
Survey and Classification of Model Transformation Tools

Nafiseh Kahania, Mojtaba Bagherzadeha, James R. Cordya, Juergen Dingela, Daniel Varrób,c

aSchool of Computing, Queen’s University, Canada
bSchool of Electrical and Computer Engineering, McGill University, Canada

cMTA-BME Lendület Research Group on Cyber-Physical Systems, Budapest, Hungary

Abstract

Model transformation lies at the very core of model-driven engineering (MDE), and a large number
of model transformation languages and tools have been proposed over the last few years. These tools
can be used to develop, transform, merge, exchange, compare and verify models and metamodels. In
this paper, we present a comprehensive catalogue of existing metamodel-based transformation tools
and compare them using a qualitative framework. We begin by organizing the 60 tools we identified
into a general classification based on the transformation approach used. We then compare these tools
using a number of particular facets, where each facet belongs to one of six different categories and may
contain several attributes. The results of the study are discussed in detail and made publicly available
in a companion website with a capability to search for tools using the specified facets as search criteria.

Our study provides a thorough picture of the state-of-the-art in model transformation techniques
and tools. Our results are potentially beneficial to many stakeholders in the modeling community,
including practitioners, researchers, and transformation tool developers.

Keywords: Model-driven development, Model transformation tools, Metamodel, Classification,
Survey

1. Introduction

Model-driven engineering (MDE) is a growing field that advocates the use of models during the
entire development process of a system. By leveraging abstraction and automation, MDE techniques
can simplify communication and design activities, increase productivity and compatibility between sys-
tems, and boost development efficiency [1]. MDE can also facilitate a more comprehensive description
of the system, since models can be used to describe different viewpoints.

A special case of MDE is model-driven development (MDD), a model-centric development approach
in which models serve as primary artifacts from which, e.g., fully executable code is generated auto-
matically. Model transformation lies at the heart of MDD, supporting model-to-text (M2T) trans-
formations, which allow the transformation of models to textual artifacts such as code, reports, or
documentation; and model-to-model (M2M) transformations, through which input models can be used
to create different kinds of models in different languages and on different levels of abstraction. Model
transformation can thus support a broad range of tasks including refinement, synthesis, abstraction,
querying, translation, migration, analysis, refactoring, normalization, optimization, merging, debug-
ging, and synchronization [2, 3]. MDD-based systems have been widely used in the industry at large
companies, such as Thales, Airbus, Boeing, and Ericsson.

Email addresses: kahani@cs.queensu.ca (Nafiseh Kahani), mojtaba@cs.queensu.ca (Mojtaba Bagherzadeh),
cordy@cs.queensu.ca (James R. Cordy), dingel@cs.queensu.ca (Juergen Dingel), daniel.varro@mcgill.ca (Daniel
Varró)

1

Over the last two decades, an impressive amount of research effort has been invested in model trans-
formation, and a large number of standards, languages, and tools have been proposed. As catalogued
in this paper, more than 60 tools supporting model transformation have been presented in some form.
These tools differ significantly in their capabilities, limitations, and requirements, making it difficult
to select the tool that is most suitable for any given task. To facilitate the effective use of model trans-
formation in practice and consolidate existing research and development results, a comparative survey
of the state-of-the-art in model transformation tools would be useful. While a number of publications
[4, 5, 6, 7, 8, 9, 10, 11, 12, 3, 13, 14, 15] have classified and compared model transformation approaches,
none of them comprehensively addresses this need, either because they cover only a small number of
tools, or because they compare them with respect to only a limited, predominantly technical, set of
criteria.

To remedy this situation, this paper presents a comprehensive, up-to-date, comparative survey
of the state-of-the-art in model transformation tools. It is based on an extensive study of 60 tools
and classifies and compares them using 45 facets distributed over six categories: general, model-level,
transformation style, user experience, collaboration support, and runtime requirements. The general
category considers non-technical facets, such as licensing and the availability of supporting resources.
The model-level category focusses on aspects related to modeling, such as the support for different lan-
guages and standards (to express models and metamodels), repositories, and model management. The
transformation category compares tools with respect to aspects of transformation implementation and
execution such as rule scheduling, organization, and application control. The user experience category
collects facets pertinent to the user-friendliness of the tool, such as editor features and support for
typical development activities such as debugging, refactoring, and profiling. The collaboration support
category groups facets related to collaborative development, interoperability, reuse, and extensibil-
ity. The runtime requirements category is related to assumptions the tool makes about its operating
environment, such as operating systems, hosting frameworks, and IDEs.

In summary, our paper makes the following contributions:

1. Classification and comparison. We present a catalogue of all 60 model transformation tools
surveyed using a broad classification of the general transformation approach underlying each tool
(Section 4). We then conduct a fine-grained comparison of the tools with respect to 45 facets
grouped into the six categories listed above (Section 5). To increase the accessibility and utility
of the catalogue and the comparison, we have made both publicly available on a website1 with a
search capability determining which tools support a given set of facets.

2. Analysis of discontinued tools. We study discontinued tools in an attempt to determine
factors that may have contributed to their discontinuation. We observe commonalities among
these tools, such as the number of developers, the standards used, and the kinds of underlying
transformation approaches supported. For example, more than half (6 of 11) of the tools based
on a relational transformation language have been discontinued. More specifically, four out of
nine tools targeting the QVT standard have been discontinued.

3. Analysis of (un)supported facets. We summarize which facets are supported and which
are unsupported overall. We study the relationship between the transformation approach and
transformation language used, on the one hand, and the facets supported, on the other hand.

Our results are potentially useful to many stakeholders in the modeling community, including prac-
titioners, researchers, and tool developers. Model transformation practitioners can use our catalogue
and comparison to determine the suitability of existing tools for planned transformation tasks, and
our facets to evaluate and compare new tools. Our identification of facets that are poorly supported

1http://www.mdetools.com

2

by existing tools might inspire modeling researchers to identify and tackle the underlying research
challenges, using our catalogue to help them identify appropriate tools to prototype potential solutions
to these challenges. Model transformation tool developers can use our work to compare their tools
with other existing tools, to improve their capabilities and support for certain facets.

The remainder of this paper is organized as follows. Section 2 presents a basic introduction to
model-driven development. Section 3 provides an overview of the research method used in our study.
Section 4 classifies tools based on transformation approaches, while Section 5 compares tools based
on different facets. Section 6 highlights central observations and discusses results. Section 7 examines
related work, and Section 8 concludes the paper.

2. Background

We begin with a basic introduction to model-driven terminology. Rothenberg et al. [16] define
a model as follows: “A model represents reality for the given purpose; the model is an abstraction of
reality in the sense that it cannot represent all aspects of reality. This allows us to deal with the world in
a simplified manner, avoiding the complexity, danger and irreversibility of reality”. Considering models
as dynamic artifacts [17], it is possible to perform different operations on them, such as merging to
integrate models and produce a new model, or refactoring to improve the internal structure of the
model without changing its behavior or semantics.

Languages used to specify models can be graphical, textual, or both. There are two classifications
for modeling languages [17]: (1) domain-specific modeling (DSM) languages, which are dedicated
to a particular domain or context for modeling purposes; and (2) general-purpose modeling (GPM)
languages, such as the Unified Modeling Language (UML) [18], which can be applied to any domain.
DSM languages have concepts relevant to the domain, and thus support higher-level abstractions than
GPM languages, which typically makes them less complex and easier to use.

A modeling language is defined by its abstract syntax, its semantics, and its concrete syntax(es).
The abstract syntax describes the structure and elements of the model, the properties and relations
between the elements, and the validity constraints (i.e., well-formedness rules) of the model. Abstract
syntax acts like a grammar for textual languages. In MDD, the abstract syntax is captured by a
metamodel. We say that a model conforms to its metamodel, and that a metamodel instantiates models
of its type. The concrete syntax can be textual, in the style of a programming language, graphical, using
graphical icons to display the elements of the model and the relations between them, or both. Tools such
as Graphiti [19] and Sirius [20] can specify graphical concrete syntax, and tools such as Xtext [21] and
EMFText [22] can be used to describe textual concrete syntax. It is possible to have several different
concrete syntaxes for one abstract syntax. In addition, concrete and abstract syntax are separate, thus
it is possible to apply the same concrete syntax for different abstract syntaxes. However, an abstract
syntax does not specify the concrete notation or the meaning of relationships and other language
concepts. Thus, a semantics, defined using denotational, operational, translational, or pragmatic
approaches [23], is needed to describe the meaning of modeling elements and their combinations.

A model transformation is a program used to transform a model from one representation to another.
The input of a transformation is called an input model, which conforms to a source metamodel, and its
output is an output model, which conforms to a target metamodel (in M2M transformations), or gram-
mar (in M2T transformations). A model transformation definition written in a model transformation
language defines how one or more input model(s) are transformed to one or more output model(s).
If the language of the transformation definition is rule-based, the transformation definition consists
of a set of transformation rules. The transformation engine or tool uses the model transformation
definition to produce output model(s) from input model(s).

3

Conferences,
 Journals, Workshops

Literature Review

Contact Developers

Online Search

48 Tools

26 Tools

Online
Resources?

Metamodel
based?

60 ToolsYesYes

Figure 1: Tool selection process.

3. Research Method

The main contribution of this paper is a summary of the results of a study of 60 model transfor-
mation tools, organized into a new comprehensive catalogue of tool-related facets. In the following,
we discuss the approach that we followed to select the tools and facets, create the classification, and
evaluate the tools using it.

3.1. Tool Selection

As shown in Figure 1, in order to select the tools for our study, we began by identifying the main
conferences (i.e., the International Conference on Model Driven Engineering Languages and Systems
(MODELS), the Transformation Tools Contest, the European Conference on Modelling Foundations
and Applications (ECMFA), and the Internationl Conference on Model Transformation (ICMT)), jour-
nals (i.e., Software and Systems Modeling (Springer) and Science of Computer Programming (Else-
vier)), and workshops (i.e., the Workshop on Model-Driven Engineering, Verification and Validation
(MoDeVVa), the Workshop on Domain-Specific Modeling (DSM), and the Workshop on Bidirectional
Transformations (BX)) in the field, and reviewed previously published surveys of model transformation
tools. 48 tools were identified in this first step. We then excluded tools that do not have a download
page (e.g., ArcStyler [24], Yet Another Transformation Language/YATL [25], Codagen Architect [26],
OptimalJ [27], EMFTiger [28], FUUT-je [29], MOMENT [30], ATC [31], b+m ArchitectureWare [32],
GenGen [33]), and tools that are not fully available or usable (e.g., QVTd [34] which is a partial im-
plementation of QVTc and QVTr; and VMTL tool [35]). Our focus is on metamodel-based modeling
tools, so we excluded tools such as WebRatio [36] and UMT [37] that are not metamodel-based. This
second step resulted in a list of 34 tools.

In the third step, we used several search engines (hosted by Google Scholar, Sourceforge, and Github)
and search terms (“model transformation tools”, “model-to-model tools”, “model-to-text tools”, “M2M
tools”, “M2T tools” and “metamodel-based tools”) to locate more tools. This step identified an
additional 23 tools. We also contacted known tool developers via email and in person (e.g., at the
MODELS conference) to ask for more tools. This step resulted in 3 more tools. Our final list includes
60 tools (Tables 1 and 2).

3.2. Facet Selection

Inspired by the work of Roy et al. on the evaluation of clone-detection tools [38], we organized the
features used to compare the model transformation tools into facets, each of which have different, but
possibly overlapping attributes. Related facets are grouped into categories. Tables 3 to 9 list the facets
pertinent to each category. The first column in each table shows the full name of the facet, the second
column is related to the unique identifiers of the facet’s attribute values, the third column provides a

4

Figure 2: High-level classification of tools.

short description of the values, and the last column shows which percentage of tools support the facet’s
attributes.

To select the facets, we used the following three steps:
(1) We mined all 60 tool documents and their websites to determine their facets.We noticed that

some of the assessed tools provide capabilities in addition to supporting the development of model
transformations. For example, the Melange tool supports generic model transformations that can be
applied to models conforming to different modeling languages, without having to change anything
(based on model typing). Melange features language composition, slicing, and other mechanisms to
ease development of DSM languages. The GROOVE tool is mainly used for editing graphs and graph
transformation rules, and model checking graph transformations [39], so supports transformation as
a by-product. In each case, we studied these additional facets to determine whether they could be
expected to be supported by model transformation tools in general.

(2) We studied the related publications on classifying and comparing model transformation tools
based on their features, such as [8, 9, 4, 5, 10, 12], to make sure that the list of our facets is complete.
The final results of the mentioned steps includes 45 facets. To the best of our knowledge, 10 of these
facets are novel and have not been used in the literature before. We label the previously facets with a
reference to the corresponding publication. In many cases, the attribute values of shared facets are on
a different level of granularity than in the original publication to allow for the information we collected
in steps 1 and 2 of our facet selection process to be better reflected.

(3) We categorized the extracted facets into six categories (i.e., general, model-level, transformation,
user experience, collaboration support, and run-time requirements).

3.3. Tool Evaluation

The first author assessed the facets of the tools using all of the tools’ available resources, including
websites, tutorials, user manuals, forums, and published papers, as well as experience working with
the tools, to extract the required information. The results were saved in an evaluation form, and then
re-checked by the second author. In cases where we were uncertain about a facet, we contacted the
authors of the tools to clarify, and to check that the other facets noted for their tools were correct.
Tool developers replied and provided their feedback for 52 of the 60 tools. Tables A.10, A.11 and A.12
show the results of this overall evaluation.

4. Classification of Tools

Based on the representations of the input and output models of the transformation, model trans-
formation tools can be classified into three main categories: model-to-model (M2M), model-to-text

5

(M2T) and text-to-model (T2M). The output of a M2M transformation is an instance of a target
metamodel, whereas M2T approaches typically use target grammars to describe the structure of their
textual output. T2M transformation tools, such as MoDisco [40], accept text representations as input
and produce output models described by metamodels. T2M tools are most often used for reverse
engineering, and are usually based on compiler technology (such as parser generation), rather than
modeling technology (such as metamodeling). In this paper we focus on metamodel-based approaches,
that is, M2M (Section 4.1) and M2T (Section 4.2) transformations, and do not consider T2M further.
Tools that support both M2M and M2T model transformations are discussed in both categories. In-
spired by previous surveys [4, 5] and to facilitate comparison, we categorize the tools based on their
main functionality into two main groups namely: M2M and M2T. Figure 2 shows the corresponding
classification tree.

Tables 1 and 2 provide a high-level overview of M2M and M2T tools respectively, based on a
classification of their transformation approach. The third column in each table provides a brief, informal
description of the tool, and the fourth column shows the language in which it is implemented. The
columns labeled FR and LR show the dates of first and latest release of tools up to the date of this
study (2017). We classify the M2M and M2T tools according to their transformation approaches, as
described in the following sections.

4.1. Model-to-Model (M2M) Tools

M2M model transformation tools convert one or more input models (conforming to a source meta-
model) into one or more output models (conforming to a target metamodel). We classify M2M tools
based on their transformation approach, which describes the set of language constructs or mecha-
nisms used to describe and apply transformations. M2M model transformation approaches can be
divided into relational/declarative (Section 4.1.1), imperative/operational (Section 4.1.2), graph-based
(Section 4.1.3), and hybrid (Section 4.1.4).

4.1.1. Relational/Declarative Approaches

Transformation specifications in languages and tools using this paradigm focus on which input ele-
ments should be transformed and their corresponding output elements (e.g., by specifying predicates or
input-output constraints), without directly specifying how this transformation should be executed. In
other words, relational approaches are based on defining relationships between the elements in the input
and output models. These relationships are typically described using mathematical relations repre-
sented as predicates or constraints. Languages implementing the relational/declarative transformation
paradigm can be either functional or logical. A logical transformation language has features that are
well-suited to relational approaches such as searching, constraint propagation, and backtracking. In
functional languages, the transformation from input(s) to output(s) is described as the composition of
a set of functions mapping input model elements to corresponding outputs. UML-RSDS, Tefkat, JTL,
PTL, ModTransf, PETE, and TXL are examples of tools that use relational approaches.

QVT Relational (QVTr) [102] is an example of a relational model transformation language that is
supported by several tools (e.g., Echo, QVTR-XSLT, ModelMorf, mediniQVT). In QVTr, a relation is
specified using two or more domains, with a pair of when and where clauses. Each domain represents
a (partial) model in the transformation. The when clause determines the conditions under which the
transformation relationship holds, and the where clause determines the conditions that must be met
by all model elements for it to apply. Patterns are used to define the domains, which can be marked
as either check-only or enforced. In check-only mode, the consistency of the output model elements is
checked. In the case of a false result, the rule is enforced by modifying the elements of output model
to make the output consistent with the input model. QVTr has both a textual and graphical concrete
syntax. Echo and mediniQVT are tools based on the QVTr syntax, but use a semantics that departs
from the Object Management Group (OMG) standard.

6

Table 1: Classification of model-to-model (M2M) transformation tools.

App. Tool Description Lang. FR LR

R
el

a
ti

o
n

a
l

UML-RSDS [41] supports model-based development using UML Java 2005 2017

Tefkat [42] a rule-, pattern-and template-based implementation of the Tefkat language Java 2004 2008
JTL[43] a bidirectional model transformation tool supporting change propagation ASP 2006 2015

PTL [44] ATL-style rules combined with logic rules to define transformations Java 2013 2013

ModTransf [45] accepts models in XMI, XML or as a graph of objects Java 2004 2005
Echo [46] supports model repair and transformation based on the Alloy model finder Java 2013 2013

QVTR-XSLT [47] provides support for QVT relations in a graphical notation Java 2009 2012

ModelMorf [48] fully supports the QVTr language Java 2006 2006
mediniQVT [49] uses the QVTr language with a textual concrete syntax Java 2007 2011

PETE [50] a Prolog rule-based tool supporting the transformation of Ecore models Java 2009 2010

TXL [51] a grammar-based tool that can be used for model transformations Turing+1990 2017

Im
p

er
a
ti

v
e

ModelAnt [52] an extension of Apache ANT to support model transformations Java 2004 2014
Xtend[53] statically-typed high-level programming tool for JVM, successor to Xpand Java 2013 2017

MetaEdit+ [54] creates and develops DSM languages MERL 1993 2017

QVTo-Eclipse[55] an Eclipse implementation of Borland Together based on QVTo Java 2008 2017
Kermeta2[56] a meta-programming environment based on a model-oriented language Java 2005 2012

Modelio[57] successor to Objecteering based on UML and BPMN Java 2009 2017

Umple[58] a programming language family for model-oriented programming Java 2008 2017
Melange[59] modular language workbench with re-usability, successor to Kermeta2 Java 2015 2017

MagicDraw[60] a visual UML, SysML, BPMN, and UPDM modeling tool Java 1998 2017
JAMDA[61] supports Java code generation from a model of the business domain Java 2002 2003

SmartQVT[62] a partial implementation of the QVTo language Java 2006 2008

SiTra[63] a Java library supporting a Java-based approach to M2M Java 2006 2012
Mitra2[64] successor to Mitra, optimized for semi-automated transformations Java 2010 2012

JQVT[65] based on a compiled QVT engine for Java Java 2012 2013

Merlin[66] based on EMF and Java Emitter Templates (JETs) Java 2004 2005
Together[67] a set of Eclipse plugins to partially implement the QVTo language Java 2003 2016

MOFScript[68] successor to UMT, implements the OMG MOFM2T specification Java 2006 2011

G
ra

p
h

-b
a
se

d

GROOVE[69] supports model checking graph transformation systems Java 2003 2014

UMLX[70] supports concrete graphical syntax to complement the QVT language Java 2005 2017
AToM3[71] a multi-paradigm modeling tool for visual languages Python 2004 2008

AToMPM [72] successor to AToM3 that generates web-based DSM tools Python 2012 2016

AGG[73] an algebraic approach attributed graph grammar transformation Java 1997 2017
BOTL[74] a bi-directional transformation language with a precise formal foundation Java 2003 2008

GRoundTram[75] a graph-based round-trip framework for bidirectional model transformations OCaml 2009 2014

eMoflon[76] supports story-driven modeling and TGGs Java 2006 2017
MoTE[77] provides bi-directionality, model synchronization and consistency Java 2010 2016

GReAT[78] based on pattern specification, graph transf., and control-flow languages VC++ 2004 2014
TGGInterpreter[79]uses TGG rules to specify transformations Java 2006 2011

MOMoT[80] a framework that combines modeling with search-based techniques Java 2014 2016

EMorF[81] based on incremental TGG to support model synchronization Java 2012 2012
DSLTrans[82] a visual language and tool for model transformations Java 2011 2014

MoTMoT[83] graph rewriting based on a UML story diagrams Java 2004 2006

H
y
b

ri
d

VIATRA[84] transformation framework focused on event-driven and reactive transf. Java 2000 2017

Eclectic[85] based on family of model transformation languages Java 2013 2013
Epsilon[86] a family of languages for a range of model management tasks Java 2006 2016

AGE[87] based on the embedded DSLs with Ruby as host language Ruby 2006 2010

VMTS[88] a domain-specific metamodeling and model processing framework C# 2003 2014
ATL[89] model transformation language and execution environment based on EMF Java 2005 2017

Fujaba[90] a story-driven modeling and graph transformation platform Java 1994 2015

GrGen.NET [91] a programming productivity tool for graph transformations Java 2003 2016
Henshin[92] successor to EMFTiger that supports visual modeling and transformation Java 2011 2016

Blu Age[93] legacy application UML2 reverse engineering and code generation Java 2006 2017

MOLA [94] a graphical procedural transformation language Java 2005 2014
SPARX[95] a UML design and business analysis tool C++ 2000 2017

MDWorkbench[96] an Eclipse-based IDE for code generation and model transformation Java 2005 2017

7

Table 2: Classification of the model-to-text (M2T) transformation tools.

App. Tool Description Lang. FR LR

V
is

it
o
r Kermeta2* [56] a meta-programming environment based on a model-oriented language Java 2005 2012

Melange*[59] successor to Kermeta2, modular language workbench with re-usability Java 2015 2017

JAMDA*[61] supports Java code generation from a model of the business domain Java 2002 2003

AToM3*[71] a multi-paradigm modeling tool for visual languages Python 2004 2008
AToMPM* [72] successor to AToM3 that generates web-based DSM tools Python 2012 2016

T
em

p
la

te

ModelAnt* [52] an extension of Apache ANT to support model transformations Java 2004 2014

ModTransf*[45] accepts models in XMI, XML or as a graph of objects Java 2004 2005

Umple*[58] a programming language family for model-oriented programming Java 2008 2017
Acceleo[97] a pragmatic implementation of the OMG MOFM2T standard Java 2006 2017

MagicDraw*[60] a visual UML, SysML, BPMN, and UPDM modeling tool Java 1998 2017

AGE*[87] based on the embedded DSLs with Ruby as host language Ruby 2006 2010
eMoflon*[76] supports story-driven modeling and TGGs Java 2006 2017

Henshin*[92] successor to EMFTiger that supports visual modeling and transformation Java 2011 2016

AndroMDA[98] a framework that transforms UML models into deployable components Java 2003 2012
Fujaba*[90] a story-driven modeling and graph transformation platform Java 1994 2015

TXL*[51] a grammar-based tool that can be used for model transformations Turing+1990 2017

SPARX*[95] a UML design and business analysis tool C++ 2000 2017
Merlin*[66] based on EMF and Java Emitter Templates (JETs) Java 2004 2005

MOFScript*[68] successor to UMT, implements the OMG MOFM2T specification Java 2006 2011
Together*[67] a set of Eclipse plugins to partially implement the QVTo language Java 2003 2016

Xpand[99] a domain-specific M2T transformation framework for EMF models Java 2004 2015

Epsilon*[86] a family of languages for a range of model management tasks Java 2006 2016
VIATRA*[100] transformation framework focused on event-driven and reactive transf. Java 2000 2017

MDWorkbench*[96]an Eclipse-based IDE for code generation and model transformation Java 2005 2017

H
y
b

ri
d

Actifsource[101] a domain-specific tool to genereate code from software specification Java 2010 2017

MetaEdit+*[54] creates and develops DSM languages MERL 1993 2017
Blu Age*[93] legacy application UML2 reverse engineering and code generation Java 2006 2017

VMTS*[88] a domain-specific metamodeling and model processing framework C# 2003 2014

Xtend*[53] statically-typed high-level programming tool for JVM, successor to Xpand Java 2013 2017
GrGen.NET* [91] a programming productivity tool for graph transformations Java 2003 2016

Modelio*[57] successor to Objecteering based on UML and BPMN Java 2009 2017

* (also M2M tool)

QVT Core (QVTc) [102] is a simple, low-level relational language based on pattern matching over
a set of variables. The language evaluates conditions over these variables according to a set of models.
QVTr is defined on top of QVTc, thus a transformation in the core language is defined as a set of
mappings from QVTr to QVTc. QVTr is defined at a higher-level of abstraction, and supports more
complex pattern matching than QVTc.

4.1.2. Imperative/Operational Approaches

Imperative languages focus on how and when the transformation should be executed, without draw-
ing attention to the relations that must hold between source and target elements. Imperative languages
specify transformations as a sequentially executed list of actions or rules. The language concepts and
constructs of imperative transformation languages are similar to those in general purpose imperative
programming languages [12], so they typically are easy for the developers to learn. Procedural model
transformation languages used in MetaEdit+ are imperative and use procedures to wrap frequently
used sequences of actions.

QVT Operational (QVTo) [102] is an example of an imperative transformation language comparable
to conventional procedural languages such as C. QVTo is supported by several tools, including QVTo-
Eclipse, MagicDraw, SmartQVT, and Together. In QVTo, transformations are specified as a set of
mappings, where each mapping transforms one (or more) input model element(s) to one (or more)
output model element(s). QVTo mappings, similarly to QVTr relations, can have when and where
clauses to limit their application.

The direct manipulation approach [4] is similar to the imperative approach, but with lower-level
constructs and language concepts to support model transformations. In this approach, a general-

8

purpose programming language such as Java or Visual Basic is augmented with advanced capabilities
offered by the Application Programming Interface (API) of libraries allowing them to implement model
transformations. The APIs allow users to create, manipulate and access the internal structure of
models and metamodel instances directly. This approach is simple and developers do not need to
learn a new language to write transformations. However, these languages were not primarily designed
for direct model manipulation, so users must manually implement many of the required features of
model transformations, such as traceability. Furthermore, dependence on particular APIs can impose
restrictions on the transformations that can be supported. Examples of the tools that use the direct
manipulation approach are JAMDA and SiTra. Examples of imperative tools are ModelAnt, Xtend,
Kermeta2, Modelio, Umple, Melange, Mitra2, JQVT, Merlin, and MOFScript.

4.1.3. Graph-based Approaches

Transformation languages following the graph-based paradigm are based on algebraic graph trans-
formation [103], and represent the input and output models using variations of typed, attributed graphs.
A graph transformation consists of a set of graph transformation rules (also called rewriting rules or
production rules), which are applied to an input (host) graph to produce an output graph. Each rule
consists of a Left-Hand Side (LHS) graph, a Right-Hand Side (RHS) graph, and an optional Negative
Application Condition (NAC) graph. The LHS specifies the model subgraph to which the rule can be
applied, while the RHS specifies the corresponding new model subgraph. NACs are used to specify
forbidden patterns in the host graph, for instance the absence of particular vertices and edges, in order
to limit the application of the rule to the intended contexts. Most graph transformation approaches,
such as GROOVE and AGG, allow specification of NACs for rules. When a graph transformation
rule executes on a given host graph, subgraph matching is performed to look for matches of the rule’s
LHS in the host graph that also do not match the NAC, if any. Trying to match a subgraph is called
pattern matching or evaluating a rule. If a match is found, the following steps are carried out: (a)
host graph elements that appear in the rule’s LHS but not in its RHS are deleted, (b) elements that
appear only in the rule’s RHS but not in the LHS are created and embedded into the host graph, and
(c) host graph elements that occur in both the rule’s LHS and RHS are preserved. The LHS and NACs
specify the pre-conditions for the graph transformation rule’s execution, while the RHS specifies the
post-condition. Examples of tools in this category are AToMPM, GROOVE, UMLX, AToM3, AGG,
BOTL, GRoundTram, GReAT, MOMoT, DSLTrans, and MoTMoT.

Graph-based languages are well-suited to perform in-place and endogenous transformations, but
have difficulty retaining traceability between input and output elements, requiring traceability links to
be explicitly encoded. Triple Graph Grammars (TGGs) [104] were proposed to overcome this disad-
vantage by using correspondence graphs or metamodels that maintain an N-to-N relationship including
tracing information between input and output elements. Thus, they can be used to synchronize two
different models and check whether they are consistent. TGGs consist of three graphs, a source graph
(left-hand), a target graph (right-hand), and a correspondence graph. TGGs are similar to QVTr but
have a stronger theoretical foundation. In QVTr the dependencies of transformation rules are explic-
itly formulated in the when and where clauses, while the order of TGG rules is implicitly specified
based on the satisfaction of their preconditions. Examples of TGG-based tools are eMoflon, MoTE,
TGGInterpreter, and EMorF.

4.1.4. Hybrid Approaches

Each technique has its own strengths and weaknesses. In imperative approaches, the programmer
has detailed control over execution of the transformation, which allows for an efficient implementation
of complex transformations. However, this explicit control can require more code, which can make the
transformation more difficult to author, read and understand. Relational approaches, by contrast, can
be more concise and easier to understand due to the expression of the transformation at a higher level

9

of abstraction, with fewer implementation details. However, by relieving the developer from dealing
with explicit control flow, relational transformation languages can be less expressive, and thus less
suitable for complex transformation tasks. Expressing a model transformation in terms of visual graph
transformation rules can be a challenging task [13].

Hybrid approaches attempt to circumvent these issues by allowing developers to mix-and-match
constructs from different approaches when developing model transformations. For instance, MOLA,
Fujaba, and GrGen.NET use a combination of graph-based and imperative approaches. ATL uses a
combination of relational and imperative approaches. VIATRA and VMTS use relational, imperative
and graph-based approaches. Epsilon and Eclectic provide a family of model transformation languages
in which many types of approaches are intended to be supported. Other tools that support hybrid
approaches for building model transformations include AGE (RubyTL), MDWorkbench, SPARX (En-
terprise Architect), Henshin, and Blu Age.

4.2. Model-to-Text (M2T) Tools

M2T transformation tools transform one (or more) input model(s) into text (e.g., source code,
documentation, or configuration files). We distinguish M2T tools based on their underlying implemen-
tation approach, which can be visitor-based (Section 4.2.1), template-based (Section 4.2.2), or hybrid
(Section 4.2.3) [4].

4.2.1. Visitor-based Approaches

Visitor-based approaches are similar to direct manipulation approaches, in the sense that they
traverse a tree-based internal representation of the input model to generate code or other information
from visited model elements. The generated text is written to a text output stream as elements are
visited. The order of the traversal and thus the output text to generate is defined by the transformation
rules. Some parts of the transformation, such as instructions for outputting the text, must be written
manually by the user. Examples of tools in this category are Kermeta2, Melange, JAMDA, AToM3,
and AToMPM.

4.2.2. Template-based Approaches

In template-based M2T approaches, a template is used to specify the text to be generated by the
transformation for the given input models. A template is composed of static text (i.e., target text that
will be generated in common for any given input model) and placeholders for data to be extracted
from the input model. There is a meta-program for the dynamic part, which accesses the stored
information in the models. An example of this approach is the MOF Model to Text Transformation
Language (MOFM2T), which facilitates template composition and modular organization to handle
complex M2T transformations.

Compared to visitor-based approaches, template-based M2T transformations tend to be easier to
understand due to the similarity between templates and the generated code. Template-based ap-
proaches are currently much more popular than visitor-based, possibly because of the influence of
modeling standards such as MOFM2T. Examples of template-based tools are ModelAnt, ModTransf,
Umple, Acceleo, MagicDraw, AGE (RubyTL), eMoflon, Henshin, MDWorkbench (TGL), AndroMDA,
Fujaba, TXL, SPARX (Enterprise Architect), Merlin, MOFScript, Xpand, Together, VIATRA, and
Epsilon (EGL). The aspect-oriented programming constructs provided by Xpand can be used to en-
hance the modularity and reusability of templates.

4.2.3. Hybrid Approaches

In cases where the generated output of the code generation heavily depends on the structure or
information from the model [105], visitor-based approaches are typically a better choice than template-
based ones. However, the visitor-based approach is not suitable when a considerable portion of the text

10

to be generated is static and independent of the model content. Therefore, template-based approaches
can be combined with the visitor pattern to design and implement M2T tools. Examples of hybrid M2T
transformation tools include Actifsource, MetaEdit+ (MERL), Blu Age, VMTS, Xtend, GrGen.NET,
and Modelio. In programming language-based tools, such as GrGen.NET and TXL, users can also
write their own visitor-based transformations and templates.

5. Comparison of Tools

In this section, we assess the 60 tools with respect to 45 facets organized into six categorizes,
namely: General (Section 5.1), Model-level (Section 5.2), Transformation (Section 5.3), User Expe-
rience (Section 5.4), Collaboration Support (Section 5.5), and Runtime Requirements (Section 5.6).
Tables 3, 4, 5, 6, 7, 8, and 9 show the facets in each category along with their attributes and the
proportion of surveyed tools supporting each attribute. Tables (Appendix A) A.10, A.11 and A.12
summarize our assessment of the tools.

5.1. General Category

The General category considers non-technical facets, such as licensing and the availability of sup-
port, which can be crucial factors when selecting a tool, particularly for use in commercial applications
(Table 3).

Update Time (UP): This facet is motivated by importance of access to the latest changes and
stable releases of the tool. We consider the update time to be regular if the tool is updated at
least once a year (e.g., UML-RSDS, TXL, Xtend, Together, Actifsource, SPARX). If the tool does not
follow a regular update schedule, we indicate its update time as sometimes (e.g., ModelAnt, GROOVE,
VIATRA, Epsilon, MOLA, Fujaba). We consider the update time to be discontinued if the tool is no
longer offered or is no longer being updated (e.g., JAMDA, Merlin, JQVT, Tefkat, ModTransf, AGE,
ModelMorf, QVTR-XSLT, BOTL). The update time of these tools is usually limited to the initial
development period, with only rare updates after the first release. Similarly, we describe the update
time as replaced, if the tool was replaced by a successor. For example, AToMPM is the web-based
successor of AToM3, that runs in the cloud to provide web-based modeling tools with a graphical
user interface. Xpand has been discontinued; however, all its useful facets have been implemented in
Xtend, which provides debugging, better performance, and tool support. Kermeta2 was eventually
replaced with a newer version, Kermeta3, and merged with Melange, in which model transformation
is supported as a core part of the DSM creation activities.

Licence (L) [8]: This facet is motivated by the importance of licensing for distribution, redis-
tribution, and modification of the tools, specifically for use in commercial applications. We found
four different types of license, including open source, free without source in binary form, commercial,
and commercial with free evaluation. The open-source tools can be provided under one of several
well-known licences, including the Eclipse Public License (EPL), the General Public License (GPL),
the Apache License (ASL), the Berkeley Software Distribution (BSD) licence, or the Massachusetts
Institute of Technology (MIT) license. The main difference between these licences is in the redistri-
bution terms, which can affect the use of the tools in commercial applications. For example, code
licensed under the GPL requires that any modified code be open-source, which limits use in industry
if the code is to be proprietary. A detailed review examining the effect of open-source licences on
commercial software development can be found in Pearson [106]. Examples of tools using the EPL
licence are Echo, ModelAnt, Xtend, QVTo-Eclipse, Kermeta2, Melange, SmartQVT, JQVT, MOF-
Script, AGG, Henshin, VIATRA, Epsilon, ATL, Acceleo, Merlin, and Xpand. Examples of tools using
the GPL licence are Tefkat, AToMPM, MoTMoT, BOTL, Eclectic, and GrGen.NET. JAMDA and
Groove are examples of tools under the Apache licence, and Umple, Fujaba, and GRoundTram are
examples of tools with the MIT licence. Some tools are dual-licensed such as eMoflon (GPL and EPL),

11

Table 3: Facets in the General category.
Facet Abbr. Attributes Support(%)

Update Time (UP)
a The tool is updated regularly

27%

33%

5%

35%b The tool is updated sometimes
c The tool has been discontinued
d The tool has been replaced by a successor

Licence (L)

a

Open-source

Eclipse Public License (EPL)

17%

10%

20%

3%

42%

13%

5%

12%

2%

b General Public License (GPL)
c Apache License (ASL)
d Berkeley Software Distribution (BSD)
e Massachusetts Institute of Technology (MIT)
f Other licences
g The tool is freely available in binary form
h The tool is commercially available
i The tool has a free evaluation licence

Target Audiences (TA)
a The tool has been used in academy 92%

37%b The tool has been used in industry

Technical Support (TES)
a The tool provides professional support 15%

38%b The tool provides limited support

Supporting Resources (SR)

a The tool provides documentation
93%

38%

88%

92%

43%

b The tool provides examples
c The tool has a wiki-page
d The tool has a website
e The tool has a forum/community

Security (SEC)
a Obfuscation 14%

19%b Read-only/Locked models

and AndroMDA uses a BSD licence. Examples of tools with other licenses are: free without source
in binary form (e.g., UML-RSDS, PETE, TXL, MOLA, SPARX, VMTS), commercial (e.g., Blu Age,
Together, MagicDraw, SPARX), and commercial with free evaluation license (e.g., Together, SPARX,
MDWorkbench, MagicDraw)

Targeted Audiences (TA) [13, 107]: This facet refers to where the tools have been or are
intended to be used: in academia, in industry, or both. Academic tools are typically developed to
demonstrate theoretical concepts or to address new research challenges of interest to other researchers.
On the other hand, industrial tools are designed to address existing industrial requirements, which can
make them more practical for use in both industry and academia. A large number of tools, such as
GROOVE, UMLX, AToMPM, BOTL, MOMoT, ModTransf are primarily used in academia. Tools such
as ATL, Epsilon, MagicDraw, Together, GrGen.NET, MDWorkbench, VIATRA, SPARX, Actifsource,
Acceleo, MetaEdit+, are used in both academia and industry.

Technical Support (TES): This facet refers to the available resources for maintenance and tech-
nical support of the tool, including forums (offered by, e.g., TXL, Epsilon), mailing lists (available in,
e.g., Tefkat, Together, Actifsource), bug and fix tracking (supported by, e.g., GrGen.NET, GROOVE),
and so on. Users are more confident if they know that their problems with a tool will be considered and
addressed. Open source tools, which form the majority of model transformation tools, rely primarily
on community support. However, developer support for adding new features, fixing bugs, and related
software maintenance issues remains important for tool users. We use limited-support (supported in,
e.g., Tefkat, ModelAnt, Xtend, GROOVE, UMLX) to describe limited on-line support, such as asking
questions and reporting bugs, without an ongoing obligation on the part of the tool developers to fix
bugs or answer questions.

Supporting Resources (SR) [8]: This facet captures the availability of resources for learning
and using the tool. Recent work on adoption issues in Eclipse modeling tools [108] shows that a lack
of supporting resources, such as documentation, is the most common problem for both general and

12

Table 4: Facets in the Model-Level category.
Facet Abbr. Attributes Percentage

Modeling Languages (ML)

a

GPM languages

UML 1.x

8%

3%

7%

7%

5%

18%

2%

7%

b UML 2.x
c xtUML
d SysML

e
DSM languages

Petri Nets
f Programming languages
g BPMN
h Other modeling languages

MetaModeling Languages (MML)

a The tool supports EMOF 23%

22%

63%

3%

b The tool supports CMOF
c The tool supports Ecore/EMF
d The tool supports KM3
e The tool supports other metamodeling languages

Model Comparison (MC)

a The tool compares homogeneous models
3%

12%

5%

10%

b The tool compares heterogeneous models
c Results are in visual/model forms (e.g., UML)
d Results are in textual forms

Model Query (MQ) a The tool supports model query 28%

MetaModeling Env. (MME) a The tool is a metamodeling tool 12%

Model Repositories (MR)
a The tool supports EMF 58%

10%

18%

b The tool supports MDR
c The tool supports other model repositories

Compatibility with Stan. (CS)

a The tool supports XMI
3%

8%

5%

8%

7%

58%

15%

3%

8%

8%

85%

b The tool supports CWM
c The tool is an implementation of QVTo
d The tool is an implementation of QVTr
e The tool is an implementation of QVTc
f The tool is an implementation of QVT-Like
g The tool supports MOFM2T
h The tool supports OCL expression
i The tool supports DD specification
j The tool supports HUTN
k The tool supports JMI
l The tool supports CMI

Reverse Engineering (RE) a A reverse engineering tool 18%

Round-trip Engineering (RT) a A round-trip engineering tool 15%

novice users of modeling tools. Examples of good supporting resources listed in Table 3 are tutorials
and user guides (available for, e.g., UML-RSDS, GrGen.NET, eMoflon, TXL, Actifsource), completely
worked out examples (available for, e.g., ATL, MDWorkbench, GROOVE), user forums (provided by,
e.g., VIATRA, Umple, MetaEdit+), wiki pages (provided by, e.g., Henshin, eMoflon), and websites
describing the status of the tool (available for, e.g., AToMPM, MagicDraw).

Security (SEC): This facet refers to the ability to limit user access to models or code, or to
prevent accidental changes or updates to the referenced models. In addition to obfuscation (i.e., hiding
sensitive information in a confidential model or generated code), and read-only/locked models, there
are other types of security, such as role-based access control (supported in, e.g., Modelio, MetaEdit+)
that use user rights to control access to different parts of a transformation, such as the metamodel. It is
also important that access to repositories and the running of a code generator can be secured properly.
In MetaEdit+, the generated code is obfuscated, and variables and function names are generally
produced from the model text with a user-defined translator. Epsilon supports read-only Eclipse
Modeling Framework (EMF) models to prevent accidental modification. In ATL, transformation input
models can be navigated, but changes are not allowed.

13

5.2. Model-level Category

The Model-level category deals with modeling aspects of the tools, such as support for meta-
modeling and model repositories (Table 4). These facets are not related to the transformation authoring
process, rather they speak to the support for related artifacts and activities.

Modeling Languages (ML) [17]: Some tools provide an environment for modeling in different
modeling languages, either a domain-specific DSM or a more general GPM. This facet considers which
languages are supported by the assessed tools. Among the GPM languages, UML is by far the most
popular. Different tools provide support for different UML diagrams. For example, UML-RSDS
supports UML2.x for class, use case, state machine, activity, and sequence diagrams; MagicDraw
provides full support for UML2.x and UML1.x; SPARX supports UML2.x for use case, activity, state
machine, interaction overview, sequence diagrams, communication, package, class, object, composite,
component and deployment diagrams; Blu Age supports UML2.x for class, activity, use case diagrams;
AToMPM, Umple, and Actifsource support UML2.x for class and state diagrams; VMTS originally
supported UML2.x for class, activity, use case, sequence, component, and deployment diagrams; Fujaba
supports UML2.x for class, activity, and object diagrams; and Together supports UML2.x and UML1.x
for class, activity, component, composite structure, deployment, state machine, use case, sequence, and
communication diagrams. Some tools, such as Modelio, MagicDraw, MetaEdit+, and SPARX support
the Systems Modeling Language (SysML) [109], a profile of UML. A UML profile is an extension of
UML with additional semantics that specializes UML to a particular domain through constraint and
extension mechanisms. Other examples of UML profiles include executable UML (xtUML) [110] and
UML for Real-Time (UML-RT) [111].

Also supported are Petri Nets [112], a graphical formal modeling language, supported by tools
such as AToM3, and MetaEdit+. Petri Nets consist of places, transitions, and arcs, where places
are connected to transitions by input and output arcs. Programming languages, particularly object-
oriented (OO) languages, can be used in some tools (e.g., VMTS, GrGen.NET, Blu Age) to describe
models in a textual notation. The Business Process Model and Notation (BPMN) [113] (supported
in, e.g., Modelio, MagicDraw, Together, SPARX) is a standardized graphical language for specifying
business processes.

Some of the surveyed tools support other modeling languages. For example, GrGen.NET has its
own model description language, and AGG supports attributed typed graphs. The modeling languages
supported in Modelio are TOGAF, UPDM, SOAML, and UTP, whereas SPARX supports BPEL,
UPDM, TOGAF, SOAML, and SOMF.

Metamodeling Languages (MML)[17, 12]: Input and output models of a transformation
must conform to metamodels. This facet considers which metamodel technology can be used in the
tools. The Meta-Object Facility (MOF) [114] is an OMG standard for defining metamodels, divided
into essential MOF (eMOF) and complete MOF (cMOF). eMOF (supported in, e.g., Tefkat, Fujaba,
UML-RSDS, ModTransf) is a simple core framework based on a subset of UML class diagrams. cMOF
provides more sophisticated features and a graphical notation to specify more complex modeling lan-
guages, such as UML itself. Ecore [115] (supported in, e.g., PTL, JQVT, Echo, GROOVE), proposed
by EMF, is another metamodeling notation based on the eMOF specification. Kernel MetaModel
(KM3) [116] (supported in, e.g., GRoundTram, ATL) is a subset of Ecore to write metamodels using
a textual representation. The use of MOF or Ecore can facilitate tool interoperability. In addition
to these standards, many other metamodeling languages are used by various tools. Examples include:
GOPPRR (MetaEdit+), ArkM3 (AToMPM), Genmodel (Henshin), MOLA MOF (MOLA), VPM (VI-
ATRA before June 2015), VMTS Root (VMTS), MetaModeler (ModelMorf), and Umple (Umple).

Model Comparison (MC) [14, 17]: This facet refers to support for identifying the similar-
ities and differences between homogeneous and heterogeneous models used by model transformation
developers for tasks such as testing and model evolution management. A detailed review and classi-
fication of model comparison methods based on the types of models they can compare can be found

14

in Stephan et al. [117]. Tools that support model comparison include ModelAnt, MetaEdit+, Umple,
SPARX, Together, Epsilon (ECL), and Blu Age. Such tools can show the comparison results in terms
of added/removed model elements/attributes (supported by, e.g., ModelAnt) or visually in tree form
(supported by, e.g., SPARX). GRoundTram supports simple node/edge level comparison and binary
bi-similarity comparison. Epsilon (ECL) follows a metamodel-independent approach using similarity-
based matching strategies. MOMoT and VIATRA can support Ecore model comparison through the
EMF-compare Eclipse plugin, which provides comparison and merge facilities for EMF models.

Model Query (MQ) [3]: Model query is an important capability in model transformation tools,
used to request specific contents or a selection of the model elements. Model query can be categorized
according to its supporting query language as: Graph patterns or OCL based. OCL is a standard
declarative model query language mainly used in industry [118]. While query languages based on graph
patterns are similar to logic programming, where the order of model exploration is freely determined
by the query engine at evaluation time [118]. Querying can be also used for other purposes, such as
model analysis and evolution, and reporting. Some tools provide model query as a standalone feature
retrieving information without any side-effects on the models. Examples of tools that support model
query are MagicDraw, EMorF, VMTS, MetaEdit+, and QVTR-XSLT. In EMorF, queries for model
elements, such as objects and links (i.e., model patterns), can be expressed graphically. In MetaEdit+,
queries can be made using the MERL generator, which is also used to access the models.

MetaModeling Environment (MME) [13]: This facet indicates whether the tool can be used
to define metamodels. Tools that include this facility are Melange, MetaEdit+, Kermeta2, AToM3,
AToMPM, and VMTS. VMTS has a general purpose metamodeling environment that supports an
arbitrary number of metamodel levels. In Kermeta2, metamodels can be expressed in Kermeta2 itself.
An overview of metamodeling in MDD can be found in [119].

Model Repositories (MR) [14]: Models need to be stored and loaded to/from storage as files or
repositories. Repositories such as the Eclipse Modeling Framework (EMF) and the NetBeans Meta-data
Repository (MDR) are used to store large models, using an API to access and manipulate the models.
EMF, a Java modeling framework and code generation facility based on a structured data model,
is widely used by transformation tools (e.g., in JTL, PTL, PETE, MDWorkbench, TGGInterpreter,
Actifsource, Mitra2, MoTE, Merlin, Melange).

Other model repositories built on the EMF framework include Connected Data Objects (CDO) [120],
ModelBus [121], EMFStore [122], and Neo4EMF [123]. CDO is a model repository and a runtime per-
sistence framework which allows storage and access to EMF models and metamodels using many kinds
of database back-ends. ModelBus is a web service application to manage an embedded subversion
engine that implements the actual repository. EMFStore is a model repository for EMF which pro-
vides features for collaborative editing and versioning of models. Neo4EMF, based on the Neo4j model
repository, is a scalable persistence layer for EMF models.

MDR [124] is a Java Meta-data Interface (JMI) implementation of MOF. Metamodels and models
can be imported and exported from MDR using XML. Models are accessible through the JMI API,
or programmatically using metamodel-specific access. Other tools use their own model repositories,
such as the MetaEdit+ repository (MetaEdit+), JGraLab (MOLA), METADEPTH (Eclectic), the
VMTS repository (VMTS), the GrGen.NET repository (GrGen.NET), MasterCraft (ModelMorf), and
the Umple repository (Umple). Some model repositories can be extended to other frameworks using
an API (supported by, e.g., AGE, Eclectic, VMTS).

Compatibility with well-known Standards, Specifications, and Languages (CS) [5, 13,
107]: Ideally tools should provide support for well-known and legacy standards, languages and specifi-
cations, such as CORBA Model Interchange (CMI), to facilitate interoperability and migration between
modeling tools. XML Metadata Interchange (XMI) [125] (supported in, e.g., TXL, Kermeta2, MD-
Workbench, MagicDraw) is a model interchange language for serialization and exchange of models
between modeling tools, and storage of models in data repositories using a structured textual XML

15

file. The concrete syntax of XMI is verbose and not intended to be readable by humans. Thus, the
OMG has also defined the Human-Usable Textual Notation (HUTN) [126], a standard supported in
AToMPM, Epsilon, and Blu Age. ModTransf, ModelAnt, and Acceleo support the Java Meta-data
Interface (JMI) [127] standard, which allows different UML tools to interact with each other through
APIs. In addition, tools such as AToM3, AToMPM, Blu Age, Henshin, and AGG support Diagram
Definition (DD) specifications [128], which facilitate definition of the mappings between model elements
and their graphical representations.

The OMG has standardized the expression of transformations used in Model-Driven Architec-
ture (MDA), a subset of MDD, by introducing the MOF Model to Text Transformation Language
(MOFM2T) [129] for M2T transformations, and the Query/View/Transformation language (QVT)
[102], for M2M transformations. QVT is itself refined into three languages, namely QVTr (Section
4.1.1), QVTc (Section 4.1.1), and QVTo (Section 4.1.2). A number of tools, including Merlin, JQVT,
JTL, PTL, ATL, and BOTL, support QVT-like notations. VMTS originally provided support for the
QVT standard. The MOFM2T standard (implemented in Acceleo, MOFScript, and ModelAnt), is
based on templates and OCL expressions and has language features, concrete and abstract syntax for
specifying M2T transformations.

The Common Warehouse Metamodel (CWM) standard [130] (supported in, e.g., Tefkat and Ker-
meta2) eases the interchange of data warehouse and business intelligence meta-data between data ware-
house tools, platforms and meta-data repositories in distributed heterogeneous environments. CWM
suffers from capability limitations, so it is not very common in model transformation tools. The Object
Constraint Language (OCL) [131] (used in, e.g., TGGInterpreter, MoTE, ATL, UMLX, ModelMorf)
can be used to express relational constraints on the metamodel, and validation queries at the model
level. QVTr uses OCL to specify templates, and when and where conditions in relations (implemented
in, e.g., ModelMorf).

Reverse Engineering (RE) [17]: Some tools can be used to aggregate, synthesize, and abstract
information to, e.g., generate models from code, also known as reverse engineering. Examples of such
tools include MDWorkbench, ModelAnt, MetaEdit+, Modelio, Umple, Blu Age, Fujaba, MagicDraw,
SPARX, Together, and Acceleo. ModelAnt offers reverse engineering features for analyzing Java sources
to reveal their packages, classes, attributes and methods, and for reverse engineering databases using
the standard JDBC API, revealing their tables, columns, primary keys, foreign keys and relationships.

Round-trip Engineering (RT) [10]: During software development, different models of systems
at different levels of abstraction may exist. Some of these models can be generated or created using
model transformation. Round-trip engineering is an effort to keep these models consistent by propa-
gating changes from one model to other related models. More specifically, round-trip engineering can
be considered as a three step task: (1) detecting changes to a model under consideration, (2) finding
other models affected by the change, and (3) propagating the change to the affected models [132].
A number of techniques, including bi-directional transformation, incremental transformation, model
synchronization, reverse engineering and traceability can be used to implement round-trip engineer-
ing. Hettel et al. [133] has proposed a formal definition of round-trip engineering in the context of
model transformation, categorizing the restrictions that are necessary to support consistency across
transformations.

This facet is hard to support and only a few tools do so, including MetaEdit+, MagicDraw, Mod-
elio, SPARX, Together, MoTE, GRoundTram, Blu Age, and Fujaba. The primary round-trip feature
supported by these tools is keeping generated code and models synchronized. Typically this is per-
formed by tracing changes in models and code, and propagating the changes using incremental model
transformation and reverse engineering.

16

Table 5: Facets in the Transformation category.
Facet Abbr. Attributes Percentage

MT Language Syntax (MTLX)
a The tool has graphical syntax 48%

63%b The tool has textual syntax

Output (O)

a
M2M

In-place/Destructive 58%

75%

23%

40%

40%

b Out-of-place/Conservative

c
M2T

Textual artifacts
d Source code
e Database artifacts

Cardinality (C)

a 1-to-1 87%

58%

48%

55%

b 1-to-N
c N-to-1
d N-to-N

Rule Scheduling (RS)

a
Form

Sequential/explicitly
45%

68%

22%

30%

38%

42%

58%

18%

37%

b Non-sequential/implicitly

c
Rule Selection

Explicit condition
d Nondeterministic
e Interactive

f
Rule Iteration

Recursion-oriented
g Looping-oriented
h Fixed-point-oriented
i The tool supports phasing

Rule Organization (RO)
a The tool supports modularity

45%

33%

57%

b Reuse using inheritance
c Reuse using logical composition

Rule Application Control (RAC)

a Deterministic 62%

27%

33%

23%

b Nondeterministic/concurrent
c Nondeterministic/single-point
d Interactive

5.3. Transformation Category

The Transformation category contains facets related to the model transformation language(s) sup-
ported by the tools. Tables 5 and 6 summarize these facets and their attribute values.

Model Transformation Language Syntax (MTLX) [107, 17, 4, 134, 15]: This facet
provides information about the syntax of the model transformation language of the tool. Some tools,
such as Tefkat, PTL, ModTransf, Echo, TXL, and VIATRA provide a textual syntax for their language,
while others (e.g., AToMPM, AGG, BOTL, TGGInterpreter, SPARX, Actifsource) provide graphical
syntax. There are tools that have both graphical and textual syntax, such as VMTS, DSLTrans,
GROOVE, JTL, UML-RSDS, and GRoundTram. In GROOVE, parts of the production system must
be edited graphically (rules and graphs), and others textually (control, LTL/CTL properties and Prolog
predicates).

Output (O) [4, 17, 5]: The Output facet indicates the kind of output supported by a partic-
ular M2M or M2T tool. The output of M2M tools can be either in-place (destructive, modifying
the original input model) or out-of-place (conservative, retaining the original while producing a new
modified model). In-place transformations (supported in, e.g., UML-RSDS, QVTo-Eclipse, Kermeta2,
GROOVE, VMTS, ATL, Fujaba) do not preserve the input, i.e., they directly modify the input model
to obtain the output model [5, 17]. In this case, the output model is created by directly creating,
deleting, and updating elements of an existing input model. Model refinements, model refactoring,
and model optimizations are examples of in-place transformations, where elements of the model that
remain unchanged need not be copied to be part of the output. In some in-place systems, it is possible

17

Table 6: Facets in the Transformation category (continued).

Facet Abbr. Attributes Percentage

Type (T)
a Exogenous transformations

70%

83%

b Endogenous transformations

Direction (D)
a Multidirectional transformations

22%

5%

100%

b Bidirectional transformations
c Unidirectional transformations

Verification (V)

a Syntactic correctness

8%

35%

33%

12%

12%

13%

18%b Termination
c Semantic correctness
d Completeness
e Determinism/Uniqueness/Confluence
f Robustness
g Definedness

Validation (VA)
a The tool provides a testing environment

25%

33%

b The tool provides a simulation environment

Traceability (TR)
a Automatic 47%

45%b User-defined

Incremental Updates (IU) a The tool supports incremental updates 47%

Concurrent Transf. (CT) a The tool provides concurrent transformations 25%

Live/Active Transf. (LT) a The tool provides live/active transformations 5%

Transf. Suggestions (TS) a The tool supports transformation suggestions 7%

Changeability of MT (CH)

a Access transformations 100%

100%

100%

100%

b Add transformations
c Update transformations
d Delete transformations

to emulate out-of-place transformations by copying the input model to the output model and then
modifying it. In-place transformations are most suitable for endogenous transformations [17], and are
normally implemented using tools based on graph rewriting, such as GROOVE, AToMPM, GRound-
Tram, and MO-MoT. Out-of-place transformations (supported in, e.g., Henshin, UMLX, Echo, PETE,
ModelAnt, Eclectic) generate a new output model from scratch [5, 17]. Out-of-place transformations
are more suitable for handling exogenous transformations.

Source code, databases and textual artifacts are examples of outputs produced by M2T tools.
TXL has been used to transform models in XMI form to Prolog facts, and to Structured Query
Language (SQL) tables. MagicDraw can produce textual artifacts such as plain text, RTF, HTML,
XML templates, and database schemas (without data). Umple can produce documentation in HTML
and JavaDoc formats, as well as analysis reports. Many tools can produce source code as output.
For example, MetaEdit+, Xtend, ModelAnt, VMTS, and Actifsource can all generate source code of
various kinds. Acceleo generates JavaEE, C#, Python, Zope, PHP; Modelio generates Java, C++,
C#, SQL; SPARX generates C++, C#, Java, Delphi, VB, SQL; VIATRA generates Java, C++;
AGE, Henshin, Fujaba, Merlin, and ModTransf generate Java; MagicDraw generates Java, C#, C++ ;
Together generates Java, J2EE, C++, C#; Blu Age generates JEE, .Net, JavaScript; Umple generates
Java, C++, Ruby, PHP; and TXL can generate any programming language for which it has a grammar.

Cardinality (C) [5, 12, 17]: The Cardinality facet classifies model transformations based on
the number of input and output models that can be handled. Tools can support 1-to-1, 1-to-N,
N-to-1, or N-to-N model transformations. 1-to-1 tools (e.g., UML-RSDS, MOLA, SPARX, Acceleo,
TGGInterpreter, Fujaba, DSLTrans) are restricted to one input model and one output model. 1-to-N
tools, such as UML-RSDS, VMTS, TGGInterpreter, PTL, Acceleo, ModelAnt, UMLX, AGG, Merlin,
Mitra2, JQVT, can produce several output models from one input model, whereas in N-to-1 tools
(e.g., UML-RSDS, TGGInterpreter, Mitra2, Tefkat, AGG, JTL, QVTR-XSLT) can handle several
input models to generate a single output model. N-to-N tools (e.g., UML-RSDS, TGGInterpreter,

18

Mitra2, ModTransf, ModelMorf, Umple, Merlin, AGG, SPARX, JTL, UMLX) allow one or more input
model(s) to be transformed into one or more output model(s). In ModelMorf, relations among N
models can be specified, but the user can only transform one model at a time to enforce the specified
relations.

Rule Scheduling (RS) [4, 12, 134]: Rule-based transformation systems vary widely in the
mechanisms that determine the order in which individual rules are applied. The rule application
mechanism can vary in four main respects: form, rule selection, rule iteration, and phasing [4]. Rule
form refers to whether the order of rule application is implicit or explicit. In implicit scheduling,
the transformation engine selects the execution order, and the user has no explicit control over the
scheduling algorithm specified by the tool [4]. This mechanism is common in rewriting-based relational
model transformation tools, such as Tefkat, JTL, PTL, PETE, and QVTR-XSLT. In the explicit style,
the user has direct control over execution order of rules using explicit features of the transformation
language, such as loops and conditionals. This style is dominant in the imperative tools, e.g., Xtend,
QVTo-Eclipse, Umple, Melange, JAMDA, JQVT, Merlin, ModelAnt, Kermeta2, MagicDraw, and in
the hybrid model transformation tools (e.g., Fujaba, VMTS), in which control flow is typically user-
defined. There are various ways to specify control structure, for example using story diagrams based
on UML activity diagrams in VMTS, abstract state machines (ASMs) in VIATRA, state-charts and
activity diagrams in Fujaba, rule priorities in AToM3, and transformation units in Henshin. Although
the explicit form provides full control over transformation execution, it may be desirable to combine it
with the implicit form for complex scenarios, since the developer’s work increases with the complexity
of the scenario. Examples of tools supporting the joint use of both implicit and explicit rule scheduling
are ATL, Mitra2, GROOVE, Epsilon, Eclectic, UML-RSDS, and TXL.

Rule selection can be explicit condition, nondeterministic, or interactive [4]. In the explicit condition
approach (used in, e.g, PTL, UMLX, QVTo-Eclipse, MDWorkbench), an algorithm controls the order
of application of rules. The order may be nondeterministic (e.g., used in AToMPM, DSLTrans, AGG,
JTL), allowing for different executions of the same transformation on the same input model, possibly
yielding different results. In interactive selection, the user can be involved in deciding how different
transformation rules can be scheduled. Interactive selection is supported in AToMPM, Xtend, AToM3,
Mitra2, and GrGen.NET. Template approaches usually offer user-defined scheduling with explicit calls
to a template from within another one. For example, in Acceleo, rules (or individual templates) are
only applied when called explicitly by name from another template, with the exception of the template
that begins the generation. For a given name, several templates may apply, some with guard predicates
or applicable to a more specific type. In that case, the engine invokes rules by checking the hierarchy
to find the most specific template that satisfies its guard.

Rule iteration mechanisms include recursion, looping, fixed-point iteration (i.e., repeated applica-
tion until rule application leaves the input unchanged), and combinations of these [4]. In MOMoT,
rule scheduling is derived based on the quality of models, using a fixed-point iteration optimizing the
quality of the output models.

Phasing, found in QVTo-Eclipse, AGE, PETE, ModelMorf, Tefkat, and ModTransf, organizes the
process of transformation into a sequence of phases, each of which is a set of rules that has a specific
purpose. The rules in a phase are applied until they complete before going on to the next phase.
This can help users manage complex transformations, load target models safely, improve modularity,
and provide control over the execution of transformation [135]. Kermeta2 does not provide built-in
phasing; however, it allows explicit organization of rules into phases. Similarly, TXL transformations
are often organized into phases by hand.

Rule Organization (RO) [4, 12, 15, 134]: This facet considers the organization and com-
position of transformation rules into rule sets and whole transformations [4]. Modularity mechanisms
(supported in JTL, Acceleo, MOLA, GROOVE, GrGen.NET, Henshin, VIATRA, AGE, MOMoT,
eMoflon, Mitra2, ModTransf, Melange) allow rules to be grouped into modules. Rule reuse mecha-

19

nisms allow definition of new rules based on one or more existing rules. Reuse mechanisms can allow
for inheritance between rules (in, e.g., MDWorkbench, AGE, UMLX, eMoflon, JQVT), and/or com-
position of rules (in, e.g., QVTR-XSLT, MoTE, UMLX, GROOVE, GrGen.NET, MOLA, MOMoT,
XTL), avoiding duplication and helping with transformation maintenance. Tools which provide lan-
guage composition and inheritance, such as AGG, Blu Age, Fujaba, Eclectic, Xtend, QVTo-Eclipse,
and ModelMorf, can ease the development of model transformation. QVTo-Eclipse supports logical
composition using disjunction and merging mappings. In QVTr, a rule can be composed of other rules
by invoking them in its where clause (e.g., implemented in ModelMorf). TXL provides explicit rule
abstraction using the notion of subrules.

Rule Application Control (RAC) [4, 9, 12, 15, 134]: This facet is related to mechanisms
determining where in a given input scope a rule should be applied. When more than one match exists
for a rule, rule application control can be used to determine the application locations [4]. The control
mechanism can be deterministic, nondeterministic or interactive [4]. Nondeterministic strategies can
be either concurrent or single-point. If a rule can be applied at several matched locations at once, a non-
deterministic mechanism with concurrent application (supported in, e.g., Tefkat, JTL, Echo, UMLX)
can be used. In single-point application (supported in, e.g., TGGInterpreter, MOMoT, VIATRA), a
rule is applied to one nondeterministically selected location. If the transformation is nondeterministic,
the transformation result may not be unique. Using an interactive mechanism (supported in, e.g.,
Mitra2, AToMPM, AGG, eMoflon), the user decides to which location the rule should be applied.
GROOVE provides a combination of rule application control strategies to find all locations to which a
rule can be applied, and then allows the user to explore the best way to proceed by choosing to apply
the rule either everywhere at once, at one location deterministically (i.e., the same one every time the
same transformation is run), at one location randomly, or at a user-defined location manually.

Type (T) [4, 5, 12, 107, 17]: Model transformations can be endogenous or exogenous, de-
pending on the source and target metamodels [5, 17]. In endogenous (also known as homogeneous
or rephrasing) transformations, the input and output models conform to the same metamodel. Opti-
mizations and refactorings of models are examples of endogenous transformations (supported in, e.g.,
GROOVE, AGG, BOTL, GRoundTram). Exogenous (also known as heterogeneous or translation)
transformations manipulate input and output models conforming to different metamodels. Examples
of exogenous transformations (supported in, e.g., Tefkat, Merlin, DSLTrans, Actifsource) are refining
transformations, which refine a model to a more detailed form using code generation, reverse engineer-
ing, or platform migration. For example, the translation of a platform-independent UML model into
a platform-specific Java model is exogenous [15].

Direction (D) [4, 5, 10, 12, 13, 15, 136, 137, 138, 134]: Transformations can be uni-
directional, bidirectional or multidirectional. Unidirectional transformations can be executed only
from input models conforming to a source metamodel to corresponding output models conforming to
a target metamodel in the source-to-target direction. The QVTo tools, such as QVTo-Eclipse, are
examples of unidirectional systems. In bidirectional tools, transformations can also be run in reverse
or in multiple forward/backward directions between multiple models. Bidirectional tools are most
often relational. Examples of tools supporting bidirectional transformation include JTL, Echo, me-
diniQVT, ModelMorf, and UML-RSDS. Bidirectional transformations can be specified either as a pair
of unidirectional transformations: a forward transformation (source-to-target) and a backward trans-
formation (target-to-source), or using a relational approach, where every transformation relationship
simultaneously describes a forward and a backward transformation. GRoundTram uses the pair of
transformations approach, but automatically derives backward transformations so that users need not
specify them. TGGs, BOTL, JTL, and QVTr are the examples of the relational approach. All of
the TGGs tools, including eMoflon, TGGInterpreter, MoTE, and EMorF, support bidirectional model
transformations. While ModTransf is designed to support bidirectional transformation, it has only
partially been implemented. Multidirectional can be seen as supporting bi-directional transformations

20

between a set of input and output models, which can facilitate traceability. QVTr and QVTc both
support multidirectional rules, while the QVTo tools, such as QVTo-Eclipse, support only unidirec-
tional. Echo has a prototype implementation of multidirectional transformations [139]. Bidirectional
/ multidirectional transformations can assist in checking and enforcing consistency between input and
output models, for reverse and round-trip engineering, for software evolution, and for input-output
model synchronization. Detailed reviews of bidirectional / multidirectional transformations can be
found in several other papers, including Czarnecki et al. [140], Stevens [138], and Hidaka et al. [10].

Verification (V) [5, 8, 9, 107, 137, 141, 138]: The verification facet addresses whether a tool
provides support for formally verifying transformations with respect to properties such as correctness,
consistency, completeness, termination, determinism/confluence, robustness, and definedness.

Syntactic correctness (supported in, e.g., UML-RSDS, JTL, PTL, Echo) deals with checking that
well-formed models conforming to the source metamodel will always result in well-formed models con-
forming to the target metamodel [5]. Syntactic correctness is well understood and often automatically
checked on output models by modeling tools. However, proving that a transformation only produces
syntactically correct outputs for all possible inputs, is very difficult, especially for Turing-complete
transformation languages [142].

Semantic correctness deals with verifying that certain properties of the source model are preserved
in the target model(s) [5]. The properties can differ based on the goal of transformation. For example,
when refactoring a behavioral model such as a state machine, the external behaviour should be pre-
served. Properties can be defined using constraint languages (e.g., OCL, temporal logic), and verified
using different verification techniques, such as model checking (e.g., [143]) and theorem proving (e.g.,
[144]). Henshin, MagicDraw, and Fujaba all support this attribute.

Completeness (supported in, e.g., UML-RSDS, VIATRA, MoTE, BOTL) can be considered from
the point of view of source-complete, or of target-complete. Source-complete means that each element
of the input model is transformed to a corresponding element of the output model. Target-complete
means that each element of the output model is transformed from a corresponding element of the input
model.

Termination (supported in, e.g., GROOVE, AGG, BOTL, GRoundTram) guarantees that, for given
input model, a model transformation will eventually stop executing [145]. Most model transformation
approaches are Turing-complete, and thus termination is undecidable [146]. DSLTrans is limited to
a Turing-incomplete set of language constructs and thus manages to guarantee termination of the
transformation by construction. Other studies have proposed sufficient conditions for the termination
of model transformations [147, 148, 149], and ATL, for example, can guarantee termination as long
as lazy rules and called rules are not used [150]. Determinism, sometimes also called confluence,
(supported in, e.g., UML-RSDS, GROOVE, AGG, BOTL, GRoundTram) is an important property
that guarantees that different executions of the same transformation on the same input will always
produce the same result.

Robustness considers whether unexpected errors of the transformation can be handled during exe-
cution. Tools such as PTL, Echo, Umple, GROOVE, VIATRA, Blu Age, and AGG all support robust
transformations. Finally, definedness [146] captures whether a transformation definition is validly de-
fined and applicable on every input model. Tools such as UML-RSDS, Echo, MoTE, Melange, and
VIATRA check for definedness.

Validation (VA) [5, 8, 3, 13, 107, 138]: The behavior of model transformations can be
validated using either testing or simulation. Testing executes a model transformation on test input
models. Tests alone cannot fully verify that a model transformation behaves as expected on all possible
input models. Nevertheless, testing with an adequate set of test inputs is typically an easy way to
validate model transformations. The main drawback of testing is that it typically cannot fully verify
a transformation, because exhaustive testing is time-consuming and often impossible. Tools such as
Kermeta2, Modelio, Actifsource, VIATRA, MDWorkbench, and Fujaba provide a model transformation

21

testing environment. For example, Fujaba uses graph-transformation-based JUnit tests. Epsilon uses
a unit testing framework called EUnit for model management tasks. Simulation allows designers to
validate the behavior of an executable output model by simulating its execution. Examples of tools that
support simulation include MetaEdit+, Echo, AToMPM, GROOVE, AGG, BOTL, and VMTS. The
simulator component in GROOVE is a GUI-based tool allowing the construction, visual simulation,
and model checking of rule systems. Xtend, Umple, MagicDraw, Together, Fujaba, SPARX, and
GrGen.NET provide both simulation and testing environments. Formal verification and validation of
model transformations has increasingly been a topic of research in recent years [142, 151, 152, 143,
153, 154, 155, 156, 157].

Traceability (TR) [4, 5, 8, 10, 12, 15, 107, 134]: Traceability, that is, the creation and
maintenance of links between input model elements and their corresponding output elements, can be
useful for analyzing transformations, performing impact analysis for manipulated model elements, de-
termining the source/target of a transformation in model synchronization, and consistency checking
between the input and output models. Traceability information is important, and can be automat-
ically generated by the model transformation tool, for example in PTL, QVTR-XSLT, mediniQVT,
Umple, MDWorkbench, Together, GRoundTram, eMoflon, Mitra2, Merlin, EMorF, DSLTrans, and
SPARX. On the other hand, traceability links can also be defined and generated by the user, as sup-
ported by UML-RSDS, PETE, Xtend, Kermeta2, Melange, GROOVE, Henshin, MOLA, Actifsource,
GrGen.NET, AToM3, AToMPM, VMTS, AGE, ATL, Fujaba, and GReAT. MoTE automatically cre-
ates and maintains a traceability model between the models manipulated by a transformation. The
generated trace model is used by MoTE to check or maintain consistency between input and output
models as changes are applied to them. Traceability for MOFScript has been designed, but not yet
completely implemented. Some tools (e.g., Tefkat, JTL, Modelio, MoTE, VIATRA) support both au-
tomatically generated and user specified traceability information. Traces are automatically generated
if the user does not specify any. Winkler et al. [158] surveyed the challenges of supporting traceability
in requirements engineering and MDD.

Incremental/Persistent Updates (IU) [4, 5, 9, 12, 14, 15, 136, 107, 141, 134, 17]:
This facet refers to the way in which changes to the input model of the transformation are propagated
to the output model and vice-versa. In systems that do not support incrementality (e.g., Henshin,
Kermeta2, BOTL and TXL), the complete output model must be regenerated if the input model is
updated. Czarnecki and Helsen [4] identify three types of incrementality: target, source, and user-edit-
preserving in output. In target incremental transformations, output models are incrementally updated
based on changes to the input models. Source incremental transformations aim at minimizing the
number of input elements that need to be rechecked by a transformation when the input is changed.
In user edit-preserving incrementality, changes made by users to the output model are preserved even
when the output is regenerated. Incremental model transformation can be implemented using in-place
transformations [159].

Tools such as JTL, VIATRA, Actifsource, Acceleo, Fujaba, VMTS, EMorF, AToMPM, Epsilon
(EGL), and MoTE all provide incremental transformation. Tefkat can support incremental transfor-
mations if the trace of the transformation or output models are partially populated. Xpand does not
support incrementality, since there is no clear mapping from changes to the input model to output
text fragments [160]. EMorF supports incremental transformation in both directions. mediniQVT uses
traces to enable incremental updates, preserving manual changes to the output model even when the
entire transformation is re-run.

Concurrent Transformations (CT): Concurrent transformation refers to running two or more
transformations at the same time. This is useful for supporting high performance transformations
in large scale projects. Some attributes, such as orchestration, can prevent transformations from
concurrently manipulating the same model elements, if the transformations share the same model in
memory. Tools that support concurrent transformations include Xtend, MetaEdit+, QVTo-Eclipse,

22

Table 7: Facets in User Experience category.
Facet Abbr. Attributes Percentage

User Interface (UIN)
a Graphical

35%

87%

b Command-line

Workspace&Proj. Mgmt. (WPM) a The tool provides workspace and project mgmt. 77%

Syntax Editor (SYE)

a The tool has syntax highlighting
40%

53%

43%

38%

62%

b The tool has auto formatting
c The tool has code completion
d The tool has code navigation
e The tool has folding

Semantic Editor (SE)

a The tool has refactoring

23%

67%

82%

20%

33%

27%

23%

b The tool has error and warning detection
c The tool has quick fixes
d The tool has a debugger
e The tool has reference resolution
f The tool has automatic build systems
g The tool has a profiler

Level of Automation (LA)
a Manual

10%

3%

87%b Semi-automatic
c Automatic

Automatic Reporting (AR) a The tool generates reports/documentation 22%

Programming Style (PS)

a The tool is similar to programming languages

7%

40%

60%

20%b The tool is similar to scripting languages
c The tool is uses mathematical/algebraic style
d The tool is logic-based

Umple, MDWorkbench, MagicDraw, Together, AToMPM, AGG, BOTL, Henshin, MoTE, GrGen.NET
and Blu Age. In AToMPM, transformations can be run concurrently on two different models. Previous
versions of VIATRA (before 2010) supported concurrent transformations.

Live/active Transformations (LT): This facet addresses the ability to automatically run model
transformations in the background as daemons triggered by changes in the underlying models [161].
This allows a transformation to be executed automatically as soon as a transaction on the model has
completed. Examples of tools supporting this facet are VIATRA, Together, and Blu Age.

Transformation Suggestions (TS) [5]: This facet (called content assist in IDEs) indicates
tools that offer mechanisms for determining which model transformations can be appropriately applied
in a given context [5]. For example, the tool might not only be able to apply refactoring transforma-
tions, but might also suggest the contexts where a particular refactoring can be applied [5]. Normally
the developer is expected to determine and define the most effective contexts in which to use a trans-
formation. However, this facet can increase usability for beginners and non-expert users by helping
them identify appropriate contexts. This facet is supported by AGG, MOMoT, VIATRA, and Blu
Age.

Changeability of Model Transformation (CH) [5]: This facet is related to creating, reading,
updating, and deleting (CRUD) model transformations and thus is the most trivial and basic facet
that model transformation tools should support. However there are special cases where supporting
CRUD is not as trivial as expected. For example, when tools provide predefined transformations, the
ability to update them may not be provided.

5.4. User Experience Category

User Experience addresses facets pertinent to the user-friendliness of the tool, and the quantity
and quality of available supporting resources. The richer these facets, the more user support the tool
provides. Table 7 summarizes these facets and their attribute values.

23

User Interface (UIN) [9, 8]: This facet describes whether the tool provides graphical, command-
line/textual, or both graphical and command-line user interfaces. Some tools, such as Umple and
AToMPM, provide access to the tool through a custom web application. PTL, QVTo-Eclipse, MOLA,
and Actifsource are examples of tools with graphical user interfaces. Examples of tools supporting
command-line user interfaces are TXL, Echo, VIATRA, and eMoflon. The importance of a tool’s
user interface and its effect on the user experience has been extensively studied in other software
domains [162, 163, 164].

Workspace and Project Management (WPM): This facet indicates whether the tool provides
facilities to support easy organization and management of user artifacts such as projects and files. A
majority of tools, including Tefkat, PTL, Echo, Xtend, MetaEdit+, QVTo-Eclipse, Kermeta2, Modelio,
Umple, MDWorkbench, VMTS, AGE, MagicDraw, and Melange provide such support.

Syntax Editor (SYE) [8]: This facet catalogs syntax-directed editing facilities such as syntax
highlighting, auto formatting, code completion, code navigation, and code folding, that allow users
to work more easily with the tool. Some tools adopt facilities already provided by other tools. For
example, Echo inherited editing facilities from QVTs Eclipse editor, and Mitra2 inherited its editor
from Xtext. Examples of tools that provide full support for this facet are Echo, Xtend, Kermeta2,
Modelio, MDWorkbench, Melange, MagicDraw, SPARX, Together, MOMoT, VIATRA, ATL, Blu Age,
Acceleo, and Actifsource. TXL is supported by a custom Eclipse plugin.

Semantic Editor (SE) [8]: This facet addresses support for semantics-sensitive editing, includ-
ing refactoring, error and warning detection, quick fixes, debugging, reference resolution, automatic
build systems, and profiling, to help the user trace and correct failure(s). Examples of tools that
provide full support for this facet are Xtend, Modelio, Together, Blu Age, and Actifsource.

Level of Automation (LA) [5, 10, 11, 136, 138]: This facet considers the level of automation
in the execution of model transformations that exhibit non-determinism due to, e.g., choices during rule
application or scheduling. Resolution of non-determinism can be either completely automated, done
manually, or use a certain amount of user intervention (semi-automated). While manual approaches
give the user a maximum of control, they also often require a deep understanding of how the trans-
formation tool works. In general, semi-automatic and manual tools can therefore slow development
compared to fully automated ones. Only MetaEdit+, Modelio, eMoflon, VIATRA, MagicDraw, and
Blu Age provide fully automated transformation.

Automatic Reporting (AR): This facet considers tool support for automatic report and docu-
mentation generation. For example, Kermeta2 can automatically create JavaDoc-like documentation,
Kermeta can generate simple class diagrams for transformation programs, and ModelAnt generates
transformation documentation in both RTF and WIKI formats.

Programming Style (PS): This facet captures the similarity of the programming style encour-
aged by the transformation language with established styles. Some transformation tools are based
on traditional programming languages (e.g., Mitra2; Kermeta2 is an OO language; Xtend is based
on functional programming and OO languages; QVTo-Eclipse is similar to procedural programming
languages), or scripting languages (e.g., Modelio; Tefkat has a syntax similar to SQL; ModelAnt uses
scripting over an OO domain/wrapper of the model). Languages based on well-known, established
styles may be easier to learn for most users. Conversely, languages with less common notations and
styles such as tools based on concepts from algebra (such as AToM3; also, GRoundTram is based on
graph query algebra UnCAL) or logic (such as Tefkat; also, PTL and PETE are based on Prolog) may
be harder to learn for the average user.

5.5. Collaboration Support Category

The Collaboration Support category groups facets required to build support for migration between
tools, extend tools with new features, and use tools for large and complex projects (Table 8).

24

Table 8: Facets in Collaboration Support category
Facet Abbr. Attributes Percentage

Teamwork Support (TSU)
a The tool is multi-user

32%

32%

b The tool is multi-project

Re-usability Technique (RUT)

a Composition 57%

27%

18%

17%

30%b Orchestration
c Decomposition
d Generics
e Higher-order transformations (HOT)

Interoperability (IN)
a The tool has a version control system (VCS)

82%

33%

b The tool provides import/export of models/ meta-
models developed using other tools

Extensibility (E) a The tool supports extensibility 65%

Teamwork Support (TSU): This facet indicates whether the tool provides support for the
collaboration of several people on the same project (indicated by ‘multi-user’) or for the handling of
multiple projects (indicated by ‘multi-project’). MDD involves teamwork by nature, and models are
often developed by independent teams of designers. Thus, team members may need to discuss the
same models or collaborate on shared models simultaneously. Xtend, MetaEdit+, Kermeta2, Modelio,
Umple, SPARX, MDWorkbench, MagicDraw, AToMPM, Eclectic, Blu Age, and Actifsource all provide
facilities for collaboration and multi-user projects.

Re-usability Techniques (RUT) [5, 107]: This facet refers to techniques that enable reuse of
test sequences, rules, functions, procedures, patterns, and transformations in order to boost scalability,
efficiency, and maintainability of transformations. Composition, decomposition, higher-order transfor-
mations (HOTs), orchestration, and generics are different ways to provide reuse of a transformation
or its individual rules and functions. Composition allows reuse of existing transformations and rules
in new (and possibly more complex) transformations. Examples of tools that support composition are
UML-RSDS, Tefkat, UMLX, Mitra2, PTL, ModTransf, ModelMorf, and PETE. Decomposition sup-
ports splitting complex transformations into smaller, more reusable components. Examples of tools
that support decomposition are VIATRA, Tefkat, ModTransf, MetaEdit+, Together, PETE, TXL,
and Eclectic. Higher Order Transformations (HOTs) consider everything as a model, and allow trans-
formations themselves to be reused as input or output models [17]. In the QVT languages, a model
transformation is itself a model, which facilitates the construction of HOTs. Examples of tools that
support HOTs include Henshin, MOLA, VIATRA, ATL, Epsilon, and Kermeta2. Several HOTs have
been written in Kermeta2, and HOTs has been used to facilitate M2T transformations in TXL. Or-
chestration can be used to reuse transformations in the large (i.e., using whole transformations as
components) [165]. Examples of tools that support orchestration are ModTransf, Epsilon, MetaEdit+,
Xtend, QVTo-Eclipse, Together, BOTL, Fujaba, AToMPM, GrGen.NET, Blu Age, MOMoT, and
Eclectic. For example, Epsilon supports orchestration through ANT and EGX for templates. Generic
transformations parameterize the transformation with the metamodel type, and make the transforma-
tion logic independent of the metamodel [165]. Examples of tools that support generic transformations
are Xtend, MetaEdit+ Melange, MagicDraw, Together, Fujaba, GrGen.NET, Blu Age, VIATRA, Mod-
elAnt, and Kermeta2. ModelAnt provides an OO wrapper around the model, which allows reuse of
the methods, while changing only the templates for a specific generation task.

Interoperability (IN) [5, 8, 13, 107]: This facet highlights support for interoperability, such
as support for version control systems (VCSs), and import/export mechanisms for models/metamodels
developed using other tools. Generally, a single MDD tool does not support all of the required tasks
in the model transformation process. Thus integration and exchange of models, metamodels and other
information with other tools is important. Efficient import/export facilities (e.g., supported in Merlin,
GRoundTram, Eclectic, Henshin) allow the tool to cooperate with other external tools.

25

Table 9: Facets in the Runtime category.

Facet Abbr. Attributes Percentage

Operating System (OS)

a The tool runs on Windows
92%

85%

100%

b The tool runs on Linux/Unix
c The tool runs on MacOS

Execution Env. (EM)
a The tool is a plugin for Eclipse

20%

18%

73%

52%

b The tool is integrated/depends on other IDE
c No IDE support
d The tool has a standalone app

Execution Model (EXM)
a The tool is interpreter-based

70%

48%

b The tool is compiler/code generator-based

External Dep. (ED)
a The tool has no external dependencies

89%

19%

b The tool has external dependencies

In large projects it is necessary to handle concurrent modifications and versions, to detect conflicting
modifications, and merge modifications made by multiple developers. Standard VCSs (e.g., supported
by MDWorkbench, EA, Together) can automatically detect and resolve these issues in order to maintain
a uniform version. VCSs can also be used to assist in re-usability. In the MDD-context, VCSs should
provide both textual versioning and graphical representation. A detailed review of VCS technologies
can be found in [166].

Extensibility (E) [5, 8, 13, 107]: Extensibility considers support for integrating new technical
solutions and functionalities into the tool, and for modifying existing ones. JTL, MDWorkbench,
TGGInterpreter, AGE, Eclectic, Fujaba, GROOVE, and ModTransf all include facilities for extending
the tool. MetaEdit+ has a SOAP-based API that allows users to integrate other tools, or to add
their own new functionalities. GrGen.NET supports internal extension with user programming of new
features, and external extension with support for external libraries.

5.6. Runtime Category

This category is related to the runtime environment and execution of the tool. Table 9 summarizes
these facets and their attribute values.

Operating System (OS) Platform [8]: The facet describes the OSs for which the tool is
available. The majority of tools provide support for all three major OSs, including Linux, MacOS and
Windows. This may be due to the fact that the majority of them are developed using the platform-
independent Java programming language.

Execution Environment (EM) [8]: This facet captures whether the tool is part of an integrated
development environment (IDE), or is a standalone application. Some tools, such as QVTR-XSLT,
which uses MagicDraw, are dependent on other IDEs. Only a few tools support their own IDE,
for example, VMTS has its own IDE called VMTS Studio, and GReAT uses the Generic Modeling
Environment (GME) IDE. The extensibility of the Eclipse platform have made it a popular choice
for model transformation tools (e.g., Xtend, eMoflon, Henshin). Examples of tools with a standalone
environment are UML-RSDS, AToMPM, GRoundTram, Kermeta2, AGE, and Acceleo. Kermeta2
provides a way to compile Kermeta programs to be run as a plain Java application, and GROOVE can
be run standalone in the JVM.

Execution Model (EXM) [8, 17]: Once defined and syntactically and semantically validated,
model transformations must be executed. Techniques to implement transformation execution include:
code generation, which generates executable code from a higher-level specification of the transforma-
tion; interpretation, which parses and executes the transformation at runtime; and a hybrid of inter-
pretation and code generation (supported by, e.g., MOMoT, eMoflon, GrGen.NET, VMTS, UMLX,

26

1

4

7

10

13

2000 2005 2010 2015
Year

N
um

be
r

of
 T

oo
ls

Discontinued or Replaced Tools New Tools

(a) Number of new and discontinued. tools

1

4

7

10

13

2000 2005 2010 2015
Year

N
um

be
r

of
 T

oo
ls

Graph−based Hybrid Imperative Relational

(b) Number of active M2M tools, by approach.

Figure 3: Trend of active tools, their introduction and discontinuation, from 2000-2015.

MoTE). In MoTE, TGGs are transformed into models of story diagrams, and then interpreted to per-
form the transformation. eMoflon adopts a hybrid approach in that its unidirectional transformations
and TGG rules are compiler-based, whereas the TGG execution engine itself is interpreter-based. In
general, GrGen.Net is compiler-oriented, but the rule application language is interpreted (unless used
in embedded rules). In JQVT, Java code is generated from a QVTr transformation that does not need
to re-interpret the transformation rule. Thus, JQVT can produce faster transformations, which can
be embedded into a Java application more easily than traditional QVT scripts. TXL provides both
interpretive and compiler-based modes.

External Dependencies (ED): The facet indicates whether the tool depends on other tools.
Some tools are standalone, providing a transformation IDE, but depend on other tools for execu-
tion. Several of the assessed tools have dependencies on other tools. For example Melange (which
uses Xtext and the Kermeta3 Action Language (K3AL)), Xtend (which depends on Google Guava),
AToMPM (which uses Python-igraph and Chrome), Mitra2 (which uses Xtext), BOTL (which needs
ArgoUML), eMoflon (which needs SPARX and ANTLR), MOTE (which uses MDELab Story Dia-
grams), MOMoT (uses MOEA framework and Henshin), Blu Age (needs MagicDraw), MOLA (uses
the METAclipse tool), MoTMoT (which needs AndroMDA and Maven), and VIATRA (which uses
IncQuery and Xtend). Dependencies on other external tools can complicate installation and use of a
tool.

6. Discussion

In this section, we discuss the findings and implications of our study. First, we begin with an
overview of the surveyed tools, identify discontinued tools, and list factors that may have contributed
to this discontinuation. Second, we discuss which of our facets are not well supported by the tools in
general, and consider how the underlying transformation approach may affects the support of facets.
Finally, we examine the current status of model transformation tools, along with the popular standards,
tools and languages.

6.1. Overview of Tools

The 60 surveyed tools were developed between 1990 and the present. More than half of the tools
are publicly available as open source. 77% of the tools in our study were developed in European
countries, in comparison with 13% from North America, 7% from Asia, and 3% from Australia. 31
tools provide M2T transformation, using either template (19), visitor (5), or hybrid (7) transformation

27

approaches. 56 tools provide M2M transformation, with imperative being the most popular transfor-
mation approach (17), followed by graph-based (15), hybrid (13), and relational (11). 27% of the tools
have been discontinued, and 5% have been replaced by successors.

Figure 3(a) shows the trend of new, discontinued and replaced tools. The number of new tools has
first increased and then decreased rather dramatically. The number grew rapidly until 2006, and then
gradually decreased until 2010. Since 2010, the number of new tools has been more stable with only a
slight decrease. In contrast to the number of new tools, the number of discontinued and replaced tools
increased between 2007 and 2010, and is now more stable with a slight decrease. Despite the decrease
in the number of new tools, the overall number of active tools (i.e., those actively maintained and
updated) has been slightly increasing. As shown in Figure 3(b), hybrid and graph-based tools account
for most of this increase, while the number of imperative and relational tools is now almost constant.
Overall, the trend demonstrates a very high interest in model transformation tools between 2004 and
2007, followed by a drop and then a plateau.

Figure 4 presents the longevity (L) of each of the tools according to their first and latest release.
The data shows that 24 tools had a lifetime of less than five years. 20 tools lasted between five and
ten years, and only 16 of tools have survived more than 10 years. The average and median longevity
of tools is 7.5 and 6 years respectively. TXL and Metaedit+ currently have the highest longevity, and
the shortest-lived active tool is currently Melange (because it is also the newest).

6.2. Analysis of Discontinued Tools

27% of surveyed tools have been discontinued, and a question to be considered is “why?” In
the following, we consider in detail the observed common factors among them. These commonalities
are grouped into four classes: underlying transformation approach, standards compliance, number of
developers, and supported facets.

6.2.1. Underlying Transformation Approach

The underlying approach can contribute to the development process, the supported facets, and even
the longevity of a tool. Our study shows that more than half (55%) of the relational tools have been
discontinued. This percentage is notable compared to the discontinued tools using other approaches
(i.e., 29%, 20%, and 7% respectively for imperative, graph-based, and hybrid tools). Moreover, with
the exception of TXL, UML RSDS and JTL, none of the relational tools that are currently being
maintained have been updated in the last four years, possibly an early indication of their upcoming
abandonment. There are two major reasons why relational tools may not have enjoyed more long-term
support: (1) due to the inherent complexity of the operations used in relational approaches, they may
require more effort to maintain, and (2) the implicit nature of relational approaches may make them
more difficult for non-expert users to understand, leading to a smaller or less committed user base.
Our findings present two potential topics for future research: an investigation into the reasons why
such a large number of relational tools are no longer supported, and the introduction of new relational
approaches that overcome these reasons. The second topic could also be expanded to include an
examination of how existing relational tools could be combined with imperative approaches to make
them simpler for users to understand and work with. The continued success of hybrid tools, such as
ATL and VMTS, may be an indicator that this approach can be successful.

6.2.2. Standards Compliance

The OMG has proposed a set of standards and guidelines such as Ecore, EMOF, XMI, and QVT,
discussed in Section 5.2, as a way to standardize the development process for model transformation
tools. Developers have tried to make their tools more interoperable by using these common standards.
However, existing attempts have shown that some of the standards are complicated and time-consuming
to align with, and challenging to understand. The complexity and ambiguity of these standards, e.g.,

28

UMLX
ATL

MDWorkbench
MetaEdit+

TXL
MagicDraw

GROOVE
SPARX

AGG
VIATRA

VMTS
Fujaba

GrGen.NET
Together

Xpand
UML−RSDS

AndroMDA
JTL

ModelAnt
QVTo−Eclipse

Kermeta2
Umple

Sitra
eMoflon

MOLA
GReAT
Epsilon
Blu Age
Acceleo
Modelio

TGGInterpreter
Actifsource

Henshin
MoTE
Xtend

GRoundTram
PTL

Tefkat
mediniQVT

AToMPM
AToM3
BOTL
AGE

MOFScript
ModTransf

Echo
QVTR−XSLT

ModelMorf
PETE

Melange
JAMDA

SmartQVT
Mitra2
 JQVT

MOMoT
EMorF

Eclectic
MoTMoT

Merlin
DSLTrans

19
90

20
00

20
10

Year

To
ol

's
 N

am
e

Longevity

5<L<=10

L<=5

L>10

Figure 4: Longevity of the assessed tools (years).

QVT (i.e., QVTo, QVTr, QVTc) has been discussed in several studies [13]. In this context, our
study indicates that four of the nine tools following the QVT standard are no longer maintained.
After a 10-year wait, a new release of UMLX was made available in 2017. Echo partially implements
QVT, but has not had an update for the last three years. There are just three active QVT-based tools;
QVTO-Eclipse, which implements QVTo, and the industrial tools Together and MagicDraw. Mesa [13]
shows that it is not clear how best to implement a QVT engine: using some kind of virtual machine
implementation (as in, e.g., MOMENT, QVTo-Eclipse) or a direct implementation (e.g., mediniQVT,
ModelMorf, SmartQVT). We observed a similar situation for EMOF, where more than 53% of the
discontinued tools use EMOF as their metamodeling language, compared to only 14% of active tools.

It is important to note that the complexity of the standard is not the only factor in the decision to
discontinue the support for a tool; the selection of the appropriate standard for the application domain
also plays an important role. In particular, aligning a tool with OMG standards is time-consuming,
and likely is not a reasonable option for a short-term research project.

6.2.3. Number of Developers

An old African proverb says: “If you want to go fast, go alone. If you want to go far, go together”.
The proverb seems applicable to software development, in that teamwork is essential in developing
successful tools. This claim is supported by our study. By estimating the number of developers using

29

Abstract Syntax (EMOF) Auto Formatting Cardinality (1−to−N) Cardinality (N−to−1) Code Folding

Code Navigation Code Re−factoring Concurrent Transformations Debugger External Dependencies

Incremental Updates Limited Techinal Support M2M (In−place/Destructive) Multi Project Multi User

Reference Resolution Testing Environment Used in Industry Verification−Correctness Version Control Systems

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

S
up

po
rt

 (
%

)

Active Tools Discontinued Tools

Figure 5: Facets with noticably different levels of support in discontinued vs. active tools.

publicly available repositories of discontinued and mature tools, we noted that a remarkable number of
the discontinued tools were developed by small groups of researchers (e.g., JAMDA, JQVT, Merlin).
Many of these discontinued tools had early successes; however, support for them ended after a short
time likely due to completion of graduate degrees, career changes, or switches to other projects. In
contrast, we observed that the longest lived and most mature tools were developed by larger groups
of researchers in research projects (e.g., VIATRA, Henshin) or professional teams in industry (e.g.,
Together, MetaEdit+, SPARX, MDWorkbench, MagicDraw).

6.2.4. Supported Facets

We compared the support of facets between the discontinued and active tools to understand whether
there are any noticable differences between them. Figure 5 shows the facets whose support by discon-
tinued and active tools differs by more than 25%. The main differences are related to semantic and
syntax services, technical support, validation and verification, and support for collaboration, indicating
that support and scalability are critical to a tool’s long-term success.

6.3. Rare facets

In this section, we discuss useful, and often crucial, facets of model transformation tools that are
generally not well addressed by the surveyed tools. To do so, we counted the number of tools supporting
each facet, and then considered a facet to be rare if less than 50% of the tools provide support for
it. The detailed analysis shows that the tools mainly focus on how to express model transformations
(which is not surprising), but pay much less attention to other crucial facets, such as verification and
validation. We observed that four kinds of problems are associated with this lack of support, including:
(1) the relative lack of support for facets crucial to model management tasks, such as synchronisation,
evolution, version control (supported by 33% of the tools), and traceability (supported by 47% of the
tools); (2) the lack of support for the user experience facets, which affect the usability and learning
curve of tools; (3) the lack of support for facets that facilitate quality assurance; and (4) the lack of
technical support, which increases the risk and cost of using the tools in practical and mission-critical
projects. Providing support for these rare facets is a necessary area of research, presenting several
potential research topics.

30

6.3.1. Model Management

Input and output models can be modified following the application of model transformations. Due
to the iterative nature of software development, these modifications can be applied at all stages of
development, from requirements analysis to ongoing maintenance. For example, it is possible that
a model at a high-level of abstraction, such as an architecture model, may be changed, and the
changes should be detected and propagated to other dependant models. Without appropriate model
management techniques, these changes can cause inconsistencies. It is, in this context, not sufficient to
implement model transformation tools that simply transform an input model to an output model; richer
support for transformed models over the software life cycle is required [167, 168]. More concretely,
support for for model management, such as model comparison, model query (supported by 28% of
the tools), incremental update (supported by 47% of the tools), as well as live (supported by 5% of
the tools), round-trip (supported by 15% of the tools), and bidirectional transformation (supported by
22% of the tools), is important. Model query and comparison are specifically important because they
support versioning at the model level. Moreover, model comparison and automatic transformation are
useful for supporting testing activities. Only a few of the tools in our study support model comparison
and model query.

The incremental facet is important to model management as it means that the entire model trans-
formation need not be rerun when only some of the model elements have changed. This optimization
helps increase the efficiency of transformations of large and complex models. Live transformation is
useful when analyzing the impact of a change in a model on other related models, and also enables
model transformations to be run in the background, providing better response time when dealing with
large and complex models. Concurrent transformation (supported by 25% of the tools) can also help
improve performance. Finally, bidirectional transformations and round-trip engineering can improve
support for model management. Formulating and supporting these two facets could provide a precise
and systematic solution to manage inconsistencies between models.

6.3.2. User Experience

A good user experience is necessary for the success of software tools [169]. However, the user
experience aspects of many model transformation tools have not progressed at the same rate as that
of other tools. E.g., our study shows that the majority of tools do not provide support for even
such rudimentary user experience issues as syntax/semantics assistance and report/documentation
generation (supported by 22% of the tools).

To determine whether user experience has been a focus for researchers in model transformation, we
examined the topics listed in the calls for papers for the MODELS conference over the past five years
(2011 to 2016). Surprisingly, we discovered that user experience has never been listed as a topic of
interest. In terms of actual papers published over the same period, about 16 (e.g. [108, 170, 171, 172]) of
230 (6%) were related to user experience of modeling tools. This suggests that the modeling community
should pay more attention to user experience issues. Further, new generic and efficient frameworks
should be introduced that support graphical and textual editors without dependence on a particular
standard or plugin. Finally, the modeling community should collect and share their experiences with
tools through publishing up-to-date tutorials, examples, and experience papers.

6.3.3. Quality Assurance

Undetected errors and inconsistencies at different stages of model transformation can cause faults
in the resulting models or source code, and these issues can cause further problems in dependent
models. The propagation of faults can make their localization and repair an expensive and time-
consuming task. This is even more important when model transformation is applied in the context of
safety-critical systems. This issue can be addressed by providing adequate support for verification and

31

validation tasks in model transformation tools, something that currently does not receive the required
level of attention.

The majority tools either do not support verification and validation, or provide only cursory sup-
port. While no tools provide full support for verification, validation is better addressed, with 20 tools
(33%) supporting transformation testing. While many tools exist to verify and validate software,
verifying model transformations is different from traditional program verification [173], and formal
verification cannot always be immediately applied in model-based development. Low-level mathemat-
ical representations, such as Kripke structures or finite transition systems, are often the input for
verification tools, whereas modeling concepts are based on high-level abstractions that independently
specify relevant system aspects. The easiest way to apply existing techniques is to bridge the gap
between the high and low level representations using a model transformation. However, these model
transformations must themselves be verified first, which exacerbates the problem. It is evident that
there is a need for more focused and dedicated methods to support verification and validation of model
transformations.

6.3.4. Technical Support

Generally, the ultimate goal of tool developers is to attract new users from both the research
community and industry. Industry partners can provide real problems and insight to help developers
transfer their approaches into practice, while collaboration among researchers allows the exploration
of new ideas for addressing research challenges. Attracting early users of both kinds benefits both tool
makers and their potential users. One of the most important ways of achieving this goal is by providing
adequate technical support for developed tools. Proper technical support is even more important for
model transformation tools since, because they often suffer from inadequate documentation and poor
user experience. Specifically when dealing with industrial adoption of research tools, proper technical
support helps assure industry partners that there is a long-term plan in place for support of the tool.
Our study shows that only eight tools provide full technical support for their tools, whereas 22 tools
provide partial support. As regards supporting resources, only 20 tools provide full support including
documentation, examples, a wiki page and an online forum. The lack of supporting resources has been
noted in other work [108].

It can be argued that open source tools do not need professional technical support, because such
support can be provided by the community of volunteer developers. To some extent, that may be
true. However, at least limited support in terms of forums, wikis, bug tracking, and a review process
are essential for active open source communities, and these are not provided for many of the existing
model transformation tools. Among the tools that do provide technical support, many leverage the
Eclipse modeling community. The infrastructures offered by open source foundations such as Eclipse
and Apache can be very beneficial to the success of the tools. For example, many Eclipse modeling
projects have public forums associated with them in which users can ask questions, report problems
and share solutions.

6.4. Impact of the Underlying Transformation Approaches

As discussed in Subsection 6.2.1, the transformation approach adopted by tools may affect their
success or failure. It is also interesting to consider how the adopted approach may affect the tools’
support for facets. In following, we discuss the most important such observations.

Relational and graph-based tools support bi/multidirectional transformations more than other tools.
This facet is difficult to support in imperative or direct manipulation approaches, as they define the
transformation in an explicit, step-by-step way [15]. QVTr and QVTc can support multidirectional
transformations, while QVTo supports only unidirectional ones. QVTr specifications, in tools such as
ModelMorf, define the conditions under which a transformation can be bidirectional.

32

Verification, correctness and consistency are supported by graph-based tools more than other tools.
The mathematical basis of graph transformation tools encourages the development of formal analyses
and approaches with theoretical guarantees (such as termination or confluence). However, scaling these
analyses to industrial applications still is a challenge [174].

Reverse engineering, round-trip, and incremental transformations are mainly supported by template-
based M2T tools. This is due the fact that code generation is a critical part of M2T tools and that the
need for these three facets typically arises in the context of code generation.

Traceability is supported by graph-based tools less than other tools. Graph-based tools are in-place
tools by their nature, as they are based on graph-rewriting. This makes it difficult to maintain trace-
ability links between input and output models, since the input model is often destroyed during the
transformation.

Conflict resolution and interaction mechanisms for rule scheduling are more common in graph-based
tools. Graph constructs can randomize rule scheduling, so the default mechanism for rule selection
is nondeterministic. However, some graph-based tools, e.g., Henshin and GRoundTram, also support
deterministic scheduling. Nondeterminism can cause conflicts between rules, leading to different, un-
expected results. Hence, graph-based tools provide conflict resolution and user interaction to deal
with nondeterministic choices. AGG and Henshin use a critical pair analysis [175] to detect conflicts
between rules and also establish sufficient conditions for the termination of graph transformations.

6.5. Standards, Tools and Languages

We observed that EMF/Ecore, XMI, and OCL are used by more than 60% of the surveyed tools.
This observation has several implications. First, these standards greatly facilitate the development
of interoperable tools. Second, teaching these languages and standards can be beneficial for new
researchers and students, as they provide a basis for working with many of the existing tools. We
could even argue that these languages should be part of every modeling course. Third, these tools can
benefit more easily from existing and ongoing research on these languages and standards. For example,
tools using EMF can adopt existing software and libraries for EMF model query and comparison (e.g.,
[176, 177]) to support related features.

We also observed that many of the tools have been developed as Eclipse plugins. One of the reasons
for the popularity of Eclipse as a host environment for model transformation is that it provides a wide
range of tools supporting various aspects of modeling and MDE. As discussed in Subsection 6.3.2, this
can allow tool developers to focus on the core functionality of their tools, while reusing existing Eclipse
services to provide other tasks such as work-space management and syntax assistance.

7. Related Work

To our knowledge there has been no other similarly comprehensive survey and comparison of model
transformation tools. However, several other surveys have assessed the capabilities of a subset of avail-
able MDD tools. Czarnecki et al. [4] have discussed the main features that can be used to compare
model transformation approaches (e.g., features related to transformation rules, their execution, and
manipulated metamodels). For example, their study classified available model transformation ap-
proaches as M2M and M2T. Although their work provides a useful hierarchical classification of model
transformation approaches, it focusses on transformation rules, which is just one aspect of model
transformations. Mens et al. [5] classified model transformation tools based on several factors, such
as quality requirements and correctness verification, using a multi-dimensional approach. Another
interesting study has been conducted by Jakumeit et al. [8], who surveyed 13 model and graph trans-
formation tools from the 2015 Transformation Tool Contest (TTC). They compared the tools based
on different criteria, including suitability of the tool and expected input. Jilani et al. [136] surveyed

33

and classified 14 transformation approaches based on features such as availability of the tool, under-
standability of the transformation syntax, and whether the transformation approach is bidirectional
or unidirectional.

Other surveys have focused on evaluating bidirectional transformation tools and approaches. Eramo
et al. [107] proposed a taxonomy based on features pertaining to bidirectional transformations divided
into three categories, General Requirements (e.g., complexity of transformations), Functional Require-
ments (e.g., traceability), and Non-Functional Requirements (e.g., scalability). Similarly, Hidaka et
al. [10] proposed a feature-based approach to compare different bidirectional model transformation
approaches according to four major categories: Technical Space supported by the tool (i.e., graph or
textual artifacts); kind of relationship allowed between the source and target artifacts; changes allowed
by the tool; and execution strategy with respect to several aspects (e.g., automation, availability of
an explicit backward transformation). Diskin et al. [178] present a three-dimensional taxonomy of
bidirectional model synchronization. Each point in the dimension refers to a specific synchronization
semantics with an underlying algebraic model and the respective requirements for the change propaga-
tion operations and their properties. Hildebrandt et al. [137] conducted a comparative study of TGG
tools, emphasizing the importance of the correctness and the completeness for certain classes of TGGs.
Several other surveys review model transformation approaches and tools (e.g., [141, 179, 138, 134]).
A number of studies have reviewed a limited subset of available tools and compared them based on a
number of features [137, 136].

Compared to existing work, our study presents a survey and classification that is more compre-
hensive and detailed in terms of: (1) a large number of tools and approaches, (2) a wider range of
categories and facets.

8. Conclusion

In this paper we classified and compared 60 model transformation tools with respect to a range of
important tool facets grouped into six categories: general, model-level, transformation, user experience,
collaboration support, and run-time requirements. We presented a thorough study of model transfor-
mation concepts and their classifications, along with detailed descriptions of how existing tools support
these concepts. Our analysis and the corresponding website can help potential users to quickly assess
which tools they should consider for a given application, whether those tools are still supported, and
whether they support all of the facets of interest to them.

The survey allowed us to make a number of observations that may be of interest to the broader
modeling community. For example:

• Many of the tools are only maintained for a short period of time after their initial release.
This may be because they never reach their intended audience. This study may encourage the
community to build on or reuse these tools, especially given the effort required to develop a new
tool from scratch. In this regard, our study provides a comprehensive repository that can help
researchers and practitioners find the tools that are closest to their needs.

• Some important facets, such as incrementality, built-in traceability, and verification and vali-
dation are not supported by a large number of tools, indicating a lack of applicable research
results in these areas. These facets thus present an opportunity for future research in model
transformation.

• Many of the tools presented lack adequate tutorials or examples in order to fully explain the
tool’s features. These shortcomings are often a significant barrier to adoption.

To best of our knowledge, this research presents the most comprehensive survey of model transfor-
mation and related tools, and provides a complete picture of the current state-of-the-art and practice

34

in model transformation. The complete findings from this study are available on a website2, which can
help interested users find suitable model transformation tools using, e.g., supported facets as search
criteria. We plan to keep this website up-to-date as tools evolve.

9. Acknowledgment

The assistance of the following people is gratefully acknowledged: Kevin Lano, Jim Steel, Anto-
nio Cicchetti, Jesús Manuel Almendros Jiménez, Cedric Dumoulin, Alcino Cunha, Nuno Macedo, Li
Dan, Sreedhar S. Reddy, Bernhard Schätz, Rusi Popov, Sven Efftinge, Peter Friese, Janne Luoma,
Juha-Pekka Tolvanen, Christopher Gerking, Didier Vojtisek, Desfray Philippe, Timothy Lethbridge,
Thomas Degueule, Donatas Mazeika, Paul Boocock, Jens von Pilgrim, Hui Song, Joël Cheuoua, Gary
Reeves, Arend Rensink, Ed Willink, Hans Vangheluwe, Simon Van Mierlo, Claudia Ermel, Peter Braun,
Soichiro Hidaka, Zhenjiang Hu, Andy Schürr, Gergely Varro, Joel Greenyer, Wimmer Manuel, Gehan
M.K. Selim, Pieter Van Gorp, Jesús Sánchez Cuadrado, Dimitris Kolovos, Mezei Gergely, William
Piers, Albert Zündorf, Edgar Jakumeit, Christian Krause, Jean-Michel Bruel, the Blu Age customer
service, Audris Kalnins, Dermot O’Bryan, Thomas Capelle, Cédric Brun, and Reto Carrara.

References

[1] N. Kahani, J. Cordy, Comparison and evaluation of model transformation tools, in: Technical
Report 2015-627, Queen’s University, 2015, pp. 1–42.

[2] M. Bagherzadeh, N. Hili, J. Dingel, Model-level, platform-independent debugging in the context
of the model-driven development of real-time systems, in: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 419–430.

[3] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim, E. Syriani, M. Wimmer, Model
transformation intents and their properties, in: Software and Systems Modeling, 2014, pp. 1–38.

[4] K. Czarnecki, S. Helsen, Feature-based survey of model transformation approaches, IBM Systems
Journal 45 (3) (2006) 621–645.

[5] T. Mens, P. V. Gorp, A taxonomy of model transformation, 2006, pp. 125–142.

[6] R. B. Salem, R. Grangel, J. Bourey, A comparison of model transformation tools: Application for
transforming GRAI extended Actigrams into UML activity diagrams, in: Computers in Industry,
2008, pp. 682–693.

[7] N. Macedo, T. Jorge, A. Cunha, A feature-based classification of model repair approaches, IEEE
Transactions on Software Engineering 43 (7) (2017) 615–640.

[8] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Á. Hegedüs, M. Herrmannsdörfer, T. Horn,
E. Kalnina, C. Krause, K. Lano, M. Lepper, A. Rensink, L. Rose, S. Wätzoldt, S. Mazanek, A
survey and comparison of transformation tools based on the transformation tool contest, Science
of Computer Programming 85 (2014) 41–99.

[9] G. Taentzer, K. Ehrig, E. Guerra, J. Lara, L. Lengyel, T. Levendovszky, U. Prange, D. Varro,
S. Varró-Gyapay, Model transformation by graph transformation: A comparative study, in: Pro-
ceedings Workshop Model Transformation in Practice, Montego Bay, Jamaica, 2005, pp. 1–48.

2http://www.mdetools.com

35

[10] S. Hidaka, M. Tisi, J. Cabot, Z. Hu, Feature-based classification of bidirectional transformation
approaches, Software and Systems Modeling 15 (3) (2015) 1–22.

[11] C. Gomes, B. Barroca, V. Amaral, Classification of model transformation tools: Pattern matching
techniques, 2014, pp. 619–635.

[12] M. Biehl, Literature study on model transformations, in: Royal Institute of Technology, 2010,
pp. 1–24.

[13] J. M. V. Mesa, M2DAT: A technical solution for model-driven development of web information
systems, in: PhD Thesis, University of Rey Juan Carlos, 2009.

[14] A. Uhl, Model-driven development in the enterprise, IEEE software (1) (2008) 46–49.

[15] P. Huber, The model transformation language jungle: An evaluation and extension of existing
approaches, in: Master Thesis, University of Vienna, 2008.

[16] J. Rothenberg, L. Widman, K. Loparo, N. Nielsen, The nature of modeling, 1989, pp. 1–18.

[17] M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering in practice, Synthesis
Lectures on Software Engineering 1 (1) (2012) 1–182.

[18] Unified Modeling Language (UML), http://www.uml.org.

[19] K. Aers, Graphiti and GMF compared: Revisiting the graph editor, in: EclipseCon 2011, Santa
Clara, California, 2011.

[20] V. Viyović, M. Maksimović, B. Perisić, Sirius: A rapid development of DSM graphical editor, in:
IEEE 18th International Conference on Intelligent Engineering Systems, 2014, pp. 233–238.

[21] S. Efftinge, M. Völter, oAW xText: A framework for textual DSLs, in: Workshop on Modeling
Symposium at Eclipse Summit, 2006, pp. 118–121.

[22] J. Henriksson, J. Johannes, S. Zschaler, U. Asmann, Reuseware-adding modularity to your lan-
guage of choice, Journal of Object Technology 6 (9) (2007) 127–146.

[23] A. Kleppe, A language description is more than a metamodel, in: Fourth International Workshop
on Software Language Engineering, 2007, pp. 1–9.

[24] ArcStyler: The leading platform for model driven architecture (MDA), http://www.omg.org/
mda/mda_files/ArcStyler5_Whitepaper_220205.pdf.

[25] O. Patrascoiu, YATL: Yet another transformation language-reference manual version 1.0, in:
Technical Report No. 2-04, 2004.

[26] C. T. Corp., Codagen architect.

[27] OptimalJ, http://www.compuware.com.

[28] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss, Graphical definition of
in-place transformations in the eclipse modeling framework, in: Proceeding of the International
Conference on Model Driven Engineering Languages and Systems (MoDELS06), 2006, p. 425439.

[29] FUUT-je, http://www.eclipse.org/gmt/.

[30] A. Boronat, MOMENT: A formal framework for MOdel manageMENT, in: PhD Thesis in
Computer Science, University of Politécnica de Valéncia, 2007, pp. 1–287.

36

http://www.uml.org
http://www.omg.org/mda/mda_files/ArcStyler5_Whitepaper_220205.pdf
http://www.omg.org/mda/mda_files/ArcStyler5_Whitepaper_220205.pdf
http://www.compuware.com
http://www.eclipse.org/gmt/

[31] A. Sánchez-Barbudo, E. Sánchez, V. Roldán, A. Estévez, J. Roda, Providing an open virtual-
machine-based QVT implementation, in: Proceedings of the V Workshop on Model-Driven Soft-
ware Development, 2008, pp. 42–51.

[32] b+m ArchitectureWare, http://www.omg.org/mda/mda_files/b+m_OMGCommittment.pdf.

[33] A. Gerber, M. Lawley, K. Raymond, J. Steel, A. Wood, Transformation: The missing link of
MDA, in: Graph Transformation, 2002, pp. 90–105.

[34] QVTd, https://projects.eclipse.org/projects/modeling.mmt.qvtd.

[35] A. Vlad, H. Störrle, D. Strüber, VMTL: A language for end-user model transformation, Software
and Systems Modeling (2016) 1–29.

[36] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, Webratio 5: An Eclipse-based case tool for
engineering web applications, in: In Web Engineering, 2007, pp. 501–505.

[37] UMT, http://umt-qvt.sourceforge.net/.

[38] C. Roy, J. Cordy, R. Koschke, Comparison and evaluation of code clone detection techniques
and tools: A qualitative approach, Science of Computer Programming 74 (7) (2009) 470–495.

[39] H. Kastenberg, A. Rensink, Model checking dynamic states in GROOVE, in: International SPIN
Workshop on Model Checking of Software, McGill University, 2006, pp. 299–305.

[40] H. Bruneliere, J. Cabot, F. Jouault, F. Madiot, MoDisco: A generic and extensible framework for
model driven reverse engineering, in: Proceedings of the IEEE/ACM International Conference
on Automated software engineering, 2010, pp. 173–174.

[41] K. Lano, S. Kolahdouz-Rahimi, Specification and verification of model transformations using
UML-RSDS, 2010, pp. 199–214.

[42] M. Lawley, J. Steel, Practical declarative model transformation with Tefkat, 2006, pp. 139–150.

[43] E. Romina, A. Pierantonio, G. Rosa, Managing uncertainty in bidirectional model transfor-
mations, in: Proceedings of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering, 2015, pp. 49–58.

[44] J. M. Almendros-Jiménez, L. Iribarne, J. López-Fernández, A. Mora-Segura, PTL: A model trans-
formation language based on logic programming, in: Journal of Logical and Algebraic Methods
in Programming, 2015, pp. 89–105.

[45] L. Bonde, C. Dumoulin, J. Dekeyser, Metamodels and MDA transformations for embedded
systems, in: Advances in Design and Specification Languages for SoCs, 2005, pp. 89–105.

[46] N. Macedo, A. Cunha, Implementing QVT-R bidirectional model transformations using Alloy,
in: Proceedings of the 16th International Conference on Fundamental Approaches to Software
Engineering, 2013, pp. 297–311.

[47] D. Li, X. Li, V. Stolz, QVT-based model transformation using XSLT, in: SIGSOFT Software
Engineering Notes, 2011, pp. 1–8.

[48] S. Reddy, R. Venkatesh, Z. Ansari, A relational approach to model transformation using QVT
relations, in: TATA Research Development and Design Centre, 2006, pp. 1–15.

[49] medini QVT, http://projects.ikv.de/qvt/wiki.

37

http://www.omg.org/mda/mda_files/b+m_OMGCommittment.pdf
https://projects.eclipse.org/projects/modeling.mmt.qvtd
http://umt-qvt.sourceforge.net/
http://projects.ikv.de/qvt/wiki

[50] B. Schätz, Formalization and rule-based transformation of EMF Ecore-based models, 2009, pp.
227–244.

[51] R. Paige, A. Radjenovic, Towards model transformation with TXL, in: Metamodelling for MDA,
2003, pp. 162–177.

[52] ModelAnt, http://mdatools.net/blog/modelant.

[53] Xtend, https://eclipse.org/xtend/index.html.

[54] S. Kelly, K. Lyytinen, M. Rossi, Metaedit+ a fully configurable multi-user and multi-tool case
and came environment, Advanced Information Systems Engineering 1080 (1996) 1–21.

[55] C. Gerking, C. Heinzemann, Solving the movie database case with QVTo, in: TTC, 2014, pp.
98–102.

[56] Z. Drey, C. Faucher, F. Fleurey, V. Mahé, D. Vojtisek, Kermeta language reference manual, 2010,
pp. 1–84.

[57] Modelio, http://www.modeliosoft.com.

[58] A. Forward, T. Lethbridge, D. Brestovansky, Improving program comprehension by enhancing
program constructs: An analysis of the Umple language, in: ICPC, 2009, pp. 311–312.

[59] T. Degueule, B. Combemale, A. Blouin, O. Barais, J. Jézéquel, Melange: A meta-language
for modular and reusable development of DSLs, in: 8th International Conference on Software
Language Engineering (SLE), 2015, pp. 65–75.

[60] MagicDraw, http://www.nomagic.com.

[61] Jamda, http://jamda.sourceforge.net/#documentation.

[62] SmartQVT, https://sourceforge.net/projects/smartqvt.

[63] SiTra, http://www.cs.bham.ac.uk/~bxb/Sitra/index.html.

[64] J. V. Pilgrim, Computerunterstützte Modelltransformationen, in: PhD Thesis in Computer Sci-
ence, Fernuniversität Hagen, 2010.

[65] JQVT, https://sourceforge.net/projects/jqvt/.

[66] Merlin, https://sourceforge.net/projects/merlingenerator/?source=navbar.

[67] Together, http://www.borland.com/Products/Requirements-Management/Together.

[68] MOFScript, https://www.eclipse.org/gmt/mofscript.

[69] A. Rensink, The GROOVE simulator: A tool for state space generation, in: Applications of
Graph Transformations with Industrial Relevance, 2004, pp. 479–485.

[70] E. D. Willink, UMLX: A graphical transformation language for MDA, in: Proceedings of the
Workshop on Model Driven Architecture: Foundations and Applications, 2003, pp. 13–24.

[71] J. Lara, H. Vangheluwe, AToM3: A tool for multi-formalism and meta-modelling, in: FASE,
2002, pp. 174–188.

38

http://mdatools.net/blog/modelant
https://eclipse.org/xtend/index.html
http://www.modeliosoft.com
http://www.nomagic.com
http://jamda.sourceforge.net/#documentation
https://sourceforge.net/projects/smartqvt
http://www.cs.bham.ac.uk/~bxb/Sitra/index.html
https://sourceforge.net/projects/jqvt/
https://sourceforge.net/projects/merlingenerator/?source=navbar
http://www.borland.com/Products/Requirements-Management/Together
https://www.eclipse.org/gmt/mofscript

[72] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. V. Mierlo, H. Ergin, AToMPM: A web-
based modeling environment, in: Demos/Posters/Student Research MoDELS, 2013, pp. 21–25.

[73] C. Ermel, M. Rudolf, G. Taentzer, The AGG approach: Language and environment, 1999.

[74] P. Braun, F. Marschall, Transforming object oriented models with BOTL, in: Electronic Notes
in Theoretical Computer Science, 2003, pp. 103–117.

[75] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Nakano, GRoundTram: An integrated framework for
developing well-behaved bidirectional model transformations, in: 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2011, pp. 480–483.

[76] M. Lauder, A. Anjorin, G. Varró, A. Schürr, Bidirectional model transformation with precedence
triple graph grammars, 2012, pp. 287–302.

[77] H. Giese, S. Hildebrandt, L. Lambers, Bridging the gap between formal semantics and imple-
mentation of triple graph grammars, Software and Systems Modeling 13 (1) (2014) 273–299.

[78] GReAT, http://www.isis.vanderbilt.edu/tools/great.

[79] J. Greenyer, E. Kindler, Reconciling TGGs with QVT, in: Model Driven Engineering Languages
and Systems, 2007, pp. 16–30.

[80] M. Fleck, J. Troya, M. Wimmer, Marrying search-based optimization and model transformation
technology, in: Proceedings of the First North American Search Based Software Engineering
Symposium, 2015, pp. 1–16.

[81] L. Klassen, R. Wagner, EMorF-A tool for model transformations, in: Electronic Communications
of the EASST, 2012, pp. 1–6.

[82] B. Barroca, L. Lúcio, V. Amaral, R. Félix, V. Sou, Dsltrans: A Turing incomplete transformation
language, in: Software Language Engineering, 2011, p. 29630.

[83] G. V. Gorp, Model-driven development of model transformations, in: PhD Thesis, University of
Antwerp, 2008.

[84] D. Varró, A. Balogh, The model transformation language of the VIATRA2 framework, Science
of Computer Programming 68 (3) (2007) 214–234.

[85] J. Cuadrado, Towards a family of model transformation languages, 2012, pp. 176–191.

[86] D. Kolovos, R. Paige, F. Polack, The Epsilon transformation language, in: Theory and Practice
of Model Transformations, 2008, pp. 46–60.

[87] J. Cuadrado, J. Molina, M. Tortosa, Rubytl: A practical, extensible transformation language,
in: Model Driven Architecture-Foundations and Application, 2006, pp. 158–172.

[88] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, A systematic approach to metamodeling
environments and model transformation systems in VMTS, in: Electronic Notes in Theoretical
Computer Science, 2005, pp. 65–75.

[89] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool, in: Science of
Computer Programming, 2008, pp. 31–39.

[90] U. Nickel, J. Niere, A. Zündorf, The FUJABA environment, in: Proceedings of the 22nd Inter-
national Conference on Software Engineering, 2000, pp. 742–745.

39

http://www.isis.vanderbilt.edu/tools/great

[91] E. Jakumeit, S. Buchwald, M. Kroll, Grgen.net: The expressive, convenient and fast graph
rewrite system, in: International Journal on Software Tools for Technology Transfer, 2010, pp.
263–271.

[92] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin: Advanced concepts and
tools for in-place EMF model transformations, in: Model Driven Engineering Languages and
Systems, 2010, pp. 121–135.

[93] Blu Age, http://www.bluage.com/en/en_home.html.

[94] A. Kalnins, J. Barzdins, E. Celms, Model transformation language MOLA, in: Model Driven
Architecture, 2005, pp. 62–76.

[95] Enterprise Architect, http://www.sparxsystems.com.

[96] MDWorkbench, http://sodius.com/products-overview/mdworkbench.

[97] C. Brun, A. Pierantonio, Model differences in the Eclipse modeling framework, in: The European
Journal for the Informatics Professional, 2008, pp. 29–34.

[98] AndroMDA, http://andromda.sourceforge.net.

[99] Xpand, https://eclipse.org/modeling/m2t/?project=xpand.

[100] D. Varró, G. B. A. Hegedüs, A. Horváth, I. Ráth, Z. Ujhelyi, Road to a reactive and incremental
model transformation platform: Three generations of the VIATRA framework, Software and
Systems Modeling 15 (9) (2016) 609–629.

[101] Actifsource, http://www.actifsource.com.

[102] Query/views/transformation language (QVT), http://www.omg.org/spec/QVT.

[103] M. Andries, G. Engels, A. Habel, B. Hoffmann, H. J. Kreowski, S. Kuske, D. Plump, A. Schürr,
G.Taentzer, Graph transformation for specification and programming, Science of Computer Pro-
gramming 31 (1) (1999) 1–54.

[104] A. Schürr, Specification of graph translators with triple graph grammars, in: Graph-Theoretic
Concepts in Computer Science, 1995, pp. 151–163.

[105] S. Roser, F. Lautenbacher, B. Bauer, Generation of workflow code from DSMs, in: Proceedings
of the 7th OOPSLA Workshop on Domain-Specific Modeling, 2007, pp. 1–11.

[106] H. Pearson, Open source licences: Open source – the death of proprietary systems?, in: Computer
Law and Security Review, Vol. 16, 2000, pp. 151–156.

[107] R. Eramo, R. Marinelli, A. Pierantonio, Towards a taxonomy for bidirectional transformation,
in: SATToSE, 2014, pp. 122–131.

[108] N. Kahani, M. Bagherzadeh, J. Dingel, J. Cordy, The problems with Eclipse modeling tools: A
topic analysis of eclipse forums, in: Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, 2016, pp. 227–237.

[109] M. Ahmad, J. Bruel, R. Laleau, C. Gnaho, Using RELAX SysML and KAOS for ambient systems
requirements modeling, in: Procedia Computer Science, 2012, pp. 474–481.

[110] xtUML, https://xtuml.org.

40

http://www.bluage.com/en/en_home.html
http://www.sparxsystems.com
http://sodius.com/products-overview/mdworkbench
http://andromda.sourceforge.net
https://eclipse.org/modeling/m2t/?project=xpand
http://www.actifsource.com
http://www.omg.org/spec/QVT
https://xtuml.org

[111] N. Kahani, N. Hili, J. Cordy, J. Dingel, Evaluation of UML-RT and Papyrus-RT for modelling
self-adaptive systems, in: Proceedings of the 9th International Workshop on Modelling in Soft-
ware Engineering, 2017, pp. 12–18.

[112] J. Peterson, Petri Net theory and the modeling of systems, in: Prentice Hall PTR, 1981.

[113] Business Process Model and Notation (BPMN), http://www.bpmn.org.

[114] Meta-Object Facility (MOF), http://www.omg.org/mof.

[115] Eclipse Modeling Framework (EMF), https://eclipse.org/modeling/emf.

[116] Kernel Meta-Meta Model (KM3), https://wiki.eclipse.org/KM3.

[117] M. Stephan, J. Cordy, A survey of model comparison approaches and applications, in: Model-
sward, 2013, pp. 265–277.

[118] G. Bergmann, Translating ocl to graph patterns, 2014, pp. 670–686.

[119] D. Cetinkaya, A. Verbraeck, Metamodeling and model transformations in modeling and simula-
tion, in: Proceedings of the Winter Simulation Conference, 2011, pp. 3048–3058.

[120] CDO, http://eclipse.org/cdo.

[121] X. Blanc, M. Gervais, P. Sriplakich, Model bus: Towards the interoperability of modelling tools,
in: Model Driven Architecture, 2005, pp. 17–32.

[122] EMFStore, http://eclipse.org/emfstore.

[123] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, D. Launay, Neo4EMF, a scalable persistence layer
for EMF models, in: European Conference on Modelling Foundations and Applications, 2014,
pp. 230–241.

[124] NetBeans Meta-data Repository (MDR), https://netbeans.org.

[125] Canonical XMI, http://www.omg.org/spec/XMI/2.5.1.

[126] Human Usable Textual Notation (HUTN), http://www.omg.org/spec/HUTN.

[127] Java Meta-data Interface (JMI), http://www.oracle.com/technetwork/java/index.html.

[128] Diagram Definition Specification (DD), http://www.omg.org/spec/DD.

[129] MOF model to text transformation language, http://www.omg.org/spec/MOFM2T.

[130] Common Warehouse Meta-model (CWM), http://www.omg.org/spec/CWM.

[131] Object Constraint Language, http://www.omg.org/spec/OCL.

[132] S. Sendall, J. Küster, Taming model round-trip engineering, in: Proceedings of Workshop on
Best Practices for Model-Driven Software Development, 2004, pp. 1–13.

[133] T. Hettel, M. Lawley, K. Raymond, Model synchronisation: Definitions for round-trip engineer-
ing, in: International Conference on Theory and Practice of Model Transformations, 2008, pp.
31–45.

[134] E. Syriani, A multi-paradigm foundation for model transformation language engineering, in: PhD
Thesis in Computer Science, McGill University, 2011, pp. 1–291.

41

http://www.bpmn.org
http://www.omg.org/mof
https://eclipse.org/modeling/emf
https://wiki.eclipse.org/KM3
http://eclipse.org/cdo
http://eclipse.org/emfstore
https://netbeans.org
http://www.omg.org/spec/XMI/2.5.1
http://www.omg.org/spec/HUTN
http://www.oracle.com/technetwork/java/index.html
http://www.omg.org/spec/DD
http://www.omg.org/spec/MOFM2T
http://www.omg.org/spec/CWM
http://www.omg.org/spec/OCL

[135] J. S. Cuadrado, J. G. Molina, A phasing mechanism for model transformation languages, in:
Proceedings of the 2007 ACM Symposium on Applied Computing, SAC ’07, 2007.

[136] A. Jilani, M. Usman, Z. Halim, Model transformations in model driven architecture, in: Universal
Journal of Computer Science and Engineering Technology, 2010, pp. 50–54.

[137] S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer, W. Schäfer, M. Lauder, A. Anjorin,
A. Schürr, A survey of triple graph grammar tools, in: International Workshop on Bidirectional
Transformations (Bx), 2013, pp. 1–17.

[138] P. Stevens, A landscape of bidirectional model transformations, in: Generative and Transforma-
tional Techniques in Software Engineering II, 2008, pp. 408–424.

[139] N. Macedo, A. Cunha, H. Pacheco, Towards a framework for multidirectional model transforma-
tions, in: EDBT/ICDT Workshops, 2014, pp. 71–74.

[140] K. Czarnecki, J. N. Foster, Z. Hu, Lämmel, A. Schürr, J. F. Terwilliger, Bidirectional transfor-
mations: A cross-discipline perspective, 2009, pp. 260–283.

[141] E. Leblebici, A. Anjorin, A. Schürr, S. Hildebrandt, J. Rieke, J. Greenyer, A comparison of
incremental triple graph grammar tools, in: Electronic Communications of the EASST, 2014,
pp. 1–15.

[142] M. Amrani, B. Combemale, L. Lúcio, G. M. K. Selim, J. Dingel, Y. L. Traon, H. Vangheluwe, J. R.
Cordy, Formal verification techniques for model transformations: A tridimensional classification,
Journal of Object Technology 14 (3) (2015) 921–928.

[143] D. Varró, A. Pataricza, Automated formal verification of model transformations, in: CSDUML,
2003, pp. 63–78.

[144] M. Asztalos, L. Lengyel, T. Levendovszky, Towards automated, formal verification of model
transformations, in: Proceedings of the Third International Conference on Software Testing,
Verification and Validation, ICST ’10, 2010, pp. 15–24.

[145] K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, Comparative evaluation of model transformation
specification approaches, International Journal of Software and Informatics 6 (2) (2012) 233–269.

[146] P. K. Hooper, The undecidability of the Turing machine immortality problem, The Journal of
Symbolic Logic 31 (2) (1966) 219–234.

[147] U. Assmann, Graph rewrite systems for program optimization, ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 22 (4) (2000) 583–637.

[148] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, G. Taentzer, Termination analysis of model
transformations by Petri Nets, in: Graph Transformations, 2006, pp. 260–274.

[149] H. Ehrig, K. Ehrig, J. Lara, G. Taentzer, D. Varró, S. Varró-Gyapay, Termination criteria for
model transformation, in: International Conference on Fundamental Approaches to Software
Engineering, 2005, pp. 49–63.

[150] F. Jouault, I. Kurtev, Transforming models with ATL, in: International Conference on Model
Driven Engineering Languages and Systems, Springer, 2005, pp. 128–138.

[151] L. Rahim, J. Whittle, A survey of approaches for verifying model transformations, Software and
Systems Modeling 14 (2) (2015) 1003–1028.

42

[152] A. Rensink, Á. Schmidt, D. Varró, Model checking graph transformations: A comparison of two
approaches, in: ICGT, 2004, pp. 226–241.

[153] H. Kastenberg, A. Rensink, Model checking dynamic states in GROOVE, in: Model Checking
Software, 2006, pp. 299–305.

[154] F. Fleurey, J. Steel, B. Baudry, Validation in model-driven engineering: Testing model transfor-
mations, in: First International Workshop on Model, Design and Validation, 2004, pp. 29–40.

[155] A. Auziņš, J. Bãrzdiņš, J. Bičevskis, K. Čerãns, A. Kalniņš, Automatic construction of test sets:
Theoretical approach, in: Baltic Computer Science, 1991, pp. 286–359.

[156] B. Schätz, Verification of model transformations, in: Electronic Communications of the EASST,
2010, pp. 1–14.

[157] R. France, J. Bruel, M. LarrondoPetrie, An integrated object-oriented and formal modeling
environment, Object-Oriented Programming 10 (7) (1997) 25.

[158] S. Winkler, J. Pilgrim, A survey of traceability in requirements engineering and model-driven
development, Software and Systems Modeling (SoSyM) 9 (4) (2010) 529–565.

[159] A. Bergmayr, J. Troya, M. Wimmer, From out-place transformation evolution to in-place model
patching, in: Proceedings of the 29th ACM/IEEE International Conference on Automated Soft-
ware Engineering, 2014, pp. 647–652.

[160] B. Klatt, Xpand: A closer look at the model2text transformation language, in: Language, 2007.

[161] I. Ráth, G. Bergmann, A. Ökrös, D. Varró, Live model transformations driven by incremental
pattern matching, in: Theory and Practice of Model Transformations, 2008, pp. 107–121.

[162] F. Calisir, F. Calisir, The relation of interface usability characteristics, perceived usefulness, and
perceived ease of use to end-user satisfaction with enterprise resource planning (ERP) systems,
Computers in Human Behavior 20 (4) (2004) 505–515.

[163] V. Cho, T. E. Cheng, W. J. Lai, The role of perceived user-interface design in continued usage
intention of self-paced e-learning tools, Computers Education 53 (2) (2009) 216–227.

[164] J. M. C. Bastien, D. L. Scapin, Evaluating a user interface with ergonomic criteria, International
Journal of HumanComputer Interaction 7 (2) (1995) 105–121.

[165] A. Kusel, J. Schönböck, M. Wimmer, W. Retschitzegger, W. Schwinger, G. Kappel, Reality check
for model transformation reuse: The ATL transformation zoo case study, in: AMT@MoDELS,
2013, pp. 1–11.

[166] P. Louridas, Version control software, in: IEEE Software, 2006, pp. 104–107.

[167] H. Giese, R. Wagner, From model transformation to incremental bidirectional model synchro-
nization, Software & Systems Modeling 8 (1) (2009) 21–43.

[168] T. Gardner, C. Griffin, J. Koehler, R. Hauser, A review of OMG MOF 2.0
query/views/transformations submissions and recommendations towards the final standard, in:
MetaModelling for MDA Workshop, Vol. 13, 2003, p. 41.

[169] U. Abelein, H. Sharp, B. Paech, Does involving users in software development really influence
system success?, in: IEEE Software, 2013, pp. 17–23.

43

[170] E. K. Jackson, W. Schulte, N. Bjorner, Detecting specification errors in declarative languages
with constraints, in: International Conference on Model Driven Engineering Languages and
Systems, 2012, pp. 399–414.

[171] G. G. Kainz, C. Buckl, A. Knoll, A generic approach simplifying model-to-model transformation
chains, in: International Conference on Model Driven Engineering Languages and Systems, 2012,
pp. 579–594.

[172] J. S. Cuadrado, E. Guerra, J. de Lara, Quick fixing ATL model transformations, in: International
Conference on Model Driven Engineering Languages and Systems, 2015, pp. 146–155.

[173] C. Dubois, M. Famelis, M. Gogolla, L. Nobrega, I. Ober, M. Seidl, M. Völter, Research ques-
tions for validation and verification in the context of model-based engineering, in: International
Workshop on Model Driven Engineering, Verification and Validation (MoDeVVA), 2013, pp.
67–77.

[174] J. E. Rivera, E. Guerra, J. de Lara, A. Vallecillo, Analyzing rule-based behavioral semantics of
visual modeling languages with Maude, in: Software Language Engineering, 2008, pp. 54–73.

[175] G. Taentzer, AGG: A graph transformation environment for modeling and validation of software,
in: Lecture Notes in Computer Science, 2003, pp. 446–453.

[176] EMFcompare, https://www.eclipse.org/emf/compare/.

[177] Eclipse EMF query, https://projects.eclipse.org/projects/modeling.emf.query.

[178] Z. Diskin, H. Gholizadeh, A. Wider, K. Czarnecki, A three-dimensional taxonomy for bidirec-
tional model synchronization, Systems and Software 111 (2016) 298–322.

[179] D. Varró, M. Asztalos, D. Bisztray, A. Boronat, D. Dang, R. Geiß, J. Greenyer, P. Gorp,
O. Kniemeyer, A. Narayanan, E. Rencis, E. Weinell, Transformation of UML models to CSP:
A case study for graph transformation tools, in: Applications of Graph Transformations with
Industrial Relevance, 2008, pp. 540–565.

Appendix A. Summary of tool attributes

44

https://www.eclipse.org/emf/compare/
https://projects.eclipse.org/projects/modeling.emf.query

Table A.10: Summary of tool attributes.

Model-level (Tables 3-4) General (Table 7)

T
o
o
l

M
L

M
M

L

M
C

M
Q

M
M

E

M
R

C
S

R
E

R
T

U
P L T
A

T
E
S

S
R

S
E
C

UML-RSDS b a s s s s ah s s a g a s abd s
Tefkat s ac s s s a abf s s c b a b abcde s
JTL s c s s s a afh s s a f a s bd s
PTL s c s s s a afh s s b g a s bd s
ModTransf s a s s s b ahk s s c f a s abd s
Echo s c s s s a adh s s b a a s abd b
QVTR-XSLT s a s a s s adh s s c g a s abd s
ModelMorf s e s s s c adh s s c gh a s abd s
mediniQVT s c s a s a adh s s c ah n s abcde n
PETE s c s s s a a s s c g a s bcd s
TXL s e s s s s a s s a g a b abcde s
ModelAnt s a ac a s b agk a s b a b b abd s
Xtend s c s a s c n s s a a ab b abcde s
MetaEdit+ abcdefgh e abcd a a c a a a a hi ab a abcde ab
QVTo-Eclipse s c s s s a ch s s a a a s abce b
Kermeta2 s ce s a a a abh s s d a a s abcde s
Modelio bdgeh c s s s a ah a a a fhi ab a abcde b
Umple b ce ad s s c ah a s a e ab b abcde s
Melange s c s s a a ah s s a a a b abd ab
MagicDraw abdg a s a s ac ach a a a hi ab a abcde b
JAMDA s n s s s s a s s c c a s abd s
SmartQVT s c s s s a ac s s c a a s abc s
SiTra s n s s s s n s s b f a s abd s
Mitra2 s c s s s a ah s s b a a s d s
JQVT s c s s s s f s s c a a s s s
Together abfg ac acd n s a acegh a a a hi ab a abcde n
Merlin s c s s s a af s s c a a s abd s
MOFScript s c s s s a ag s s c a a s ade n
GROOVE s c s s s s a s s b c a b abd s
UMLX s ac s s s a adeh s s b a a b abcde s
AToM3 e e s s a s hi s s d b a s abd s
AToMPM b e s a a s hij s s b b a b abd s
AGG h e s s s s ai s s a a ab b abd s
BOTL s a s s s s af s s c b a s a s
GRoundTram s d s a s s h s a b e a b abd s
eMoflon s c s s s ac a s s a ab ab b abcd s
MoTE s c s s s a ah s a a f a b abd s
GReAT s e s n s s n s s b f a s abcde s
TGGInterpreter s c s s s a afh s s b g a s abd s
MOMoT s c s s s a a s s b a a b bd s
EMorF s c s a s a ah s s c a n s abd n
MoTMoT s ae s a s b ahk s s c b a s abd s
DSLTrans s c s s s a a s s b a a s ab s
VIATRA s c s a s a ah s s b a ab b abcde ab
Eclectic s c s s s ac a s s b b a s bd s
Epsilon s c abc a s ab ahj s s b a ab b abcde b
AGE s ac s s s ac ah s s c a ab s abd s
VMTS df e s a a c ch s s b g ab b abd b
ATL s acd s a s ab afh s s a a ab b abcde b
Fujaba b a s s s s a a a b e a s abd s
GrGen.NET fh c s s s c a s s b b ab b abcde a
Henshin s ce s s s a ahi s s a a ab b abcd s
Blu Age bf ce ac a s a afghij a a a h b a abcd ab
MOLA s e s s s ac ah s s b g a b abd s
SPARX bdgh c ac s s a ah a a a ghi ab a abcde a
MDWorkbench s c s s s a ah a s a ghi ab a abd a
Acceleo s c s a s ab aghk a s a a ab b abcde s
AndroMDA s a s s s n ak s s c d n s abde s
Xpand s c s s s n a s s d a n s abcde s
Actifsource b c s s s a a s s a gh ab a abcde b

s (No support)
n (Information not available)

45

Table A.11: Summary of tool attributes. (cont’d)

Transformation (Tables 5-6)

T
o
o
l

M
T
L
X

O C R
S

R
O

R
A
C

T D V V
A

T
R

IU C
T

L
T

T
S

C
H

UML-RSDS ab ab abcd abi ab a ab bc abcdeg s b a s s s abcd
Tefkat b b abcd bdi ac b a c s a ab s s s s abcd
JTL ab ab abcd bcd a b ab bc ac s ab a s s s abcd
PTL b b abcd bcf a a ab c af a a s s s s abcd
ModTransf b ad ad abcfgi ab a ab c s s s s s s s abcd
Echo b b a d s b a bc acfg b s a s s s abcd
QVTR-XSLT a ab ac bf bc a ab c s s a s s s s abcd
ModelMorf b ab ad abfhi abc a ab abc a s a a s s s abcd
mediniQVT b n n bc n n n bc ag n a a s s s abcd
PETE b b a bcdfi a b a c n s b s s s s abcd
TXL b abcde abcd abcfh c a ab c s s s s s s s abcd
ModelAnt n bcde ab ac n a ab c s s s s s s s abcd
Xtend b abcde abcd acefg abc a ab c s ab b a a s s abcd
MetaEdit+ a bcd abcd acdfh ab a ab c a b a a a s s abcd
QVTo-Eclipse b ab abcd aci abc a ab c s s a n a s s abcd
Kermeta2 b abc abcd afg ab abcd ab c a a b s s s s abcd
Modelio b abcde abcd s s n ab c a a ab a s s s abcd
Umple ab abcde abd a b a ab abc acf ab a a a s s abcd
Melange b abc abcd acfg a a ab c ag s b s s s s abcd
MagicDraw a abcde abcd ac a a ab c acd ab a a a s s abcd
JAMDA n bd ad ac ab a a c s s s s s s s abcd
SmartQVT b n n afi ab n n c s s a s s s s abcd
SiTra n b n abcf n ad n c s s a s s s s abcd
Mitra2 b ab abcd abceg a ad ab c s s a s s s s abcd
JQVT n b ab acf b a a c s s s s s s s abcd
Together b abcde abcd n n n ab c acfg ab a a a a s abcd
Merlin ab abd abd acf s a a c s s a a s s s abcd
MOFScript b abcde n acg n a n c n s s s s s s abcd
GROOVE ab a a abcdefghi ac abcd b c abcef b b s s s s abcd
UMLX a b abcd abcdfgh bc b ab c s ab a a s s s abcd
AToM3 a n a bdeh s bd n c n s b n s s s abcd
AToMPM a a a adeg s bd ab c s b b a a s s abcd
AGG a ab abcd bdeh bc cd b c abcef b b s a s a abcd
BOTL a b a bdh s b b bc abcde b s s a s s abcd
GRoundTram ab ab a acf c s b bc abe s a s s s s abcd
eMoflon ab abc abcd acdegh ab bcd ab bc ac s a a s s s abcd
MoTE a b a bdh c a ab bc abcdeg a ab a a s s abcd
GReAT a n n acdfh ac ab n c n n b n s s s abcd
TGGInterpreter a b abcd bdg ab c a abc ac s b a s s s abcd
MOMoT ab ac a bd ac c ab c s s s s s s a abcd
EMorF a n a n n n ab bc s a a a s s s abcd
MoTMoT a n abcd acg b a ab c n n b s s s s abcd
DSLTrans ab b a adh c n a c abe s a s s s s abcd
VIATRA b abcde abcd abcdfgh ac bcd ab c abcdfg a ab a s a a abcd
Eclectic b b abcd abc abc a ab c s s b s a s s abcd
Epsilon b abcde abcd abfgh ab d ab c a a a a s s s abcd
AGE b bd abcd bci ab a ab c s s b s s s s abcd
VMTS ab abcd b acefgh ab ad ab c ab b b a s s s abcd
ATL b ab abcd abdfi ab a ab c b s b s s s s abcd
Fujaba a abd a acfg abc abc ab c ac ab b a s s s abcd
GrGen.NET b acd a adefghi ac abcd ab c s ab b s a s s abcd
Henshin a abd abcd acdgh a bd ab c abc a b s a s s abcd
Blu Age ab abcde abcd abcdefghi abc abcd ab bc acf a a a a a a abcd
MOLA a ab a acg ac ab ab c s s b s s s s abcd
SPARX a abde abd n n n ab c s ab a a s s s abcd
MDWorkbench b abce abcd acg b a ab c s a a s a s s abcd
Acceleo b cd ab acg ab bc a c s s a a s s s abcd
AndroMDA b cde n n n ad a c s s s n s s s abcd
Xpand b cd a abefgi abc a a c s s b a n s s abcd
Actifsource ab cd abcd ac s s a c a a b a s s s abcd

s (No support)
n (Information not available)

46

Table A.12: Summary of tool attributes. (cont’d)

User Experience (Table 8) Collab. Sup.(Tab.9) Runtime Req.(Tab.10)

T
o
o
l

U
IN

W
P
M

S
Y
E

S
E

L
A

A
R

P
S

T
S
U

R
U
T

IN E O
S

E
M

E
X
M

E
D

UML-RSDS ab s s ab b s c a a b b ab cd b n
Tefkat a a ad bdf b s bd s abc b s abc ad a b
JTL a a s bd b s d s s b a abc a a b
PTL a a s bd b s d s a s s abc ad a b
ModTransf b s s s a s ab s abc b a abc ad a b
Echo ab a abcde bd b s c s s b s abc ad a b
QVTR-XSLT a a s b b s c s a b s ab b b b
ModelMorf b s s b b s c s a b s ab cd a b
mediniQVT ab a abcd abcd b n c n n b a abc ad a n
PETE a a s bd b s d s ac b s abc a a b
TXL b s abcd bdg b s a s ac s s abc ad ab a
ModelAnt s s s s b a b s d b a abc cd b b
Xtend ab a abcde abcdefg b s a ab abd ab a abc abd b b
MetaEdit+ ab a abde abd c a a ab abcde ab a abc abd b a
QVTo-Eclipse a a acde bdeg b s a b ab b a abc a a b
Kermeta2 a a abcde abdf b a a ab abcde ab a abc ad b b
Modelio a a abcde abcdefg c a ab ab s ab a abc abd b a
Umple ab a ae bd b a a ab a ab a abc ad b a
Melange a a abcde abcdef b s a s acd b n abc a b b
MagicDraw a a abcde abd c a a ab ad ab a abc abd b a
JAMDA s s s s a s a s s s a abc cd b b
SmartQVT a a a b b s a s n b a abc a b b
SiTra s s s s b s a s s s n abc ab n b
Mitra2 a a acde bcde b s a s a b s abc a a b
JQVT a a ac bc b s a s s b s abc a b b
Together ab a abcde abcdefg b a a ab abcde ab a ab a b b
Merlin a a acd bcd b s a s s b a abc a b b
MOFScript a a ac bcd b s ab n n b n abc a b b
GROOVE ab a ac bd b s c s s b a abc cd a a
UMLX a a s bdf b s c s a ab s abc a ab b
AToM3 a a s n b s c s n n s abc cd b b
AToMPM a a s bd b s b ab ab a a abc cd ab b
AGG ab a s abd b s c s a ab a abc cd a a
BOTL a s s s b s c s b b s abc cd b b
GRoundTram ab a a bd b s ac s s b n abc cd a a
eMoflon ab a ac bcd c s c a s b a a a ab b
MoTE a a s b b s c s s b s abc ad ab b
GReAT a a n n b s c s n n a a b n b
TGGInterpreter a a s bd b s c s s b a abc a a b
MOMoT a s abcde abce b s ab s ab ab s abc a ab b
EMorF a a n bcd b s c n n n a abc a a b
MoTMoT ab a abce e b n a s abce b a abc bd b b
DSLTrans a a s s b s c s ae s n abc a b b
VIATRA ab a abcde bcdfg c s c s abcde ab a abc a ab b
Eclectic a a abcd bef b s a ab abc b a abc a b b
Epsilon a a acde bcdfg b s ab s abce ab a abc ad a b
AGE a a abce bf b s a ab ab b a abc ad a b
VMTS ab a abc bd b a abc b ac b a a bd ab b
ATL a a abcde bcd b s a s n b a abc a b b
Fujaba a a abcd bcdefg b s ac ab abcde ab a abc ad b a
GrGen.NET b s a bdg b s ac s abcd ab a abc cd ab b
Henshin a a s abd b s c s ae b a abc a ab b
Blu Age ab a abcde abcdefg c a abc ab abcde ab a a a b b
MOLA a a c abd b s ac s ae b s a a b b
SPARX ab a abcde bcde b a ab ab n ab a abc ab b a
MDWorkbench a a abcde bd b a a ab n ab a abc a b b
Acceleo a a abcde abcdeg b a ab s a b a abc abd b b
AndroMDA b s s s b s a s n s a abc bd n b
Xpand a a abcde n b s a n n b a abc a b b
Actifsource a a abcde abcdefg b a a ab n ab a abc a b b

s (No support)
n (Information not available)

47

	Introduction
	Background
	Research Method
	Tool Selection
	Facet Selection
	Tool Evaluation

	Classification of Tools
	Model-to-Model (M2M) Tools
	Relational/Declarative Approaches
	Imperative/Operational Approaches
	Graph-based Approaches
	Hybrid Approaches

	Model-to-Text (M2T) Tools
	Visitor-based Approaches
	Template-based Approaches
	Hybrid Approaches

	Comparison of Tools
	General Category
	Model-level Category
	Transformation Category
	User Experience Category
	Collaboration Support Category
	Runtime Category

	Discussion
	Overview of Tools
	Analysis of Discontinued Tools
	Underlying Transformation Approach
	Standards Compliance
	Number of Developers
	Supported Facets

	Rare facets
	Model Management
	User Experience
	Quality Assurance
	Technical Support

	Impact of the Underlying Transformation Approaches
	Standards, Tools and Languages

	Related Work
	Conclusion
	Acknowledgment
	Summary of tool attributes

