Using Topic Models to
Support Software Maintenance

Scott Grant
School of Computing
Queen’s University
Kingston, Ontario, Canada
Email: scott@cs.queensu.ca

Abstract—Our recent research has shown that the latent
information found by commonly used topic models generally
relates to the development history of a software system. While
it is not always possible to associate these latent topics with
human-oriented concepts, it is demonstrable that they identify
historical maintenance relationships in source code. Specifically,
when a developer makes a change to a software project, it is
common for a significant part of that change to relate to a single
latent topic. A significant conclusion can be drawn from this:
latent topic models identify co-maintenance relationships with no
supervision, and therefore topic models can be used to support
the maintenance phase of software development.

I. INTRODUCTION

Making sense of data is hard. In the social sciences, such
as psychology or economics, describing a large quantity of
data typically requires a large set of variables. One approach
to making sense of this information is the latent factors,
unobserved variables that explains patterns of relationship
among the observed data. For example, happiness is treated
as an economic latent variable. Happiness cannot be measured
directly, but it can be inferred from other observable variables
such as lifespan and education.

In natural language, the observations taken typically relate
to word frequency. These word counts are provided as input to
a statistical structure called a topic model, in which a “topic”
describes some relationship between parts of the data. This
leads to a question for software developers. Can the same kind
of observations be made of a software system? And if so, what
are the patterns identified by the latent factors? Factor analysis
has already been applied to software systems, but it is not clear
if the results can be explained in human-oriented terms.

Based on extensions of three pieces of our related work,
we show that the latent factors found in commonly used
topic models relate to the development history of a software
system [6]. While it is not always possible to describe software
factors with human-oriented concepts, it is demonstrable that
these factors identify historical maintenance relationships in
source code. These historical maintenance relationships can
be obtained using the revision control history of a project,
such as CVS, Subversion, or Git source control repositories,
and are referred to as the co-maintenance history. We observe
that, when a developer makes a change to a software project,
it is common for a significant part of that change to relate to

James R. Cordy
School of Computing
Queen’s University
Kingston, Ontario, Canada
Email: cordy @cs.queensu.ca

David B. Skillicorn
School of Computing
Queen’s University
Kingston, Ontario, Canada
Email: skill@cs.queensu.ca

a single factor. A significant conclusion can be drawn from
this: latent topic models identify co-maintenance relationships
with no supervision, and therefore topic models can be used
to support the maintenance phase of software development.

Understanding that a relationship exists between topic mod-
els and co-maintenance history provides strong motivation
for using topic models as a tool to help guide programmers
during software maintenance. As discussed by Zimmermann
et al. [22], the goals include suggesting and predicting likely
changes, and preventing errors due to incomplete changes.
In addition, understanding that a relationship exists allows
for parameter estimation; we apply knowledge about source
code locality to choose the number of topics to maximize an
objective function.

In this paper, we explore the general task of using topic
models to support software practitioners. We support our
conclusions by examining the project history and topic models
generated by a wide set of open source systems ranging from
a few dozen methods to the entire Linux system. We also
introduce visualizations to explore the relationship between
topic models and software maintenance in different ways
[6]. The relationships among individual code fragments are
empirically evaluated in a case study using web services to
show that discovery tasks for web service maintenance are
supported by topic models [7]. We also use knowledge about
source code structure to estimate an appropriate number of
topics for modelling a software system [4]. We show how this
can be used to generate an appropriate model for the intended
task of software maintenance.

II. PREVIOUS WORK

The search for latent factors in program documentation and
source code has been going on for over a decade. Although
it is, in a sense, straightforward to find some latent factors, it
is substantially more difficult to interpret them as software or
programmer concerns, and validation is troublesome due to a
lack of obvious ground truth.

The first application of Latent Semantic Indexing (or LSI,
an extension to singular value decomposition) to program
comprehension was in 1999. Maletic, Valluri, and Marcus [14],
[15] explored how LSI could be used in software by per-
forming a handful of clustering and classification experiments

for source code and documentation. Their work evaluated
LSI’s ability to cluster groups of related code together. Early
results suggested that LSI could be used to support some
aspects of the program-understanding process. However, the
latent factors, as singular vectors extracted during the matrix
decomposition, are not easily labelled or explained.

Latent Dirichlet Allocation (LDA) [1] is a generative sta-
tistical model in which a set of latent topics are assumed
to determine documents and token distribution. LDA was
first applied to source code in 2007 by Linstead e al., who
visualized topic emergence over several versions of a project
[11], [12]. Shortly afterwards, in 2008, Maskeri et al. showed
LDA’s application to business topic extraction from source
code [17]. The latent topics were described in vague detail,
but for the most part, remained opaque. LDA is not able to
provide human-oriented descriptions for the topics, and so
manual inspection is necessary to label topics.

Voinea et al. [21] introduce a set of visualization techniques
for software maintenance using software configuration man-
agement systems. They assess software project evolution using
these management systems using various levels of granularity.
Thomas efr al. [19], [20] look at software evolution using
topic models, and use the topics to describe software system
evolution. These studies motivate topic model use for software
maintenance and evolution.

Deciding how many dimensions to retain when performing a
singular value decomposition or how many topics to identify
when generating an LDA model has been described as art
instead of science [13]. For natural language, many authors
suggest values near 300 dimensions [14], [15], and a recent
study showed “islands of stability” around 300 to 500 dimen-
sions for document sets in the millions, with performance
degrading outside that range [2]. Kuhn et al. [10] suggest
using a value of (m x n)%? where m and n are the number of
terms and documents in the matrix to decompose, and suggest
that a smaller number of dimensions is warranted in analyzing
software corpora because the document count is smaller than
in typical natural-language corpora.

Our earlier research using independent component analysis
[5], [8] showed a clear application of the technique for source
code analysis. However, much like the topics identified with
LDA, it is difficult to explain what information the signals
are extracting from the original source data. By using co-
maintenance history as defined previously as an oracle for
predicting whether or not a technique is able to identify
maintenance relationships between source code fragments, we
have been able to explain and compare our results more
confidently. In our own work, we were able to address these
early concerns by developing visualizations.

III. VISUALIZING ToPiCcS BY CHANGELIST

A changelist is several code changes grouped together
to represent a more complete view of a change [9]. For
example, implementing a feature may involve many individual
changes across several methods or files. A changelist groups
these individual changes together. Since changelists frequently

B Legend
[u] 1 concept change
8 ° 2 concept changes
o 3 concept changes
[u] () @ 4 concept changes
[u] @ 5 or more changes
o

[u]

[m]

=]

o

[u]

=]

o

[u]

[u]

=]

o

[u]

[u]

o

o

[u]

[m]

=]

o

[u]

=]

=] []

[u]

=] ®

Fig. 1. A full view of the visualization for 35 consecutive changelists
in httpd’s history. Each blue square on the left defines a horizontal row
corresponding to a changelist. Each column corresponds to a concept, and
each coloured circle represents some number of modified code fragments
from that concept. The size and colour of each circle shows how many code
fragments from that concept were modified in this particular changelist.

group related changes together in this way, it follows that we
would expect source code fragments modified together in a
changelist to also be related in a topic model.

To explicitly show how topics and changelists are related,
we developed a visualization to explore how topics are spread
across individual changelists in the co-maintenance history of
a software project. Viewing the topics at this level shows
that code fragments that are modified together in a single
changelist often share a conceptual relationship as discovered
by statistical techniques such as Latent Semantic Indexing and
Latent Dirichlet Allocation. In this work [6], we explored the
relationship between topic models and co-maintenance history,
and showed that there is a relationship by using a visualization.
We also identified a number of common patterns observed, and
analyzed their meaning.

Each visualization is generated as an interactive HTML
page, based on the input from a source code repository and
some secondary source, such as a topic model. An example of
this can be seen in Figure 1. The rows of the display are the
relevant changelists over the project’s history, starting with the
oldest, and progressing forward towards the newest revisions
at the bottom. Each column in the display corresponds to
one of the topics described by the model. The circles of
varying size and colour on each row are an indication of
which code fragments were modified in that changelist. The
horizontal location of the circle indicates the topic in which the
modifications were made. In LDA, there is no explicit ordering
relationship between topic 1 and topic 2, and “adjacent” topics
are not necessarily related to one another.

This visualization allowed us to identify a number of
patterns that appear regularly. Vertical strips indicate concept
development over time, such as single feature development or
maintenance. For example, it is common to observe a long
series of changelists that strongly correspond to the same
topic as a vertical line of coloured circles. In some cases,

src/arch/cfg.c
void create_config)

src/arch/cfg.c
L void create_config

src/arch/cfg.c
void merge_config)

src/arch/cfg.c
L void merge_config

src/arch/mem.c
void *malloc

src/arch/mem.c
void *malloc

Fig. 2. A visual representation of how Bluevis maps functions to positions
on either side of the screen. Strong conceptual relationships are marked by a
strong line. Self-references are removed, so the display is not dominated by
horizontal lines.

this is followed by a horizontal bar in which the feature is
enabled across the system. Horizontal strips indicate cross-
cutting aspects, or system-wide changes.

By generating a two-dimensional table of information about
the topic distribution of code changes and the individual
changelists, we are able to visually observe the project history.
It also allows us to observe the topic model’s relationship with
maintenance, and motivates the analysis that follows.

IV. PAIRWISE VISUALIZATION

Understanding when pairs of code fragments are considered
similar is necessary when using a topic model in a practical
setting. For example, a topic model can be part of the software
development process if we understand the type of information
it provides. However, topic models are techniques that identify
clusterings in a set of input documents, and fopic is a loaded
term; they are described by a topic model as patterns that
may be shared across many documents and used to cluster
information. Individual topics are patterns of data, and are not
guaranteed to have a human-oriented representation.

Topic clusters group related code fragments together. How-
ever, the individual pairwise similarity is arguably much more
intuitive for end users. For example, this paradigm is used
in search engines, where only the results are presented and
not the means by which the results are obtained. In Zimmer-
mann et al. [22], the paradigm is also used to compare how
customers view related items when shopping online and how
software developers could view related source code fragments
when writing source code.

Even if they are abstract and undefinable in a human-
oriented context, the relationship between the entire set of
topics discovered by a model can be used to observe similarity
between individual code fragments. Since individual topics
may not be explained as a particular concept, an alternate ap-
proach is to use a similarity metric to evaluate one document’s
relevance to another. For example, in a software system that
has been modelled using LSI, the cosine distance between
any of the vectors in the new space can be used to obtain a
similarity estimate between the original documents represented
by those vectors.

One visualization that we developed to evaluate topic model
performance is called Bluevis. Bluevis explores how the file

Fig. 3. Two screenshots of Bluevis’s interface. The left and right sides of each
screenshot correspond to an alphanumerically ordered list of the source code
functions, and a connection made between the sides represents a conceptual
similarity between two different source code fragments above a user-defined
threshold. On the left, the large number of horizontal lines indicates a strong
local conceptual structure, and may indicate that the code is structured in a
good way. On the right, the related functions are sparsely distributed on a
large scale with only a few small sections of strong locality, and probably
indicates poor package design.

structure of the system relates to its conceptual distribution.
In a system that is well designed conceptually and architec-
turally, a majority of conceptual pairings (pairs of source code
fragments with a conceptual score higher than some threshold
value) should reside near one another. Related methods should
be found in the same files or folders instead of spread across
the system.

In systems where we do not have a full revision history, we
can use source code locality as an estimate. If the topic model
is able to identify co-maintenance relationships, we believe
that this will be reflected in Bluevis by a view with relatively
little noise.

Each side of the window in Figure 3 relates to an alphanu-
merically ordered list of the source code functions in the same
software system. The first position in the ordered list is the
same function in each side of the window. If a line extends
from one side of the window to the other, it represents a
conceptual relationship (above a threshold) between those two
source code functions. Larger blocks of related code form
brighter lines, and random pairings appear as dark and almost
invisible. In this way, the global conceptual structure of the
system can be seen. elf-references are removed, so no line is
horizontal.

We expect aspects and other cross-cutting concerns to be
distributed across the code. Some topics span the entire code-
base, and it would not be surprising to see them. The benefit of
a plot like Bluevis is that the aspects can be visualized directly
using this method. For example, in the left visualization from
Figure 3, there are several fans near the top of the graph.

Smaller systems will not generate interesting visualizations
because of the weakness of method ordering. Bluevis uses an

alphanumeric ordering by file and folder, and this works best
on a larger system. For flat file structures with no hierarchy,
or large directories with many files, there will be significant
scattering. On systems of a reasonable size, this visualization
offers a good way to investigate the global conceptual layout
of the software system.

We have also begun to use this visualization as a way to
compare how good various models are at capturing conceptual
structure in a particular data set. For example, given a source
code package, and using LDA and LSI with various topic and
dimension counts, how similar do the visualizations look for
each model, and how much do the models cross over as in
the right image in Figure 2. If all of the visualizations for all
of the models look similar, we may conclude that the models
are essentially similar.

A. Case Study: Web Services

This research uses topic models to predict co-maintenance
of code fragments. We also use topic models for a related
problem, uncovering web service similarity between service
specifications written in a domain-specific language. Web
services are software components used to communicate over
a network. These web services are often described using
domain-specific languages, outlining the existing operations,
the type of messages that can be sent, and other information
about the provider. The structure of service descriptions writ-
ten in the Web Service Description Language (WSDL), one
such domain-specific language, makes reading and understand-
ing them a difficult task. This problem makes it even more
difficult to discover relationships between service operations
when considering a large repository of web services.

The sparsity of tokens in high-level languages such as
WSDL do not provide enough context for a topic model to
make interesting conclusions. We solve the sparsity problem
by explicitly injecting referenced elements into the WSDL
source (see [16] for details and examples). This explicit
inclusion of referenced tokens increases the information in the
document, and provides context that was previously implicit
and unusable. Our theory was that contextualizing WSDL
operations to use as input for an LDA model would produce a
significant improvement in web service discovery using topic
models.

We must consider how Bluevis can actually provide rele-
vant information to benefit the maintenance process. In our
experience, we have consistently observed that visualizations
with visible noise show poorer maintenance relationships, and
visualizations with visible structure, such as the one on the
left in Figure 3, identify stronger maintenance relationships.
The visible structure can be examined in detail to show
strong global features of the code, such as large subsystems
in software or large blocks of related web services in this
instance. In this way, it is possible to visually inspect the topic
model generated by using the bare operations and to presume
that a model generated by using contextualized operations will
do a better job at supporting web service maintenance.

Using Bluevis, we observed that basic WSDL operations
provided a much more visually chaotic semantic structure
than contextualized operations. Many of the similar operations
identified using the basic WSDL operations as input are
meaningless, and show up due to shared tokens like get
or SOAP. The visualization using contextualized operations
showed a significant reduction in sparse random connections.
When we investigated these more closely, it appeared that
a majority of the information shown by the visualization
contained relevant semantic structure. Several large fan-out
points appeared, indicating web services that have similar
operations offered by other providers. Large horizontal blocks
indicated clusters of related operations from the same web
service.

A local view of the improvements helped to explicitly show
how individual operations were similar to one another, and
specifically how the relationships become more useful after
contextualization. To show that this type of improvement is
common, we expanded our view to look at the most similar
operation for single web service operations. In the majority
of cases, the contextualized operations are more useful in a
human-oriented context. With contextualization, a topic model
like LDA is able to use the newly added tokens to derive
interesting correlations between operations.

V. ESTIMATING ToPIiC COUNTS

In many cases, a full set of revision history does not exist
for a software system. In this section and, as in the work with
Bluevis, we assume that the revision history is unavailable
and use source code locality in its place. If topic models are
to be used in software maintenance, a reasonable effort must
be made to obtain the most appropriate model for the task. To
obtain the best fitting model for the data, we must ensure that
an appropriate topic count is used.

In this section, we infer an appropriate number of latent
topics needed to optimize the topic distributions over a set of
source code methods [4]. The topic count has a significant
effect on the model, and too few or too many topics may
produce clusters that do not show relationships in the source
data.

We segment a source code package into its individual
methods, treat each method as a document, and generate
successive LDA models with different values for the number
of latent topics. Our goal is to maximize the model’s ability
to predict a known metric in the source code, similar to the
co-maintenance metric used in our other research. In this
section, our metric is a simple heuristic based on location
in the source code package structure that gives a quick and
reasonable estimate about whether or not a pair of methods
are conceptually similar to one another. The proximity measure
suggests that two code fragments are likely to be conceptually
related if they are found in the same file or folder.

For each document, the n nearest neighbours are determined
using the cosine distance by interpreting the rows of the topic
membership matrix as vectors. The number of documents
among the nearest neighbours that are conceptually related

Percentage of Best Score
o o o
o 2y o ~ o o
o o ~ o © o

o
o
a

o
3

i i i
50 100 150 200
Number of Topics

Fig. 4. PostgreSQL proximity scores. By combining the similar source code
fragments identified by a topic model with the source code fragments that
are nearby in the software package file hierarchy, peaks can be uncovered. In
this case, a clear peak emerges around 75 to 125 topics, suggesting that the
appropriate number of latent topics lies in this range.

using the code proximity heuristic is taken as a document
score, and the average score over all documents is the nearest
neighbour score for the latent model with k topics.

For each topic, the m documents with the highest probability
of fitting this topic are identified, and these can be considered
the documents that best represent the information uncovered
by this latent topic. For each of the m documents that best
match a topic, we determine how many of the other m
documents are conceptually related using the code proximity
heuristic, and take the sum of the scores as the proximity score
for the latent model with k topics.

These two results provide us with a way to estimate how
well a topic model is able to uncover the latent topics that
identify conceptually related documents. The nearest neigh-
bour score for the latent model describes how well the nearest
neighbours of a document in the vector space relate conceptu-
ally. The proximity score for the latent model describes how
well the topics in the model are able to match up related sets
of documents with one another.

To evaluate our approach, we tested 26 different open-
source systems written with four different programming lan-
guages (C, C#, Java, and Python). The smallest system we
examined was gzip, with 117 different functions. The largest
was the entire Linux system, with more than 250,000 source
code functions. For each system, we generated a range of LDA
models, and calculated the proximity and nearest neighbour
scores for each model. In most cases (almost all software
systems with more than a few hundred code fragments), the
proximity score increased to a peak value and then dropped
off quickly. We identified these peak values, and fitted a curve
to the observations we obtained.

For a source-code system with m code fragments, Equation
1 provides an estimate for the appropriate number of topics for
source code using LDA based on our observations of several

700 T

y(x) =ax"n
a=7.2267
n =0.3636 B
R =0.95361 (lin)

600

W N o
o o =]
=] =] =]

Number of Topics

n
o
=]

100

0
0.5 1 1.5 2 25

Number of Methods x10°

Fig. 5. Fitting a curve to the estimated appropriate topic counts. The x-axis
measures the number of source code fragments, which for us is the number of
code fragments. The y-axis measures the number of topics that our approach
has estimated for the appropriate human-oriented value.

dozen software systems.

t(m) = 7.25 % m°-365 ey

This equation can be compared to an estimate given by
Kuhn et al. in [10]. For an m x n document-term matrix, where
m is documents (classes, instead of methods or functions) and
n is the term count over all documents, the authors suggest
using a value of (m x n)%2. In the software systems we
examined, the average term-to-document ratio suggests a linear
relationship between the tokens and source code fragments.
From this, we can approximate the equation by replacing n
by m to get (m?)%2, or m%4. The exponent 0.4 suggests that
as the document count increases, the appropriate rate of change
between Kuhn’s topic count and ours is roughly similar.

While proximity is not a perfect heuristic for similarity,
recent work in the clone detection community has demon-
strated a clear relationship between proximity in the package
structure and the likelihood of finding clones [18]. Using
this, together with our observation that clones often share
similar semantic information and are frequently identified as
semantically related in latent models [3], we believe that the
proximity score is a reasonable measure. In smaller systems,
and those that use methodologies such as aspect-oriented
programming, source code locality in files and folders may
be reduced.

Poor parameter choices can lead to models that provide
little to no benefit for software analysis. However, when
combined with an understanding of what information the
model is capturing, making good choices for parameter values
can demonstrably provide insight into how a software system
is organized. Accurate and appropriate models are necessary
if topic models are to be used for software maintenance. For
example, topic models that identify similarity between code
fragments could replace the find function in a programming

environment.

VI. EXPECTED IMPACT

Latent topics emerge from code fragments, but we don’t
yet know what they mean. In this research, we analyse
software maintenance history, and show that topics represent
code fragments that are maintained together. We can use this
correlation both to categorize and understand maintenance
history, and to predict future co-maintenance in practice.

In program comprehension, topic models can be applied
to both high and low level views of a software system.
For example, at a high level, a topic model can identify
what the syntax suggests about the software architecture.
From a maintenance standpoint, this information may suggest
significant refactorings because code is poorly structured. At a
low level, for individual source code functions, a topic model
can identify other similar functions. From a maintenance
standpoint, this knowledge is important when fixing bugs and
preventing faults.

VII. CONCLUSION

This paper builds on our existing research by exploring the
relationship between latent topic models and co-maintenance
history. Specifically, by taking a close look at the results of our
recent work, we believe that latent topic models can identify
co-maintenance relationships in source code systems. This
relationship can be used in the maintenance phase of software
development to suggest related changes and prevent errors.

ACKNOWLEDGEMENTS

This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada, by the Ontario
Graduate Scholarship Program, and by an IBM CAS faculty
award.

REFERENCES

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet
allocation. The Journal of Machine Learning Research, 3:993-1022,
2003.

[2] Roger B. Bradford. An empirical study of required dimensionality

for large-scale latent semantic indexing applications. In Proceeding of

the 17th ACM Conference on Information and Knowledge Management
(CIKM ’08), pages 153-162, New York, NY, USA, 2008. ACM.

[3] Scott Grant and James R. Cordy. Vector space analysis of software
clones. In /7th IEEE International Conference on Program Compre-
hension (ICPC ’09), pages 233-237, May 2009.

[4] Scott Grant and James R. Cordy. Estimating the optimal number of
latent concepts in source code analysis. In Proceedings of the 10th
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM ’10), Timigoara, Romania, September 2010. IEEE
Computer Society.

[5] Scott Grant, James R. Cordy, and David B. Skillicorn. Automated
concept location using independent component analysis. In Proceedings
of the 15th Working Conference on Reverse Engineering (WCRE ’08),
pages 138-142, October 2008.

[6] Scott Grant, James R. Cordy, and David B. Skillicorn. Reverse
engineering co-maintenance relationships using conceptual analysis of
source code. In Proceedings of the 18th Working Conference on Reverse
Engineering (WCRE ’11), pages 87-91, October 2011.

[7]1 Scott Grant, Douglas Martin, James R. Cordy, and David B. Skillicorn.
Contextualized semantic analysis of web services. In Proceedings of the
13th IEEE International Symposium on Web Services Evolution (WSE
’11), pages 33-42, September 2011.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

Scott Grant, David B. Skillicorn, and James R. Cordy. Topic detection
using independent component analysis. In Proceedings of the 2008
Workshop on Link Analysis, Counterterrorism and Security (LACTS ’08),
pages 23-28, April 2008.

A.E. Hassan and R.C. Holt. Studying the evolution of software
systems using evolutionary code extractors. In Software Evolution, 2004.
Proceedings. 7th International Workshop on Principles of, pages 76 —
81, sept. 2004.

Adrian Kuhn, Stéphane Ducasse, and Tudor Girba. Semantic clustering:
Identifying topics in source code. Information and Software Technology,
49(3):230-243, 2007.

Erik Linstead, Cristina Lopes, and Pierre Baldi. An application of latent
dirichlet allocation to analyzing software evolution. In Proceedings
of the 2008 7th International Conference on Machine Learning and
Applications (ICMLA ’08), pages 813-818, Washington, DC, USA,
2008. IEEE Computer Society.

Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre
Baldi. Mining concepts from code with probabilistic topic models.
In Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE ’07), pages 461-464, New York,
NY, USA, 2007. ACM.

Apache Mahout. Latent Dirichlet Allocation. https://cwiki.apache.org/
MAHOUT/latent-dirichlet-allocation.html.

Jonathan I. Maletic and Andrian Marcus. Using latent semantic analysis
to identify similarities in source code to support program understanding.
In Proceedings of the 12th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 00), page 46, Washington, DC, USA,
2000. IEEE Computer Society.

Jonathan I. Maletic and Naveen Valluri. Automatic software clustering
via latent semantic analysis. In Proceedings of the 14th IEEE Interna-
tional Conference on Automated Software Engineering (ASE ’99), page
251, Washington, DC, USA, 1999. IEEE Computer Society.

Doug Martin and James R. Cordy. Towards web services tagging by
similarity detection. In Mark Chignell, James R. Cordy, Joanna Ng, and
Yelena Yesha, editors, The Smart Internet, pages 216-233, 2010.
Girish Maskeri, Santonu Sarkar, and Kenneth Heafield. Mining business
topics in source code using latent dirichlet allocation. In Proceedings
of the 1st Conference on India Software Engineering Conference (ISEC
’08), pages 113-120, New York, NY, USA, 2008. ACM.

Chanchal K. Roy and James R. Cordy. Are scripting languages really
different? 1In 4th International Workshop on Software Clones (IWSC
’10), May 2010.

Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea
Blostein. Validating the use of topic models for software evolution. In
Proceedings of the 2010 10th IEEE Working Conference on Source Code
Analysis and Manipulation, SCAM ’10, pages 55-64, Washington, DC,
USA, 2010. IEEE Computer Society.

Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea
Blostein. Modeling the evolution of topics in source code histories.
In Proceedings of the Sth Working Conference on Mining Software
Repositories, MSR 11, pages 173-182, New York, NY, USA, 2011.
ACM.

Lucian Voinea, Johan Lukkien, and Alexandru Telea. Visual assessment
of software evolution. Science of Computer Programming, 65(3):222
— 248, 2007. Special Issue on: Software Configuration Management
(SCM).

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining
version histories to guide software changes. Software Engineering, IEEE
Transactions on, 31(6):429 — 445, june 2005.

