
Practical Language-Independent Detection of Near-Miss
Clones

James R. Cordy Thomas R. Dean Nikita Synytskyy
Queen’s University Queen’s University University of Waterloo

cordy@cs.queensu.ca thomas.dean@ece.queensu.cam synytskyy@cs.uwaterloo.ca

Abstract

Previous research shows that most software sys-
tems contain significant amounts of duplicated, or
cloned, code. Some clones are exact duplicates of
each other, while others differ in small details
only. We designate these almost-perfect clones as
“near-miss” clones. While technically difficult,
detection of near-miss clones has many benefits,
both academic and practical. Finding these clones
can give us better insight into the way developers
maintain and reuse code, and we can also param-
eterize and remove near-miss clones to reduce
overall source code size and decrease system com-
plexity.

This paper presents a simple, general and prac-
tical way to detect near-miss clones, and summa-
rizes the results of its application to two produc-
tion websites. We use standard lexical comparison
tools coupled with language-specific extractors to
locate potential clones. Our approach separates
code comparisons from code understanding, and
makes the comparisons language independent.
This makes it easy to adapt to different program-
ming languages.

1 INTRODUCTION
Clones occur in all applications of more than triv-
ial size. Over time, they have been the subject
many scientific studies using a variety of methods
[1,2,3,4,8,13,14,15,16,17,18]. Clones are inter-
esting because studying them can further the un-
derstanding of how programmers use and re-use
their code. This is possible because clones are
more than textually identical pieces of code. For

Copyright  2004 Nikita Synytskyy, James R.
Cordy, Thomas R. Dean. Permission to copy i s
hereby granted provided the original copyright no-
tice is reproduced in copies made.

better or worse, cloning is an accepted—and
widely used—code reuse technique, and it would
be wise to use it to get some insight into the sys-
tem's functionality and history. Near-miss clones
are particularly useful for this purpose because
they can show how a piece of code propagates
through the system, evolving as it does so.

Apart from learning the code's history, study of
cloning can also suggest opportunities for code
refactoring and improvements. For example, the
detected clones can be automatically or semi-
automatically resolved in order to make the sys-
tem simpler and easier to understand.

Locating near-miss clones is a rather challeng-
ing task, in part because the definition of near-
miss clone is very imprecise. An exact clone, by
comparison, has a very clear definition—if two
pieces of code are same, they are clones; other-
wise, they are not. Even with such a precise defi-
nition, exact clone detection is a complicated en-
deavor. Near-miss clones do not have an accepted
definition, so one must find a suitable test for
near-miss cloning before attempting any detec-
tion.

Lexical clone detection tools for near-miss
clones [2,3] treat them as any sequence of strings
that are the same with respect to a certain parame-
ter, or parameters. Because of the purely lexical
approach, detected clones do not correspond to
structural elements of the language. Others based
on metrics, concept analysis or dataflow analysis
[13,14,15,16, 17,18] are aimed at procedural or
ADT level structures only.

Our aim is to locate clones that correspond to
discrete structural constructs of the language we
are analyzing at many levels of detail. This, by
necessity, calls for some form of parsing or other
code comprehension technique. However, for
both processing speed and ease of implementa-
tion, we wanted to use lexical tools to perform
the comparisons themselves. As a result, our
approach relies neither on purely textual compari-

sons, nor solely on compiler-based techniques,
which involve parsing, generation and analysis of
ASTs or similar data structures. Instead, we
adopt an approach that is a combination of the
two.

2 GENERAL APPROACH
This work is an extension of our previous work
on detection and resolution of exact clones [8]
using TXL [7]. As in our previous work, we use
a robust island grammar to identify and isolate
the syntactic constructs that are of interest [12].
This grammar represents the bulk of the code
(HTML text in our experiment) as sequences of
uninteresting tokens known as water. Interesting
structural features (or islands) are identified and
explicitly parsed as specific non-terminals in the
grammar. In this work, an extractor generates a
separate pretty-printed text file for each island
found. Each such island (and thus each separate
file) represents a potential clone. Comparing the
potential clone files allows us to determine which
islands actually are clones.

The island grammar itself is the only language
dependent part of our process. The actual identifi-
cation of near miss clones is done using entirely
language independent lexical tools. To adapt the
process to another language, all that is needed is a
grammar for the language and the list of the non-
terminals that represent the structural elements to
be considered potential clones. This gives the
process broad flexibility. All islands are extracted
as potential clones, including nested islands. To
our knowledge, this simultaneous multi-level
comparison is different than any other method.
The grammar for the target language does not
even need to be complete, only detailed enough to
identify the syntactic structure of potential clones.

When the islands are extracted to separate files,
they are reformatted to a standard form (i.e.,
“pretty-printed”) using annotations in the TXL
grammar. The pretty-printing we do is geared
towards better comparison results, rather than
better human readability—our pretty-printer tries
to make every line correspond to some meaning-
ful source feature, thus spreading the source over
many lines. As many program elements as pos-
sible are located on their own lines. This helps
improve the precision and granularity of line-
based comparisons.

We then compare these extracted source code
snippets to each other line-by-line, using Unix's
diff [9,10] utility. This method benefits from the
simplicity of purely lexical approaches, but pro-
vides more accurate results, because any format-
ting irregularities are removed from the source,
and because all clones correspond to some lan-
guage construct in the language being analyzed.

While it is true that this method may miss po-
tential clones that are semantically the same,
clones that are the result of cut, paste and modify
on the part of developers are easily found. The
result is a simple, efficient and effective method
without the use of heavy weight metrics and lan-
guage dependent computations. We have evalu-
ated our approach as applied to several thousand
lines of HTML in two medium-sized production
web sites.

3 METHOD OF OPERATION
Clone detection in HTML. Thus far the method
presented in this paper has been primarily aimed
at clone detection in mark-up languages, namely
HTML. As a result, although the technique we
describe is independent of language, the examples
in this paper are aimed at clones in HTML pages.
Research shows that web sites contain at least as
many clones as other software; usually, however,
the percentage of cloned content in a web site is
far greater than in normal software [11].

Authors of web sites are under severe pressure
to clone, much more so than programmers using
executable languages. Consider the following
points: web sites are developed quickly and up-
dated often, leaving the maintainers little time to
ponder the benefits of following good software
engineering practices; in many cases web site
maintainers have not been exposed to these prac-
tices in the first place [5]; HTML offers virtually
no code reuse tools, forcing authors to rely on
cloning as the only way of reuse; finally, web
pages of the same web site are almost always ex-
pected to have a common “look and feel” necessi-
tating frequent code reuse, and thus promoting
cloning even further.

These factors, coupled with the fact that the use
of mark-up languages in general and HTML in
particular has experienced huge growth with the
emergence of the World Wide web, make HTML
a prime target for reverse engineering research, and
particularly for clone detection efforts.

Figure 1 shows a sample HTML file that will
be used as an example throughout this paper. It
is a simple file that consists of three tables, with
the outermost table containing the other two. The
two inner tables are very similar to each other,
differing only in one table parameter and the con-
tent of their single cell.

 Clone detector structure. Our clone detector
tool is structured, conceptually at least, according
to a pipe-and-filter design pattern. Clone detec-
tion is performed in three separate steps, with the
output of one step becoming the input to the next
one. These steps are:

1. Potential clone extraction;
2. Clone comparisons;
3. Output generation.

 Figure 2 shows the conceptual architecture of
the system presented here, and the data flow
through it. The following sections will examine
each step in turn.

3.1 Extraction of potential
clones

Every clone extraction tool desig-
nates—sometimes implicitly—a “minimal clone”,
i.e. the smallest piece of code that the tool con-
siders to be worthwhile to examine on its own.
This step is important for two reasons: it reduces
the amount of work the clone detector has to do,
and makes the results more relevant. The amount
of work is cut because the tool does not spend
time looking for clones of program entities that
are too small, and the results are improved be-
cause they are not polluted with information
about the “cloning” of single tokens or state-
ments.

In our system, the extractor is responsible for
enforcing the minimal clone restrictions. Its task
is to extract potential clones from the source code
for further study, and it is responsible for extract-
ing features no smaller than our designated mini-
mal clone.

The definition of a minimal clone also varies
from language to language. In the case of HTML,
we designate individual tables and forms as
minimal clones. Each potential clone is extracted
only once, but if potential clones are nested (see
Figure 1 for an example of a table occurring in-
side another table), the inner candidate is listed
twice: once with its parent and once on its own.
All extracted potential clones are stored as text
files, with the file names indicating their origin.

During extraction, potential clone files are also
pretty-printed. Pretty-printing ensures consistent

<html>
<table id="outerTable" border=1>
<tr><td>
 <tableborder=1

id="innerTable1">
 <tr><td>
 content of inner table 1
 </td></tr>
 </table>

 < t a b l e b o r d e r = 1

id="innerTable2">
 <tr><td>
 content of inner table 2
 </td></tr>
 </table>
</td></tr>

</table>
</html>

Figure 1: A sample web page with two near-
miss clones.

Source
files

Extracted
pretty-printed

potential clones

Cloning
data

Interactive
clone
report

Clone
extractor

and
pretty–
printer

Clone
comparisons

Report
Generator

Figure 2: Conceptual architecture of the language-independent near-miss clone detection system.

layout of code for later comparisons. When code
is cloned, it is often changed—whitespace and
comments are inserted or removed, tags or block
markers are moved around to suit the developers'
tastes better, and so on. Whitespace and com-
ment removal would have addressed these changes
to some degree, but will not have necessarily
eliminated all of them. By using pretty-printing,
which is more invasive, we can guarantee that all
code has uniform layout, which in turn yields an
improvement in comparison accuracy.

 Pretty-printing does more than just remove
formatting inconsistencies, however. Our pretty-
printing rules are designed with clone detection in
mind—they localize the changes in the code, if
any, to as few lines as possible. Whenever possi-
ble, code features, like HTML tags and parame-
ters, are placed on separate lines. If a parameter of
a table has been changed after the table has been
cloned, only the line holding that parameter is
affected. Because we use diff for comparing files
to each other, our approach is inherently line-
based, and spreading the code over more lines
increases the granularity of the approach, and
helps us determine the magnitude of a particular
change correctly.

Figure 3 shows what extracted and pretty
printed potential clones look like when HTML is
being processed. The original file contains three
potential clones—three tables. The tables are
nested, with the outer table containing the inner
two. Figure 3 shows how the first of the nested
tables looks once extracted and pretty-printed.
Other extracted tables are converted to a similar
format, and are not shown for the sake of brevity.

3.2 Comparison stage
 Potential clones are compared to each other using
the Unix diff command. Diff is a standard utility

on most Unix systems, and can be used to deter-
mine the differences between two files (usually on
a line-by-line basis), and display them in a num-
ber of formats.

 Comparison Rules. To determine whether
two source code structures are clones of each
other, we compare them using a whitespace-
insensitive diff. Specifically, we ignore changes
that only add or delete blank lines, and ignore
whitespace when comparing lines. We then use
the output of diff to determine the number of
unique lines in each potential clone. We then
compute the percentage of unique lines for each
file, defined as the number of lines unique to that
file divided by the total number of lines in the
file. If these ratios for both files are under a cer-
tain threshold, the files are considered to be
clones of each other. The thresholds we used
ranged between 30% and 50%. After a period of
experimentation, we settled on a threshold of
30%, because it is liberal enough to allow clones
with a significant amount of change to still be
detected, while at the same time filtering out spu-
rious results. The choice of threshold will likely
vary between projects and programming lan-
guages, as the analysts using the system tune it to
deliver the results they expect.

There are two special cases to be dealt with af-
ter the comparison has been performed and the
number of unique lines in both files is found to
be under the threshold. First, the number of
unique lines might be equal to zero for both files.
In this case the files are not merely clones, but
identical clones—they have been copied to vari-
ous places in the source code without any
changes, or with changes that the pretty-printing
step was able to remove. Another case is when
only one of the two code snippets being compared
has unique lines—i.e. one of the potential clones
can be obtained from the other by merely deleting
some lines. Instances of the second case are not
considered clones and are removed from the result
set. This is done because, based on our experi-
ments, most of these results are caused by nest-
ing, where a child construct is identified as a
clone of its parent.

The comparison rule described above is more
stringent than it might seem at first, because of
the effects of pretty-printing, and the use of diff.
Because of the pretty printing every line corre-
sponds roughly to one source code feature (e.g. an
HTML tag, or a name/value parameter pair).
With the help of diff, the comparison is also able
to take ordering into account. As part of its op-
eration, diff finds the longest common line sub-

<table
border=1
id="innerTable1"
>
 <tr>
 <td>
 content of inner table 1
 </td>
 </tr>

</table>

Figure 3: An extracted and pretty-printed poten-
tial clone.

sequence between the two files being compared,
defined as the longest sequence that can be ob-
tained from either one of the two files by merely
deleting some lines. For a line to be declared
“common” between the two files, it is not enough
for it to occur in both files; it has to be a line that
occurs in the longest common subsequence of the
two files. Correspondingly, the lines that have to
be deleted from the files to generate the longest
common subsequence are considered to be unique
to their respective file. In fact, a line that occurs

 in both files might be considered as unique to
both of them, if it is not part of the longest
common subsequence.

Sub-clone removal. Sub-clones occur when
two code structures (e.g. subroutines) have been
determined to be clones, and their child structures
(e.g. loops that both subroutines contain) have
been listed as clones of each other as well. In
tools that detect exact clones, sub-clone removal
is a very necessary step. When working with
exact clones, it is always the case that child struc-
tures are clones if their parents are clones. In this
case information about the cloning of children is
redundant, and merely pollutes and inflates the
result set.

The same is not true when working with near-
miss clones, because if two structures are clones

<table <table
border=1 border=1
id="innerTable1" id="innerTable2"
> >

 <tr> <tr>
 <td> <td>

 content of inner table 1 content of inner table 2
 </td> </td>
 </tr> </tr>

</table> </table>

Unique lines: 2
Total lines: 10
Unique content percentage: 20%

Unique lines: 2
Total lines: 10
Unique content percentage: 20%

Figure 4a: Cloned tables. Lines unique to each table are highlighted.

<table <table
id="outerTable"

…14 unique rows omitted…
 <table
 border=1 border=1
 id="innerTable2" id="innerTable2"
 > >
 <tr> <tr>
 <td> <td>
 content of inner table
2

 content of inner table 2

 </td> </td>
 </tr> </tr>
 </table> </table>
 </td>
 </tr>
</table>

Unique lines: 19
Total lines: 29
Unique content percentage: 65%

Unique lines: 0
Total lines: 10
Unique content percentage: 0%

Figure 4b: Non-cloned tables. Lines unique to each table are highlighted. Some lines omitted for brevity.

of each other, it is not always the case that their
children are clones of each other as well—after all,
something has been changed to make the clones
near-miss. For this reason, the sub-clones are in-
teresting in themselves, and don’t warrant auto-
matic removal. Presently our system keeps the
sub-clones, as well as the parents, in the result
set. Our classification system (described below)
makes sure that the children are always in a class
of their own and never intermixed with their par-
ents; this helps keep the result set manageable and
understandable.

Comparison results. Figure 4 shows the re-
sults of two comparisons—one between the two
inner tables from our example file, and one be-
tween the inner and the outer table. The lines
unique to a given potential clone are highlighted.
In Figure 4a we see the results of a comparison
between two inner tables, which are very similar
to each other. Most of the code that makes up the
tables is the same—there are minor changes that
affect only two lines in each table. The changes
affect only 20% of the tables’ line counts; this
falls below the cloning threshold of 30%, so after
the comparison these tables will be considered
clones of each other.

Figure 4b shows the comparison between the
outer table and one of its children. In this case
the outcome of the comparison is very differ-
ent—the inner table, unsurprisingly, has no
unique lines because it is completely contained by
the outer table. The outer table, however, has a
lot of extra content—in fact, 65% of its content is
unique with respect to the inner table. Because
this number far exceeds the 30% cloning thresh-
old we use, the tables are not considered to be
clones of each other.

3.3 Performance Optimizations.
Clone detection efforts are inherently computa-
tionally intensive, and performance optimizations
therefore remain an important issue. The com-
plexity of clone detection, if not optimized, is
quadratic or worse, because ultimately every line
of code has to be compared to every other line of
code. For large systems, such exercises quickly
become prohibitively time-consuming.

Our system is no exception when it comes to
performance issues, and also needs optimization.
If no optimizations are used, every potential clone
will have to be compared to every other potential
clone, to determine whether they are actually
clones of each other. Even for relatively small
systems of 10,000 lines or so this can mean per-
forming almost half a million comparisons (one

of the web sites we analyzed, almost exactly
10,000 lines in size, generated 700 potential
clones, meaning 490,000 potential comparisons).

Performing a comparison of two files is an ex-
pensive operation in our system. The most time
consuming action in a comparison, by far, is run-
ning the diff command, which consumes over
80% of all time needed to perform a comparison.
While the implementation of diff on Unix is very
fast, it is the biggest performance bottleneck in
our system. With that in mind, most of our op-
timization efforts are focused on reducing the
number of comparisons we need to perform, by
intelligently guessing which files don't need to be
compared to each other.

Size restrictions. To save time on file com-
parisons, we have to be able to guess the outcome
of a comparison based on some easily determined
parameter. Size, or in our case, line count, is a
good first indicator. If line counts of two poten-
tial clones are radically different, it is highly un-
likely that they are clones of each other. We con-
sider comparing two files worthwhile only if their
line counts are within a certain range. More spe-
cifically, two files are compared only if the larger
one is no more than twice the size of the smaller
one, in terms of line count.

Size restrictions reduce the number of required
comparisons significantly, but not enough to
eliminate the need for other performance optimiza-
tions. Most of the extracted potential clones are
quite small (in one of our experiments, 40% of
the clones were between 4 and 22 lines), and still
have to be compared to each other.

Clone Classes and Exemplars. When two
potential clones (A and B) are compared and
found to be clones, B is marked as being of class
A. That is, A is considered to be the exemplar
for the pair of clones. After this finding B is
never compared to anything else. Instead, A is
compared to all other potential clones(of compa-
rable size) and any near misses are added to the
class identified by A.

The effectiveness of this technique depends
heavily on the code being analyzed. Obviously,
the more clones in the code, the better this opti-
mization works. In all our experiments, we have
achieved significant speed-ups; analysis time re-
quirements were reduced from days to minutes
after clone classes were implemented.

Clone classes are useful for more than perform-
ance enhancement, however. They make the re-
sults of clone detection easier to understand for
humans, and therefore much more useful. If the
results were not allocated into classes, the ana-

lysts performing the clone detection would be
faced, upon analysis completion, with hundreds,
if not thousands, of clone pairs; the analysts
would then be left to perform the classification
themselves—a task too tedious, and therefore
unlikely, to be done by humans. By automati-
cally grouping the found clones into a compara-
tively small number of classes, we make the re-
sults of clone detection comprehensible, and
therefore useful.

Figure 5 illustrates the clone detection process,
as applied to five potential clones, named A
through E. In the first comparison round, A is
compared to each potential clone in turn, as illus-
trated by the dotted arrows. The outcome of the
comparison is indicated by the type of the arrow
head—pointed arrow heads indicate that a clone
was detected, X-shaped arrowheads show that the
two code snippets being compared were not
clones of each other. A was found to have two
clones—C and E.

Figure 5: The comparison process as applied to
five potential clones.

For the second round of comparisons, C and E
are removed from the potential clone list, and
added to A’s clone class, as shown by the solid
arrows. During the second comparison round, B
is compared to all potential clones that remain in
the list—that is, to D; C and E are removed from
further comparisons, as indicated by shading. B
and D are found to be clones, and the compari-
sons stop, because there are no more potential

clones left to compare. In larger examples, the
comparisons go on until there are at least two
clones of comparable sizes that haven’t been com-
pared to each other. In the case depicted in Figure
4, three clone pairs, grouped into two clone
classes, were detected.

3.4 Clone Report Generation
Deciding what to do with the clones, once they
are found, is a task that is at least as difficult as
the clone detection itself. Cloning ratios (the
percentage of code that is copied at least once)
range from 10% and 20% in large applications,
and can be as high as 30% or more in web sites
and web applications [11]. These numbers mean
that even looking for clones in relatively modest-
sized application of 100K lines, one will be faced
with at least 10K lines of results upon task com-
pletion. That is a large amount of information for
a human to understand, and presentation of the
results determines, to a large extent, whether ana-
lysts will find the whole clone detection process
useful.

Clone report structure. Since our clone-
detection work has been focused primarily on web
sites, we present the results to the users using the
same artifact they’re analyzing—a web site. The
generated web site contains one index page, and a
number of secondary clone report pages. On the
index page, we display the exemplars that were
used to create our clone classes. Next to an ex-
emplar is a link leading to the clone report for the
class, and a number showing how many clones
the class contains. Information on the origin of
every exemplar (the file it was taken from) is also
shown. A clone report page for a given clone
class lists all the clones in that class in the order
they were found during processing, starting with
the exemplar. Naturally, origins of all clones are
also shown. Figure 6 shows both the index page
and a secondary clone report page for our toy ex-
ample. The page on the left is the index page
which contains a link to the page on the right.

When dealing with source code of an executa-
ble language, the choices in code presentation are
few—one is limited to examining the code itself.
It is impossible to look at what the code does,
because it is not functional on its own, and the
execution results are usually impossible to visual-
ize. Fortunately, this is not true for HTML.
Markup languages can be examined in two
ways—by looking directly at source code, and
looking at “rendered” markup. Even taken out of
context, HTML retains all, or most of its mean-
ing. Some functionality may be missing or un

 available, but more often than not HTML can
still be rendered and the results of its “execution”
examined.

 Our result generation step takes advantage of
this fact, and presents HTML clones not as source
code, but as “executed” HTML. In effect, the
analyst is shown what is cloned on the web site
in terms of the web site itself, and not in terms of
source code. This feature is intended to help re-
late the results of cloning analysis back to the
original web site.

3.5 Implementation tools and
portability

Our clone detection system is implemented using
software that is either open source or available free
of charge. Parsing of source code, as well as ex-
traction and pretty-printing of potential clones is
done with TXL [6,7]. Code comparisons and
result filtering are performed with diff and sed,
 utilities that come standard with most implemen-
tations of Unix. The bulk of the source code is
written in Perl, a freely available language that is
 also standard on most Unix distributions today.

The system will run correctly on any Unix ma-
chine that has access to the tools mentioned
above.

4 CLONE ANALYSIS RESULTS
We have applied our clone detection tool to two
medium-sized web sites: the homepage of the
TXL programming language (http://www.txl.ca)
and the home page of the Society of Graduate and
Professional Students (SGPS) of Queen’s Univer-
sity (http://www.queensu.ca/sgps/). The size of
both sites is approximately the same—about
10,000 lines of HTML code each.

Statistics and performance. Even though the
two sites are similar in size, the results of clone
analysis show that they are different in their struc-
ture. Table 1 lists the basic statistics on the
analysis of the two web sites. Both sites were
analyzed on a 1000MHz Pentium 3 with 512MB
of RAM, running Red Hat Linux.

The figures in Table 1 show that a substantial
amount of cloning is present in both sites; in the
case of the SGPS web site, almost every potential
clone (649 out of 686) had a “cousin” somewhere
else on the site—only 37 potential clones (5.4%
of the total number) were actually unique. The
TXL web site had somewhat fewer clones: out of
170 potential clones, 130 were cloned somewhere
on the site. 23.5% of potential clones were
unique. This suggests that HTML features we’ve
designated as potential clones (form and table
tags) are indeed heavily cloned. These numbers,

Figure 6: Interactive Clone Report Interface.

however, don’t represent the overall cloning ratios
for these web sites. The mismatch occurs because
potential clones we select are more likely to be
cloned than a random line in a web site. We also
don’t look at the entire web site, but focus exclu-
sively on the potential clones. Overall cloning
ratios for these web sites are likely to be less
dramatic.

The processing times for the two web sites
show that the number of potential clones, rather
than the number of lines of code, determines the
time it takes for analysis to run. Even though the
sizes of the web sites are approximately the same,
the SGPS web site took 25% longer to analyze.
These results also demonstrate the effectiveness of
our clone-class optimization: while the number
of potential clones in the SGPS web site is four
times the number of potential clones in the TXL
web site, the analysis time only increases by a
minute, instead of quadrupling. Because of the
high cloning percentage in the SGPS web site,
the potential clone list is trimmed very quickly
after the first few rounds of comparisons, and the
overall number of comparisons required remains
low.

Clone groups. The clones found on both sites
fall into several distinct groups. The first, and
most prominent, consists of interface
clones—HTML code that implements the layout
and “look-and-feel” of the site. The clone classes
of such clones contain many members, usually
one per every web site page. The clones them-
selves tend to be medium-to large-sized, typically
exceeding 20 lines of code. These are particularly
prevalent in the SGPS web site, which has a left-
hand navigation bar that is essentially the same
on all the pages.

Clones that implement a certain specific layout
or formatting style make up another sizeable
group. Both web sites have several such “style
groups”. For example, the TXL web site em-
ploys a consistent way of presenting download
links all across the site, and the code for format-
ting a link is re-used throughout the site. These
clones also tend to be numerous—there can be
literally dozens of these on some pages—and rela-
tively small in terms of line count. Style clones
are concentrated (at least in the web sites we ana-
lyzed) on one or a few pages, e.g. the downloads
page.

Cloned pages makeup the third clone group of
note. These are entire HTML pages that have
been reused by the webmaster. They typically
share both interface and page structure; only the
content has been altered. Clones in this group are

typically large or very large, but each clone class
has only two or three members in it—perhaps
because the web masters of both sites we analyzed
don’t tend to clone entire pages extensively.

The fact that clones seem to fall into several
distinct groups suggests that they can be success-
fully resolved, and that resolving them will im-
prove site maintainability and structure. Style

clones, for example, could be re-implemented as
Cascading Style Sheets (CSS). This will allow
site maintainers to apply the style by adding a
single attribute to a particular tag, rather than
copying over all formatting code. As an added
benefit, the style will be stored in one place (the
CSS file), which will ensure that it is consistent
throughout the web site, and can be changed
throughout the web site by changing the CSS
file.

5 RELATED WORK
There have been several attempts to deal with
inexact or near miss clones. Lexical clone detec-
tion tools for near-miss clones [2,3] treat them as
any sequence of strings that are the same with
respect to a certain parameter, or parameters.
These tools differ from our work because of their
purely lexical approach, which often detects
clones that do not correspond to the structural
elements of the language.

Davey [13] uses a radically different method to
detect near-miss clones of procedures. Davey
identifies four classes of clones, I. identical, II.
identical except for formatting, III. identical ex-
cept for slight changes to specialize, and IV. in-
dependently semantically equivalent. Like
Davey's, our method does an excellent job on the
first three classes but has little to say about the
fourth. Our much simpler method avoids the
long training times and complex methodology

Statistic SGPS Web-
site

TXL
Web-
site

Lines of code 10378 9436
Potential Clones 686 170
Comparisons made 2543 883
Clones found 649 130
Clone classes found 37 24
Analysis time 5 min. 2 sec. 3 min.

42 sec.

Table 1: Cloning and performance statistics for
the SGPS and TXL web sites.

described by Davey while efficiently yielding
comparable results. Like ours, Davey's method
can also be said to be language independent, but
requires new training and tailoring of the method
for each new language.

Kontogiannis et al [14] approach clone detec-
tion as a concept analysis problem, using dy-
namic programming techniques to pattern-match
similar code fragments given either exemplar
source code or abstract concept descriptions.
Markov models are used to compute similarity
measures based on the the likelihood that a given
code fragement can implement an abstract descrip-
tion. Kontogiannis reports good results using
this method to identify clones at the procedural
and abstract data type level in large scale software
systems. Our method differs in being much sim-
pler and in handling clones at many levels of ab-
straction, including those well below procedure
level, while obtaining similar results. Konto-
giannis can in theory be language independent but
in practice requires significant change from lan-
guage to language because of its dependence on
source code understanding.

Code metrics have also been used as a method
to find approximate clones [15]. In Mayrand's
method, metrics extracted from source code using
Datrix [19] are used to characterize functions to
determine their similarity. By experimenting
with thresholds in the metrics, many near clones
in a large telecommunications software system
were identified. Our work differs in that it is not
restricted to functions, that it is language inde-
pendent, and that the method is based on direct
similarity of the code rather than indirect metrics.

Komondoor and Horwitz [16] have used slicing
methods to identify cloned code sequences and
extract procedures for them ("code compaction").
Using a slicing technique, their method can find
non-contiguous code sequences, including those
in which statements have been reordered or inter-
twined. Unlike our method, their method does
not depend on any structural similarity. How-
ever, it also does not address structural clones,
and does not detect near-miss clones.

Both Krinke [17] and Chen et al. [18] have de-
scribed dependence-graph based techniques for the
related problem of code compaction that take into
account both syntactic structure and data flow.
These methods have many advantages, especially
for embedded systems, but can be expensive for
large programs. Neither method offers good near-
miss clones.

6 FUTURE WORK
The clone detection system described in this pa-
per, as it exists now, is a proof of concept for our
approach to clone detection. It demonstrates that
the approach is able to find meaningful clones in
real-world applications with reasonable speed.
The system is not finished however; here are sev-
eral major research directions we intend to pursue
in the future.

Near-miss cloning test. As we mentioned in
the beginning of this paper, a near-miss clone is
an imprecise concept, and one needs to give it a
concrete definition before building a detector tool.
In this paper, we defined near-miss clones as code
structures that share 70% or more of their code on
a line-by-line basis. While this definition is a
good first approximation and produces useful
results, it is not a good long-term answer to the
question of “What is a near-miss clone?” There-
fore, one major direction for our future research is
working towards a better test for near-miss clon-
ing.

Measuring the quality of tests for near-miss
clones is also a difficult and rather subjective
task. We will define the quality metric in terms
of the analyst using the clone detection system.
A good metric is a metric that, when used, finds
and groups the clones in a way the analyst would
expect them to be grouped, and does not detect
spurious clones, i.e. does not mark as clones
items which are not clones in the opinion of the
analyst. Because the opinions of different ana-
lysts will likely differ, the metric will have to be
tunable, i.e. incorporate a number of parameters to
alter or adjust its performance. The metric we
currently use can be tuned to a limited degree by
changing the cloning threshold used; this is a
feature we want to keep and extend further.

Clone resolution. We want to implement
user-guided clone resolution as an extension of
our tool. Fully automated resolution of near-miss
clones is unlikely to be beneficial in our applica-
tions, because the resolution method will have to
be parameterized to handle significant differences
between clones; it will therefore be quite complex
itself. If performed without the guidance of an
experienced user, such resolution is likely to do
more harm than good, because it will introduce
more complexity than it will remove.

Instead, we want to expand the functionality of
the result-display web site we currently generate,
to enable it to serve as an interface to the clone
resolution routines. The web site will let the user
select the clones that need to be resolved and pick

various options related to the resolution. The
resolution itself will then be done automatically,
without further user involvement.

An issue closely related to clone resolution is
the addition of search functionality to the gener-
ated web site. The sheer number of clones present
in an average system makes searching abilities
necessary, because the user will be expected to
examine a significant number of clones to select
the ones in need of resolution. To enable users to
select clones effectively, the web site will have to
provide tools to view clones selectively, by ori-
gin, size, type (near-miss or exact), and other cri-
teria.

7 CONCLUSION
This paper presents an approach to detection of
near-miss clones. Through a multi-stage process
involving extraction of potential clones, compari-
sons of the potential clones, and report genera-
tion, the system described here can quickly and
reliably detect exact and near-miss clones in the
source code being processed.

The approach combines both compiler-based
and lexical techniques in its clone searching. The
extraction of potential clones is the only lan-
guage-dependent stage in the system. By extract-
ing potential clones from analyzed source, it re-
duces the workload for future stages, and ensures
that all clones found are meaningful constructs in
the language currently under analysis. Switching
between extractors is easy, and the approach can
therefore be adapted to various languages.

Comparisons between potential clones are per-
formed with the Unix diff utility. The use of
lexical comparison tools means that the bulk of
the system is language-independent, fast, and
simple to maintain and change.

About the Authors

Nikita Synytskyy is a research associate at the
Computer Science Department at the University
of Waterloo, Ontario, Canada. His research fo-
cuses on analysis, design recovery and transforma-
tion of web application source code. He holds a
Masters degree from Queen’s University and a
Bachelor of Commerce degree with Honors from
the University of Ottawa. Before starting his
graduate studies, he worked as a software devel-
oper at a variety of organizations, including Inter-
national Datacasting Corporation, Corel Corp.
and Environment Canada.

James Cordy is the Director of the School of
Computing and Professor of Computing and
Electrical and Computer Engineering at Queen’s
University. From 1995 to 2000 he was Vice
President and Chief Research Scientist at Legasys
Corporation, a software technology company spe-
cializing in legacy software system analysis and
renovation. Dr. Cordy is a founding member of
the Software Technology Laboratory at Queens’s
University and winner of the 1994 ITRC Innova-
tion Excellence award and the 1995 ITRC Chair’s
Award for Entrepreneurship in Technology Inno-
vation for his work there. He serves as program
committee member and chair for international
conferences and workshops in system analysis and
maintenance, such as ICCL’92, ICSM’02,
SCAM’02, ICSM’04 and IWPC’05

Thomas Dean is an Assistant Professor of Elec-
trical and Computer Engineering at Queen’s Uni-
versity and an Adjunct Associate Professor at the
Royal Military College of Canada. His back-
ground includes research in air traffic control sys-
tems with the RMC and 5 1/2 years of experience
in source code analysis and transformation as a
Senior Research Scientist at Legasys Corp.

References
[1] Ira D. Baxter, Andrew Yahin, Leonardo

Moura, Marcelo SantAnna, Lorraine Bier,
“Clone Detection Using Abstract Syntax
Trees”, Proceedings of International Confer-
ence on Software Maintenance, November
1998.

[2] Brenda S. Baker, “On Finding Duplication
and Near-Duplication in Large Software Sys-
tems”, Working Conference on Reverse Engi-
neering, 1995.

[3] Toshihiro Kamiya, Shinji Kusumoto, Ka-
tsuro Inoue, “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System
for Large Scale Source Code”, IEEE Transac-
tions On Software Engineering, Vol. 28, No.
7, pp 654-670.

[4] G. Antoniol, U. Villano, M. DiPenta, G.
Casazza, E. Merlo, “Identifying Clones in the
Linux Kernel”, Proceedings of International
Workshop on Source Code Analysis and Ma-
nipulation, November 2001.

[5] Pearl Brereton, David Budgen and Geoff
Hamilton, “Hypertext: The Next Mainte-
nance Mountain”, IEEE Computer, Vol. 31
No. 12, pp 49-55, 1998.

[6] T.R. Dean, J.R. Cordy, A.J. Malton and
K.A. Schneider, "Agile Parsing in TXL",

Journal of Automated Software Engineering
10,4 (October 2003), pp. 311-336.

[7] James R. Cordy, Ian H. Carmichel, Russel
Halliday, The TXL Programming Language,
Version 10. TXL Software Research Inc.
January 2000.

[8] N. Synytskyy, J.R. Cordy and T.R.Dean,
"Resolution of Static Clones in Dynamic
Web Pages", Proc. WSE 2003, IEEE 5th In-
ternational Workshop on Web Site Evolution,
Amsterdam, September 2003, pp. 49-58.

[9] J. W. Hunt, M. D. McIlroy, An algorithm
for differential file comparison, Technical
Report #41, Computing Science, Bell Labo-
ratories, 1976

[10] J. W. Hunt, T. G. Szymanski, “A fast algo-
rithm for computing longest common subse-
quences,” Comm. ACM 20,5, May 1977, pp.
350-353.

[11] Cornelia Boldyreff, Richard Kewish, “Re-
verse Engineering to Achieve Maintainable
WWW sites”, Proceedings of Eighth Work-
ing Conference On Reverse Engineering, Oc-
tober 2001.

[12] M. Synytskyy, J.R. Cordy, T.R. Dean, “Ro-
bust Mutilingual Parsing Using Island
Grammars”, Proceedins CASCON 03, IBM
Centre for Advanced Studies 2003 Confer-
ence, Toronto, Ontario, November 2003, pp.
149-161,

[13] N. Davey, P. Barson, S. Field, R. Frank and
D. Tansley, "The development of a software
clone detector", International Journal of Ap-
plied Software Technology 1,3-4, pp. 219-
236, 1995

[14] K. Kontogiannis, R. DeMori, E. Merlo, M.
Galler, M. Bernstein, "Pattern Matching for
Clone and Concept Detection", J. Automated
Software Engineering 3,1-2, pp. 77-108,
1996.

[15] J. Mayrand, C. Leblanc and E. Merlo, "Ex-
periment on the automatic detection of func-
tion clones in a software system using met-
rics", Proc. ICSM'96, International Confer-
ence on Software Maintenance, pp. 244-254,
1996.

[16] R. Komondoor and S. Horwitz, "Using slic-
ing to identify duplication in source code",
Proc. 8th International Symposium on Static
Analysis (SAS), pp. 40-56, 2001.

[17] J. Krinke: "Identifying Similar Code with
Program Dependence Graphs", Proc. 8th
Working Conference on Reverse Engineering
(WCRE 2001), Stuttgart, Germany, pp. 301-
309, 2001.

[18] W-K. Chen, B. Li, and R. Gupta, Code
Compaction of Matching Single-Entry Mul-
tiple-Exit Regions, Proc. 10th Annual Inter-
national Static Analysis Symposium, San Di-
ego, pp. 401-417, 2003.

[19] Bell Canada Inc., DATRIX Abstract semantic
graph reference manual, version 1.2, Mont-
real, Canada, July 1999.

