
Transparent Reverse Engineering Tool Integration Using a Conceptual
Transaction Adapter

Dean Jin James R. Cordy Thomas R. Dean

Queen’s University, Kingston, Canada
{jin,cordy}@cs.queensu.ca, thomas.dean@ece.queensu.ca

Abstract

In this paper we present a proposal for a novel approach
to facilitating transparent interoperability among reverse
engineering tools. We characterize the architectural and
operational characteristics of reverse engineering tools and
demonstrate that many similarities exist among them. Tak-
ing full advantage of these similarities, we outline an ap-
proach for creating a domain ontology of operational and
representational concepts for a given set of tools. A spe-
cial adapter is proposed that makes use of this ontology to
facilitate transparent interoperability among them.

1. Introduction

The past decade has seen an increased awareness of
the challenges presented by the maintenance phase in the
software development lifecycle. Software maintenance in-
volves many tasks of which reverse engineering[3] is one
of the most important. It involves analyzing a software sys-
tem to determine how it is constructed, resulting in the cre-
ation of representations that aid in system comprehension.

Various tools designed to assist maintainers in carrying
out reverse engineering have been created. Most of these
tools have a specific strength or specialized application area
[23] but are weak in other areas. No single tool exists that
provides all the functionality and flexibility that most soft-
ware maintainers need. For this reason, research attention
has been focused on getting reverse engineering tools to in-
teroperate with each other.

Successful tool interoperation involves both technical
issues (such as inter-tool communication, sharing proto-
cols, distributed update management, etc.) and information
issues (such as representational diversity, incompleteness,
equivalency, etc). In this paper we restrict our discussion to
the latter, with special emphasis on sharing tool services as
opposed to simply sharing data. Technical issues will be the
focus of our implementation efforts and future papers.

We present a proposal for a novel approach to facilitat-
ing transparent interoperability among reverse engineering
tools. We start by showing that reverse engineering tools
have many similar characteristics. Taking full advantage of
this fact, we outline how a specially qualified adapter and
a domain ontology can be used together to allow reverse
engineering tools to interoperate seamlessly.

2. Why Interoperability Matters

While progress has been made towards increasing the
performance and usefulness of reverse engineering tools,
most continue to exist in isolation, lacking any effective
means for sharing information among each other [7, 30].
This lack of integration has been a serious obstacle to the
adoption and use of automation in software maintenance
tasks [26, 20].

Analysis from different tools can help speed up the re-
verse engineering process [24, 31]. For example, Holt, Win-
ter, Schürr and Sim [21] list eighteen examples of reverse
engineering, software modelling, analytical and graphing
tools that provide many different types of analyses that re-
verse engineering practitioners can make use of. Maintain-
ers can leverage their results by combining the output of
different analyses from different tools [1, 15, 22, 27, 29].
Tool interoperability would allow software maintainers the
opportunity to use a suite of tools; each specialized for a
particular maintenance task.

Without an integrative component, maintainers are
forced to work independently with each tool starting from
scratch [1, 22]. Manually integrating results from different
tools is tedious and time consuming [6, 30, 31].

To effectively assist in maintenance tasks, reverse engi-
neering tools must be able to work together to provide a
deep and consistent understanding of the systems involved.

3. Barriers To Integration

The primary barrier to reverse engineering tool inter-
operability is differences in the representation of software

cordy
Proc. CSMR 2003, IEEE 7th European Conf. on Software Maintenance and Reengineering, Benevento, Italy, March 2003, pp. 399-408.

cordy

cordy

cordy



Figure 1. Integration Utopia (4 Tools)

knowledge that each tool maintains. These differences are
both syntacticand semantic. Structural differences in the
way information is manipulated and stored account for the
syntactic divergencies that exist between tools. For the most
part, syntactic differences can easily be reconciled through
representational mapping and data translation.

Semantic differences are more difficult to resolve. No
single information model captures all the views of software
supported by all reverse engineering tools currently avail-
able [8]. This is because a myriad of semantic differences
exist between models for programming languages [4]. For
example, in object-oriented languages such as Java all en-
tities are organized within a hierarchy of classes. Instan-
tiation outside the class hierarchy is not possible. In con-
trast, modular languages such as COBOL allow the creation
of global external variables and records; entities which are
nonexistent in object-oriented programming languages.

In addition, many semantic differences stem from the use
of reverse engineering tools in various application domains.
For example, software that supports financial systems, user
interface systems and scientific computing systems all have
unique characteristics whose meaning is represented differ-
ently, depending on the reverse engineering tool being used.

It is clear that a minimal requirement for achieving tool
interoperability involves the mediation of the syntactic and
semantic particularities inherent among reverse engineering
tools. This points to a solution that operates above the level
on which data is represented.

4. Integration Utopia

Today, reverse engineering tool integration is most often
implemented on a tool-by-tool basis. Special converters are
used to transform information from one tool into a form that

is compatible with another tool. This kind of integration is
less than ideal for a number of reasons:

• Creating special converters is time consuming and of-
ten targets only a specific application.

• The incentive to integrate with other tools is low. It
is usually not worth the effort to create a converter for
such a special purpose.

• It leads to the creation of proprietary integration solu-
tions. These are hard to maintain and make it difficult
for other tool developers to participate in the integra-
tion.

What we refer to as integration utopiais full interoper-
ability among n reverse engineering tools. Each tool can
apply its analyses on the data of all the other tools and vice
versa. Integration utopia among four reverse engineering
tools is shown in Figure 1. Using current integration tech-
nology, full interoperability among n reverse engineering
tools would require n(n− 1) converters. Clearly a different
approach to facilitating integration among reverse engineer-
ing tools is required before integration utopia is achievable.

5. Reverse Engineering Tool Architecture

Although many reverse engineering tools exist, most fea-
ture the same underlying architecture [3]. In general, re-
verse engineering tools consist of the following three com-
ponents [1, 5, 15, 20, 33]:

1. Information Extractor. The front ends of reverse
engineering tools typically input source code and ex-
tract information from it. A lexer reads the code and
breaks it into lexical tokens. These tokens represent
the keywords and basic building blocks for the pro-
gram based on the specific programming language that
is being used. Next, a parser groups the lexical tokens
into programming constructs like statements, expres-
sions, declarations, etc. These facts are almost always
organized into a graph structure. Some tools use an
Abstract Syntax Tree (AST) or an Abstract Semantic
Graph (ASG) to represent software facts.

2. Repository. The quantity of information extracted
from source code can be substantial. For this reason,
information extracted from the source code is typically
organized and stored in a repository rather than pre-
served in memory.

3. Analyzer/Visualizer. The information in the repos-
itory is processed and analyzed with the results pre-
sented visually, through reports or by source code
markup.



6. Operational Characteristics

Elmasri and Navathe [9] define a database as a collec-
tion of related, recordable facts with implicit meaning. This
collection, along with software that manages and manipu-
lates the collection make up a database system. Considering
the basic architecture of reverse engineering tools outlined
above, it is readily apparent that they are in fact database
systems specially tailored to store, manipulate and analyze
information about software. On the front-end, parsers pro-
vide structured facts that ‘populate’ the database. At the
back-end, visualizers and analyzers make use of facts in
the database to yield information that is useful to maintain-
ers. Between these two extremes lies a management sys-
tem which provides the means for defining, constructing
and manipulating the database.

Continuing from this database systems perspective we
can abstract the operational characteristics of reverse engi-
neering tools into three distinct layers as shown in Figure 2:

1. Transactions. The queries and updates that extract,
process and analyze the software facts stored in the
database.

2. Schema. A definition for the entity types, relations and
constraints that make up the information model used
by the tool to represent software. Similar to database
systems, most reverse engineering tools use Entity-
Relationship(ER) [2] models to define their schemata.

3. Instance. Software facts stored in the database in a
form defined by the schema on which the tool trans-
actions operate. For the purpose of our discussion, we
refer to a reverse engineering tool database populated
with software facts as a factbase. The instance for a
given reverse engineering tool is simply the factbase
that the tool maintains.

Approaches to facilitating interoperability among re-
verse engineering tools have so far concentrated on negoti-
ating the transfer of information at the schema and instance
levels. These efforts have essentially been an ad hoc exer-
cise in data integration; an attempt to get information stored
in one tool into a form that another tool can use [32]. Al-
though this approach is effective for bridging the exchange
gap from a syntactic perspective, it falls short in dealing
with differences among the various data structures, instance
semantics and information models that each tool employs.

7. Conceptual Transactions

Many reverse engineering tools use the same or simi-
lar sets of transactions to analyze factbases. For example,
a dependency analysis might see two tools querying their

Figure 2. Operational Characteristics of Re-
verse Engineering Tools

factbases for ‘reference’ relations. In one tool this might be
as simple as querying the factbase for all entities that have
a ‘refers-to’ relation to another entity. In another tool this
might involve an exhaustive search through all source code
references for variables that exist in other modules.

From an implementation perspective, each tool is radi-
cally different in the way it represents reference relation-
ships. The first tool explicitly records reference relations so
they are easily obtained by a simple query. In the second
tool the same information is stored implicitly, so extraction
involves pattern matching to filter out the desired results.
Nevertheless, both tools use the same conceptual transac-
tion to get their results; namely the identification of depen-
dency among entities in a representation for software. Di-
rect correspondence or similarity among reverse engineer-
ing tool transactions is the key to our proposal for a new
conceptual transaction-based integration paradigm.

The notion of conceptas it relates to factbases is an im-
portant part of our discussion on conceptual transactions.
Maintainers use reverse engineering tools to extract knowl-
edgeabout software from its representation stored in a fact-
base. The knowledge that a given factbase provides depends
on the concepts that the representation supports. The exam-
ple we provided above focused on the concept of depen-
dency in two reverse engineering tool factbases. A fact-
base in a reverse engineering tool can support any number
of concepts. Nevertheless, it is important to keep in mind
that not all concepts are supported in all factbases. A pre-
requisite for integration using conceptual transactions is that



Figure 3. Native Support for the ‘same type’
Concept

all participant factbases support the concept that the trans-
action refers to.

Concept support in a given factbase can be classified as
follows:

• Native. The factbase explicitly supports the represen-
tation of the concept. Other than possible differences
in the names used, a complete representation for the
concept exists in the factbase.

• Derived. The factbase supports the representation of
the concept, but it must be derived or inferred from
the facts represented. A query can be constructed that
extracts an equivalent representation from the factbase.

• Undefined. The factbase is fundamentally incapable
of representing the concept. This means that no in-
formation content for the concept is available in the
factbase. Provided the absence of certain facts related
to the concept can be tolerated, a partial representation
may be available.

In Figures 3 to 5, three very small hypothetical repre-
sentations of software facts are used to demonstrate the dif-
ference between each concept support category. Our goal
in these examples is to identify all instances of the ‘same
type’ concept in the representation. Native support for the
concept is shown in Figure 3. Here an explicit sameType re-
lation is defined between variable v and variable x. In Fig-
ure 4 the ‘same type’ concept is not explicitly represented,
but it is obtainable from the facts available. We see that
variables v and x are both array types. It is not clear that
these variables have the same type until each of their ele-
mentType relations are found to lead to the same int type
node. A query that reconciles the type of array structures
could be used to support the ‘same type’ concept for this
representation. In Figure 5 no information about the type

Figure 4. Derived Support for the ’same type’
Concept

Figure 5. Undefined Support for the ‘same
type’ Concept



Figure 6. Our Proposed Integration Architec-
ture

for either of the variables v and x is provided, so support
for the ‘same type’ concept is undefined.

We believe that the use of a transaction adapter operating
at a conceptual level can facilitate interoperability among
reverse engineering tools. In the remainder of this paper
we outline our proposal for a conceptual transaction-based
approach to integration.

In the context of our discussion, two or more reverse en-
gineering tools want to cooperate in an integration. Each
of these participantshas a set of transactions to offer to the
group. One or more of these transactions are executed by a
tool to carry out a particular task. Each task relates in one
way or another with one or more concepts supported in the
factbase. For example, as we saw above, a type analysis is a
task a reverse engineering tool could carry out by querying
its factbase for all instances where the ‘same type’ concept
is represented.

8. An Ontological Approach

We start by restricting the domain onto which we will
apply our approach to reverse engineering tools. Although
this might appear trivial, restricting our domain allows us
to fully exploit the similarities among reverse engineering
tools (in architecture, graph representation, etc.) that we
have discussed so far.

Figure 6 provides a context from which we explain our
proposed approach. Here we see two participant tools T1

and T2 involved in an integration. Each tool has a set of
transactions (Q1 and Q2), a schema (S1 and S2) and a cor-
respondingly structured instance (I1 and I2).

Within our restricted reverse engineering domain we can

Figure 7. Transparent Interoperability

make the following fundamental assumptions:

• There is a significant amount of overlap among the
transactions each participant in the integration carries
out.

• Although there may be vast differences in the way each
factbase is structured, there is a significant amount of
information obtainable (natively or derived) from each
factbase that is conceptually equivalent.

Capitalizing on these assumptions, we make use of a do-
main ontology (O) to compile all the conceptual transac-
tions and concepts supported by all participants in the inte-
gration. This ontology is essentially a table from which all
conceptual transactions and the corresponding concepts that
they operate on are recorded. Using this ontology, a concep-
tual transaction adapter(A) translates and filters factbase
concepts so they can be used by transactions from other
tools.

A key attribute of the conceptual transaction adapter is
transparency. The adapter tricks each participant into think-
ing that the factbase it is accessing is its own. In reality, it is
a factbase from one of the other participants in the integra-
tion (Figure 7). Neither tool is aware that the adapter is act-
ing as the liaison between them. Successfully implemented,
the conceptual transaction adapter would provide seamless,
transparent interoperability among all participants in the in-
tegration.

9. Building the Ontology

The domain ontology is instrumental in providing the
conceptual transaction adapter with the knowledge it needs



Figure 8. Steps to Building the Domain Ontology

to facilitate interoperability. For this reason it is important
that the greatest care be taken to ensure that the ontology
created is as comprehensive and complete as possible. We
believe the long term benefits of using the ontology far out-
weighs the short term pain that might be involved in creating
it.

Figure 8 shows the steps we propose for a constructive
approach to creating the domain ontology. We start at the
lowest level of the diagram. In this hypothetical example
we see a reverse engineering tool (T ) interacting with its
factbase (instance I) via queries and updates (respectively
shown as dots and dashes). Repeating patterns are readily
apparent in the queries and updates the tool performs on its
factbase. Each of these patterns is a transactionthat the tool
carries out. In the context of our discussion we use the term
transaction in the same sense as it is defined in the database
community:

“an atomic unit of work that is either completed
in its entirety or not done at all” [9]

For any given reverse engineering tool a finite set of differ-

ent kinds of transactions are defined. The first step towards
creating the ontology is to split the queries and updates that
each tool carries out on its factbase into transactions. Ar-
guably this is the most difficult step because it involves
delving into the inner workings (i.e. source code or imple-
mentation details) of each tool we want to have participate
in the integration. Note that the complete set of transactions
identified in this step is the Q we show in Figures 6 and 7.

In the next step we parameterize each of the transactions
identified in the first step. Here we are interested in rec-
ognizing the entities and relations from the factbase that
each transaction works with. These are the concepts rep-
resented in each factbase that the transactions operate on.
When combined with the information from the first step the
result is a set of transaction templatesfor each kind of trans-
action the tool is capable of performing.

The third step involves applying a nomenclature to the
knowledge obtained in each of the previous two steps. So
far we have determined the queries and updates that each
transaction performs on factbase concepts for each tool in
the integration. Now we choose an appropriate label to be



Figure 9. A Graph Representing A Software
Architecture

used at the conceptual level for each of the transactions and
concepts.

The fourth and final step involves the unification of all
the conceptual transactions and factbase concepts into a do-
main ontology. Recalling the two fundamental assumptions
from Section 8, it is likely that a number of conceptual
transactions and factbase concepts will overlap. In this step,
we eliminate all overlap by combining conceptual transac-
tions and factbase concepts that have the same syntactic or
semantic properties.

Completion of these four steps should yield an ontology
of conceptual transactions and associated factbase concepts
for all the reverse engineering tools participating in the in-
tegration.

This methodology for building the domain ontology has
a benefit of easily accommodating new participants to the
integration as well. Just repeat steps 1 to 3 for any new

HLuse := (contain +) o
(useproc + usevar) o
((inv contain)+) -
ID - (contain +) -
((inv contain)+)

Figure 10. The HLuse Grok Transaction

tool and then complete the 4th step (concept unification) by
combining the tool specific results of steps 1 to 3 with the
pre-existing domain ontology. Now the new tool should be
able to participate in the integration.

10. The Conceptual Transaction Adapter

The conceptual transaction adapter makes extensive use
of the domain ontology to get the information it needs to
facilitate interoperability among the participants in the in-
tegration. It plays a threefold role in the integration. First,
transaction mappingidentifies and dynamically maps ac-
tual transactions invoked by a participant tool to the equiv-
alent conceptual transaction in the domain ontology. The
ontology reports the factbase concepts that the selected con-
ceptual transaction requires. Next concept filteringobtains
the required concepts by querying the factbase within the
integration that offers the appropriate concept support. The
form of the query depends on whether the concept support
in the factbase is native or derived. Finally, syntactic con-
versionprovides the original actual transaction with the re-
quired concepts. These concepts are represented as facts
structured according to the schema for the tool the actual
transaction originated from.

The example that follows demonstrates how the concep-
tual transaction adapter would function in the integration.

11. An Example: Sharing the High Level Use
Transaction

A very useful aid for maintainers is a view of the archi-
tecture of a large software system. One representation of
the architecture of a hypothetical software system is shown
in Figure 9. This very small entity-relationship diagram
(based on an example shown in [11]) features ‘system’,
‘sub-system’ and ‘module’ entities and ‘contain’, ‘usevar’
and ‘useproc’ relations.

Maintainers are often interested in identifying dependen-
cies among the various sub-systems that make up a software
system. Looking at Figure 9 it is easy to observe that sub-
system W uses sub-system V : module c contained in sub-
system W uses a variable from module b contained in sub-
system V . In an industrial setting where software systems



Figure 11. Sharing the HLuse Transaction

are very large, it is not uncommon for a graph that repre-
sents a system to be much larger, featuring millions of enti-
ties and relations. In such an environment our observation
would be impractical if not impossible to make.

Architectural Lifting [17, 12, 28] is an architecture re-
covery analysis that lifts low-level ‘use’ relations to higher
levels of abstractive detail in the representation of a soft-
ware system. Using this analysis we can identify depen-
dencies among sub-systems. Fahmy, Holt and Cordy [11]
provide HLuse(high level use), a transaction that works in
the Grok [17, 18] tool to perform architectural lifting on a
factbase whose schema supports the representation of the
entities and relations shown in Figure 9. The HLuse trans-
action is shown in Figure 10. The operative details of this
transaction are available in [10, 11]. They are beyond the
scope of this discussion, so they are not included here. For
our purposes, applying this transaction creates a ‘HLuse’ re-
lationship among two sub-system entities if a ‘use’ relation
among the modules of the two sub-systems exists.

In the example outlined below we describe how the
HLuse transaction could be shared among two reverse engi-

neering tools participating in an integration. Figure 11 pro-
vides a visual representation of how this could be achieved.

Consider a reverse engineering tool T1 that implements
the HLuse transaction. The tool has a factbase (instance
I1), a schema S1 that represents (among other entities and
relations) the relations ‘contain’, ‘useproc’, ‘usevar’ and
‘HLuse’. We call this the Fahmy schema. The tool also has
a set of transactions Q1, one of which is the HLuse transac-
tion.

Now consider a second reverse engineering tool T2. This
tool was built to analyze software representations struc-
tured using the Columbus [14] schema. S2 is the Colum-
bus schema and the factbase I2 represents software facts
structured accordingly. The Columbus schema represents
high level semantics and low level structures for source code
[13]. It offers native support for the ‘contain’ concept and
derived support for the ‘useproc’ and ‘usevar’ concepts. We
would like to have T1 and T2 participate in an integration
with the goal of applying the HLuse transaction to factbase
I2.

We start by building the domain ontology as outlined



in Section 9. The result of this step is a domain ontology
‘loaded’ with conceptual transactions and factbase concepts
from both tools. The conceptual transaction adapter is now
ready to facilitate the interoperability we need to achieve
our goal.

When the HLuse transaction is invoked from T1 it is
identified by the conceptual transaction adapter. Using the
domain ontology the adapter knows it needs ‘contain’, ‘use-
var’ and ‘useproc’ concepts from I2. A query for the na-
tively supported ‘contain’ concept and derivation queries
for the ‘usevar’ and ’useproc’ concepts get the required facts
from I2. This is shown in Figure 11 as the thick line run-
ning from I2 to the adapter. The entity equivalences for the
queries are shown under the adapter.

These facts are then syntactically converted so that
they are represented in a form consistent with the Fahmy
schema. They are then handed over to the HLuse transac-
tion where the architectural lifting analysis is performed.
This is shown as the thick line running from the adapter to
the HLuse transaction.

The integration facilitated by the conceptual transaction
adapter is completely transparent. The HLuse transaction
in T1 performs its analysis on software facts from the I2

factbase just as though they were facts obtained from the I1

factbase.

12. Discussion

As we mentioned in Section 9, the process of construct-
ing the domain ontology is by far the most difficult step in
our approach to facilitating reverse engineering tool inter-
operability. Access to the inner workings of a reverse engi-
neering tool, especially a commercial product, may not be
possible. Often the unfortunate reality with these systems
is that the information contained in the factbase and the ser-
vices offered are inextricably tied.

On a brighter note, an increasing number of tools pro-
vide at least some degree of separation between the factbase
they maintain and the services they provide. For instance,
tools that import and export information using software ex-
change languages such as GXL [19], RSF [25] or TA [16]
by default separate structural characteristics (i.e. metadata
in the form of a schema) from actual data. It is much simpler
to construct a domain ontology from these tools as integra-
tion participants because the information they represent is
explicitly defined. Our approach to integration would work
well in this situation because the domain ontology could be
used to effectively centralize the mechanisms for sharing
information that each tool supports. This would ease main-
tenance headaches as well. Changes to the representation
supported by an integration participant would only need to
be reflected in the domain ontology, not in n(n − 1) con-
verters as we discussed in Section 4.

13. Conclusions

In this paper we presented a proposal for a novel ap-
proach to facilitating transparent interoperability among re-
verse engineering tools. The primary advantage of our ap-
proach to integration is that it does not force any change
to preexisting representational structures or operational fea-
tures (with the exception of transaction piping) of existing
reverse engineering tools. All the semantic and syntactic
issues related to the software facts maintained by each tool
are reconciled during the creation of the domain ontology.
All the integrative functionality is built into the concep-
tual transaction adapter. We believe that our proposed so-
lution would provide transparent interoperability that pre-
serves meaning without loss of detail.

The main disadvantage of our approach is the effort in-
volved in creating the domain ontology. Despite the ad-
vantages that come with restricting our domain to reverse
engineering tools, this step remains a difficult one to cross.
The method we propose involves creating an ontology only
for the set of tools participating in the integration. It is
hoped that following this method for small groups of tools
will lead to the development of best practices that will open
the door to optimizations in the ontology creation process.
Once created, the use of the ontology to facilitate interoper-
ability is beneficial over the long term for all tools partici-
pating in the integration.

References

[1] I. T. Bowman, M. W. Godfrey, and R. C. Holt. “Connecting
Architecture Reconstruction Frameworks”. In Proceedings
of the 1st International Symposium on Constructing Soft-
ware Engineering Tools (CoSET’99), pages 43–54, Los An-
geles, CA, May 1999.

[2] P. Chen. “The Entity Relationship Model – Toward a Unified
View of Data”. ACM Transactions on Database Systems,
1(1):9–36, 1976.

[3] E. J. Chikofsky and J. H. Cross II. “Reverse Engineering and
Design Recovery: A Taxonomy”. IEEE Software, 7(1):13–
17, January/February 1990.

[4] S. Demeyer, S. Ducasse, and S. Tichelaar. “Why FAMIX
and not UML?”. In Proceedings of UML’99, volume 1723 of
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[5] P. T. Devanbu. “GENOA - A Customizable, front-end retar-
getable Source Code Analysis Framework”. ACM Transac-
tions on Software Engineering and Methodology, 9(2), April
1999.

[6] P. T. Devanbu, D. S. Rosenblum, and A. L. Wolf. “Generat-
ing Testing and Analysis Tools with Aria”. ACM Transac-
tions on Software Engineering and Methodology, 5(1):42–
62, January 1996.

[7] J. Ebert, B. Kullbach, and A. Winter. “GraX – An In-
terchange Format for Reengineering Tools”. In Proceed-
ings of the 6th Working Conference on Reverse Engineering
(WCRE’99), pages 89–98. IEEE Press, 1999.



[8] J. Ebert, B. Kullbach, and A. Winter. “GraX: Graph Ex-
change Format”. In Proceedings of the Workshop on Stan-
dard Exchange Formats (WoSEF) at ICSE’00, Limerick, Ire-
land, 2000.

[9] R. Elmasri and S. B. Navathe. Fundamentals of Database
Systems. Addison-Wesley, 3rd edition, 2000.

[10] H. M. Fahmy and R. C. Holt. “Using Graph Rewriting
to Specify Software Architectural Transformations”. In
Proceedings of the 15th IEEE International Conference
on Automated Software Engineering (ASE’2000), Grenoble,
France, September 2000.

[11] H. M. Fahmy, R. C. Holt, and J. R. Cordy. “Wins and Losses
of Algebraic Transformations of Software Architectures”. In
Proceedings of the 16th IEEE International Conference on
Automated Software Engineering (ASE’2001), San Diego,
California, November 2001.

[12] L. Feijs, R. Krikhaar, and R. V. Ommering. “A Rela-
tional Approach to Support Software Architecture Analy-
sis”. Software-Practice and Experience, 28(4):371–400,
April 1998.

[13] R. Ferenc and A. Beszédes. “Data Exchange with the
Columbus Schema for C++”. In Proceedings of the 6th Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR 2002), pages 59–66, Budapest, Hungary,
March 2002.

[14] R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyimóthy.
“Columbus - Reverse Engineering Tool and Schema for
C++”. In Proceedings of the 6th International Conference
on Software Maintenance (ICSM 2002), pages 172–181,
Montréal, Canada, October 2002.

[15] M. W. Godfrey. “Practical Data Exchange for Reverse En-
gineering Frameworks: Some Requirements, Some Expe-
rience, Some Headaches.”. Software Engineering Notes,
26(1):50–52, January 2001. A Position Paper for the
ICSE 2000 Workshop on Standard Exchange Formats
(WoSEF’00).

[16] R. Holt. An Introduction to TA: The Tuple Attribute Lan-
guage. Department of Computer Science, University of Wa-
terloo and University of Toronto, November 1998.

[17] R. C. Holt. “Structural Manipulations of Software Ar-
chitecture Using Tarski Relational Algebra”. In Proceed-
ings of the 5th Working Conference on Reverse Engineering
(WCRE’98), Honolulu, Hawaii, October 1998.

[18] R. C. Holt. Introduction to the Grok Language.
http://plg.uwaterloo.ca/˜holt/papers/
grok-intro.html, May 5, 2002.

[19] R. C. Holt and A. Winter. “A Short Introduction to the
GXL Exchange Format”. In Proceedings of the 7th Work-
ing Conference on Reverse Engineering (WCRE’00) Panel
on Reengineering Exchange Formats. IEEE Computer Soci-
ety Press, November 2000.

[20] R. C. Holt, A. Winter, and A. Schürr. “GXL: Toward a Stan-
dard Exchange Format”. In Proceedings of the 7th Working
Conference on Reverse Engineering (WCRE’00) Panel on
Reengineering Exchange Formats. IEEE Computer Society
Press, November 2000.

[21] R. C. Holt, A. Winter, A. Schürr, and S. E. Sim. GXL: To-
ward a standard Exchange Format. Presentation at the 7th
Working Conference on Reverse Engineering (WCRE’00),

Panel on Reengineering Exchange Formats, November
2000.

[22] R. Kazman, S. G. Woods, and S. J. Carrière. “Require-
ments for Integrating Software Architecture and Reengi-
neering Models: CORUM II”. In Proceedings of the 5th
Working Conference on Reverse Engineering (WCRE’98),
October 1998.

[23] T. C. Lethbridge. Requirements and Pro-
posal for a Software Information Exchange For-
mat (SIEF) Standard, November 1998. URL:
http://www.site.uottawa.ca/˜tcl/papers/
sief/standardProposalv1.html.

[24] T. C. Lethbridge and N. Anquetil. “Architecture of a
Source Code Exploration Tool: A Software Engineering
Case Study”. Technical Report TR-97-07, School of Infor-
mation Technology and Engineering (SITE), University of
Ottawa, November 1997.

[25] J. Martin. RSF File Format. Posted to the Rigi Developer
Email Distribution List, August 19 1999.

[26] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R.
Tilley, and K. Wong. “Reverse Engineering: A Roadmap”.
In A. Finkelstein, editor, The Future of Software Engi-
neering, International Conference on Software Engineering
(ICSE’00), Limerick, Ireland, June 2000. ACM Press.

[27] H. A. Müller, K. Wong, and S. R. Tilley. “Understanding
Software Systems Using Reverse Engineering Technology”.
In Proceedings of the 62nd Congress of L’Association Cana-
dienne Francaise pour l’Avancement des Sciences (ACFAS),
1994.

[28] G. C. Murphy, D. Notkin, and K. Sullivan. “Software
Reflexion Models: Bridging the Gap Between Source and
High-Level Models”. In Proceedings of the Third ACM Sym-
posium on the Foundations of Software Engineering, Ocot-
ber 1995.

[29] M. Nagl, editor. Building Tightly Integrated Software Devel-
opment Environments: The IPSEN Approach., volume 1170
of Lecture Notes in Computer Science. Springer-Verlag,
Berlin Heidelberg, 1996.

[30] S. Perelgut. “The Case for a Single Data Exchange For-
mat”. In Proceedings of the 7th Working Conference on
Reverse Engineering (WCRE’00). IEEE Computer Society
Press, November 2000.

[31] C. Riva. “Reverse Architecting: Suggestions of an Exchange
Format”. In Proceedings of the Workshop on Standard Ex-
change Formats (WoSEF) at ICSE’00, Limerick, Ireland,
2000.

[32] S. E. Sim. “Next Generation Data Interchange: Tool-to-Tool
Application Program Interfaces”. In Proceedings of the 7th
Working Conference on Reverse Engineering (WCRE’00),
pages 278–283. IEEE Computer Society Press, November
2000.

[33] S. Woods, L. O’Brien, T. Lin, K. Gallagher, and A. Quilici.
“An Architecture For Interoperable Program Understanding
Tools”. In Proceedings of the 6th International Workshop on
Program Comprehension (IWPC’98), pages 54–63, 1998.




