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Abstract

Syntactic analysis forms a foundation of many source analysis and reverse engineering tools. However, a 
single standard grammar is not always appropriate for all source analysis and manipulation tasks.  Small cus-
tom modifications to the grammar can make the programs used to implement these tasks simpler, clearer and 
more efficient.  This leads to a new paradigm for programming these tools: agile parsing.  In agile parsing the 
effective grammar used by a particular tool is a combination of two parts: the standard base grammar for the 
input language, and a set of explicit grammar overrides that modify the parse to support the task at hand.  This 
paper introduces the basic techniques of agile parsing in TXL and discusses several industry proven techniques 
for exploiting agile parsing in software source analysis and transformation.

1. Introduction

Syntactic analysis plays a large role in the analysis and manipulation of software systems.  Syntax is the 
framework on which the semantics of most modern languages is defined. For example, we use syntactic tech-
niques to resolve the scoping of names and the precedence of operators in expressions.  Not surprisingly, syn-
tactic analysis forms the foundation of many source analysis and reverse engineering tools, including 
ASF+SDF (van den Brand,2001), DMS (Baxter,1997), Stratego (Visser,2001), REFINE (Reasoning,1992), 
Draco (Neighbors,1984)  and TXL (Cordy,1991, Cordy,2000).

Source code analysis and manipulation tools use parsers in software comprehension, transformation and mi-
gration tasks.  Analyzing and transforming source code using these tools involves crafting an appropriate 
source language grammar and parsing the input source code into a parse tree. Analysis and transformation rule 
sets then use the grammar to structure the patterns and transformations that are applied to the source code in its 
parse tree form.

Parsers have come a long way since the days of lex (Lesk,1975) and yacc (Johnson,1975). While LR, LL, 
LALR and other similar context free grammar classes and their associated parsing algorithms have strengths 
that lead to the design and implementation of efficient compilers, the restrictions they impose on the grammars 
limit their effectiveness in software analysis and manipulation tools (van den Brand,1998).  Generalized pars-
ing algorithms such as those used in ASF+SDF, DMS and TXL permit us to use grammars that are closer to the 
natural structure of the language (van den Brand,1998), making it significantly easier to specify analysis and 
transformation tasks.

Unlike compiler grammars, which are focussed on speed and syntax error detection, these parsing technolo-
gies allow for unrestricted “user level” grammars that reflect the language definition more or less directly.  
These parsers directly accept grammars are much closer to the “natural” structure of the language, making it 
easier to write new grammars, easier to write analysis patterns and transformations using “native” patterns  
(Sellink,1999,Sellink,1998), and easier to modify the  grammar to adapt to new dialects (e.g., Borland C, Gnu 



C++, Microsoft C, etc.) and embedded sublanguages (e.g., SQL, CICS, and so on).
This ability to easily adapt the grammar leads to the key idea of this paper.  If we can easily modify the 

grammar in order to accept new dialects, sub-languages and the like, why not exploit this capability to adapt 
the grammar to best suit each individual analysis tool?  This simple idea is the basis of the technique we call 
agile parsing.

The next section of the paper discusses the general concept of agile parsing. Section 3 reviews the TXL lan-
guage, focussing on the features of the language that support agile parsing. Section 4 explores agile parsing in 
depth, presenting seven agile parsing idioms.  Section 5 discusses some of our experience using these idioms 
and includes data on the performance of the TXL parser.  Related work is discussed in Section 6 and conclud-
ing remarks are given in Section 7.

2. Agile Parsing

Agile parsing refers to the ability to use a customized version of the input language grammar for each par-
ticular analysis and transformation task.  Based on a standard base grammar for the input language, agile pars-
ing provides the ability to override nonterminal definitions on a per-task basis to modify the parse to yield an 
AST that makes the source analysis or transformation more efficient and convenient.  The base grammar is a  
user-level grammar that defines the outline structure of the expected input language and its standard nontermi-
nal categories.  Base grammars are often recovered directly from language manuals, by hand or in a manner 
similar to Lämmel and Verhoef's semi-automation (Lämmel,2001a).  The base grammar serves as the common 
understanding of the language that is modified on an ad hoc basis to suit each particular analysis task.  

For each specific task, a set of grammar overrides are specified. Overrides modify or extend the forms of 
particular nonterminals of the base grammar to change the grammar to yield a parse that is tailored to the task 
at hand.  These small changes to the grammar can make a significant difference in the simplicity, efficiency 
and maintainability of analysis programs.  For example, by changing the grammar to conflate several similar 
nonterminal forms into a single nonterminal, we can often reduce a large number of different analysis rules to 
just one.

Because the nonterminals of the base grammar are used as representatives of language structures and con-
cepts in the analysis and transformation rules, it is important that their names reflect the semantic role that each 
particular nonterminal plays in the input language.  This is very similar to the generally accepted practice in 
procedural programming of giving constants and variables names that are representative of the real world con-
cept they represent.  In TXL base grammars, the names of the nonterminals are typically those that are found in 
standard reference grammars. These observations are not new (Sellink,1999,Sellink,1998), but they are rele-
vant to the discussion of the rest of the paper.

Agile parsing is very much an evolved technique of TXL programming.  Experienced TXL programmers 
are as likely to change the grammar by writing new overrides to assist in an analysis or transformation as they 
are to write a new rule for it.   Programmers colloquially refer to this practice as “grammar programming”.

Figure 1 shows a traditional software analysis and transformation architecture using a single grammar.  The 
source is parsed, one or more transforms are applied and after all transforms have been run, the output is gener-
ated.  While some toolkits provide a modular architecture for organizing rule sets, saving the parse trees and al-
lowing separate modules to read the trees and operate on them, the source is in general parse only once.  All 
transforms must conform to the global grammar and are tightly coupled to it.



Figure 2 shows an alternate structure for the same tool using agile parsing.  In this approach, a different 
variant of the grammar can be used for each transform.  The input is returned to source form after each trans-
form.  In some cases the modifications to the grammar may be minor, but in other cases the changes to the 
grammar (and therefore the parse tree) may be significant.  The first point of this architecture is that the rule 
sets for each transform are not coupled by the grammar.  If a rule set needs modifications to the grammar, it 
can have those modifications independently of the other transforms without fear of breaking them.

But there is also something more fundamental happening in this architecture.  In a very real sense we are us-
ing the parser itself as a transformation engine. It transforms the tree from the results of the previous transfor-
mation to a form more suitable for the next transformation.  For example, in one transform we might choose to 
use a modified grammar that parses the else clauses of if-then-else statements as separate statements, while the 
other transforms use the conventional parse of if-then-else statements specified in the original base grammar.   

3. TXL

TXL (Cordy,1991,Cordy,2000) is a software analysis and transformation system based on the assumption 
that any software task can be modeled as a source-to-source transformation.  TXL is a pure functional program-
ming language specifically designed to support structural source transformation.  The structure of the source to 
be transformed is described using an unrestricted ambiguous context free grammar from which a parser is auto-
matically derived. While based on a top-down approach, this parser has full backtracking and ordering heuris-
tics to resolve both ambiguity and left recursion.
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Figure 1. Single grammar transform architecture.
 

In this architecture the source code is parsed to a syntax tree once using a single general grammar.  All 
stages of the tool are constrained to work using  the same grammar. 
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Figure 2. Multiple grammar transform architecture.
 

In this architecture the source code is re-parsed to a syntax tree using a custom variant of the general gram-
mar to suit each stage of the tool.



The transformations are described by example, using a set of context-sensitive structural transformation 
rules from which an application strategy is automatically inferred.  Examples of our experience in using TXL 
in software engineering problems have been reported elsewhere (Cordy,2002).

Figure 3 shows the structure of the TXL language system. A TXL program which is comprised of a gram-
mar and a set of rules is read by the TXL processor. A parser is derived from the grammar and the input is 
parsed based on that grammar. The resulting parse tree is passed to the transform engine which applies the 
rules transforming the input tree as they run. The last phase of the processor walks the parse tree and produces 
the transformed output.

One of TXL’s strengths is that it uses a run-time interpretive parser.  There is no separate generation step 
used to process the grammar and rules into a tool, and the grammar and rules can be modified and the tool re-
run in seconds.

3.1 The TXL Language

A full description of the TXL language is beyond the scope of this paper. However, we will give a short 
overview for readers who are not familiar with the language. Figure 4 shows a subset of the TXL base grammar 
for a simple Pascal-like language.  The special nonterminal name program defines the goal symbol of the 
grammar. Square brackets denote the use of a nonterminal in a production or rule (e.g., [program]).  Prefixing 
a nonterminal symbol with the keyword repeat denotes a sequence of the nonterminal. Thus a program in the 
sample language described by the TXL grammar in Figure 4 consists of the keyword program, an identifier 
([id]) and a semicolon (;) followed by a sequence of definitions and a block, terminated by a period (.).

Vertical bars (‘|’) are used to separate alternatives in TXL grammar productions. For example, a definition 
in our sample language can be a [constant_section], a [variable_section], a [type_section] or a 
[procedure_definition].  The list keyword is much like repeat, except that the repeated nonterminals are sepa-
rated by a comma. Thus the [args] nonterminal is defined as a list of expressions separated by commas and 
surrounded by parentheses.
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Figure 3. The TXL processor.



The terminals of the grammar are tokens, which are referred to in the same way that nonterminals are used. 
In our example subset grammar, the symbol [id] refers to the identifier token, which defaults to a contiguous 
sequence of letters, digits and underscores starting with a letter or underscore (e.g. a C identifier).  Language 
tokens can be explicitly specified using regular expressions, permitting the lexical conventions of any language 
to be recognized. For example, COBOL identifiers (hyphens instead of underscores) or Pascal-style strings 
(quote instead of backslash for escaped embedded quotes) can be defined as tokens.

3.2 TXL Support for Agile Parsing

The TXL language provides several features that provide explicit support for agile parsing. A TXL program 
normally begins with an include statement for the base grammar of the input language. The basic agile parsing 
feature is the idea of the nonterminal "override", which allows a given nonterminal of the base grammar to be 
replaced with a definition more appropriate to the task at hand.  Overrides are written in TXL using the rede-
fine statement [Figure 5(a)].  The semantics of an override is that the effective grammar for the tool is the 
original base grammar with the definition of the overridden nonterminal replaced by given redefinition, yield-
ing a different custom parse tree intended to make the task easier.

More sophisticated overrides can use extensions of the existing nonterminal form by referring to it using the 
the "..." notation [Figure 5(b)].  In a TXL redefine, "..." refers to the definition of the overridden nonterminal 
form before it was extended by the redefine.  The "..." can be used in a post-extension, in which additional al-
ternatives for the nonterminal are added after the originals by the redefine, or as a pre-extension, in which addi-
tional grammatical forms come first and take precedence over the original forms.  Extension overrides often 
exploit TXL's ordered ambiguity resolution.  New forms introduced by the redefine can ambiguously overlap 
existing forms, with the semantics that forms are tried in the order specified in the effective definition, with 
first forms taking precedence over last forms, yielding a well defined deterministic parse.

Other features of TXL supporting agile parsing include general nonterminal polymorphism ( [any] ), non-
terminal type query ( [typeof] ), programmed syntactic parse tree extraction ( [^] ) and transformation-time re-

define program
   program [id] ;
   [repeat definition]
   [block].
end define 

define definition
      [const_section]
    | [variable_section]
    | [type_section]
    | [procedure_definition]
end define

Figure 4. TXL Grammar for a Subset of a Pascal-like language. 

In TXL notation grammar definitions are given using the define statement.  Each define gives the 
definition of a nonterminal and all of its alternative forms.  References to other terminal and nonter-
minal types are enclosed in square brackets [ ] and alternative forms are separated using the tradi-
tional or bar |. 

define var_decl
    [id] : [typeName]
end define

define procedure_call
    [id] [args]
end define

define args
    ‘( [list expression] ‘)
end define



parsing of transformed elements ( [reparse] ).  Grammar reflection (modifying the grammar on-the-fly as the 
result of transformation or analysis) is theoretically possible and supported by the TXL engine but not yet di-
rectly available in TXL.

3.3 An Example: Extracting RSF Facts from SQLj

Figure 6(a) shows an example snippet of Java code with embedded SQL (SQLj).  The example consists of a 
Java function method getComm that returns the commission rate for a salesperson given the employee number 
by querying an SQL database. We would like to extract a Rigi Standard Form (RSF) (Müller,1988) relation 
MethodHostVar which identifies the host variables (i.e. Java fields) used in the embedded SQL statements in 
each Java method.  So for the example, the desired output is:

MethodHostVar getComm result
MethodHostVar getComm empId

These relation instances document that the java fields result and empId are used in embedded SQL state-
ments in the getComm method. Our TXL program will accomplish this result in two steps, first by annotating 
each SQLj host variable reference with its corresponding relation instance (Figure 6(b)), and then by replacing 
the annotated program with its embedded relation instance annotations.  

Figure 7 shows a simple TXL program used to annotate the code and extract the MethodHostVar relation. In 
order to keep the example simple enough for this paper, issues such as unique identification of methods and 

 

include “Cpp.Grammar” include “Java.Grammar”
   
redefine function_definition redefine expression
   [function_header]      ...
   [opt exception_specification]   |  [xmltag] [expression] [xmlendtag] 
   [function_body] end redefine
end redefine

redefine method_call
define function_header      [jdbc_call]
   [opt decl_specifiers]   |  ...
   [function_declarator] end redefine
   [opt ctor_initializer]
end define

(a) Replacing a nonterminal in TXL.  (b) Extending a nonterminal in TXL.
 

The redefine statement gives a new definition The “...” notation in a redefine statement  refers to
for the redefined nonterminal which replaces the the original syntactic forms of the redefined nonterminal
original in the base grammar to yield a different in order to allow extension of the nonterminal to other 
parse.  In this case, the new nonterminal forms.  In cases of ambiguity, the order of alternatives  
[function_header] is introduced to capture the determines the parse.  If the “...” appears first in an 
entire header line of C++ functions in one piece. extension, then the old forms are preferred.  If it appears 

last, then the new forms take precedence, as with 
[jdbc_call] above.

Figure 5.  TXL Support for Agile Parsing



variables have been intentionally ignored (these issues are discussed elsewhere (Dean,2001, Malton,2001)). 
This program demonstrates the two main agile parsing techniques commonly used in TXL programs.

The program begins by including the Java base grammar, providing the standard structural definition of the 
Java language. The program the includes the SQLj dialect sub-grammar. Using agile parsing grammar over-
rides, this grammar modifies the Java grammar to allow for the syntactic forms of SQLj, the embedded SQL 
extension to Java.  The sub-grammar links to the parent grammar through the use of TXL redefines that extend 
the Java base grammar.

Following these includes the program gives the simple nonterminal definition for an RSF_Relation, consist-
ing of three identifiers on a line.  The [NL] nonterminal is a formatting instruction to TXL to insert a newline 
when writing the source output for the result tree.

At this point the program uses a redefine to extend the syntax of [host_variable] from the SQLj sub-gram-
mar to allow an RSF relation to annotate the host variable. So the redefinition modifies the [host_variable] 
nonterminal to allow the conventional form of a host variable (e.g. :result in Figure 6) or an [RSF_Relation] 
followed by a colon ( “:” ) and an identifier ( [id] ). 

The final grammar modification redefines the whole input program form to be either it was before (a Java 
program with embedded SQL) or simply a sequence of RSF relations.  The “...” nonterminal extension notation 
refers to “the previous definition” of the nonterminal, that is, to its previously defined alternative forms. The in-
tention is that the TXL transformation will transform the input Java program to an output set of RSF relations.

The main rule of the program simply invokes the rule [annotateHostVars] on the whole input to embed RSF 
relations for each host variable in the program, and then invokes the function [replaceByRSF] to extract all of 
the embedded RSF relations from the result.  The rule [annotateHostVars] visits each Java method once. The 

String getComm (int empId)
{
  String result;
  #sql {
    select Commission
      into :result
      from Salary 
      where empNo = :empId 
  }
  return result;
}

(a)

String getComm (int empId)
{
  String result;
  #sql {
    select Commission 
      into
        MethodHostVar getComm result
        :result
      from Salary 
      where empNo =
        MethodHostVar getComm empId
        :empId 
  }
  return result;
}

(b)

Figure 6. Example RSF annotation of SQLj.
 

The input is an SQLj Java dialect program which uses SQLj statements in its methods (a).  Host vari-
able references (references to the variables of the Java program itself rather than SQL variables) are 
denoted in SQLj using the standard : notation (e.g., “:result” in the program above).  The transforma-
tion proceeds by annotating each SQLj host variable reference with a MethodHostVar RSF relation 
(b).  These RSF relations are then extracted and output as the result of the transformation.



pattern of the rule separates the header of the method (type, name and parameters) from the body. It then in-
vokes the rule [doEachHostVar] on the body of the method, passing the method name (e.g., M ) as parameter.

The rule [doEachHostVar] then annotates each host variable expression ( e.g., : X ) in the method with the 
RSF relation MethodHostName, using the method name (e.g. M) and the variable name (e.g. X) as RSF argu-
ments (e.g., MethodHostName M X : X ).  The rule terminates when all host variables in the method have been 
annotated.

% Based on the Java base grammar % For each method declaration ...
include “Java.Grammar” rule annotateMethodHostVars

   replace $ [method]
% As modified by the SQLj dialect       T [type] Name [id] P [parms]
include “SQLj.Grammar”       B [body]

   by
% Syntax of RSF relations       T Name P
define RSF_Relation       B [doEachHostVar Name]
    [id] [id] [id] [NL] end rule
end define     

% ... annotate each host variable 
% Override to allow RSF annotations %  reference with an RSF relation
% on host variables %  giving the method name
redefine host_variable rule doEachHostVar MethodName [id]
     : [id]                  % original form    replace [host_variable]
  |  [RSF_Relation] : [id]   % RSF annotated form       : VarName [id]
end redefine    by

      ’MethodHostVar MethodName VarName 
% Override to allow RSF only as output           : VarName
redefine program end rule
     ...                     % “as before” 
                             % (i.e., a Java program) % Now replace program by its embedded 
  |  [repeat RSF_Relation]   % or a sequence of RSF % RSF relations
end redefine                 %   relations function replaceByRSF

   replace [program]
% Main function - applies all rules       P [program]
function main    construct Rels [repeat RSF_Relation]
  replace [program]       _ [^ P] % extract all RSF_Relations
    P [program]    by
  by       Rels  
    P [annnotateMethodHostVars] end function
      [replaceByRSF]
end function

Figure 7. Example: generating RSF relations for SQLj host variables.
 

This application uses agile parsing in several different ways.  First, the SQLj dialect definition is integrated into 
the Java base grammar using grammar overrides hidden in a separate dialect grammar file ( include 
“SQLj.Grammar” ) This modified grammar is then further refined by overriding the syntax of SQLj host variable 
references to allow them to be annotated with RSF relations ( redefine host_variable ).  Finally, the goal sym-
bol of the grammar ( program ) is overridden to allow for the output of the transformation, a sequence of RSF 
relations ( redefine program ).  The transformation proceeds by first finding every method definition in the in-
put program ( rule annotateMethodHostVars ) and then for each such method, annotating each SQLj host 
variable reference in the method with a MethodHostVar RSF relation relating the method name to the variable 
name ( rule doEachHostVar ).  Finally, the TXL syntactic extraction rule [^] is used to extract all sub-parse 
trees of nonterminal type [RSF_Relation] from the annotated program into a sequence which replaces the pro-
gram itself ( function replaceByRSF ).



Finally, the function [replaceByRSF] is applied to the entire RSF annotated program. This function uses 
TXL’s syntactic form extraction rule ([^]) to retrieve all of the embedded RSF relations in the annotated pro-
gram (i.e., all subtrees of syntactic form [RSF_Relation]).  The entire annotated program is then replaced by 
the extracted RSF relations.

This TXL program illustrates two major idioms of agile parsing in TXL.  The first is the separation of em-
bedded dialect sublanguages from the base grammar.  This same technique can be used to handle embedded 
SQL in COBOL or the use of CICS in COBOL or C.  In this way TXL is used in a way similar to the use of 
language modules in ASF+SDF.  The second is the modification of the grammar to support the task, in this 
case to allow RSF relations to be used as annotations on host variables.

The rest of this paper examines by example several other agile parsing idioms we have used over years of 
TXL programming. This set is by no means exhaustive. Agile parsing is as deep and complex a study as any 
other general programming technique, and the use of it evolves with each new project.

4. Agile Parsing Idioms

Experience with programming in TXL over the years has led to several distinct grammar programming idi-
oms exploiting agile parsing.  While these techniques are well suited to TXL’s execution-time interpretive 
parser, most of them are not limited to TXL and could easily be applied in other typed rewriting systems such 
as ASF+SDF.  Because of limited space, the examples we examine in this paper are necessarily simplified from 
the form that would be used in real TXL applications. For example, references to variable names in programs 
may involve various qualifiers and modifiers that we have elided in our examples.  We also ignore most of the 
details of the rules that use the techniques to solve a particular problem. 

Several of the grammar changes shown in these examples could in theory be made directly when building 
the base grammars common to a suite of tools, if the grammar designers had sufficient foresight.  However, it 
is important to remember that there is no way to predict the need for such changes at language grammar design 
time, and that making such changes to an existing language grammar itself can be a dangerous thing that may 
invalidate assumptions of existing tools.  By exploiting agile parsing to encode grammar tuning ad hoc on a 
tool-by-tool basis while leaving the base grammar invariant, we maximize flexibility in crafting the grammar to 
the task while avoiding any risk of undesired side-effects.

4.1 Rule Abstraction

Even if the base grammar is generalized as suggested in Section 2, there may be distinctions that are neces-
sary in general but unimportant for a particular application. A simple approach would be to write many sepa-
rate rules to handle each of the cases. Alternatively, one can remove the distinctions by overriding the gram-
mar, and then use a single “abstracted” rule to handle all the cases.  One example of this type of problem is the 
identification of those variables that are used in arithmetic contexts (i.e. addition,subtraction, etc.) in the CO-
BOL language.

The COBOL base grammar has the normal multiple levels of precedence in the expression grammar, and 
the nonterminal [statement] derives all of the different statements.  Without grammar modification, we must 
write separate rules that target each level of precedence and each type of arithmetic statement (e.g. ADD 
statement).  By modifying the grammar, we can significantly reduce the number of rules needed to extract the 
information.  Figure 8 shows the grammar overrides to handle arithmetic statements and the single rule that is 
used to extract uses of identifiers in arithmetic statements.



The grammar modifications, shown on the left hand side of the figure, accomplish two things. The first is 
that the five COBOL arithmetic statements are grouped under a single nonterminal called 
[arithmetic_statement]. The second is that the [statement]  nonterminal is changed to recognize arithmetic 
statements before other statements.  This grammar is ambiguous since the five statements characterized as 
arithmetic statements can be also reached through the other (old) alternatives of the nonterminal [statement].  
The TXL parser resolves such ambiguities by always choosing the first matching alternative, yielding an effi-
cient and deterministic parse.

The right hand side of Figure 8 shows how the modified grammar is used by the rule 
[annotateArithStatements].  The rule is called with the COBOL program name as a parameter (Prog) and visits 
each arithmetic statement extracting the identifiers from the statement.  The function [buildRSF] is used to 
build an RSF relation Arith for each of the identifiers. The changes to the grammar allow us to write one rule to 
accomplish this, where the base grammar would require five separate rules.  In an actual application, the RSF 
relations generated by [annotateArithStatements] might be gathered together and output by a rule or function 
similar to [replaceByRSF] from Figure 7, or might be used in place directly in subsequent analysis rules.

4.2 Grammar Specialization

Grammar productions, like procedures, are often reused when the same concept is reused in a grammar. For 
example, the same nonterminal may be used for all references to names of variables.  While this may be useful 

% New nonterminal type that gathers all
% arithmetic statement types
define arithmetic statement
    [add_statement]
  | [subtract_statement]
  | [mult_statement]
  | [divide_statment]
  | [compute_statement]
end define

% Override existing [statement] type to
% prefer our new [arithmetic_statement] 
% and allow RSF annotations
redefine statement
      [repeat RSF_Relation]
      [arithmetic_statement]
   |  ...
end rule

% Now one rule can be used to annotate
% all arithmetic statements, instead of
% having a rule for each different kind
rule annotateArithStatements Prog[id]
 replace [statement]
    Arith [arithmetic_statement]
 construct ArithIds [repeat id]
    _ [^ Arith]
 construct Rels [repeat RSF_Relation]
  _ [buildRSF ‘Arith Prog each ArithIds]
 by
    Rels
    Arith
end redefine

Figure 8. Example of rule abstraction: annotating arithmetic statements.
 

Agile parsing is used to override the [statement] nonterminal to prefer the new nonterminal type
[arithmetic_statement] over the existing alternatives.  This override exploits TXL’s ordered ambiguity
resolution since the existing alternatives for [statement] (referred to by the “...” notation in TXL overrides) 
already include the individual arithmetic statement types.  Because the new type appears as the first al-
ternative, it will be the chosen parse for all arithmetic statements.  [repeat RSF_Relation]  allows for any 
number of RSF relations to be prepended to [arithmetic_statement]’s.  The new parse gathers all arith-
metic statements into the one nonterminal type [arithmetic_statement], allowing us to use one ab-
stracted rule to to the annotation rather than a separate rule for each kind of arithmetic statement.



for most analysis and manipulation tasks, for some tasks, different distinctions may be more appropriate.
Figure 9 shows an example of how a grammar may distinguish between the declaration and use of variables 

in a Pascal-like language.  We show only the subset of the grammar involving variable declarations and vari-
able and function references.  In the places in the grammar where a name is declared, the [decl_name] nonter-
minal is used, while where a name is referenced, the [ref_name] nonterminal is used.  Both of these symbols 
derive the same nonterminal, [name], which in turn derives whatever a name is in the language.  This permits 
rules to separately target declarations and references to names.  This style is often used when building the base 
grammar for a language.

An example ad hoc use of this technique is to use agile parsing overrides to further refine the grammar to 
syntactically distinguish between references that may modify variables and references that cannot modify vari-
ables in a way corresponding to the distinctions made in the software schemas of (Lamb,1992) and 
(Lethbridge,2001).  The left side of Figure 10 shows some of the grammar overrides for such a program.  We 
define the nonterminals [get_ref] and [put_ref], both of which derive the nonterminal [ref_name], which is de-
fined as it was in Figure 9. Uses of [ref_name] in the grammar are redefined to use the appropriate nontermi-
nal. For example, the assignment statement, which modifies the left hand side of the assignment operator is re-
defined to use the [put_ref] nonterminal and factor, which represents a read access to a variable as a get refer-
ence ([get_ref]).  The grammar treats a function call as a [get_ref] of the function.  Of course any other uses of 
[ref_name] in the grammar must also be similarly specialized.

The right side of Figure 10 shows a TXL program that uses these overrides to generate the RSF instances 
for the PutRef relation for functions.  The initial pattern match in the rule matches any function that has not yet 
been annotated. The key is the TXL syntactic extraction operator ([^]). In this rule, it extracts all of the in-
stances of [put_ref] from the body of the function.  The function [buildRSF] used in this example is similar to 
the one used in Figure 8, but takes [ref_name]s as parameters instead of [id]s.  An obvious extension of this 
program would be to use agile parsing to abstract the cases for both functions and procedures into one rule us-
ing the rule abstraction technique of section 4.1.  

4.3 Grammar Categorization

Grammar categorization refers to modification of the grammar to make finer distinctions appropriate to the 
task at hand.  One example of the categorization idiom is the typedef problem in C that we discussed section 

define var_decl
   [list decl_name] : [type]
end define

define factor
    ‘not [factor]
  | [ref_name] [opt arguments]
end define

define decl_name
  [name]
end define

define ref_name
  [name]
end define

Figure 9. Grammar specialization in the base grammar.
 

This fragment of the base grammar for a Pascal-like language distinguishes declaring and referencing 
instances of variable names syntactically using different nonterminal types for each.  Both kinds of in-
stances have identical syntax in this language since they both derive [name].



1.2.  Although the standard C grammar does not make the distinction, it is possible to craft the grammar nonter-
minals and productions to categorize variable declarations and type definitions using typedef into separate non-
terminal forms.  In this particular case the grammar would still be unambiguous, because one branch of the 
grammar requires the keyword typedef, while the other branch would not permit typedef to occur.

A more interesting use of grammar categorization is shown in Figure 11.  In this example, an ambiguity is 
deliberately introduced into the nonterminal [method_call].  As mentioned in section 5.2, the TXL parser re-
solves ambiguities by choosing the first listed choice that matches. The redefinition of [method_call] inserts a 
new alternative that is attempted before any of the original alternatives of the base grammar  Thus calls to 
methods with JDBC names will be parsed as [jdbc_call], while other method calls will continue to be parsed as 
before. Figure 11 also shows a sample rule that might use the grammar.  This rule visits only method calls that 
have been categorized as JDBC calls, and then invokes any further analysis or transformation rules it likes on 
only those calls.  This is a somewhat simplistic example, in that any method with the same name will be classi-
fied as a JDBC method cal, but it suffices to illustrate the technique. 

% New refined kinds of [ref_name]’s
% for modifying and on-modifying references
define get_ref
   [ref_name]
end define

define put_ref
   [ref_name]
end define

% References on the left of assignments
% are modifying
redefine assignment_statement
   [put_ref] := [expression]
end redefine

% References within expressions are not
redefine factor
    ‘not [factor]
  | [get_ref] [opt arguments]
end redefine

% Allow RSF annotations on functions
redefine function_definition
   [repeat RSF_Relation]
   ‘function [decl_name] [opt parms] : [type]
      [repeat definition] 
      [body]
end redefine

% Rule to annotate every function with an
% RSF relation giving its modification set
rule annotateFunctions
   replace [function_definition]
     ‘function Fname [decl_name] 
           Parms [opt parms]
           : RetT [type]
        Defs [repeat definition] 
        Body [body]

    % Extract all of the [put_ref]’s from
    %   the function body as a sequence
    % “_” is the TXL notation for an   
    %    initially empty sequence

    construct RefNames [repeat put_ref]
      _ [^ Body]

    % Use a subrule to turn the sequence
    %   into a set of RSF relations
    % “each” invokes the subrule once for
    %   each element in RefNames 
    construct Rels [repeat RSF_Relation]
      _ [buildRSF ‘PutRef Fname each RefNames]

   by
      Rels
     ‘function Fname Parms : RetT 
        Defs 
        Body
end rule

Figure 10. Grammar specialization using agile parsing.
 

In this example the grammar has been further specialized to syntactically distinguish modifying references 
( [put_ref]’s ) from readonly references ( [get_ref]’s ) using agile parsing overrides.  This allows the simple 
rule [annotateFunctions] to annotate each function definition with PutRef RSF relations giving the set of 
variables modified by the function.



In both grammar specialization and grammar categorization we use the parser to assign different types to 
elements that can be identified syntactically.  The difference is that in specialization we are distinguishing the 
uses of a nonterminal that is used in more than one context in the grammar. For example, [ref_name] may be 
used in both expressions and for the left hand side of assignment statements. For our purposes this may be 
overly abstract, and we override the grammar to make grammatical distinctions between the uses of the nonter-
minal in the different contexts.  

In the case of grammar categorization, we have a nonterminal definition which is itself over general for our 
purposes.  For example, the [declaration] nonterminal of C makes no distinction between type and variable 
declarations.  If we are doing type analysis, this distinction may be very important to our task.  In such cases 
we override the nonterminal itself to grammatically distinguish between the different forms of interest.  

4.4  Union Grammars for Translation

When automatically translating between two languages, the grammar for the conversion program must be 
able to work with both languages.  In TXL, this normally means that the grammars must be combined, since 
TXL transformation rules are constrained to be homomorphic (type preserving) in order to guarantee a well-
formed result.  If the input and output grammars are similar, they can be combined at each level where they 
match.  For example, when translating Pascal to C, both languages are block/statement/expression based lan-
guages.  We could combine the grammars at the global declaration level, the procedure level, the statement 
level and the expression level.  As mentioned earlier, we always assume the input is syntactically valid - since 
the mixed grammar will allow mixed programs as input, this assumption is important here.

Figure 12 shows a greatly simplified example of how grammars can be combined at several levels using ag-
ile parsing.  We redefine the nonterminal [program] to be a Pascal or a C program.  The two grammars are re-
joined at the nonterminal [decl] since a C program is a sequence of declarations and a Pascal program is a se-
quence of declarations followed by a block (the main program).

The nonterminals [begin_or_brace] and [end_or_brace] handle the minor differences between Pascal and 
C blocks as does the minor difference of the presence or absence of the then keyword in if statements.  The 
new definition of the nonterminal [block] is a merge of the Pascal and C definitions which allows local declara-
tions.

redefine method_call
    [jdbc_call]
  | ...
end redefine

define jdbc_call
   [jdbc_name] [arguments]
end define

define jdbc_name
    ‘createStatement | ‘prepareStatement
  | ‘executeUpdate | ‘executeQuery | ‘getRow
end define

rule processJdbc
  replace $ [method_call]
     JDBC [jdbc_call]
  by
     JDBC [doWhatever]
end rule

Figure 11. Grammar categorization using agile parsing.
 

Overriding [method_call] with the new alternative [jdbc_call] first will cause the parser to prefer the 
[jdbc_call] to parse calls to the specified [jdbc_name]’s.  We can then take advantage of this parse to effi-
ciently target analysis and transformation rules at [jdbc_call]’s only.



Figure 13 shows two alternative rules to translate blocks between the languages. The first translates the 
block as a unit, while the second translates the difference between the beginning and end markers for the 
blocks separately.  While this example is very simplistic, it serves to demonstrate both styles.  In practice, the 
first (structural) style would be likely be used when translating entire statement elements such as loops, while 
the second (lexical) could be used to handle minor differences such as the optional “then” in the if statement.

% Start with both base grammars
include “Pascal.Grammar”
include “C.Grammar”

% In the union we accept either
% kind of program
redefine program
    [pascal_program]
  | [c_program]
end redefine

define pascal_program
  ‘program [id] [file_header]
    [repeat decl]
    [block] ‘.
end define

define c_program
  [repeat decl]
end define

% Either kind of block
redefine block
  [begin_or_brace]
    [repeat decl]
    [repeat statement]
  [end_or_brace]
end redefine

define end_or_brace
  ‘end | ‘}
end define

define begin_or_brace
  ‘begin | ‘{
end define

% Either kind of if statement
redefine if_statement
  ‘if [expression] [opt ‘then]
    [statement]
  ‘else
    [statement]
end redefine

Figure 12.  Pascal / C union grammar.
 

In a union grammar, we exploit agile parsing to join the two grammars at appropriate points in the linguis-
tic structure to form a grammar that allows either language’s syntax.   These union structures are then 
used as targets for transformation rules going from one language’s syntax to the other.

rule pascalToCBlock
  replace [block]
    ‘begin
      Decls [repeat decl]
      Stmts [repeat statement]
   ‘end
  by
    {
      Decls
      Stmts
    }
end rule

rule beginToBrace
  replace [begin_or_brace]
     ‘begin
  by
      {
end rule

rule endToBrace
  replace [end_or_brace]
    ‘end
  by
    }
end rule

Figure 13. Two alternate Pascal to C block translation strategies.
 

Both strategies take advantage of the union grammar shown in Figure 12.  In the solution on the left, the 
translation is done using one rule to transform each block structure.  In the solution on the right, a pair of 
rules does the translation in more lexical fashion without regard to structural context.



When languages are farther apart, an alternative translation technique that exploits agile parsing more exten-
sively is used.  In this technique, the translation is broken up into multiple independent translation programs 
(rulesets) each of which performs a small part of the overall translation.  The first program includes the base 
grammar for the input language (only) and uses grammar overrides only for the few changes it will make. The 
second translation uses the grammatical overrides from the first and adds overrides of its own for the further 
changes it makes. This obviously works well when the grammar overrides are independent of one another. For 
example, one pass might translate loop constructs while another may handle I/O statements (COBOL and PL/I 
have built in statements specifically for I/O).  It also works well when dependent overrides are used, although 
the dependent overrides sometimes impose an order on the application of the rule sets.  For example, translat-
ing conditional loops and translating relational expressions impose an ordering since translating a particular 
variant of the loop may involve negating the loop condition

At some point in time, it becomes difficult to define independent overrides and the cognitive overhead of 
managing the dependent overrides becomes significant. At this point in time, a new intermediate grammar is 
derived by excluding the translated features of the input language and including the new features of the target 
language that have been used.  This provides a new base grammar for subsequent transforms to override. Sev-
eral intermediate grammars may have to be written depending on the distance between the source and target 
language.

This technique has enormous advantages when developing complex language translations.  Because each of 
the translation passes has only one responsibility, independent (except for ordering) of the other passes, transla-
tions for language features can be developed independently and in parallel.  Moreover, each pass has a precise 
and simple independent specification, allowing for thorough independent testing and verification and reducing 
the chances of error. 

One initial prototype for translating COBOL to Java had seventy-two passes of this kind.  After two months 
of planning by one of the authors of this paper, the prototype was built in less than 2 months by 6 developers, 
not all of whom were assigned to the prototype full time.  The prototype translated approximately sixty thou-
sand of lines of code as a proof of concept for a bid to convert several million lines of code.  The parallel devel-
opment provided by this approach paid large dividends in time and effort. For example, three different trans-
forms for variants of perform statements and a transform for if statements were written in parallel by different 
developers in approximately three days.

Writing the intermediate results to source text between transformations is an important feature of this ap-
proach. Source text isolates the changes to the grammar minimizing the dependency between rulesets while 
preserving TXL’s strong typing within each transform. A given language feature can be parsed several differ-
ent ways during the translation process, allowing different passes to employ different agile parsing techniques.  
It also allows the grammar used to generate a given target language feature to differ from the grammar used to 
parse that feature in a subsequent pass. For example, COBOL relational expressions provide abbreviated ex-
pressions and condition variables, neither of which are supported in Java. The grammar used to merge the con-
cepts was substantially different from the conventional Java expression grammar. 

Returning to text between passes also allows transforms to be developed and tested independently even 
when the output of one pass is required as input to the next.  Since the input and output of each pass is source 
text, the developer can easily create by hand test cases to specify and validate a transform, even before previous 
transforms that create its input have been implemented.  The TXL parser is fast enough that the overhead of re-
peated parsing is not a significant factor in translation speed (See statistics in Section 5).



The seventy-two pass COBOL to Java prototype is probably representative of the upper range of this tech-
nique.  However, we would like to point out that there is a difference between the development of a special 
purpose program for a one time contract and a software system designed for a long term service. In our case, 
this was a special purpose program to transform a single COBOL system in a CICS environment to Java in an 
application server environment.  The dominant business concern was development time, not performance or 
maintainability.  Once other customers were found for the service, the system would be substantially simplified 
by merging transforms, reducing the number of intermediate grammars and overrides, and tuning performance.

4.5 Markup

For several transformation projects we found it convenient to separate the identification of the code features 
to be transformed from the actual transformation. For example, in LS/2000 (Dean,2001), the identification of 
Year 2000 sensitive code was separated from the actual remediation of the code. Since it was important that no 
Year 2000 bugs escape identification, and a reasonable number of false positives could be tolerated, the identi-
fication phase was very aggressive. That is, all situations (e.g. inequality expressions, arithmetic and sort keys) 
where   date containing year digits might pose a Year 2000 risk were identified.  As a result, some Year 2000 
safe code was identified as potentially unsafe.

The transformation phase was correspondingly conservative, transforming only identified cases that it was 
certain of.  The LS/2000 client could then manually fix any Year 2000 problems that were not transformed as 
long as they were identified.  This mixed strategy meant that any false positives identified were in general not 
automatically remediated, saving the client from having to undo changes made by the tool. The identification 
and transformation programs communicated through the use of source markup of Year 2000 “hot spots” 
(Cordy, 2001).

Figure 14 shows an example XML markup of source code identifying a condition that leads to an abnormal 
termination. Such a markup is useful when tracking down unexpected errors. 

Source markup can be accomplished using TXL agile parsing in two different ways: grammar based markup 
and polymorphic markup.  Figure 15 shows an example of grammar based markup.  In this method, we over-
ride the base grammar to allow markup on those elements of the grammar that we are interested in.  The right 
hand side of Figure 15 shows a sample rule that might introduce the markup.  The skipping statement in TXL 
prohibits the rule from searching inside of subtrees rooted at the given nonterminal. In this case, the skipping 
statement prevents the rule from going into an infinite loop.  The rule replaces an expression that meets some 
condition with a marked up expression containing the same expression. By prohibiting the rule from matching 
inside of expressions, the new subexpression is not matched again.

The information used to identify which features to markup (e.g. which expression) can come from several 
places.  It can come from analysis of other features in the program, or it can be communicated in fact from 
from global analysis done over several programs (Dean,2001).  This technique proved to be so useful, that it 
was implemented in a higher level language, HSML (Cordy,2001).

f = fopen(filename, “r”);
if ( <ERROR_CONDITION> f == NULL </ERROR_CONDITION> ) {
    fprintf(stderr, ”could not open %s for input\n”, filename)
    exit(ENOFILE)
}

Figure 14. Example XML markup of C code.



Markup was one of the main reasons that the polymorphic nonterminal [any] was introduced into TXL. Fig-
ure 16 shows a modified version of Figure 15, based on the TXL manual (Cordy,2000).  Instead of overriding 
[expression] to permit markup, the [any] type is used to indicate that any nonterminal is permitted to be 
marked up, not just [expression].

In this example there are two changes to the rule [annotateExpression]. The first is that it calls the function 
[doMarkup] to add the markup to the input.  The second is that the skipping clause now indicates that the non-
terminal markup is not to be traversed when looking for a match.

The function [doMarkup] uses nonterminal polymorphism ([any]) in its pattern to match any nonterminal 
node.  In this case it matches the [expression] selected by [annotateExpression] and allows us to replace the 
expression nonterminal with a marked up version of itself.  While they can be useful in agile parsing, polymor-
phic rules are generally discouraged in TXL programming since they intentionally violate the type constraints 
imposed by the grammar.

4.6 Semiparsing

This agile parsing technique is essentially the same as the “island” and “lake” grammar technique of van 
Deursen and Kuipers (van Deursen,1999) and Moonen (Moonen,2001, Moonen,2002). It can be used both to 
ignore sequences of input tokens in some contexts, and to pick out items of interest in a stream of otherwise un-
interesting input tokens. Both versions of the technique were used in LS/2000 (Dean,2001) to deal with embed-
ded SQL.

% The C base grammar
include “C.Grammar”

% Simple grammar of markup tags
define startmark
   < [id] >
end define

define endmark
   </[id] >
end define

% Extend expressions to allow for markup
redefine expression
       ...
    | [startmark] [expression] [endmark]
end redefine

% Mark up all expressions that meet some
% semantic condition
rule annotateExpression
    % Avoid infinite markup
    skipping [expression]

    % Markup each expression ...
    replace $ [expression]
        E [expression]

    % ... that meets some condition
    where
        E [meetsSomeCondition]

    % ... as interesting.
    by
        <interesting> E </interesting>
end rule

Figure 15. Grammar-based expression markup in C.
 

In this strategy each nonterminal that we want to be able to mark up separately extended using agile pars-
ing overrides to allow for markup, as shown for [expression] above.  Using this strategy, markup rules 
must be careful not to re-mark an already marked-up [expression].  The TXL skipping clause helps with 
this by preventing rules from searching inside the specified nonterminal.  The $ in the replace clause is a 
TXL optimization hint asking the tree search engine to use a one-pass strategy.  The where clause in-
vokes a subrule that uses other pattern matches and semantic conditions to test for the properties we’re 
interested in.



While any generalized parsing algorithm supports Moonen’s technique, TXL’s parser has an extra feature to 
make a variant of the technique easier to use.  Figure 17 shows as subset of a TXL grammar that recognizes 
embedded SQL.  The key feature in this grammar is the nonterminal modifier not.  The TXL expression [not 
end_exec]  tells the parser that the following grammatical form cannot match the same sequence of tokens that 
the nonterminal [end_exec] matches.  [not] is essentially a lookahead check; it does not consume any tokens 
from the input.  This acts as a guard preventing the parser from consuming non-SQL tokens in error.  To extend 
Moonen’s metaphor, it can be thought of as a breakwater that prevents the lake from consuming shoreline.  The 
predefined nonterminal [token] matches any token but a keyword, while the nonterminal [key] matches any 
keyword token.

The definition of the [host_variable] nonterminal extracts host variables out of the otherwise unparsed SQL 
statements.  This would permit analysis rules to check if variables are referenced in SQL statements while not 
having to deal with the details of the SQL syntax. The [token_or_key] nonterminal is a TXL idiom used when a 
grammar author wants to consume one or more arbitrary lexical tokens.

% C base grammar
include “C.Grammar”

% Polymorphic markup grammar
define startmark
    < [id] >
end define

define endmark
    </[id] >
end define

define markup
   [startmark]
     [any]
   [endmark]
end define

% As before, find all interesting 
% expressions and mark them up
rule annotateExpression
    skipping [markup]
    replace $ [expression]
      E [expression]
    where
      E [meetsSomeCondition]
    by
      E [doMarkup ‘interesting]
end rule

% But this time do it using a generic 
% function that we can use to mark up 
% anything at all
function doMarkup Tag [id]
  % We can mark up anything at all
  replace [any]
    Any [any]

  % Make the marked-up version
  construct Markup [markup]
    < Tag > Any </ Tag >

  % Type convert it back to generic ...
  deconstruct Markup
    MarkupAny [any]

  % ... and replace
  by
    MarkupAny
end function

Figure 16. Polymorphic grammar and rules for markup.
 

In this case the type [markup] exploits TXL’s grammar polymorphism to allow for markup on any nontermi-
nal at all ( [any] ).  The function [doMarkup] exploits this polymorphism to mark up anything it is applied to 
with the given tag.  This technique is particularly useful in applications when many different nonterminals 
are being marked up, because it does not require overrides.



4.7 Data Structure Grammars

There is no reason why every nonterminal in the grammar should be reachable from the goal symbol.  A 
common technique in TXL programs is to provide separate grammars to hold auxiliary data structures not part 
of the main input.  Remember that the grammar defines the type space of a TXL program.

TXL can read from more than one file, and the input from the second file need not be parsed with the same 
grammar.  Figure 18 shows a generalized markup program in TXL.  The main input is a Java program in which 
each name (declaration or reference) has been annotated with a string containing a unique identifier. The form 
and use of this annotation is discussed elsewhere (Dean,2001, Guo,2003). For the purpose of the TXL program 
in Figure 18, each declaration and reference of a name has string embedded within it which contains the unique 
identifier. A second file contains a list of unique identifiers and the tags that are to be applied to them.  This file 
is generated from some other analysis program.  The file is read by the main rule and is parsed as a sequence of 
[markItem]s, each of which is a [stringlit] paired with an [id].

The work is done by the rule [doMarkup], which visits each reference ([ref_name]). The unique identifier 
(the string literal) is extracted from the reference using a pattern match (the first deconstruct statement). the 
second deconstruct statement is a pattern match that searches the sequence of [markitems] for one that con-
tains the unique identifier.  If a matching pair is found, the matching [id] is bound to the variable MarkupTag 
for use in the rest of the rule.  The convention of using a searching deconstruct on a sequence of pairs such as 

% Begin with Cobol
include “Cobol.Grammar”

% Extend to allow for SQL statements
redefine statement
    ...
  | [sql_statement]
end redefine

define sql_statement
    EXEC SQL
      [repeat sql_item]
    [end_exec]
end define

define end_exec
    END-EXEC
end define

% Use lake and island parsing to parse only
% the parts of the SQL we’re interested in
% (i.e., host variable references) and 
% ignore the rest
define sql_item
    [host_variable]
  | [water]
end define

define host_variable
    : [ref_name]
end define

define water   
    % Bounded by the END-EXEC shoreline
    [not end_exec] [token_or_key]
end define

define token_or_key    
    % TXL idiom for “any lexeme”
    [token] | [key] 
end define             

Figure 17. Semi-parsing (“lake and islands”) grammar for embedded SQL.
 

We begin by extending the [statement] nonterminal to allow for the new form [sql_statement].  Since we 
are only interested in [host_variable] references embedded in the SQL, we avoid parsing the complex 
SQL syntax using semi-parsing to recognize the embedded [host_variable] “islands” and slough off the 
uninteresting “water” (arbitrary other input) until we hit the end of the SQL statement ( END-EXEC ).



[markItem] is a recurring technique in TXL programs that implements an associative lookup table.  Lookup ta-
bles can be read from files, constructed by rules, or be coded as constants in a TXL program.

% The Java base grammar and unique
% naming overrides
include “Java.Grammar”
include “JavaUID.Grammar”

% Simple grammar of markup tags
define startmark
   < [id] >
end define

define endmark
   </[id] >
end define

% Extend refs to allow for markup
redefine ref_name
      ...
   | [startmark]
       [ref_name]
     [endmark]
end redefine

% Syntax of items in second input
define markItem
   [stringlit] [id]
end define

% Main function - main input is parsed as
% Java [program], second input as a sequence
% of [markItem]’s
function main
    % Main input - a Java program
    replace [program]
      P [program]

    % Second input - a file of markup 
    % directives of the form 
    %    “YY DATEREC Foo.cob” YYDate
    construct MarkTable [repeat markItem]
       _ [read “MarkList”]

    % Do all the markups specified by the
    % directives
    by
      P [doMarkup MarkTable]
end function

% Mark up references as directed 

rule doMarkup MarkTable [repeat markItem]
    % Avoid infinite markup
    skipping [expression]

    % For each ref_name ...
    replace $ [ref_name]
        Ref [ref_name]

    % ... get its unique name string ...
    deconstruct * [stringlit] Ref
        RefUniqueName [stringlit]

    % ... and if there is a markup directive
    % for it in the table ...
    deconstruct * [markItem] MarkTable
        RefUniqueName MarkupTag [id]

    % ... then mark it up with the given tag
    by
        <MarkupTag> Ref </MarkupTag>
end rule

Figure 18. General markup program using a second input with a different grammar.
 

This is an example of using two separate unrelated grammars, one to handle the main input (in this case  
a uniquely named Java program) and one to parse a secondary input (in this case a table of markup direc-
tives).  The program parses each using its own grammar  goal ( [program]  for the uniquely named Java, 
and [repeat markItem] for the table of directives).  The [doMarkup] rule searches for each variable refer-
ence in the program ( [ref_name] ), uses a deep pattern match ( deconstruct  *  [stringlit] ) to find its 
unique name string, and then uses another deep pattern match ( deconstruct * [markItem] ) to see if the 
reference’s unique name is in the table of directives and if so what its markup tag should be.  Deep pat-
tern matches ( deconstruct * ) search the given parse tree for an instance of a subtree matching the 
given pattern.



Other data structures can be built. They can be entirely isolated from the main grammar, or they can share 
nonterminals with the main grammar. Thus the grammar section of a TXL program can be considered to define 
a forest of trees with possibly shared branches and leaves rather than simply one tree.

5. Experience

The core concept in all of these agile parsing techniques is that of a base grammar coupled with a set of task 
specific overrides.  The base grammar is crafted to be appropriate for general transformations and to be easily 
modified for custom transformations.   Each program then uses a set of nonterminal overrides to enlist the 
power of the parser to structure the input in the most convenient way for the task at hand.

The agile parsing techniques discussed in this paper have been extensively proven in large scale industrial 
use.  All of the techniques were applied in the LS/2000 (Dean,2001) and  LS/AMT tools developed at Legasys 
Corporation. Together these two tools have analyzed and transformed more than 4.5 billion lines of COBOL, 
PL/I and RPG source code. While individual projects are confidential, some of the subjects of these projects 
were :

• Automated Year 2000 analysis and remediation (COBOL, PL/I, RPG)
• Automated Language Translation (FORTRAN to Java, COBOL to Java)
• Automated migration from a character terminal environment to an enterprise messaging environment
• Automated migration from a character terminal environment to a three tier web based environment
• Performance analysis of a mutli-step mainframe batch program
• Analysis of decision points leading to abnormal termination.

Since these tools were all being used in an industrial setting, performance of the tools was a serious concern.  
Our profiling of the time spent in these processes indicates that in spite of the fact that agile parsing techniques 
were used extensively, parsing was never a significant fraction of the execution time.  As a matter of fact, sig-
nificant performance gains in the runtime of our tools were experienced almost every time the rule sets were 
simplified using one of these techniques.  For example, the unique renaming transformation of the LS/2000 
system was sped up by factor of more than 10 by introducing a small number of customized grammar overrides 
to simplify and tune the renaming ruleset, with no measurable increase in parse time.

The techniques described in this paper depend heavily on the generality and flexibility of the parser.  TXL’s 
parser gains its agility using an extremely naive interpretive full-backtracking top-down parser.  Although the 
theoretical worst-case performance of this parser on a worst-case context-free grammar is exponential, in prac-
tice real programming languages (and hence their grammars) are dominated by linear productions such as state-
ment and declaration sequences (in TXL, [repeat statement], [repeat external_declaration], and so on), with 
the more general productions limited to local structures such as expressions.  These practical realities have the 
effect of reducing TXL parse performance to effectively linear, because observed practical limits on the length 
of coded expressions (i.e., at most a couple of lines) bound the cost of local backtracking to a constant (say, k), 
which when multiplied by the LL behaviour of the sequential higher level productions N yields an observed 
complexity of k*N, which is the measured behaviour of the TXL parsers for C++, Java, COBOL, RPG, PL/I 
and most other languages.  

This approximately linear behaviour can be validated experimentally.  On an 800 MHz PowerPC, using 
sources from the open source jedit application, the FreeTXL (TXL,2003) parser takes 0.24 seconds to parse 



and pretty-print a 1,000 line Java source file, 1.35 seconds for a 10,000 line source file and 11.74 seconds for a 
100,000 line source file.  The corresponding numbers for parsing and pretty-printing C++ are 0.17 seconds for 
a 1,000 line C++ source file, 1.80 seconds for 10,000 lines and 18.18 seconds for 100,000 lines (about 5,000 
lines per second).

Of more relevance to this paper is performance when exploiting agile parsing.  In (Cordy, 2003) we have 
demonstrated a generalized generic selective AST markup technique using the polymorphic markup method of 
Figure 16.  On  an 800 MHz PowerPC,  this technique takes only 0.52 seconds of CPU time to selectively mark 
up all expressions and function declarators in the 800 line standard open source groff.cpp program, compared 
to 0.16 seconds of CPU time to parse and pretty print it only.  More importantly, selective XML AST markup 
exhibits the typical approximately linear performance of the TXL parser when the size of the input is scaled up.  
On the same machine, marking up all of the program structure AST nodes (declaration and statement catego-
ries, etc.) for a 2,200 line Java source file taken from the open source jedit application takes 5.33 seconds, and 
marking up the entire 22,036 line source of  jedit as a single source file takes 41.5 seconds.

Figure 19 shows the architecture of the LS/2000 automated Year 2000 analysis and remediation system for 
the languages COBOL, PL/I and RPG.  Agile parsing techniques are used extensively in the Import, Design 
Recovery Hot Spots and Version Integration subsystems. All of the subsystems use a common base grammar, 
although a different base grammar is used for each language.  All of the base grammar require that the declara-
tions and references to named entities are annotated with a unique identifier ("UID") and that all record defini-
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Figure 19. LS/2000 system architecture
In the LS/2000 system, the subsystems Import, Design Recovery, Hot Spots and Version Integration share a 
common base grammar.  Each of the subsystems uses agile parsing techniques to modify the base grammar 
to make the task simpler.  The Import and Version Integration phases use Renaming Overrides to assist in 
transforming the source into an internal form and back.  Design Recovery uses Fact Overrides to assist in ex-
tracting model information from the source code, and Hot Spots uses Markup Overrides to help in identifying 
and transforming Year 2000 sensitive code.



tions be fully disambiguated using brackets  (COBOL and PL/I use a context sensitive method of determining 
record structure and nesting).  Almost all of the agile techniques discussed in this paper were used in LS/2000.

The Import and Version Integration subsystems use a set of grammar overrides (Renaming Overrides) that 
make UID annotation and brackets optional so that raw source code can be transformed to the internal form and 
back.  Import is responsible for adding unique names and brackets while Version Integration removes them. 
The Design Recovery and Hot Spots components also have their own different variants of the main grammar.  
Design Recovery uses a set of fact annotation overrides similar to the technique introduced in Section 3.2 to ex-
tract a design fact base of the system. Hot Spots has a set of grammar overrides to allow markup (Section 4.5) 
and transform date sensitive code. While this architecture originated in LS/2000, it is a general purpose analy-
sis and transformation architecture that has been used in many post-Y2K tasks and is still reflected in our re-
search program.

6. Related Work

While this paper concentrates on the use of agile parsing in TXL, the idea is by no means limited to TXL.  
Any flexible parsing technology that allows for grammar modification can in theory be used to exploit the 
same techniques.

  Van den Brand et al. (van den Brand,1998) have been leading proponents of the need for flexible parsing 
technology in software engineering, and their ASF+SDF meta-environment (van den Brand,2001, van den 
Brand,2002) provides a very general flexible parsing and source transformation toolkit.  Lämmel (Lämmel 
2001b) has already exploited this toolkit to provide a grammar adaptation system with strong similarities to our 
agile parsing.  Cox (Cox,2000) notes the limitations of parsing in software engineering tasks and proposes pro-
viding a different kind of flexibility using a robust lexically-based lightweight method to simplify analysis by 
avoiding a full parse. Generalized parsing techniques are also exploited in DMS (Baxter 1997).

The advantages of programs as structured documents and the importance of XML markup in program com-
prehension tasks has been well documented by Badros (Badros 2000), Cox (Cox 2000), Maletic (Maletic 2002) 
and many others. Badros (Badros 2000) discusses the limitations of AST markup produced by traditional pars-
ers, and proposes a powerful special-purpose XML markup for Java.  Maletic (Maletic 2002) discusses the ad-
vantages of XML source markup in viewing and understanding programs.  More details about the use of agile 
technique for markup are discussed in detail by Cordy (Cordy 2003).

The need to reflect results of program comprehension into source is well discussed in our own papers on 
HSML (Cordy 2001) and LS/2000 (Dean 2001).  Island parsing techniques in source code analysis were first 
described by van Deursen and Kuipers (van Deursen, 1999) and further discussed by Moonen (Moonen 2001, 
Moonen 2002). The idea of structuring grammars to make rulesets easier to author and understand has been 
discussed by Sellink and Verhoef (Sellink 1998, Sellink 1999).

Our paper extends this body of work by showing how grammars can be effectively extended on an ad hoc 
basis to assist in each individual analysis and transformation task.  Our experience in industrial application of 
TXL has shown that it is just as effective to tune the grammar for performance and simplicity as it is to tune the 
code.

7. Conclusions

The flexible grammar definition capabilities and efficient parsers of modern generalized parsing techniques 



make it easy for programmers to customize a grammar to the problem. This leads to a new paradigm for pro-
gramming software comprehension systems - agile parsing.  Using agile parsing, grammars are customized to 
provide a parse of the source which is most convenient or efficient for each particular analysis or transforma-
tion task.  Often this customization can significantly reduce and simplify the analysis and transformation rules 
of the task.  

The TXL programming language explicitly supports agile parsing using the concept of grammar overrides. 
Grammar overrides allow separate specification of custom modifications to the input language’s base grammar 
suitable for each analysis tool without disturbing or cloning the original grammar.  TXL’s polymorphic gram-
mar capabilities and ordered ambiguity resolution make it particularly well suited to agile parsing.

As modern generalized rewriting systems such as TXL, DMS and ASF+SDF are used for more and more in-
dustrial projects involving large scale legacy software systems, techniques that make the best use of the 
strengths of these systems becomes more important.  By leveraging on the capabilities of modern general pars-
ers to simplify and generalize analysis and transformation rules, agile parsing has an important role to play in 
these applications.
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