
Presented at the
CSER Meeting Fall 2005
Toronto, October 17th

School of Computing
Queen’s University, Kingston, Ontario, Canada

Liz Dancy and James R. Cordy

Software Tuning Panels For Autonomic Control

II. STAC Initiative IV. TXL

VI. Parallel Work

VII. Future Work

• Object classification via recursive primitive builds

• Applications for security checks and self-healing

• Extend current setup to apply results of program
visualization and data tracking to autonomic self
optimization

• Add recursive self-correction of non-sensical values
discovered during instrumentation

Goals

ArchitectureArchitecue

Motivation:
 Systems becoming increasingly complex
 Approaching a level which may be

unmaintainable and unmanageable

Vision:
 Self-maintenance and tuning in real time

Transparent control on all levels

Key Ingredients:

Self-realization, Self-configuration, Self-optimization,
Self-Healing, Self protection, Self-Adaptation,
Interaction, Hidden complexity

I. Introduction

Autonomic Computing

Background
Tuneable parameters exist in all programs:
• Stack size, limits, table constructs

• Scattered throughout the program for
architectural reasons

Selective tuning of such parameters
necessary for proper maintenance and control

Need for isolation without loss of function

• Isolation of tuneable parameters of interest

• Creation of a separate 'control panel' for an entire
program

• Provide a framework to automate the rearchitecting of
software systems for more efficient autonomic control

• Ability to set, monitor and create tuneable parameters

• Capture concerns which may crosscut several areas in
the control panel

III. Approach

• Java front end containing hand-coded XML tags denoting
tuneable parameters

 <control_param>
int stackSize;
</control_param>

• Program merged into one contiguous source file

• Merged source file transformed using TXL
- Creates a new Control Panel class containing

accessor, mutator and constructor methods
for each variable

- Transforms original code to use references to Control
Panel in place of marked up parameters

Architecture

IV. TXL

Tree Transformation Language
Hybrid functional and rule-based programming language

 Example rule to change a java parameter declaration to a
Control Panel reference:

rule refCPanelDec givenType[type_specifier]
givenDec [variable_declarator]

deconstruct givenDec
Name [variable_name]

 replace [variable_declarator]
givenDec

 by
givenType Name = Cpanel.Name.create();

end rule

V. Current Direction

Implementation Status:
 Java and TXL complete
 Support for scalar parameters as well as all class

references, inheritance referenences and indirect
references

 Ability to create and modify variables locally in the
Control Panel

 Plan for simulation and parameter tracking visualization
 Plan for attachment of 'origin' variable to each parameter

for classification

Current Limitations:
 Scalar types only
 No support for passing references

VI. Parallel Work

• Identification of parameters of interest across various
systems

• Classification of tuneable parameters and their location
(mining for interesting parameters)

• Pattern recognition of parameters of interest

• Automated markup to replace manual XML tags

• Classification of tunable parameter behaviour across a
program

Goals

Original Java Files

Original Java FilesFront End Java
File Parser

Contiguous Text File of All
Original Java Files

Tuneable Parameter
 Discovery and

Markup

TXL refactoring
and Control Panel

Creation
Contiguous Java Files Plus

Control Panel

Front End Java
File Parser

Original Java Files Plus Control Panel

Presented at the
CSER Meeting Fall 2005
Toronto, October 17th

 Stack Size

 Timeout Limit

 Table Dimensions

 Coordinate Values

 Array Size

 Resolution Limit

Public class StackSize
{

public int stackMAX ;

public void create()
{

stackMAX = 0;
}
public void set(int newVal)
{
stackMAX = newVal;
}

}

Tuneable Parameter
 Discovery and

Markup

