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Abstract

TXL is a special-purpose programming language designed for creating, manipulat-
ing and rapidly prototyping language descriptions, tools and applications. TXL is
designed to allow explicit programmer control over the interpretation, application,
order and backtracking of both parsing and rewriting rules. Using first order func-
tional programming at the higher level and term rewriting at the lower level, TXL
provides for flexible programming of traversals, guards, scope of application and
parameterized context. This flexibility has allowed TXL users to express and exper-
iment with both new ideas in parsing, such as robust, island and agile parsing, and
new paradigms in rewriting, such as XML markup, rewriting strategies and contex-
tualized rules, without any change to TXL itself. This paper outlines the history,
evolution and concepts of TXL with emphasis on its distinctive style and philoso-
phy, and gives examples of its use in expressing and applying recent new paradigms
in language processing.

Key words: source transformation, functional programming, term rewriting,
grammars

1 What is TXL?

TXL[20,21] is a programming language specifically designed for manipulating
and experimenting with programming language notations and features using
source to source transformation. The motivating paradigm of TXL consists of
beginning with a grammar for an existing language, specifying syntactic mod-
ifications to the grammar representing new language features or extensions,
and rapidly prototyping these new features by source transformation to the
original language.
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% Trivial coalesced addition dialect of Pascal

% Based on standard Pascal grammar
include "Pascal.Grm"

% Overrides to allow new statement forms
redefine statement

...
    | [reference] += [expression]
end redefine

% Transform new forms to old
rule main
    replace [statement]

V [reference] += E [expression]
    by

V := V + (E)
end rule

Fig. 1. An Example TXL Program

While TXL was originally designed to support experiments in programming
language design, it has proven much more widely applicable. It has been used
in a range of applications in programming languages, software engineering,
database applications, structured documents, web technology and artificial
intelligence among many others, and with a range of programming languages
including C, C++, Java, COBOL, PL/I, RPG, Modula 2, Modula 3, Miranda,
Euclid, Turing and many others. In particular it was used as the core tech-
nology in the LS/2000 analysis and remediation system[24], which processed
over 4.5 billion lines (Gloc) of source code.

TXL programs (Figure 1) normally consist of three parts, a context-free “base”
grammar for the language to be manipulated, a set of context-free grammatical
“overrides” (extensions or changes) to the base grammar, and a rooted set of
source transformation rules to implement transformation of the extensions to
the base language.

2 How TXL Came to Be

This paper considers the TXL language from an historical perspective, tracing
from its roots in the rapid prototyping of language dialects to its present use as
a generalized source transformation system. It is not intended to explore the
formal semantic properties of the language, to comprehensively catalogue its
paradigms of use, or to demonstrate its application to real problem domains.
These issues are addressed in many other papers[35,25,21,24,23,36,58].

TXL has a different heritage than most other language manipulation and
transformation tools, and its goals are different. TXL does not originate with
parsing, term rewriting or attribute grammar technology - rather its heritage
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is rapid prototyping and first order functional programming. It was born in
the early 1980’s, in a time when the study of programming language design
was an active and productive area. Experimentation with new programming
languages and features was the order of the day, and many languages, including
C++, Modula 3, Eiffel, Ada, Perl, Prolog and Miranda have their roots in that
time. One such language was Turing[29].

2.1 The Turing Language Project

The goal of the Turing project was to design a general purpose language with
excellent ease-of-use, lightweight syntax and formal axiomatic semantics that
was also very accessible and easy to learn. The design of Turing was heavily
influenced by the “programming as a human activity” philosophy of Gerald
Weinberg’s Psychology of Computer Programming [57]. As a result the Turing
project adopted a “design by use” philosophy - when users made errors by
writing what they thought “ought to work”, we would study these errors to
look for opportunities to make the language more like what the users expected.

An example of this was the design of the substring features of the string type
in Turing. Original syntax to choose a character out of a string was simple
subscripting - so for example if the string variable s has value "hello", then
s(1) chooses the character "h". Because Turing has the notion of a subrange
of integers, for example 1..10, users naturally fell into writing s(1..4) to get
longer substrings, and this was the feature added to the language.

Turing uses an asterisk (*) to denote the upper bound of a parameter array
(as in array 1..* of int). Users therefore began to write s(3..*) to mean
the substring from position 3 to the end of the string, s(1..*-1) to mean
the substring from the first position to the second last, s(*-1..*) to mean
the substring consisting of the last two characters, and so on. As these forms
evolved, the language was modified to adapt to the users’ expectations.

This experimental style of language design proved very successful - the fea-
tures of the Turing language seemed “natural” because the users helped to
design them. Users would explain what they meant by showing an equiva-
lence - for example, when asked what s(2..*) meant to them, they would
say s(2..length(s)). This led to an example-based understanding of mean-
ing - a this-means-that style. Turing language proposals therefore most often
consisted of a pair drawn on the board - the syntax of an example use of the
new feature on one side, and its corresponding meaning in the syntax of the
current language on the other (Figure 2).

Adapting Turing to these new ideas involved the heavyweight process of re-
building each of the phases of the compiler to add the lexical, syntactic, se-
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Proposal for an Object-Oriented extension to Turing
module ID

type ID:     IMPORTS
    class     EXPORTS
        IMPORTS     export DataRecord
        EXPORTS   means     type DataRecord:
        FIELDS          record
        METHODS             FIELDS
    end ID         end record

    METHODS (fix field references)
end ID

(fix variable declarations and references)

Fig. 2. A Turing “This-means-that” New Feature Proposal

mantic and code generation changes for each new feature. This tended to
discourage experimentation, commit us too early to features we weren’t sure
about, and slow down the rapid evolution that we had in mind.

2.2 The Turing eXtender Language

Ideally what we wanted to have was something that would allow us to instantly
try out what we were writing on the board - simply show what we had in
mind by example, and presto! a rapid prototype should appear. Thus the
TXL idea was born - the Turing eXtender Language, a language for specifying
and rapidly prototyping new language ideas and features in an example-like
style. As we shall see, this vision drives all of the design decisions of TXL and
its implementation.

It was clear that such a language could not be based in the compiler tech-
nology of the time - we wanted true rapid prototyping, with no generation
or build steps, and a cycle time measured in seconds. This implied a direct
interpretive implementation, and we therefore looked to Lisp for inspiration.
In particular, MkMac[32], a language extension facility for the Scheme variant
of Lisp, seemed to be something like what we had in mind.

Lisp[37] is a functional programming language based on one simple data struc-
ture: nested first-rest (car-cdr) lists. Lisp has a fast interpretive full backtrack-
ing implementation that is widely used in artificial intelligence and well suited
to rapid prototyping. Its implementation is well understood and heavily op-
timized for list processing. For these reasons we chose Lisp as the model for
the underlying semantics of TXL, using Lisp list structures as the basis of
its parse trees, grammars and patterns; pure value semantics with no assign-
ment or variables; function composition as the main control structure; and
functional programming with full backtracking for both the parser and the
transformer aspects of the language.
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3 Design of the TXL Language

The design of the TXL language was driven almost entirely by the example-
based rapid prototyping goal. In this section we introduce the basic features
and properties of the TXL language in terms of the design goals that they
meet.

3.1 Goal: Rapid Prototyping

The Lisp heritage of TXL led to a parsing model similar to that often used
in Lisp and Prolog: direct top-down functional interpretation of the grammar.
Beginning with the goal nonterminal [program], a TXL grammar is directly
interpreted as a recursive functional program consuming the input as a list
of terminal symbols (tokens). The structure of the grammar is treated as a
combination of two kinds of lists: choice lists, representing alternation, and
order lists, representing sequencing. Alternate forms in choice lists are inter-
preted in the order they are presented in the grammar, with the first matching
alternative taken as a success. List representation makes backtracking easy:
when a choice alternative or sequence element fails, we simply backtrack one
element of the list to retry previous elements until a full parse is obtained.

The result of a TXL parse is a parse tree represented in the same nested
list representation. This representation is used throughout TXL to represent
the grammar, parse trees, rules, patterns and replacements and is one of the
main reasons that TXL is so fast. Because direct top-down backtracking in-
terpretation of grammars has difficulty with left recursion, TXL recognizes
and interprets left-recursive definitions as a special case, effectively switching
to bottom-up interpretation of these productions on the fly. Nevertheless it
is still quite possible to write a TXL grammar that is slow or impractical to
use because of too much backtracking - this is the price we pay for being able
to directly interpret the grammar, which as we will see plays a large role the
power and flexibility of the language.

Specification of the grammar (Figure 3) uses a simple notation similar to
BNF, with nonterminals referenced in square brackets (e.g., [expression] )
and unadorned terminal symbols directly representing themselves. Terminals
may be quoted using a single prefix quote (e.g., ‘end ) as in Lisp, but only
when necessary to distinguish them from a TXL keyword. In keeping with the
example-based goal, the contents of a TXL nonterminal define statement are
the direct unadorned sentential forms of the target language.

Because the grammar is interpreted in the order presented, the user has con-
trol over how input is parsed. Alternatives are ordered, with earlier forms
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% Trivial statement language grammar
define program

[repeat statement]
end define

define statement
var [id];

    | [reference] := [expression];
    | { [repeat statement] }
    | if [expression] then 

   [statement]
[opt else_statement]

    | while [expression] do
    [statement]

end define

define else_statement
else [statement]

end define

define expression
[primary]

    | [expression] [op] [expression]
end define

define op
+ | - | * | / 

    | = | > | < | >= | <=
end define

define primary
[id] 

    | [number] 
    | ( [expression] )
end define

Fig. 3. An Example TXL Grammar

taking precedence over later ones. Since the grammar is effectively a program
for parsing under user control, no attempt is made to analyze or check the
grammar - any grammar that can be written has some interpretation. In par-
ticular, since the grammar is now a programming language, TXL does not
attempt to restrict it in any way, and nonterminating parses are intentionally
the responsibility of the programmer.

Ambiguity in the grammar is allowed, and as we shall see, is very important
to the TXL paradigm. Because the grammar is interpreted in ordered fash-
ion, resolution of ambiguities when parsing is automatic. However, ambiguous
forms are not necessarily redundant, because transformation rules may force
construction of any tree structure allowed by the grammar (including those
that would never be the result of an input parse) at transformation time. Ad-
vanced programming techniques in TXL frequently exploit ambiguity in this
way.

Several standard extended BNF structures are built in to TXL, notably [opt

X], which means zero or one items of nonterminal type [X], [repeat X],
meaning a sequence of zero or more [X]s, and [list X], meaning a comma-
separated sequence of zero or more [X]s. An important property of the [repeat
X] structure is that it is right-recursive, defined as either empty or [X] followed
by [repeat X] in Lisp first-rest style. This matches the natural interpretation
of declarations and statements in many programming languages. For example,
the scope of a declaration in Turing is from the declaration itself to the end of
the scope, captured by the parser as the rest of the statements following the
declaration.

The naive unrestricted form of TXL grammars is essential to the goal of rapid
prototyping - working grammars can be crafted quickly, often directly from
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% Some example grammar overrides based on the Java grammar
include "Java.Grm"

% Distinguish assignments from other expression statements 
redefine expression_statement

[assignment_statement]     % preferred new form takes precedence
    | [expression];              % original form, ambiguous with new
end redefine

define assignment_statement
[assignment_expression];

end define

% Add optional XML tags on expressions
redefine expression

...
    | [xmltag] [expression] [xmlendtag] 
end redefine

% Distinguish JDBC method calls from others
redefine method_call

[jdbc_call]
    | ...
end redefine

Fig. 4. TXL Grammar Overrides Using Redefines

user-level reference manuals, without the necessity of removing ambiguities,
dealing with shift-reduce conflicts or restructuring to adapt to parser restric-
tions. A grammar for a substantial new language can be crafted and working
in TXL in less than a day, and the parse trees created can be in the natural
concrete form of users of the language rather than the abstract implemen-
tation grammar form used by compilers, making it easier to understand and
remember forms when crafting patterns and transformation rules.

3.2 Goal: Language Experimentation

The main TXL goal of language experimentation requires that we have some
way to add new forms and modify old forms in an existing grammar. TXL
captures this idea with the notion of grammar overrides. TXL programs nor-
mally begin with a base grammar which forms the syntactic basis of the orig-
inal language we are experimenting with. The base grammar is then modified
by overriding nonterminal definitions to change or extend their form using
grammar redefines (Figure 4).

Redefines replace the existing nonterminal definition of the same name in the
base grammar with the new definition, effectively making a new grammar
from the old. Overrides can either completely replace the original definition of
the nonterminal, or they can refer to the previous definition using the “...”
notation, which is read as “what it was before” (Figure 4). So for example
the redefinition “...|[X]” simply adds a new alternative form [X] to the
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nonterminal, as when adding a new statement to a language. Because TXL
definitions are interpreted sequentially, new forms may be added as either
pre-extensions (“[X]|...”) or post-extensions (“...|[X]”), corresponding to
the new form being preferred over old ones in the former and old forms being
preferred over the new in the latter.

Redefinitions are interpreted in the order that they appear, which means that
later redefinitions can extend or modify previous redefinitions, allowing for di-
alects of dialects and extensions of previous language extensions. The effective
grammar is the one formed by substituting each of the redefinitions into the
grammar in the order that they appear in the TXL program.

Grammar overrides are the key idea that distinguishes TXL from most other
language tools. They allow for independent exploration of many different di-
alects and variants of a language without cloning or modifying the base gram-
mar or other existing dialects. As we shall see, they also allow for agile parsing
- the ability to independently modify grammars to suit each particular trans-
formation task.

3.3 Goal: Example-like Patterns and Replacements

The this-means-that idea on which TXL is based requires an example-like
style for transformation rules, in which both patterns and replacements (post-
patterns) are specified in the concrete syntax of the target language, the style
recently referred to as native patterns [49]. TXL patterns are effectively un-
adorned sentential forms (examples) of the things we want to change and
what we should change them to (Figure 5).

TXL rules specify a pattern to be matched, and a replacement to substitute
for it. The nonterminal type of the pattern (the target type) is given at the
beginning of the pattern, and the replacement is implicitly constrained to be
of the same type. In this sense TXL is strongly typed, using the grammar as
the type system of the TXL program. Patterns and replacements are parsed
using the same direct interpretive execution of the grammar that the input is
parsed by, compiling them into parse tree schemas in the same list form as the
parse tree of the input. Transformation rules are executed by searching their
input (the scope of the rule) for parse subtrees matching their pattern tree,
and replacing them with a copy of their replacement tree with parts captured
in the pattern copied into the result. The process is repeated on the result
until no new matches can be found.

In patterns and replacements as in grammar defines, terminal symbols sim-
ply represent themselves, quoted only when necessary to avoid conflict with
TXL keywords, and nonterminals are referenced using square brackets (e.g.,
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% Part of transformation to implement OO extension to Turing

rule transformClasses
   replace [repeat declaration_or_statement]

type ClassId [id] :
   class

Imports [repeat import_list]
Exports [repeat export_list]
Fields [repeat variable_declaration]
Methods [repeat procedure_delaration]

   ‘end ClassId
RestOfScope [repeat declaration_or_statement]

    by
module ClassId :
   Imports
   export DataRecord
   Exports 
   type DataRecord:

record
   Fields
‘end record

   Methods [fixFieldReferences each Fields]
    [makeConstructorMethod]
    [addObjectParameterToMethods]

‘end ClassId
RestOfScope [transformClassReferences ClassId]

end rule

Fig. 5. The TXL Example-like Style (adapted from [19])

rule simplifyAssignments
   replace [statement]

V [reference] := V + E [term]
    by

V += E
end rule

Fig. 6. A Rule Using a Non-linear Pattern

[expression]). Pattern nonterminals are “captured” in TXL variables by la-
belling them with a variable name (e.g., Expn [expression]). Variables are
explicitly typed only at their first occurrence, which on each pattern match
binds them to the corresponding part of the matched input. Subsequent ref-
erences to a variable refer to its bound value.

Bound variables may be referred to in replacements, which allows for copying
parts of the matched input to the substituted output, but they may also be
referred to later in the pattern in which they are bound or in other subsequent
patterns, allowing for non-linear pattern matching[46]. References to bound
variables have copy semantics, that is, they can only be matched by an exact
copy of their bound subtree (Figure 6). For efficiency reasons, TXL provides
only one-way pattern matching, that is, the binding occurrence of a pattern
variable must be the first occurrence.
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3.4 Goal: Context-dependent Transformations and Relationships

A common difficulty with source transformation systems is control over the
scope of application of rules. It is frequently the case that desired transfor-
mations are phrased in terms such as “this means that, except within that we
substitute ...” or “this means that, except outside this we substitute ...”. An
example of this is the object-oriented Turing language extension of Figure 5.
In this transformation, once the basic substitution has been made, other trans-
formations need to be applied, some of which must be limited to the scope
inside the transformed part, and some of which must be limited to the scope
outside and following the transformed part. This limitation of scope of appli-
cation can be difficult to express in a pure term rewriting system, requiring
complex guards on rewrite rules.

In TXL, such scope limitations fall naturally from the decompositional style
of the functional paradigm. Rules are structured into a rooted pure func-
tional program in which lower level rules are applied as functions of subscopes
captured by higher level patterns. Higher level rules capture in their pattern
variables the subparts to which lower level rules are explicitly applied as part
of the construction of their replacement.

Invocation of a subrule is denoted by the subrule name in square brackets
following the name of the variable capturing the subtree to which it is to
be applied, for example Thing [changeit] where changeit is the name of
the subrule and Thing is the pattern variable containing the context within
which it is to be applied. In keeping with pure functional value semantics, the
result of a subrule invocation is a copy of the bound subtree as changed by
the subrule. Subrules may be applied to the result of a subrule invocation by
invoking another subrule on the result, as in X[F][G], denoting the function
composition G(F(X)).

The semantics of an entire TXL transformation is the application of the dis-
tinguished rule called main to the entire input. The main rule typically simply
captures the highest level structure to be transformed (often the entire input)
and invokes several composed subrules on it to do the real work. In complex
transformations, this same paradigm is used again in the subrules, and so on,
to decompose and modularize the transformation.

3.5 Goal: Complex Scalable Transformations

TXL was expected to allow easy rapid prototyping of any possible Turing lan-
guage dialect or extension that could be imagined. As a result, it was designed
to allow for easy user refinement of patterns and replacements in order to scale
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% Remove all literally false if statements

rule foldFalseIfStatements
   replace [repeat statement]
      IfStatement [if_statement] ;
      RestOfStatements [repeat statement]

   % Pattern match deeply (*) to find the if condition -
   % matches the first [if_condition] in IfStatement,
   % which is of course the one guarding the statement
   deconstruct * [if_condition] IfStatement
      IfCond [if_condition]

   % Pattern match to see if it is false -
   % this deconstruct is not deep, so it matches only
   % if the entire IfCond is exactly the word “false”
   deconstruct IfCond
      false
   by
      RestOfStatements
end rule

Fig. 7. Pattern Refinement Using Deconstructs

up to complex multi-stage transformations without losing readability. For this
reason, deconstructors and constructors were added to the language.

Deconstruct clauses constrain bound variables to match more detailed pat-
terns (Figure 7). Deconstructors may be either shallow, which means that
their pattern must match the entire structure bound to the deconstructed
variable, or deep, which means that they search for a match embedded in the
item. In either case, deconstructors act as a guard on the main pattern - if a
deconstructor fails, the entire main pattern match is considered to have failed
and a new match is searched for.

Replacements can also be stepwise refined, using construct clauses to build
results from several independent pieces (Figure 8). Constructors provide the
opportunity to build partial results and bind them to new variables, thus
allowing subrules to further transform them in the replacement or subsequent
constructs. They also provide the opportunity to explicitly name intermediate
results, aiding the readability of complex rules.

Complex transformations may depend not only on the point of their applica-
tion, but also on properties of other contexts remote from it. Thus a trans-
formation rule may depend on many parts of the input captured from many
different patterns. TXL allows for this using subrule parameters, which play
the same role as additional function parameters in standard functional nota-
tion (Figure 9). Bound variables may be passed to a TXL subrule by adding
them to the subrule invocation using the notation X[F A B C] where A, B
and C are additional bound variables on which the subrule F may depend.

Inside the subrule, deconstructs can be used to pattern match the additional
parameters in the same way that the main pattern matches the scope. This
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% Minimize adjacent Modula VAR declarations

rule mergeVariableDeclarations
    replace [repeat declaration]
        VAR VarDeclarations1 [repeat var_decl]
        VAR VarDeclarations2 [repeat var_decl]

 OtherDeclarations [repeat declaration]

    % First simply concatenate into one list
    construct NewVarDeclarations [repeat var_decl]
        VarDeclarations1 [. VarDeclarations2] 

    % Then use subrule to merge the lists if types are the same
    by                  
        VAR NewVarDeclarations [mergeSameTypeLists]

 OtherDeclarations
end rule

Fig. 8. Replacement Refinement Using Constructs

% Eliminate named constants by replacing all references 
% with their (compile-time) values
rule resolveConstants
   replace [repeat statement]
      % Capture name and value of constant declaration
      const C [id] = V [expression];
      RestOfScope [repeat statement]
   by
      % Pass them to subrule for expansion
      RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id] Value [expression]
   % Expand references given constant name and value
   replace [primary]
      ConstName
   by
      ( Value )
end rule

Fig. 9. Subrule Parameters

allows the subrule to restrict its application based on the properties of many
different contexts, and generalizes transformation rules to handle transforma-
tions based on arbitrary combinations of information spread across the input.

4 User Refinement of the TXL Language

In keeping with the user-oriented design philosophy of the Turing project from
which it sprang, TXL was allowed to evolve for some years based on user feed-
back. In this section we briefly outline some of the language refinements that
have come about due to user experience with TXL. With these refinements,
the TXL language has been more or less stable since about 1995.
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% Ruleset to create a new Turing module for a given set of variables

function createModule ModuleId [id] VarsToHide [repeat id]
   replace [repeat statement]
      Scope [repeat statement]
   by
      Scope [createEmptyModule         ModuleId]
            [hideVarsInModule          ModuleId VarsToHide]
            [createAccessRoutines      ModuleId each VarsToHide]
            [moveRoutinesIntoModule    ModuleId VarsToHide]
            [qualifyExportedReferences ModuleId VarsToHide]
            [createImportExports       ModuleId VarsToHide]
            [relocateModuleInProgram   ModuleId VarsToHide]
end function

Fig. 10. Ruleset Abstraction

4.1 Functions and Rulesets

TXL rules by default use the fixed-point compositional semantics of pure
rewriting systems. That is, a rule searches its scope for the first instance of
its pattern, makes a replacement to create a new scope, and then re-searches
the result for the next instance, and so on until it can no longer find a match.
In most cases, this is the most general and appropriate semantics for source
transformations. However, as TXL began to be used for more and more com-
plex transformations, the limitations of this single rule semantics began to be
stretched. In particular, the need for pure (apply once only) functions and for
modular rule abstractions was quickly evident.

Both of these needs were met by a single new feature: functions. TXL func-
tions act like functions in any other language - they simply match their ar-
guments (i.e., scope and parameter patterns), compute a result value (i.e.,
make a replacement) and halt. Like rules, TXL functions are total - that is, if
their pattern does not match then they simply return their unchanged scope
as result. With the addition of functions, TXL provides four separate basic
transformation semantics: match and transform the entire scope once (a func-
tion), match and transform within the scope once (a deep function), match
and transform the entire scope many times (a recursive function), and match
and transform searching within the scope many times (a rule).

One of the most common uses for functions in TXL is rule abstraction, in
which a function is used to gather a number of related rules to be applied to
a scope together (Figure 10). In TXL such a function is often referred to as a
ruleset, with the semantics that application of the function to a scope applies
the composition of all of the rules in the ruleset. Combinations of functions
and rules allow for complex programmed control over application and scoping
of transformation rules.
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% Base case of a vectorizing ruleset

rule vectorizeScalarAssignments
   replace [repeat statement]
       V1 [id] := E1 [expression];
       V2 [id] := E2 [expression];
       RestOfScope [repeat statement]

       % Can only vectorize if independent
   where not
       E2 [references V1]
   where not
       E1 [references V2]

   by
       < V1,V2 > := < E1,E2 > ;
       RestOfScope
end rule

% Condition rule to check

rule references V [id]
   match [primary]
       V
end rule

Fig. 11. A Guarded Rule Using where

4.2 Explicit Guards

Complex transformations often require computed constraints on the applica-
tion of a rule even when the scope matches its pattern. For example, a sorting
rule may match pairs of elements of a sequence, but should make its trans-
formation only if the values of the elements are misordered. In general, such
constraints may be very complicated, involving significant additional compu-
tation or information gathered remotely from other sources.

To meet this need, where clauses, which can impose arbitrary additional con-
straints on the items bound to pattern variables, were added to TXL. Where
clauses use a new special kind of TXL rule called a condition rule. Condition
rules have only a pattern, usually with additional refinements and constraints,
but no replacement - they simply succeed or fail (that is, match their pattern
and constraints, or not). A number of built-in condition rules provide basic se-
mantic constraints such as numerical and textual value comparison of terminal
symbols. Figure 11 shows an example assignment vectorizing rule that uses a
simple condition rule to test whether an expression references a variable.

Because condition rules are themselves TXL functions or rules, they may use
additional deconstructs, constructs, subrules, where clauses and so on, allow-
ing for arbitrary computation in guards, including tests involving global or
external information (Section 4.4).

4.3 Lexical Control

TXL was originally designed to support dialects and experiments with only one
language - Turing. For this reason, the lexical rules of Turing were originally
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% Part of the TXL lexical specification of C
comments
    //
    /* */
end comments

% Token definitions for C-like identifiers, integer numbers, string and 
% character literals are predefined in TXL and need not be repeated here
tokens
    hexint "0[xX][\dAaBbCcDdEeFf]+[LUlu]*"
    dotfloat ".\d+([eE][+-]?\d+)?[FLfl]?"
    float "\d+.\d*([eE][+-]?\d+)?[FLfl]?"
           | "\d+(.\d*)?[eE][+-]?\d+[FLfl]?"
           | "\d+(.\d*)?([eE][+-]?\d+)?[FLfl]"
    longint "\d+[LUlu]+"
end tokens

compounds
    ->  ++  --  <<  >>  <=  >=  ==  !=  &&  ||  ...  *=  /=  
   '%=  +=  -=  <<=  >>=  &=  ^=  |=  :=  ..  'not=
end compounds

keys
    auto       double     int        struct     break      else
    long       switch     case       enum       register   typedef
    char       extern     return     union      const      float
    short      unsigned   continue   for        signed     void
    default    goto       sizeof     volatile   do         if
    static     while
end keys

Fig. 12. Specification of Lexical Rules in TXL

built in to TXL. Once it began to be used more generally for implementing
source transformations of other languages such as Pascal, C, and so on, the
need to allow for specification of other lexical conventions became clear.

As a result, features were added to TXL to allow specification of lexical rules
in terms of keywords (reserved identifiers), compounds (multi-character se-
quences to be treated as a unit), comments (specification of commenting con-
ventions) and most generally tokens, regular expression patterns for arbitrary
character sequences (Figure 12). Like nonterminal definitions, token defini-
tions may be ambiguous and are interpreted in the order they are specified,
with earlier patterns taking precedence over later.

For some input languages, it is most convenient to work directly at the char-
acter level, using the power of the parser to process input directly. This tech-
nique, recently known as scannerless parsing, has other advantages as well[56].
To facilitate character level processing in TXL, a char mode provides for
character-by-character parsing of input. When combined with token defini-
tions, this mode allows for parser processing of raw input by either character,
line or character class (e.g., alphabetic, numeric, space, etc.).
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4.4 Global Variables and Tables

Perhaps the most extensive user addition to the TXL language has been global
variables. Many transformation tasks are most conveniently expressed using
some kind of symbol table to collect information which is then used as a refer-
ence when implementing the transformation rules. Implementation of symbol
tables in pure functional languages is problematic, involving passing the struc-
ture around explicitly as an additional parameter (although one can hide this
using monadic style).

In order to allow TXL to more easily handle this class of transformation and
avoid the overhead and inefficiency associated with extra rule parameters and
complex guards, global variables were added. TXL globals are modelled after
the Linda blackboard style of message passing[27]. In this style, bound local
variables are exported to the global scope by a rule or function for later import
by some other rule or function. Exported variables may be of any nonterminal
type, including new types not related to the main grammar, and when a
variable is imported in another rule it must be as the same type.

TXL globals have a great many uses in transformations, but the most com-
mon is the original use: symbol tables. Symbol tables in TXL are typically
structured as an associative lookup table consisting of a sequence of (key, in-
formation) pairs. Both the key and the information can be of any nonterminal
type, including new types defined solely for the purpose. Often the key is of
type [id] (i.e., an identifier). TXL deconstructs are used to associatively look
up the information given the key (Figure 13). Because they use pattern match-
ing, table lookups are also two-way; if one wants to know the key associated
with some information, the deconstruct can just as easily pattern match that
way also.

In applications where tables can be large, the linear search implied by the
associative lookup of a TXL deconstruct can be prohibitively expensive. TXL
programmers address this issue using AVL-tree[1] structured global tables.

With the addition of functions, guards, lexical control and global variables,
the TXL language was essentially complete - a general purpose language for
programming source transformations. In the rest of this paper we demonstrate
this generality by showing how TXL has been able to express new ideas in
language processing, source analysis and source transformation.
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% Simple example global table

% The type of entries (can be anything)
define table_entry
   [stringlit] -> [stringlit]
end define

% Export initial table from main rule 
function main
   export Table [repeat table_entry]
      "Veggie" -> "Celery"
      "Veggie" -> "Broccoli"
      "Fruit" -> "Orange"
      "Fruit" -> "Pear"
   replace [program]
      P [program]
   by
      P [Rule1] [Rule2] [Rule3]
end function

% Updating the global table
function addAsFruit
   match [stringlit]
      NewFruit [stringlit]
   import Table [repeat table_entry]
   export Table
      "Fruit" -> NewFruit
      Table
end function

% Querying the global table
function isAVeggie
   match [stringlit]
      Item [stringlit]
   import Table [repeat table_entry]
   deconstruct * [table_entry] Table
      "Veggie" -> Item
end function

Fig. 13. A Global Table in TXL

5 Expressing New Paradigms in TXL

Because of its fully programmable nature, new ideas and paradigms in source
manipulation can be experimented with directly by TXL users, without the
need to change TXL or its implementation. The interpretive parser means that
this applies as well to new ideas in parsing as it does to transformation. In
this section we look at a number of recently popular new ideas in grammars,
parsing and transformation and their implementation in TXL.

5.1 Robust Parsing

In recent years source code analysis and manipulation techniques have been
widely applied to large scale legacy systems written in Cobol, PL/I and RPG.
A difficulty with such languages is that they are challenging to parse because
of the wide range of dialects, variants, preprocessors and local enhancements.
It is frequently the case that analysis tools fail due to a parse error on these
differences. In most cases such differences are minor, and the main problem is
simply coming up with a parse.

Robust parsing[3] is a method for automatically providing the ability to com-
plete a parse even in the presence of sections of input that cannot be inter-
preted. The original method for robust parsing involved a customized LL(1)
algorithm[4] to correct syntax errors in input by substituting or ignoring a
minimal section of input to continue the parse. For example, when coming
to a statement of an unrecognized form, the method might simply ignore the
input symbols in the statement up to the next semicolon or other end marker.
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% Example of robust parsing in TXL

% This time for C dialects with strange new statements
include "C.Grm"

% If all statement forms fail, fall throught to unknown
redefine statement
    ...
    | [unknown_statement]
end redefine

% Accept anything at all before the next semicolon or brace
define unknown_statement

[repeat not_semicolon_brace]
end define

define not_semicolon_brace
[not ';] [not '}] [token] % any single token not ; or }

    | [key] % any keyword
end define

Fig. 14. Example of Robust Parsing in TXL

Grammar overrides allow the TXL user to directly program robust parsing
without any change to the TXL parser. For example, we can extend the non-
terminal definition for statement to include an additional uninterpreted case
that accepts anything at all until the next end of statement marker (Figure
14). This solution takes advantage of two properties of direct interpretation of
the grammar: ordered alternatives (because it is the last alternative, the unin-
terpreted case will never be used unless no other statement form can match)
and ambiguity (because the uninterpreted case is ambiguous with respect to
all other statement forms).

5.2 Island Grammars

Island grammars[26,38] are a related idea borrowed from natural language
processing. Island grammars allow for robust, efficient semi-parsing of very
large inputs when we are only interested in parts of them. Island grammars
are used to pick out and parse only those items of interest (the islands) in
a stream of otherwise uninteresting input (the water). This idea is extended
to multiple levels, in which islands may contain uninterpreted lakes which in
turn may contain smaller islands and so on. Island parsing is particularly useful
when we are interested in only one aspect of a complex input, for example, if
we are only interested in processing the embedded ASP aspect of HTML web
pages, or if we are only interested in embedded SQL aspect of Cobol programs.

Island grammars can be coded in TXL either directly or as dialects of a base
language in which the islands are embedded. Figure 15 shows a TXL grammar
that uses an island grammar to process embedded SQL in Cobol programs as
uninterpreted lakes (the SQL code) containing interesting islands (SQL refer-
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% Begin with Cobol
include "Cobol.Grammar"

% Extend to allow SQL
redefine statement
    ...
  | [sql_statement]
end redefine

define sql_statement
    EXEC SQL
      [repeat sql_item]
    [end_exec]
end define

define end_exec
    END-EXEC
end define

% Use lake and island parsing to parse
% only parts of SQL we’re interested in
define sql_item
    [host_variable]
  | [water]
end define

define host_variable
    : [ref_name]
end define

define water   
    % Bounded by END-EXEC shoreline
    [not end_exec] [token_or_key]
end define

define token_or_key    
    % TXL idiom for "any input"
    [token] | [key] 
end define             

Fig. 15. Island Grammar for Embedded SQL in Cobol (adapted from [25])

ences to Cobol host variables). The key feature in this grammar is the nonter-
minal modifier not. The TXL expression [not end exec] tells the parser that
the following grammatical form must not match the same sequence of tokens
that the nonterminal [end exec] matches. [not] is essentially a lookahead
check; it does not consume any input. This prevents the parser from consuming
non-SQL tokens in error. In island grammar terminology, this can be thought
of as a breakwater that prevents the lake from consuming the shoreline.

5.3 Union Grammars

Due to concerns about “legacy languages” and migration to the world wide
web, source-to-source translation has been a very hot topic in recent years.
Unlike the language extension tasks for which TXL was designed, this re-
quires transformations that deal with not one language grammar, but two -
the source language and the target language. Moreover, because TXL rules
are constrained to be homomorphic (grammatical type preserving), it is not
obvious how TXL can serve this kind of multi-grammar task.

One solution is union grammars, which mix the nonterminals of the two lan-
guages at “meet” points appropriate to natural levels of translation - for
example procedures, statements and expressions. In a union grammar, the
[statement] nonterminal allows both the input language statement forms
and the output target language statement forms, with the parse of input be-
ing constrained to the former and the resulting output being constrained to
the latter.
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% Start with both base grammars
include “Pascal.Grm”
include “C.Grm”

% In the union we accept either
% kind of program
redefine program
    [pascal_program]
  | [c_program]
end redefine

define pascal_program
  ‘program [id] [file_header]
    [repeat decl]
    [block] ‘.
end define

define c_program
  [repeat decl]
end define

% Either kind of block
redefine block
  [begin_or_brace]
    [repeat decl]
    [repeat statement]
  [end_or_brace]
end redefine

define end_or_brace
  ‘end | ‘}
end define

define begin_or_brace
  ‘begin | ‘{
end define

% Either kind of if statement
redefine if_statement
  ‘if [expression] [opt ‘then]
    [statement]
  ‘else
    [statement]
end redefine

Fig. 16. Part of a Union Grammar for Pascal and C (adapted from [25])

Union grammars can be coded as TXL grammar overrides, for example by
redefining the [statement] nonterminal to list the input language alternatives
first and the output language alternatives second. Because the grammar is
directly interpreted in ordered fashion, the parse of the input will be as input
language statements even if the output language statements are ambiguously
similar. However, because the nonterminal [statement] allows both input
and output language forms, statement transformation rules can move freely
between the two. Figure 16 shows a part of a language translation from Pascal
to C using this technique.

5.4 Agile Parsing

Agile parsing[25] refers to the idea of overriding a base grammar to provide a
parse more appropriate or convenient to each individual application. This idea
can radically simplify software analysis and transformation tasks by using a
custom grammar that structures the parse of the input into an ideal form for
the task at hand, rather than the usual standard form for the language.

Figure 17 shows a very simple example using agile parsing to identify and
isolate the JDBC (database) aspect of Java programs by overriding the gram-
mar to categorize and parse JDBC method calls differently from other method
calls. Again, this solution exploits the programmable handling of ambiguity in
TXL to modify the grammar to the task. Using the power of the parser to iden-
tify items of interest and abstract them into custom grammatical categories
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% Java base grammar
include "Java.Grm"

% Use parser to identify JDBC calls for us
% (simplified for demonstration purposes)
redefine method_call
       [jdbc_call]
    |  ...
end redefine

define jdbc_call
    [jdbc_name] [arguments]
end define

define jdbc_name
    ‘createStatement | ‘prepareStatement
  | ‘executeUpdate | ‘executeQuery | ‘getRow
end define

Fig. 17. Customizing Grammar to Task Using Agile Parsing (adapted from [25])

can significantly reduce the cost and complexity of an analysis ruleset.

5.5 Parse Tree Annotations

Parse tree annotations[45] is an idea that has recently gained new attention
in the software re-engineering community[33]. The challenge is to provide the
ability to add, preserve and manipulate complex annotations in parse trees in
order to allow for concerns such as layout preservation, reversible preprocessing
and other separate factors of the source code[36] in reverse- and re-engineering
transformations.

TXL’s ordered ambiguity makes it easy to specify and manipulate parse tree
annotations. Using grammar overrides, optional annotations can be added to
nonterminals of an existing base grammar. The annotations can be of any
structure at all, specified using new nonterminal definitions, and can be ma-
nipulated either separately or together with the items they annotate using
standard TXL patterns and replacements.

Figure 18 uses overrides to allow for addition of statistical annotations on
method declarations in Java. Normal rules can be used to add or manipulate
these annotations. Such annotations can later be gathered (extracted) from
the parse tree to form a table of information using TXL’s extract built-in
function and then used in guards on later transformations of the methods or
written to a file.

An example application of parse tree annotations is source fact extraction, also
known as design recovery [7,22]. Design recovery analyzes a software system’s
source to identify and extract a database of data and program entities such
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% Java base grammar
include "Java.Grm"

% Structure of statistical information annotation
% (syntactic sugar optional)
define method_stats

{ [list method_stat] }
end define

define method_stat
[method_label] = [number]

end define

define method_label
‘static_calls | ‘indirect_static_calls

    | ‘fan_in | ‘fan_out | ‘in_depth | ‘out_depth
end define

% Allow optional statistics annotation on methods
redefine method_declaration

...
    | [method_declaration] [opt method_stats]
end redefine

Fig. 18. Parse Tree Annotations

as variables, classes and methods, and the higher level design relationships
between these entities, such as containment, use, calling, reading, writing or
parameterizing of one entity by another. The result is a high level design
database representing the actual architecture of the software system.

When it was first proposed to apply TXL to this problem it was not at all
obvious how it could be done. TXL’s search and pattern match capabilities
could encode the complex interrelationships that indicate the presence of the
required relationships, but it had no notion of output of facts representing the
result. In retrospect the solution to this is remarkably simple - use grammar
overrides to allow for design fact annotations in the source code itself, and
then extract the facts when done. Higher level rules and patterns establish the
context for each inference, and then annotate the evidence for each relationship
with its fact using a local pattern match (Figure 19).

5.6 Source Code Markup and XML

One of the most important new ideas in source code analysis in recent years
is the advent of source code markup and the introduction of the standard
markup notation XML[14]. From the TXL standpoint, XML is just another
language whose grammar can be described, and source code markup is simply
another kind of grammar override, so programmers could begin generating
and working with XML markup without any change to TXL (Figure 20).
TXL’s polymorphism (using the universal nonterminal type [any]) allows for
the definition of generic XML markup that can be added to any language
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% Simple example of design recovery in TXL
rule processProcedureRefs
   % Because this rule’s pattern directly matches its replacement, 
   % there is no natural termination point, so we use a one-pass ($) traversal
   replace $ [declaration]
      procedure P [id] ParmList [opt parameter_list]
         Scope [repeat statement]
      'end P
   by
      procedure P ParmList
         Scope [embedProcCalls P]
               [embedFuncCalls P]
               [embedVarParmRefs P]
               [embedPutRefs P]
               [embedGetRefs P]
      'end P
end rule

% Annotate embedded argument uses with design fact giving procedural context
rule embedVarParmRefs ContextId [id]
   replace $ [argument]
      ReferencedId [id] Selectors [repeat selector] : var FormalId [id]
   by
      ReferencedId Selectors : var FormalId [id]
      $ ‘vararguse (ContextId, ReferencedId, FormalId) $ 
end rule

Fig. 19. Design Recovery (adapted from [22])

as an independent subgrammar. Rules to create either full or partial XML
markup of simple parse trees or complex source inferences can then be coded
in a fashion similar to the inference of facts in design recovery[23].

5.7 Traversals

Control of traversal of the parse tree when applying source transformations
can be an important issue. For example, in a transformation that resolves
references to declarations, the traversal must proceed from the bottom up,
whereas in a transformation that restructures architecture, we normally want
to proceed from the top down. Similarly, some transformations should ap-
ply only once, some only at a single level and not below, and so on. Both
ASF+SDF[6] and Stratego[53,54] provide explicit facilities for defining and
using generic traversals to control transformations[12].

In TXL the notion of traversal is in general under programmed user con-
trol using standard functional programming style (Figure 21). Traversals are
implicitly programmed as part of the functional decomposition of the trans-
formation ruleset, which controls how and in which order subrules are applied.
Bottom-up traversal is simply a directly recursive function or rule, apply-once
rules are simply TXL functions, single level traversal is explicit recursion on
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% Simple example of XML markup using TXL

% This time we’re marking up C++
include "Cpp.Grm"

% Simplified syntax of XML tags
define xmltag
    < [id] >
end define

define endxmltag
    </ [id] >
end define

% Allow statements to be marked up
redefine expression

...
    | [xmltag] [expression] [endxmltag]
end define

% Example rule to mark up interesting statements
rule markExpressionsUsing InterestingId [id]
    % Mark only outermost expressions, and only once
    skipping [expression]
    replace $ [expression]
        E [expression]
    % It’s an interesting one if it uses the interesting thing
    deconstruct * [id] E
        InterestingId
    by
        <interesting> E </interesting>
end rule

Fig. 20. Generic XML Source Markup (adapted from [23])

a sequence, and so on. In general, any required traversal can be programmed
directly and compactly in traditional recursive functional programming style.

Generic traversals are a major advantage of ASF+SDF and Stratego over
TXL, since in TXL traversal paradigms are not generic and must be reused
by hand cloning. However it does have the advantage that custom traversals
are easily made transformation-sensitive to each application.

5.8 Rewriting Strategies and Scoped Application of Rules

As the sophistication and complexity of source transformation tasks has grown,
the necessity of providing some method for limiting the scope of rewrite rules
to only a part of the input in response to previous analysis has become in-
creasingly important. One of the important innovations in the recent Stratego
language[54] was to address this issue in term rewriting. Stratego uses the
powerful notion of rewriting strategies [55] for this purpose.

In TXL the scoping of rules (limitation of rewriting to a particular context)
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rule topdownleftrightrescan
    % Top-down left-right rescan
    replace [T]

Instance [T]
    by

Instance [dotransform]
end rule

rule bottomuprightleftrescan
    % Bottom-up right-left with rescan
    replace [repeat T]

Instance [T]
RightContext [repeat T]

    construct NewRightContext [repeat T]
RightContext [bottomuprightleftrescan]

    by
Instance [bottomuprightleftrescan]
         [dotransform]
NewRightContext

end rule

function toplevelleftright
    % Left-right top level no rescan
    replace [repeat T]

Instance [T]
RightContext [repeat T]

    by
Instance [dotransform]
RightContext [toplevelleftright]

end function

rule bottomupleftrightrescan
    % Bottom-up left-right rescan
    replace [repeat T]

Instance [T]
RightContext [repeat T]

    by
Instance [bottomupleftrightrescan]

  [dotransform]
RightContext

end rule

Fig. 21. Sample Traversal Paradigms

falls out naturally from the functional programming paradigm. TXL functions
and rules are applied explicitly to scopes consisting of bound variables selected
from the patterns matched by the functions and rules that invoke them. As
pure functions these subrules cannot see any other part of the input, and their
scope is necessarily limited to the subtree to which they are applied.

In TXL rewriting strategies are intentionally expressed as an integral part of
the functional decomposition of the rules. While generalized abstract strategies
and traversals are a certainly a valuable and important new concept, TXL has
no ability to directly express them in the reusable sense of Stratego. In future
it would be natural to address this by adding higher-order functions and rules
(using function and rule parameters) to the language. A first implementation
of this idea has recently been demonstrated in ETXL[50].

5.9 Contextualized Rules

It is frequently the case that rules need to be parameterized by a previous con-
text, for example in a transformation that inlines functions, traces dataflow
or folds expressions. Stratego[54] has recently introduced the notion of dy-
namic rules [10] to address this situation by allowing for rules parameterized
by context to be generated and applied on the fly as part of a transformation.

As we have already seen (Figure 9), in the functional programming paradigm of
TXL parameters bound from previous contexts in higher level rules or patterns
can be explicitly passed to subrules, allowing for arbitrary contextualization
in the natural functional programming style.
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5.10 Native Patterns

Traditional term rewriting and program transformation tools express their
rewriting rules using internal abstract syntax, which can become cumbersome
and difficult to understand when patterns are large or complex. For this reason
there has been much recent interest in the notion of native patterns [49], the
idea that patterns and replacements should be expressed in the concrete syntax
of the target language, and modern transformation systems such as ASF+SDF
and Stratego support this notion. TXL takes the idea to the limit, in that it
consistently uses only native patterns in all contexts. Patterns in concrete
syntax were of course the original goal of TXL, and the coming of age of the
example-based paradigm (which brings us up to date, almost 20 years later).

6 Transformation as a Programming Paradigm

As the range of applications of source transformation languages grows, the role
of transformational programming as a general purpose computing paradigm
for a range of applications becomes an increasingly interesting possibility. TXL
has been used in many applications outside the domain of programming lan-
guages and software engineering, including VLSI layout, natural language un-
derstanding, database migration, network protocol security and many others.

Perhaps the most unusual application of TXL is its recent use in the recogni-
tion and analysis of two dimensional mathematical formulas from hand-written
graphical input[58]. In this application TXL is used in several stages: to ana-
lyze two dimensional image data for baseline structure, to associate symbols
into local structural units such as subscripted symbols, to combine these units
into higher level mathematical structures such as summations and integrals, to
associate meaning with these structures based on domain knowledge, and to
render this meaning into equivalent LATEX formulas and Mathematica or Maple
programs. This work has been generalized into a transformational paradigm
for diagram recognition tasks[8].

The surprising and highly successful application of TXL to a range of very dif-
ferent problem domains in electrical engineering, artificial intelligence, database
applications and so on, and the success of other transformational tools and
languages in applications to biology and medicine, lead one to wonder if there
are not many other problems for which this paradigm might serve. Work in
the TXL project has begun on the next generation of such languages, with
the aim of a more generally accessible and usable general purpose transforma-
tional programming paradigm. In the meanwhile, we continue to explore the
use of TXL itself in a wide range of new and diverse applications.
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7 Related Work

Many other tools and languages are similar to TXL in various ways. ASF+SDF
[6,11] is a very general toolset for implementing programming language ma-
nipulation tools of many kinds, including parsers, transformers, analyzers and
many other tools. While it is very different in its methods and implementation,
using a GLR parsing algorithm, providing grammar-based modularity and so
on, most tasks appropriate to TXL can be expressed in ASF+SDF.

Stratego[53,54] is a modern language aimed at the same kinds of problems as
TXL. Stratego augments pure rewriting rules with the separate specification
of generic rewriting strategies, an idea adapted from the Elan[9] deduction
metasystem. This separation can lead to a more compact and modular trans-
formation specification compared to TXL, although it can be more difficult to
see the overall effect of a rule combined with its application strategy. From an
execution efficiency standpoint, there is little difference between the two.

Both ASF+SDF and Stratego support the notion of traversal independently
of the types to be traversed, whereas in TXL it is most natural to program
traversal as an inherent part of the functional decomposition of the rules. Like
TXL, both ASF+SDF and Stratego support specification of patterns in con-
crete syntax, and Stratego’s overlays support the notion of application-specific
pattern abstractions, which play a role somewhat similar to agile parsing in
TXL.

ANTLR[39] is an LL-based language manipulation system that grew out of
the PCTSS compiler project and is primarily aimed at implementing com-
pilers, interpreters and translators. ANTLR’s tree construction and walking
capabilities can be used to assist in tasks often done using TXL, and ANTLR’s
SORCERER[42] tree walker generator can be used to facilitate similar parse
tree manipulations, albeit in a radically different way.

TXL’s top down parser can be compared to ANTLR’s generalized LL and
other top-down parsing methods. In particular, the use of Definite Clause
Grammars (DCG’s)[43] in Prolog bears a resemblance to TXL’s backtracking
parsing method, including the resolution of left-recursive productions by left
factoring, either on-the-fly or using grammar transformations[47]. Functional
parsers (also known as combinatory parsers [52]) are built by composing ele-
mentary parsing functions according to the context-free grammatical structure
of the language using a small set of higher-order parser combinators, result-
ing in a pure functional parser that acts very like TXL’s direct functional
grammar interpretation. However, TXL’s parser is purely context-free, leav-
ing context dependencies for later transformation rules, whereas these more
general parsing methods can handle context dependencies directly.
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Most modern source transformation tools, such as ASF+SDF, Stratego and
DMS[5], use generalized LR (GLR) parsers[51]. GLR parsers, and in particular
scannerless GLR (SGLR)[56] parsers, have many advantages (e.g., no prob-
lems with left recursion) and have been shown to be well suited to rewriting
systems. A major difference with the top-down methods is in the handling of
ambiguity. Because GLR parsing yields all possible derivations, much effort
in these systems is devoted to the problem of disambiguation[13]. By contrast
TXL’s direct ordered interpretation of the grammar automatically yields a de-
terministic unambiguous parse in all cases, while still allowing for exploitation
of grammatical ambiguity in the rule set.

While grammar overrides are an inherent and convenient feature of TXL, their
effect, and agile parsing in general, can also be implemented using genera-
tive techniques such as grammar transformation and in particular grammar
adaptation[34]. The primary difference is that TXL interprets overrides di-
rectly, whereas adaptation generates a whole new grammar for the task. In
both cases the original “base” grammar is unaffected by the customization,
which is the most important point.

APTS[41] is a very general transformation system based on parse tree rewrit-
ing primarily aimed at “transformational programming”, the derivation of
efficient programs from simple but correct specifications by the application of
correctness-preserving transformations. It is particularly well suited to ex-
pressing constraint-based transformations. While the notation and control
structures of APTS are quite different from TXL, it shares as its basis non-
linear tree pattern matching. However, where TXL and most other systems
use top-down tree matching, representing broadest-first match, better suited
to structural transformation, APTS uses bottom-up tree matching, finding
deepest-first match, better suited to program generation tasks. APTS has
been used to implement complex algorithms by correctness-preserving trans-
formation from high level specifications to executable C code that can be more
efficient than hand-coded Fortran[15,40].

XSLT[17] is the W3C standard for source transformation of XML documents.
While not a general purpose source transformation system (and not intended
to be one), XSLT nevertheless shares many ideas with TXL and its related
systems. In particular, XSLT is a user programmable transformation language,
it is primarily a pure functional language, and it uses the notion of pattern-
replacement pairs applied in term rewriting style.

Other related work includes Rigal[2], a language for implementing compilers
that shares with TXL a list-oriented implementation, transformation func-
tions and non-linear pattern matching, Gentle[48], a comprehensive compiler
toolkit that supports source to source transformation, and the commercial
DMS toolkit and its Parlanse language[5], which uses a very different paradigm
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to implement similar software analysis applications. Many other source trans-
formation tools and languages can be found on the program transformation
wiki, http://www.program-transformation.org .

8 Conclusion

From its roots in experimental language design 20 years ago[28], TXL has
grown into a powerful general purpose source transformation programming
system. It has been used in a wide range of applications, including industrial
transformations involving billions of lines of source code. TXL’s flexible general
purpose functional programming style distinguishes it from most other source
to source transformation systems in that it leaves all control over parsing
and transformation in the hands of the programmer. While not without its
drawbacks, this flexibility has proven very general, allowing TXL users to
express and experiment with evolving new ideas in parsing and transformation
on their own, without the necessity of moving to new languages and tools.
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significantly improved by the thorough and detailed reviews of the three ref-
erees and the insightful guidance of the guest editors, for which I thank them.
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