
Directions in Recognizing Tabular Structures of
Handwritten Mathematics Notation

Richard Zanibbi, Dorothea Blostein, and James R. Cordy
Department of Computing and Information Science,

Queen’s University, Kingston, Ontario, Canada
{zanibbi,blostein,cordy}@cs.queensu.ca

Abstract

Mathematics notation contains a variety of tabular structures, including matrices, lists
of expressions in a derivation, stacked limit expressions in a summation, and conditional
expressions in a function definition. Tabular structures are particularly difficult to rec-
ognize in handwritten mathematics notation, due to irregular placement and sizing of
symbols. In this paper we briefly survey prior work, describe a representation for tab-
ular structures in mathematics notation, and present possible directions for recognizing
tabular structures in handwritten notation.

1 Introduction

Tabular structures are a prominent part of the syntax of mathematics notation (see Figure 1).
At the highest level, a proof may be viewed as a table of expressions with a single column. At
the level of individual expressions, tables are used in matrices, for multiple indexes (e.g. Fig-
ure 1b), and for listing alternatives (e.g. Figure 1d). Matrices are probably the most complex
tabular structure used in mathematics notation, as they may have irregular row and/or column
structure (e.g. due to shorthand symbols, as in Figure 1e). In this paper we describe some
preliminary work into creating general, robust recognition methods for the tabular structures
in mathematics notation.

Our work is motivated by a desire to extend our existing prototype for recognizing hand-
written mathematics notation [9, 10] to handle tabular structures (particularly matrices and
proofs). A logical first step is to examine the table recognition literature. One key point seems
to be that it is important to separate the physical structure of a table (e.g. layout and appear-
ance) from its logical structure, which specifies the type and contents of each of the table’s
elements [5]. In our math recognition system we first describe symbol layout independently

(a) (b) (c)

(d) (e)

Figure 1: Examples of expressions with tabular structures.

of the syntax and semantics of an expression usingBaseline Structure Trees(see Figure 2); we
have found that this increases the extensibility of our system. A Baseline Structure Tree (BST)
describes the hierarchical nesting ofbaselinesin an expression, where we define a baseline as
a horizontal list of symbols that are intended to be adjacent. The baseline below the root of a
BST is thedominantbaseline of the expression, from which interpretation begins. In section
3 we present a simple extension to Baseline Structure Trees which allows them to describe
tabular structures.

Although table recognition has been studied extensively, little work has targeted the recog-
nition of handwritten tables [5]. The symbols and layout of handwritten tables are of course
far more irregular than in typeset tables. We summarize existing research into recognizing tab-
ular structures in math notation in Section 2, and in Section 4 describe research directions that
we are considering for recognizing tabular structures in mathematics notation after symbols
have been correctly recognized.

2 Previous Work in Recognizing Tabular Structures

Up to the present, only a small amount of work has been devoted to recognizing tabular
structures in mathematics notation [2, 3]. Impressive early work was done by Anderson in
the late 1960’s [1]. Anderson described the syntax of a subset of mathematics notation using
a coordinate grammar(an attributed context-free grammar with constraints on attributes).

A + D

ABOVE BELOWSUPER

C 2B

EXPRESSION

(a) (b)

Figure 2: Baseline Structure Tree (b) for a simple expression (a). The dominant baseline of
the expression is (A, +, -, -, D). There are three nested baselines relative to the symbols of the
dominant baseline, each comprised of a single symbol: the superscripted C, and the B and 2
above and below the fraction line.

The grammar is capable of describing row vectors and square matrices, and can handle line
shorthands used to indicate repeated elements. The grammar is limited in that matrix elements
have to be single symbols, and restrictive assumptions are made about symbol placement.

Roughly twenty years later, Okamoto and Twaakyondo addressed recognition of matrices
from scanned images of typeset mathematics [6, 7, 8]. They use recursive projection profile
cutting to obtain expression structure and connected componentsbeforerecognizing symbols.
In this approach, a tree describing expression structure is constructed as pixels are recur-
sively projected onto the x and then y axes. After each projection, groups of pixels separated
by whitespace on the projection axis are split into separate components, and projections are
then applied recursively to each of the components until no further segmentation is possible.
Symbol recognition is then applied to the indivisible components, which are assumed to be
symbols. If a pair of delimiters (e.g. brackets) is detected, then horizontal projections are
used to estimate the number and height of rows of the potential matrix. If horizontal projec-
tion reveals two or more rows of similar height, then vertical projection is used to locate the
number of columns in the matrix and the regions of each matrix element. Recursive projec-
tion profile cutting is then re-applied to the matrix element regions, the results of which are
associated with the delimiters row-by-row. This projection profile approach is also capable
of recognizing multiple indexes, as in Figure 1b. However, this approach is limited to non-
skewed typeset notation, where the necessary whitespace information used for segmentation
after each projection may be obtained reliably.

Fateman et. al. [4] created a mathematics recognition system that is capable of recognizing
tables of integrals. It locates vertical white-space between expressions and uses contextual
clues to locate expressions. Contextual clues used by the system include the facts that in the
table of integrals to be recognized, all expressions begin with an integral on the left, while any
continuations of an expression begin with an operator on the left.

3 Representing Tabular Structures

A key component in our prior research on mathematics notation recognition is a simple, read-
able data structure for describing the layout of symbols in a mathematical expression called a
Baseline Structure Tree(see Section 1 and Figure 2). Baseline Structure Trees aid understand-
ing of recognition results, and can be used with different syntactic and semantic definitions to
obtain multiple interpretations of the same layout description [10].

To describe tabular structures, we extend Baseline Structure Trees to haveTABLE, ROW
and element (writtenELEM) nodes. To keep the trees small, a row containing a single element
is represented using a singleELEM node, and a table containing a single row with a single
element is also represented using a singleELEM node. ATABLEnode has one or more child
ROWnodes, each of which in turn have one or moreELEM nodes.ROWnodes are ordered
left-to-right, corresponding to their appearance top-to-bottom.ELEM nodes are ordered left-
to-right to reflect the left-to-right ordering of elements in a row.

Tables with unequal row or column lengths may be represented using empty elements,
in effect giving a representation with regular row and column length. Line shorthands for
repeated elements in matrices may also be represented, by treating these lines as spatial op-
erators that divide an image into regions. For example, the diagonal line shorthand in Figure
1e may be represented as shown in Figure 3e. In Figure 3e the diagonal line has four child
tables: these represent the matrix elements to the top-left and bottom-right of the line, and the
upper and lower diagonal matrices (filled out with an empty element in the case of the upper
diagonal).

To reflect the fact that we are now dealing with tables of expressions, the root of a Baseline
Structure tree is labeledTABLEor ELEM (for a single expression, e.g. a table with a single
element). As shown in Figure 3, this extended BST definition allows us to describe the symbol
layout of the expressions in Figure 1.

4 Possible Approaches to Recognizing Tabular Structures

The projection-based of approach of Okamoto et. al. is an intuitive, appealing method for
locating tabular structure in typeset notation, but is probably not a robust approach for messy
handwritten expressions which may contain significant skew. As a first step we are interested
in studying approaches to recognizing tabular structures after symbols have been recognized.
Two approaches we are considering are the following:

1. Use a simple form of clustering. Assign “gravitational pulls” to classes of symbols,
so that for instance

∑
attracts symbols more strongly than a digit. Then define a set

of rules specifying how “gravity” segments symbols into table elements. The gravita-
tional model might use trees or directed acyclic graphs to represent the relationships

5x + 2 = 7 x =

TABLE

ELEM ELEM

i j

SUPERUPPER LOWER

2

=i 1 j 1=

infinity TABLE

ELEM

ELEM ELEM

(a) (b)

]

ELEM

x 2 a

SUPER SUBSC

2 x

[

ELEM

2 x 1

ELEM ELEM

TABLE

ELEM

ROWROW

(f x) = { TABLE

ELEM

ROW ROW

ELEMELEM ELEM ELEM

SUPER

2

x 0 o t e r w i s eh0>xfi

(c) (d)

ROW

ELEMELEM

ROW

ELEMELEM

TABLE

0 1 0

[]

B-RIGHTT-LEFT BL-DIAG TR-DIAG

01 1

\

ELEM

ELEMELEM ELEM

(e)

Figure 3: Baseline Structure Trees for the expressions in Figure 1. In (b),UPPERandLOWER
indicate the upper and lower limit regions of the summation. In (e),T-LEFT, B-LEFT, TR-
DIAG andBL-DIAG represent top-left, bottom-left, top-right diagonal and bottom-left diago-
nal, respectively.

between symbols. Tree or graph transformation systems may be used to build an initial
gravitational model and then apply rules to transform the initial model into a table.

2. Use a process similar to error correcting parsing. First use an existing single-expression
recognition method to analyze symbol layout. Then search for structures that are un-
syntactic in the context of a single expression (e.g. two or more digits directly above
one another). If an unsyntactic structure is located, perform a local whitespace analysis
and split the expression into table elements.

In each of these approaches stochastic methods could be employed. The gravitational
model could be stochastic. In an error-correcting parsing approach a statistical weighting
could be used determine the “best” way to split an expression into table elements. Either
approach could be altered to provide a list of alternatives ranked by probability (e.g. an “n-
best” list).

In both approaches, reading direction could be exploited to reduce computational com-
plexity. Gravitational pulls for instance could act only in top-down and left-to-right directions,
and any rules involving a search could use these directions. Similarly, in the error-correcting
parse scenario we could search for unsyntactic structures left-to-right. Both processes are
likely to be recursive, to take advantage of the recursive structure of mathematics notation [2].

Currently we are leaning towards the gravitational model, as at the outset it seems simpler.
It may also be more general than the error-correcting parse approach by being less sensitive
to dialect-dependent structures; some structures that are legal in one variant of mathematics
notation may be illegal in another. If use of whitespace and other cues for tabular structure are
reasonably consistent across dialects of mathematics notation, a general “gravitational model”
may be adequate; we do not yet know whether this is the case.

5 Conclusion

We have presented a simple extension of Baseline Structure Trees [10] in order to represent
tabular structures in mathematics such as matrices and lists of expressions in a simple, con-
sistent fashion. Additionally, we have described a pair of approaches we are currently consid-
ering exploring for recognizing tabular structures in handwritten mathematics notation. The
first uses “gravitational pulls” between symbols, modeling these as a directed graph or tree
which is then transformed into a table of elements. The second is an error-correcting parse
approach. We plan to explore the gravitational model first as it may provide a simple, general
method for detecting tabular structures in handwritten mathematics notation, assuming that
symbols have been recognized correctly.

References

[1] R.H. Anderson. Two-dimensional mathematical notation. In K.S. Fu, editor,Syntactic
Pattern Recognition, pages 147–177. Springer-Verlag, New York, 1977.

[2] Dorothea Blostein and Ann Grbavec. Recognition of mathematical notation. InHand-
book of Character Recognition and Document Image Analysis, pages 557–582. World
Scientific Publishing Company, 1997.

[3] Kam-Fai Chan and Dit-Yan Yeung. Mathematical expression recognition: a survey.
International Journal on Document Analysis and Recognition, 3(1):3–15, August 2000.

[4] Richard J. Fateman and Taku Tokuyasu. Progress in recognizing typeset mathematics. In
Proceedings of the International Society for Optical Engineering, volume 2660, pages
37–50, 1996.

[5] Daniel Lopresti and George Nagy. A tabular survey of automated table processing. In
A. Chhabra and D. Dori, editors,Graphics Recognition− Recent Advances, number
1941 in LNCS, pages 93–120. Springer-Verlag, 2000.

[6] Masayuki Okamoto and Bin Miao. Recognition of mathematical expressions by using
the layout structures of symbols. InProc. First International Conference on Document
Analysis and Recognition, volume 1, pages 242–250, Saint-Malo, France, 1991.

[7] Masayuki Okamoto and Akira Miyazawa. An experimental implementation of a doc-
ument recognition system for papers containing mathematical expressions. In H.S.
Baird H. Bunke and K. Yamamoto, editors,Structured Document Image Analysis, pages
36–53. Springer-Verlag, New York, 1992.

[8] Hashim M. Twaakyondo and Masayuki Okamoto. Structure analysis and recognition
of mathematical expressions. InProceedings of the Third International Conference on
Document Analysis and Recognition, volume 1, Montŕeal, Canada, 1995.

[9] Richard Zanibbi. Recognition of mathematics notation via computer using baseline
structure. Technical Report ISBN-0836-0227-2000-439, Department of Comptuer Sci-
ence, Queen’s University, Kingston, Ontario, Canada, August 2000.

[10] Richard Zanibbi, Dorothea Blostein, and James Cordy. Baseline structure analysis of
handwritten mathematics notation. To appear inProc. Sixth International Conference
on Document Analysis and Recognition, 2001.

	Introduction
	Previous Work in Recognizing Tabular Structures
	Representing Tabular Structures
	Possible Approaches to Recognizing Tabular Structures
	Conclusion

