. In SLE,
pages 245-264, 2008.

[22] Jan Mendling, Mark Strembeck, Gerald Stermsek, and
Gustaf Neumann. An Approach to Extract RBAC

Models from BPEL4WS Processes. In WETICE, pages
81-86, 2004.

[23] MySQL. MySQL Market Share,
http://www.mysql.com/why-mysql/marketshare/, last
access Nov 26, 2011.

[24] Netcraft Ltd. November 2011 web server survey,
http://mews.netcraft.com/archives/category/webserver-
survey/, last access Nov 26, 2011.

[25] Richard Paige and Alek Radjenovic. Towards Model
Transformation with TXL. In First Intl. Workshop on
Metamodeling for MDA, pages 163—177, 2003.

[26] PHP Group. @ PHP usage Stats for April 2007,
http://www.php.net/usage.php, last access Nov 26,
2011.

[27] Marco Pistoia, Satish Chandra, Stephen J. Fink, and
Eran Yahav. A survey of static analysis methods for
identifying security vulnerabilities in software systems.
IBM Systems Journal, 46(2):265-288, 2007.

[28] Marco Pistoia, Robert J. Flynn, Larry Koved, and
Vugranam C. Sreedhar. Interprocedural analysis for
privileged code placement and tainted variable detec-
tion. In ECOOP, pages 362-386, 2005.

[29] Harald Storrle. A PROLOG-based Approach to Rep-
resenting and Querying Software Engineering Models.
In VLL, pages 71-83, 2007.

[30] WatirCraft. Watir, http://wtr.rubyforge.org, last access
March 2009.

