Authentication and Access Control in e-Health
Systems 1n the Cloud

Nafiseh Kahani
School of Computing
Queen’s University, Canada
kahani@cs.queensu.ca

Abstract—The opportunity to access on-demand, unbounded
computation and storage resources has increasingly motivated
users to move their health records from local data centers
to the cloud environment. This change can reduce the costs
associated with the management of data sharing, communication
overhead and improve Quality of Service (QoS). Processing,
storing, hosting and archiving data related to e-Health systems
without physical access and control can exacerbate authentication
and access control issues in this new environment. Therefore,
convincing users to move sensitive medical records to the cloud
environment requires implementing secure and strong authen-
tication and access control methods to protect the data. This
paper proposes a new information access method that preserves
both authentication and access control in cloud-based e-Health
systems. Our method is based on a zero-knowledge protocol
combined with two-stage keyed access control. In each access
request, based on the maximum rights of user, the minimum
access is extracted. To establish secure connections between
different entities in the system, a two-step combination of public
key encryption and DUKPT is used. We analyze our scheme with
respect to data confidentiality and resistance to common attacks
on the network. Experimental results show that the proposed
method tolerates a high number of concurrent authentication
requests with a reasonable response time.

Index Terms—Cloud computing, e-Health systems, access con-
trol, authentication, secure communication channel

I. INTRODUCTION

Cloud computing enables convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal
management effort and service provider interaction. The cloud
promotes availability and features five essential characteristics
including: on-demand self-service, ubiquitous network access,
location-independent resource pooling, rapid elasticity, and
measured service. It offers computing services though three
delivery models including software as a service (SaaS),
platform as a service (PaaS), and infrastructure as a service
(IaaS); and four deployment models including public, private,
community, and hybrid clouds [1].

Electronic health (e-Health) services provide efficient ex-
change of the patient’s data between different entities including
nurses, doctors, lab technicians, receptionists, and insurance
companies. In e-Health, the data owner represents a content
provider who can store and publish health records in the
cloud environment for sharing. The cloud computing paradigm

Khalid Elgazzar
School of Computer Science
Carnegie Mellon University, USA
elgazzar@cs.cmu.edu

James R. Cordy
School of Computing
Queen’s University, Canada
cordy @cs.queensu.ca

provides great opportunities to support flexible and controlled
information exchange. However, authentication and access
control issues in the cloud pose serious challenges that hinder
the wide adoption of cloud-based e-Health services. For exam-
ple, data exchange between communicating entities over the
cloud exacerbates the security issues. Current authentication
and access control mechanisms are not well-suited to the cloud
environment. A strong and safe e-Health security solution that
complies with Health Insurance Portability and Accountability
Act (HIPAA) policies is essential to protect patients’ data
from unauthorized access in cloud environments.

Several methods have been proposed to address the prob-
lems related to cloud security and outsourced data (e.g., [2],
[3], [5D. Existing cryptographic approaches are sufficient if
data owners want to just store their sensitive data on the cloud.
However, e-Health services require data exchange between
patients and their health-care providers. To perform safe and
secure data exchange, we must address two concerns: 1)
How can we authenticate the various communicating entities?,
and 2) How can we mange access by these communicating
entities?

To address the first concern, we need a secure and accu-
rate authentication protocol to authenticate authorized entities,
while preserving the privacy of users. This authentication
protocol must grant access to users according to policies set
by data owners. Regarding the second concern, traditional
access control mechanisms (e.g., [6]) cannot be applied in this
environment since they assume servers in the same domain are
fully trusted and can enforce access control policies. However,
in cloud environments, servers are outside of the user’s trusted
domain, and hence sensitive data must be protected from
unauthorized access. These security concerns become more
challenging in real-time health-care services.

The proposed approach enables patients and data owners to
place their data on the cloud and perform secure and safe data
exchange with health-care providers. In this paper, we propose
a new and secure scheme that supports simultaneously both
secure authentication and scalable fine-grained data access
control, in terms of which authorized user has the access right
to which types of health records. Our authentication approach
is based on a zero-knowledge protocol to verify and maintain
the anonymity of the user’s identity. The method also allocates
flexible access rights to individual users based on their rights

and intention of using the data. Our method provides data
privacy through encryption techniques while enabling search
over encrypted data. To establish secure communication be-
tween interacting entities, our approach uses a combination of
a system public key and a secret session key generated by a
Derive Unique Key Per Transaction (DUKPT) scheme [7]. In
this method, the session key changes in each session, which
strengthens the security of the connection. Hence, if a derived
key is compromised, future and past transmitted data remain
protected since the next and prior keys cannot be determined
[8].

The main contributions of this paper are as follows.

o A new secure authentication framework for cloud pro-
visioned e-Health services based on a zero-knowledge
protocol.

o A new fine-grained data access control method based on
user rights and their intention of using the data.

« An analysis of the proposed framework to evaluate its se-
curity and flexibility in terms of allowing the data owner
to delegate most computation tasks to the participating
entities, while maintaining confidentiality.

The remainder of this paper is organized as follows. Section

II examines the related work. Section III presents the proposed
method, considering both its design and implementation. Sec-
tion IV analyzes the method with respect to different aspects
such as data confidentiality. Section V discusses the simulation
results of the authentication aspect of the method. We conclude
the paper in section VI.

II. RELATED WORK

Several methods have been proposed to address the prob-
lems associated with authentication and access control [4]
in the cloud environment. One of these models is attribute-
based access control (ABAC) [19], [2]. In this model, a set of
meaningful attributes in the context of interest are associated
with each data file. To enforce access policies, a public
key component for each attribute is defined. Data files are
encrypted using public key components corresponding to their
attributes. An access structure for users is defined based on the
secret keys they have. During file access, a user can decrypt
a ciphertext if the data file attributes satisfy her/his access
structure. In this model, the data owner has to re-encrypt all the
data files accessible to a revoked user. To solve this problem,
they use attribute-based encryption (ABE) combined with
proxy re-encryption [20], and lazy re-encryption to support
the process of user revocation. In this work, although the data
owner delegates most of the computational operations to cloud
servers, a cloud server is not able to learn about outsourced
data. Unlike our method, this approach does not consider the
need for management of data access policies.

Li et al. [21] propose patient-centric and fine-grained data
access control through a multiple-owner settings model. In
this work, patients as owners of health-care data can generate
their own decryption keys utilizing ABE and then distribute
them to their authorized users. In this way, multiple owners
can encrypt data based to their own ways using different

sets of cryptographic keys. Patients can determine the access
structure of users by encrypting each record of data according
to a relevant set of attributes. This approach imposes huge
computational overhead on patients in terms of key distribution
and data, and user management.

Barua et al. [22] propose a patient-centric access control
(ESPAC) scheme which uses ciphertext-policy attribute-based
encryption. This method determines different access rights
for users according to their roles, and then assigns different
attribute sets to them. Barua et al. [23] also suggest hybrid
security policy for wireless body area networks (WBANs) with
Quality of Services (QoS) for secure e-Health care system.
In this method, cryptographic approaches such as public key
cryptography are used for session key management and private
key cryptography is used for data encryption in WBANSs
environment.

Luna et al. [24] suggest a hierarchical identity-based encryp-
tion that classifies users into upper and lower levels. The user
at the upper level can share the secure cloud storage services
with all the users at the lower level. A sender can specify
several users at the lower level as the recipients of a file by
taking the number and public keys of the recipients as inputs
of a hierarchical identity-based encryption algorithm, which
enables only the user at the upper level, as well as intended
recipients, to decrypt the file using their own private keys.

Wang et al. [25] suggest a fine-grained access control
scheme works on the hierarchical identity-based encryption
combining (HIBE) system and the ciphertext-policy attribute-
based encryption (CP-ABE). This method also has intensive
computational overhead.

Luna et al. [24] propose a mandatory access control model
to protect patients’ meta-data. The model uses a Message
Authentication Code (MAC) to protect the meta-data, and
cryptography with fragmentation to protect data. This model
shows that fragmentation after encryption can improve overall
security, since to acquire access, attackers need to compromise
more data files.

Sanka et al. [26] propose a method which uses the concept
of capability-based model to show access structure of each
user. The data owner outsources the encrypted data files and
capability list to cloud servers. To protect the outsourced data,
a combined approach of access control and cryptography is
applied. A Diffie-Hellman key exchange model is also used
for users to access the outsourced data securely from cloud
servers.

Gao et al. [27] propose novel data access control (NDAC)
which provides an improvement to the method in [26] to resist
against two major attacks namely the man-in-the-middle attack
and the replay attack. Unlike our method, in the NDAC scheme
whenever a user decides to access the data, the data owner
needs to be online.

Danwei et al. [28] propose an access control model based
on usage control-based access (UCON) and negotiation mech-
anisms. A Negotiation module enhances flexibility of an access
control model. In the case of mismatching between an access
request and the access rules, negotiation module needs to run

to give another chance to the user instead of refusing her/his
request. UCON is just a conceptual model, and no concrete
specification is given for it.

Zhu et al. [29] propose a temporal attribute-based access
control which uses a proxy-based re-encryption mechanism.
In this work, each outsourced file is associated with an access
policy on a set of temporal attributes. The data owner uses a
temporal access policy to encrypt the data before outsources it
to cloud servers. During access request from a user, the cloud
server checks whether corresponding temporal constraints are
satisfied in temporal access policy according to the current
time. After that, the cloud server applies a re-encryption
method to convert the encrypted data into another ciphertext
with the embedded current time. The cloud server sends this
ciphertext to the user. Finally, the authorized user can use
her/his private key to decrypt the received ciphertext.

Fan et al. [30] suggest the DACAR platform for the e-
Health cloud. This method uses cryptographic approaches to
verify identities of users, and role-based policies to manage
the access control to resources. The DACAR platform uses
a single point of contact (SPoC), a rule-based information
sharing policy syntax and data buckets hosted by a cloud
infrastructure, to allow the secure usage of sensitive health-
care data. However, the overhead of patients’ processes is
high, and the patient needs to be involved in the process of
protecting and disseminating her/his medical records.

Unlike our method, most of these works focus on just
authentication or access control management. To support a
secure cloud-based e-Health service, it is essential to consider
both authentication and access control issues.

III. OVERVIEW OF THE PROPOSED SCHEME

In our approach, users are health-care practitioners, and
patients and medical centers represent data owners who store
encrypted health-care records in the cloud, to perform most of
the computation-intensive tasks including authentication and
fine-grained data access control. The architecture minimizes
the computational overhead on the data owner’s side as well
as the time that data owners are required to be available online.

To begin, data owners encrypt and store their data on
the cloud server without disclosing the contents. They also
upload encrypted searchable indexes to the cloud server to
enable multiple keyword searching over the encrypted data.
Decryption keys are disclosed only to authorized users during
the access control process. Each user must present a certified
and unexpired token to the cloud server in order to access
to the data. Thus, the user needs to send a request to a
server managing the authentication and access control tasks
to receive an access token. After that, the server verifies
the identity of the user and issues a token that includes the
required information according to his/her access rights and
interests. In the case of receiving an authorized and valid
token from the user, the cloud server performs search over
the encrypted data, and sends the result to the user through
a secure communication channel. The user can have access

Cloud Server

Service Provider
Data Owner

Fig. 1. Abstract view of the proposed scheme.

to the requested data with the proper decryption keys he/she
received according to his/her rights.

The proposed authentication model is based on a challenge-
response protocol which keeps the sensitive user information
confidential. Our philosophy of access control management
is implemented in two phases. The first phase uses a static
authorization method to determine the highest access rights
of users. The second phase grants the user the minimum
access permissions on the required data, according to the user’s
intention of access and the maximum rights determined by
the first phase. We use the concept of intention to provide
users with the minimum required access rights to limit threats
stemming from unnecessary or over-provisioned rights that
may cause unintended harm. Users can specify their intention
through a received set of meaningful keywords related to
their roles and job descriptions. These keywords provides
varying levels of fine-grained access control to the required
data. We use public keys and session keys using a DUKPT
scheme to establish secure data exchange between various
communicating entities. Figure 1 illustrates the architecture
of the proposed approach. We discuss the different entities in
our approach in the following subsections.

A. System Architecture and Parameters

The proposed system is composed of the following enti-
ties: data owners, service provider (SP), cloud server (CS),
users (U), and an authentication and access control manager
(AAM). The service provider sets and administrates access
policies on behalf of data owners. The AAM is a trusted
server which manages the process of authentication and access
control. Data owners outsource their data files to an SP
which determines and manages access control on their behalf.
The CS provides the required resources to data owners to
store and manage their data on the cloud. This server is
typically managed by a cloud service provider (C'SP) and can
provide abundant storage capacity and computational power on
demand.

TABLE I
SUMMARY OF NOTATIONS IN THE PROPOSED METHOD.

Notation Description

Enc Encryption function

Dec Decryption function

PUBCS Public key of CS

PUBAM Public key of AAM

PRCS Private key of CS

PRAM Private key of AAM

SKF Symmetric key for fragments

I Indexes

T Trapdoor

KSA Secret session key during authentication
process

KSD Secret session key during data access pro-
cess

P, q Public prime numbers

F Pseudo random function

r Random commitment

si Sequence index used for session key

To access health records shared by the S P, interested users
submit a valid token with a search query request to the C'S.
The AAM authenticates the user’s request and provides the
proper decryption keys for valid requests. Users can then
decrypt the data of interest with these decryption keys. In
this model, neither data owners nor users are required to stay
online, rather they connect when necessary to perform specific
interactions. Although our model supports both reading and
writing access rights, throughout this paper we assume that
users have only read access rights for simplicity. We also as-
sume that cloud servers are honest but curious [9]. This means
that cloud servers honestly follow our proposed protocol, but
they are also curious to analyze data and message flows
received during the protocol to learn additional knowledge.

To perform the authentication step, we leverage a challenge-
response protocol to prove the identity of the user. We use
the Schnorr zero-knowledge identification protocol [10] as a
challenge-response method. However, other zero-knowledge
identification protocols are possible (e.g., [11]). We choose
the Schnorr protocol since it satisfies three necessary proper-
ties: completeness, soundness, and zero-knowledge [12]. The
completeness property means that if the statement is true, the
honest verifier will be convinced of this fact by an honest
prover. The soundness property shows that it is unlikely that
a cheating prover would convince the honest verifier that a
false statement is true. The zero-knowledge property ensures
that no cheating verifier would gain any additional knowledge
other than a statement is true [13].

Based on this protocol, the approach needs the following
parameters. The SP selects a prime number p such that
p — 1 is divisible by another prime number ¢ (p = 210,
q > 2'99), where p and ¢ are public parameters. Another
public value, 3, is selected so that, 1 < § < p — 1, and
B = aP~V/%mod p, where a is generator mod p. The SP

Initiator _p

Request

Repository

Subiect Attribute —p |

Obiect Attribute —p)

PDC

Admi _’[RSC]<_lntenti0n Tree

Static Access Policies —

Reject

|—> T™C

Fig. 2. Structure of authentication and access control manager (AAM) server.

also selects a number ¢, where ¢t > 40, and 2! < ¢. The
SP computes v = 3~ Pmod p, where 0 <ID< (q — 1) is
the user’s identity and v is known to both the AAM and the
user. The user receives his/her I.D during the registration with
the system. Another system parameter is a pseudo random
function F' : {0, 1}* used to generate session keys. F' is shared
between all entities of our model. Table I lists the attributes
used in our method.

B. Data Structure

We suppose that data is represented in n fragments R =
{R1, ..., Ry}. These fragments do not overlap with each other
and cover the whole data set. In addition, R is categorized into
three levels of security as secret, sensitive, and official based
on the administrative records, medical records and accounting
records, respectively. Different encryption secret keys are used
for each category. This classification and usage of different
secret keys decreases the risk of data disclosure, especially
during searching. Access levels are structured so that users
with a lower access level cannot have access to data from
higher levels without the explicit consent of the owner.

C. Authentication and Access Control Manager(AAM)

The authentication and access control manager (AAM)
server is responsible for authentication and access control
management. The AAM encompasses four components as
follows. Figure 2 shows the structure of the AAM.

Authentication Management Component (AMC). The ini-
tiator is either a user or an organization that submits an access
request to the AMC. An access request specifies the user’s
intention of access (i.e., why the user is interested to access a
specific fragment of data). Authentication is performed based
on the secret I D that users receive during their registration
with the system. Users may enter private and sensitive personal
information during registration that they do not want to reveal
to the AAM. The challenge-response protocol can prove

the identify of the user anonymously without revealing any
knowledge.

Policy Decision-maker Component (PDC). This component
receives access requests from authenticated users. The PDC
uses the access control policy defined by the SP to determine
whether requests should be granted or denied. In section
II-D5, we explain how these policies can be defined based
on Grant relationship. The PDC' denies the request if it does
not match the access rules. The PDC' then communicates with
the token manager component to issue a rejection message to
the user. Otherwise, the PDC passes an admission request to
the Rights Selection Component (RSC).

Rights Selection Component (RSC). This component re-
ceives access requests with admitted status from the PDC and
generates the access rights that the user needs to perform the
required actions, a trapdoor [9] to search over the encrypted
documents in the cloud, and the required data fragments.

Token Management Component (TMC). This component
generates valid tokens for authorized requests and sends rejec-
tion messages to users for denied access requests. Users who
are granted access use these tokens to submit valid access
requests to the C'S.

D. Implementaion Details

In this section, we shed light on the different algorithms
that we use for data storage, authentication, and data access
control.

1) User Registration: During user registration, the S P gen-
erates a unique secret /D for each user, where 0 < ID < g—1
is a long pseudo-random number generated by a universal one-
way function. To leverage the zero-knowledge protocol, the
SP generates a number v = 3~ /Pmod p for each user to be
used for authentication and token issuance.

2) Data Encryption: Based on the assumption that cloud
servers are honest but curious, the SP (on behalf of data
owners) encrypts the data before storing it in the cloud. The
S P generates a symmetric data encryption key SK I for each
data fragment category according to their level of sensitivity.
The SP encrypts each fragment with its category-specific
secret key and generates C = {C1, ...,Cp }.

3) Data Search: Several methods have been proposed to
securely search over encrypted data [9], [14], [15]. We use the
method proposed by Chen et al. [9], which applies multiple
keywords in the search request and returns data ordered by
its relevancy to the keywords. This multiple keyword search
produces accurate results. To enable searching over C, the SP
builds encrypted searchable indexes I from F' and sends both
indexes and encrypted fragments to the C'S. Fragments are
also associated with a set of keywords. Users need to acquire a
valid token to search the encrypted data with ¢ given keywords.
This access token includes a corresponding Trapdoor T' [9]
from AAM. This trapdoor is generated according to the
keywords in the search request. These meaningful keywords
are also shared with users to use to express their intentions.

4) User Authentication: Based on our proposed authenti-
cation method, the AMC' component verifies the identity of

the user without acquiring information about the user I D. The
AMC caches all authenticated users and their corresponding
information in an internal repository Rep. The AAM’s public
key and a session key are used to establish a secure connection
between a user and the AAM. The user selects a Base
Derivation Key (BDKAM) to generate the session key and
according to the following protocol to prove his/her identity
to the AMC.

o The user chooses a random commitment r, 1 < r < g—1
and BDK AM as a secret key to generate the session key.

o The user calculates z = 8" mod p, and uses the public
key of the AAM to encrypt x and BDK AM and sends
Encpypan(z,v, BDKAM, si) to AAM, where si is a
sequence index that is used to derive other session keys.
It can be also used as a sequence number that is used to
prevent attackers to run the replay attack.

e The AMC uses its private key to decrypt the received
message D@CPRA]\{(ETLCPUBAM (.1?, v, BDKAM, SZ))
The AMC uses v to find the information related to
the user from Rep. In response, the AMC uses the
function F' and si to generate the session key K.SA, =
F(BDKAM,si + 1). This session key is used by the
AMC to continue its communication with the user. The
AMC selects a challenge random e, 1 < e < 2t < ¢
along with a time-stamp 7'¢me that helps to prevent
forced delay of taking long time to respond. The AMC
uses the KSA; to encrypt the e and time-stamp and
sends, ((Encksa,(e,Time)), si + 1) to the user.

e Based on the function F, si + 1 and BDK, the user
generates KSA; and decrypts the received message
Decgsa,(Enciksa, (e, Time)). The user calculates y =
ID x e + r mod q. The user also generates a new
session key KSA;;1 = F(KSA; si + 2) and sends
(Encksa,,,(y),si+2) to AMC, during the time spec-
ified by T'ime, otherwise the session with AMC is
rejected.

e The AMC uses si+ 2 to calculate K.SA; ;1 to decrypt
the received message from the user, and then computes
z = BY xv°® mod p. The AMC authenticates the user if
z = x and rejects otherwise. The output of this step is
the request from a valid user that sends to the PDC' of
the AAM. The AMC also generates another session key
KSA; o = F(KSAi+1,si+ 3) that is used to encrypt
the token issued by the TM C' for the authorized user.

5) Access Control: Security policies specify and regulate
the authorized actions that can be carried out in the system.
In this section, we present our proposed method to regulate
access control using security policies. First, we define the
static access policy that determines the maximum rights of
the users, and then we narrow down to the minimum rights
that fit the user’s intention to access the required data. One of
the concerns in access control is that all users assigned to a
role should not inherit the same permission. For example, a
dentist and a neurologist with the same role as a doctor do not
need to have access to the same health records. This model

can deal with this concern using a given permission granted to
a specific user in a given role. In the following, we formalize
the proposed access control method.

o Subjects and Roles: In our model, a subject represents
the user. A subject s; is authorized in the system if
s;i € S, where S = {S1,...,S,} is a set of authorized
subjects. R = {Ry,..., R} is the set of roles in an
organization. Each subject s; may have a set of roles
R, ={r1,...,r;}, 1 < j <m, where R, € R.

o Subject Attributes: We use attributes to show the char-
acteristics and capabilities of a subject. These attributes
include role, job description, etc. Figure 2 shows how
the PDC' uses subject attributes in the decision-making
process. Each subject is represented by a set of subject
attributes SAttr = {SAtty, ..., SAtt,,} where m is the
total number of subject attributes.

e Object: The entity objects are health records such as
medical records, accounting records, and administrative
records that are divided to n fragments. The object set
is defined as O = {Oy,...,O,}. Based on the security
level of objects, a user can have access to different
objects, so the object set of each subject is defined as
Sz' :{01,...,Oj}, 1 gzgnand 1 S] STL

o Object Attribute: Attributes include important infor-
mation about an object such as security level, type
(e.g., medical records or accounting records), and so
on. The object attribute set is defined as OAttr =
{OAtty,...,OAtt,,}, where m is the number of object
attributes.

o Actions/Rights: Rights are the set of actions that the
subject has permission to perform on objects. The action
set is defined as a = {ay,...,a,,} and the right set as
a = {aq,...,an} where m and n are the number of
actions and defined rights in the system, respectively.
Rights can include read and write. Actions are reading,
writing, and consulting. Since in each organization, dif-
ferent actions need to different rights, so organizations
define actions in terms of rights [17].

To define the static policies, we adopt the relationships
Employ and Define from the method proposed by Kalam et
al. [17] to define the Grant relationship.

o Employ(org, S;, R;) means that the organization, org,
employs subject S; inrole Bj, 1 <i<nand1 <j <m.

e Define(org,a;, ;) means that the organization, org,
defines action a; in terms of rights, 1 < ¢ < n and
1 < j < m, for instance the consulting action as a reading
right.

o Grant(S;,org, R;j,a;,0;) is based on the two afore-
mentioned relationships Employ and Define. SP grants
the right a; on object O; to the subject .S; with the role
R;, from the organization, org. This definition permits
authorized users only to have access to specific health
records.

o Grant(S, «;,0j,is_condition). This relationship can be
defined by the SP in the case that the owner wants to

@) Gamnsrie)

Rights | Trapdoor | F

Fig. 3. Example intention tree.

seek advice from a subject (e.g., a doctor, who is not
employed by the organization). Moreover, based on our
definition, a user who is granted access to an object with
an official security level status cannot access an object
with a sensitive security level status.

There are emergency situations when a subject needs
to access objects with higher security level. We use a
condition term that defines the urgency situation or having
consent from the data owner. Based on the consent and
urgency situation, the is_condition(S;, a;, O;) function
returns true.

Using the above relationships, access is granted or denied
based on the output of the function is_access that we define
as:

VS VO Va is_access(S,a, 0) =

True, if Grant(S,«,O,is_condition)\/
Grant(S,org, R, a, O) (1
False, otherwise

We use these relationships to determine the maximum rights
of each subject. When the system receives an authenticated
access request, it extracts the least rights that satisfy the
request. To achieve this goal, we use the concept “Intention”
to narrow down the user rights according to the intention per
request. This requires the user to express her/his reasons for
accessing the data. We use the hierarchical relationships [18]
to represent all possible intentions. We organize intentions
I = {h,...,I,}, in a tree structure, named Intention Tree
(IT). Different paths in the tree represent various intentions
from specialized to generalized ones. Figure 3 demonstrates an
example of I'T" in e-Health systems. We build a separate I'T" for
each data fragment. Each leaf node is linked to a record that
determines the required rights for an intention, trapdoor, and
the data fragment(s) of interest to this intention. The intention
is expressed in a set of keywords W = {W71, ..., W,, }, where
n is the number of keywords that characterize the intention.
We calculate the trapdoor from these keywords based the
method proposed by Chen et al. [9]. Users use the meaningful
keywords shared by the SP to express their intention. For

Start Time- Expiration Time

f_;\

Serial Number Trapdoor Rights ST-ET

uSig

Fig. 4. Token architecture.

example, a health-care accountant can use the keywords such
as financial records or company payroll to express his/her
intention. The PDC uses static policies, object attributes,
and subject attributes to check whether the user intention
complies with the user’s role(s), job descriptions and so on.
If match is true, the PDC passes the authenticated access
request, including the intention to the RSC'. To determine the
least access rights, RSC' based on the user’s information and
intention processes the I'T" and generates a token.

Figure 4 shows the structure of tokens. A token includes
the following:

o Serial number: To monitor the actions of users and for
non-reputation processes, user access is logged. To save
and search users’ log easily, a serial number is assigned
for each user. The AAM and C'S use the serial number
to manage the user’s log.

o Token rights: The rights of the user holding the token.

e Trapdoor: The trapdoor created from the search key-
words.

o Start time: The time at which the token becomes valid.

o Expiration time: The time at which the token becomes
invalid.

o Signature: A digital signature to ensure the integrity
of the token contents. The TMC wuses the private
key PRAM to sign the token. The signature is also
used to verify the start time and expiration time
to ensure the token validity period. The T'MC' uses
the session key KSA;12 to encrypt both the to-
ken contents and the user decryption keys and sends
(Encksa,..(token, decryptionkeys(SFK))), si 4 3)
to the user. The user uses the decryption key to decrypt
the health records.

6) Data Access Control: The user can send the received
token as the search right through a secure channel to the
cloud provider hosting the data. To establish a secure com-
munication channel between the user and C'S, the user selects
a secret key K.SCS as a session key. The user then sends
Encpypes(token, KSCS, N), where N is a sequence num-
ber to prevent replay attack. The C'S decrypts the message
with its private key and verifies the token by applying the
system public key on the token’s signature. The CS also
verifies that the token is timely valid. The C'S then searches the
encrypted data with the trapdoor included in the token. The
CS uses the session key received from the user to encrypt
the search result and sends Encgscs(Data, N + 1) to the
user. The users decrypts the message with the session key
Deckscs(Encixscs(Data, N +1)). The user checks N + 1

and uses the decryption keys received from AAM to decrypt
the data.

Figure 5 summarizes the data access control process in our
method.

E. Algorithm

Each user who wants to access health records shared by
the SP sends its registration request to the SP. The SP
generates a unique secret ID for the user. The user then
submits an access request to the AAM to receive a valid
token for accessing the health records. The AMC' component
uses a zero-knowledge identification protocol to authenticate
the user’s request. Based on the user’s identity, the PDC
component uses the access control policy defined by the SP
to determine the minimum rights of the user. The PDC' then
communicates with the RSC' to issue a valid token along
with the proper decryption keys for the authenticated user.
Algorithm 1 shows the process of generating a valid token for
the user. In the next step, the user sends the received token to
the C'S. The C'S verifies that the token is timely and valid and
then searches the encrypted data with the trapdoor included in
the token and sends the results to the user. The user can then
decrypt the received health records using the decryption keys
from the previous step.

Algorithm 1: Algorithm for generating a valid token.

Input : user request

1 rights = """

2 if Authentication(user request)==TRUE then

3 rights = MaximumAccess(user)

4 access =TRUFE

5 if access==TRUE then

6 | token = MinimumAccess(rights, intention)
7 end

8 else

9 ‘ error = IssueError(rejectedmessage)
10 end

11 end

12 else

13 access = FALSE

14 error = IssueError(unauthorizeduser)
15 end

Output: roken, error

IV. FEATURES AND SECURITY RISK ANALYSIS

Data security is one of the biggest concerns in cloud com-
puting. In this section, we analyze the proposed method from
different security perspectives including data confidentiality
and resistance to various security attacks.

A. Data Confidentiality

Our scheme uses a standard symmetric-key algorithm (e.g.,
AES or DES) to store data in an encrypted form in the
cloud. Therefore, our scheme intrinsically inherits its security

+
D il E m\
- ===
Fro == .
Start... . .
_— {ID} I Registration
| D S 1
ik i imemime -4
B U -
! Encpypam(%, v, BDKAM, si) .
1 .
i ((Enc gy (e, Time)), si+1) !
i -=4 | Authentication | &
: ((Encgy i41)(Y)), 8it2) ; Access Control
1 - .
s 1
! ((Encysp is)(token, SFK)), si+3) i
1 Ny .
D o
1 .
i Encpypes(token, KSCS, N) -
1
1 .
. | File Access
| Encygcg(Data, N+1) :
1 |€ -—d !
End [1. _._._._. P e mmim !
—

Fig. 5. Data control access procedure.

strength from the security of the symmetric-key algorithm. The
decryption keys are only shared with the authorized users, so
C'S cannot acquire any information about the outsourced data
or keys. Furthermore, the communication between entities are
carried out in an encrypted form, so adversaries cannot have
access to the transmitted messages. For instance, to exchange
the decryption keys between AAM and users, a public key
and a session key are applied to protect the disclosure of
transmitted messages. For data access, a second encryption
is applied to increase the security of the outsourced data.
In addition, our proposed scheme does not disclose extra
information to C'S. Thus, the CS is unable to derive data or
user access right information, since everything is encrypted,
from data to trapdoors. The classification of fragments to
various security levels adds another layer of fortification to
secure the data.

B. Fine-grained Access Control

In the proposed scheme, we apply a two-step access control.
The first step limits the rights of users based on their roles. The
second step then limits the user rights based on the intention
of his/her task. For example, an accountant user wanting to
prepare a financial statement for a specific month does not
need to have access to all of the financial/accounting records of
the patient. These two steps result in making access decisions
based on the minimum required rights of each user. Moreover,
changing the trapdoor results in different file access rights.
Therefore, the data owner is able to define and enforce a
flexible access policy for each user.

C. Non-repudiation

The proposed method logs all user actions to support non-
repudiation.

D. Authentication and User Privacy

A unique ID is assigned to the user upon registration.
The communication between the user and the AAM is au-
thenticated based on this /D with the challenge-response
protocol. The security of authentication protocol relies on the
complexity of discrete logarithm problems, which means that
the attacker needs to solve the discrete logarithm problem,
which is believed to be hard. Hence, the identity of users is
preserved as the zero-knowledge protocol does not reveal the
user I D, as shown in Figure 5.

E. Withstanding Security Attacks

Our approach is well-designed to withstand the various
security attacks. In the following, we elaborate on how our
scheme avoids and resists common network security attacks.

e Replay Attack: All communications between parties in
our model are encrypted. Therefore, attackers cannot eas-
ily intercept any message and replay it. Since our authen-
tication and authorization method also uses a sequence
index s¢, our method is highly immune to replay attacks.
The time-stamp of tokens and timeout period ensures
the validity and freshness of the requested message. In
addition, the sequence number N prevents a replay attack
during data access, so attackers cannot replay outdated
data to the user.

Client#./clientM.py -r -u testuser —p testpass
Demo client application started
command= reg User testuser Password testpass

connection to the SP is successfull, starts to send the data {'passowrd': 'te
stpass', 'command': 'reg', 'user': 'testuser', 'seq': 84821036L}

response from the SP= {"respcode": "seq": 84821036, "resptext": "Register

is sucessfull", "command": "reg", "v": 142745084700985079069948221484801845
59083704041959885964113438562509980980870192413387332225744607555245766880875
39916326260272505402898206839768041472385673325711364337242492124383115727805
64121933032084397264136137999320012582039337051685598790494466206223264965315
248394774450269143680926515289759903347873, "alpha": 297187882005227745069562
248582887512026662263353}

Fig. 6. User registration.

o Man-in-the-Middle Attack: In this attack, the attacker
between two communicating parties intercepts transfer-
ring messages and alters or injects new contents. In our
scheme, attackers cannot intercept any message due to
encryption. The combination of public key encryption and
session key prevents the man-in-the-middle attack. Only
the AAM can decrypt the user’s access request using its
own private key and only the target user can decrypt the
response coming from the AAM using the session key.
Hence, the communication between users and both the
AAM and the CS is safe.

o Brute-force Attack: The session key between the user and
the AAM is changed in each session by employing the
concept of DUKPT. Therefore, the brute-force attack is
almost impossible.

e Denial-of-Service Attack: During the authentication pro-
cess, the AAM determines the value of Time which
means that the user has to respond during the specific
time frame which effectively prevents a forced delay in
response.

V. PERFORMANCE EVALUATION

We built a prototype to test and evaluate the proposed
method. The prototype focuses on the authentication and token
management process. The prototype is developed in Python,
and uses the JSON format to exchange messages between
various entities in our system. Our prototype mainly includes
four entities: users U, a cloud server C'S, a service provider
S P, and an authentication and access control manager AAM.
We used three Amazon EC2 instances of the type r2.medium
for the C'S, SP, and AAM. User requests were initiated from
local machines in our lab. As shown in Figures 6 and 7, the
authentication process is done in the following steps:

o The user runs the client application and sends a request to
the S'P to receive the authentication protocol parameters.
The SP verifies the user information and then sends the
requested information (e.g., v). The user name is the I.D
which the user receives during the registration. The client
application saves the received protocol parameters on its
system (Figure 6). The information related to the user
ID and password are in clear format for debugging and
demonstration purposes.

o During the authentication process, the user sends the
authentication request to the AAM. The AAM sends the

Client#./clientM.py -1 -f testuser.rep -k key.pem
Demo client application started

command= login repofile testuser.rep keyfile key.pem

start to send the data {'x': 153813048112267375276248016393815328377086179553
63169194836332688119841718816023564077461330562485947532520824110806591599294
52171442847453839045517245094701714897586816599069734584854348360642415227884
91477870497656143161249604712127817497821485140844342021910812508203465570263
491738906189262093314526835023L, 'command': 'login', ‘'bdk': '9b@ba60@ffb8f90c7
42989dfbc59cd8162c87d9f166a4a71657c7alff9c11001e99755209cddc810654c34b180269d
6c3ab7cd72fd4224724e2c065205549e177d01f09af6989abe87a530c f534f6d6799365ff816
75ba9c5679681b23e125f127aa964165ce77fe82b3b377ddaf7100c48d7f2f98dd70d6cd8c53
c5c68aeab5cd1a3c79d69489d61b53f1f2b86aa22f5a69e031f81e9f4ad514eee33cba24570e5
714b0888263f3d5df16b8fdba36052877774d73d014e0dc050e69af37e9408c55043ba258979
81593e15ee060569cdcbacd10c8dc23206413cd3fad9215f84945eb106370050d04d3cbed5fc
25a0c2b4d065a2809a037e60bb25507e52", 'seq': 6787179749380878L, 'v': 142745084
70098507906994822148480184559083704041959885964113438562509980980870192413387
33222574460755524576688087539916326260272505402898206839768041472385673325711
36433724249212438311572780564121933032084397264136137999320012582039337051685
598790494466206223264965315248394774450269143680926515289759903347873L}

-u testuser

challenge request from the AAM {"e": 765695633010, "command": '"challenge"}
challenge response send to the AAM {'y': 685340641879166255590233759406675768
961285384622L, 'seq': 6787179749380879L}

the final result: success
ticket data is:

{u'keyid': u'276730364072310124964907', u'trapdor': u'this is demo', u'right’
1 u'test access', u'expiration': u'2015-11-14 01:02:38.559227', u'starttime’
u'2015-11-14 00:02:38.559213', u'Encryptedtid': u'f103cd958e98dc0@8ed4a834544a
5bbe4d3a999d8c7687e78b', u'tid': u'668380246555565327138445"', u'segment': u't
est segment'}

tikcet sign is ccbd83868falafl6dc@1b6a603fe24e791988a326d021c1803091147529¢0
bcdea@b1fd6663fc678df2e53aa5635f4967e7ad464fcb33a@1febb73dd51cd8cbf1d46c34793
bf3bccc846d082c385bc421f4bb939d742b57a11d0235ca6651d04b8641f2f3ecec95ab11436F
f5e11cb444ab570037dfe34b578f20c1d18e2ad51c2694d6ef28ab38e392c308e7eb9db310447
057246d3e8f4ac67c296f523627989dcb29799147d45ea91b3dcde817f2fa0d5c0e372d5392
98d07263eee73828d699a2c305d161ba902blcadf97c8ebb9acd3bc@4c7e@c5c060blc69e04aa
a187352b6a41c39f353ca9077e8f4340f84d8c9c6d51efb237bc81e772e343f95¢

Fig. 7. User authentication.

challenge to the user. The user uses the information which
received in the previous step to calculate the challenge
and respond to it. The AAM verifies the response and
sends a signed token/ticket to the user (Figure 7). Any
authentication request with invalid data is denied.

In the above steps, the user does not need to send his/her
credentials to the AAM server. In addition, all exchange data
is encrypted based on the public key and DUKPT scheme.

We conducted experiments to evaluate the throughput of
our system under varying load testing. We submit concurrent
requests and measure the average response time (i.e., the time
to complete those requests). A bash script generates concurrent
requests from different users to the AAM and we instrumented
our prototype to report the response time. Figure 8 shows the
average response time under varying numbers of concurrent
requests. Experimental results show that our system (with
the current setup) can accommodate up to 100 concurrent
authentication requests with a reasonable response time of
2.16s.

In Figure 8, the challenge request time shows the time that
the server takes between receiving the request and generating
the challenge request based on user information. Challenge
validation shows the time that the SP needs to verify the
received challenge request from the user. The session time
comprises the entire user-perceived time from sending a re-
quest until receiving a response. This time includes network
time, challenge request, challenge response and challenge
validation time.

2.4

Challenge Request Time
2.2
Challenge Validation Time

2 Network Time

Session Time

18

16

1.4

12

Average Response Time (sec)

0.8

0.6

0.4

0.2

40

50 60 70 80 90 100

Session (#)

Fig. 8. Average response time of concurrent requests.

5000

4500

4000

3500

3000

2500

2000

Number of Requests

1500

1000

500

Time (min)

Fig. 9. System availability.

We also measure the breakdown of the response time to
show the contribution of each process to the total execution
time. Figure 10 shows the three major components of the
total response time. We observed that the validation operation
(i.e., the process of verifying the user response) represents
the highest percentage of the overall execution time and the
challenge request (i.e., the step of sending challenge for
the user) is the second highest contributor. Network latency
represents a very small component of the request response
time.

Regarding system availability and AAM performance in
terms of system throughput and varying workload, Figure 9
shows the increasing number of requests in minutes. It shows
that the AAM is always responsive and can manage 13,984

transactions over 5 minutes. At minute 5, the AAM can
respond to 4,742 requests simultaneously. We can push the
knee of the curve forward by choosing a higher VM type or
adding more instances of the same type to increase the system
capacity.

VI. CONCLUSION

In this paper, we propose a new method that simultaneously
achieves authentication and fine-grained access control. In our
model, the data owner has a set of health records to publish
on cloud servers for sharing. To keep user’s data confiden-
tial against malicious users and semi-trusted cloud servers,
encrypted data are stored in the cloud. To decrease heavy
computational and communication overhead on data owners,
most of the process of authentication and access control is

20% B Request Operation

HValidation Operation

E Network Latency

Fig. 10. Percentage of response time based on the session time.

delegated to an AAM, which is responsible for authentication,
key distribution and access control management. The authenti-
cation process, based on a zero-knowledge method, determines
authorized users. The access control method determines user
privileges to access data. Our method guarantees data con-
fidentiality since the cloud servers are unable to access the
plaintext of any data file. Our authentication, user privacy, and
fine-grained access control show high resilience to withstand
common network attacks.

REFERENCES

[1] National Institute of Standards and Technology, Computer Security Re-
source Centre. Available: http://csrc.nist.gov

[2] S. Yu, C. Wang, K. Ren, and W. Lou, ”Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in [EEE
Proceedings, INFOCOM, pp. 1-9, March 2010.

[3] L. Yibin, W. Dai, Z. Ming, and M. Qiu, "Privacy protection for preventing
data over-collection in smart city,” IEEE Transactions on Computers, vol.
PP, pp. 1, 2015.

[4] A. Majumder, S. Namasudra, and S. Nath, "Taxonomy and classification
of access control models for cloud environments,” in Continued Rise of
the Cloud, pp. 23-53, 2014.

[5] N. Kahani, and H. R. Shahriari, ”An approach for providing privacy and
access control in outsourced databases,” 14th International CSI Computer
Conference, 2009.

[6] D. Ferraiolo, and D. Kuhn, “Role-based access controls,” in Proceedings
of the 15th National Computer Security Conference, pp. 554-563, 1992.

[7] American National Standards Institute. ANSI X9.24-1:2009 Retail Fi-
nancial Services Symmetric Key Management Part 1: Using Symmetric
Techniques, 2009.

[8] E. Brier, and T. Peyrin, ”A forward-secure symmetric-key derivation
protocol,” in Advances in Cryptology-ASIACRYPT, pp. 250-267, 2010.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, "Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Transaction on
Parallel and Distributed Systems, vol 25, pp. 222-233, 2014.

[10] C. P. Schnorr, “Efficient signature generation by smart cards,” Journal
of Cryptology, vol 4, pp. 161-174, 1991.

[11] U. Feige, A. Fiat, and A. Shamir, "Zero-knowledge proofs of identity,”
Journal of Cryptology, vol. 1, pp. 77-94, 1988.

[12] U. Maurer, "Unifying zero-knowledge proofs of knowledge,” in Progress
Cryptology AFRICACRYPT, pp. 272-286, 2009.

[13] J. T. McCall, "Zero Knowledge compilers,” in UMM CSci Senior
Seminar Conference, pp. 19, December 2013.

[14] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in IEEE
Proceedings, INFOCOM, 2014.

[15] W. Sun, W. Lou, Y. T. Hou, and H. Li, "Privacy-preserving keyword
search over encrypted data in cloud computing,” in Secure Cloud
Computing, pp. 189-212, 2014.

[16] S. Kamara, C. Papamanthou, and T. Roeder, "Dynamic searchable
symmetric encryption,” in Proceedings of ACM Conference on Computer
and Communications Security, pp. 965-976, 2012.

[17] A. A. Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y.
Deswarte, and G. Trouessin, “Organization based access control,” in
IEEE 4th International Workshop, pp. 120-131, June 2003.

[18] J. W. Byun, E. Bertino, and N. Li, "Purpose based access control of
complex data for privacy protection,” in Proceedings of the 10th ACM
Symposium on Access Control Models and Technologies, pp. 102-110,
June 2005.

[19] B. Cha, J. Seo, and J. Kim, "Design of attribute based access control
in cloud computing,” in Proceedings of International Conference on IT
Convergence and Security, pp. 41-50, 2011.

[20] R. Canetti, and S. Hohenberger, "Chosen-ciphertext secure proxy re-
encryption,” in CCS, ACM, pp. 185-194, 2007.

[21] M. Li, S. Yu, K. Ren, W. Lou, ”Securing personal health records in
cloud computing: Patient-centric and fine-grained data access control in
multi-owner settings,” in Proceedings of the 6th International ICST
Conference on Security and Privacy in Communication Networks, pp.
89-106, September 2010.

[22] M. Barua, X. Liang, R. Lu, and X. Shen, X., "ESPAC: Enabling security
and patient-centric access control for eHealth in cloud computing,”
International Journal of Security and Networks, vol. 6, pp. 67-76, 2011.

[23] M. Barua, M. S. Alam, X. Liang, X. and Shen, ”Secure and quality
of service assurance scheduling scheme for wban with application to
ehealth,” in IEEE Conference on Wireless Communications and Network-
ing, QuintanaRoo, pp. 1-5, 2011.

[24] J. Luna, M. Dikaiakos, M. Marazakis, and T. Kyprianou, ’Data-centric
privacy protocol for intensive care grids,” in IEEE Transaction on
Information Technology in Biomedicine, vol. 14, pp.1327-1337, 2010.

[25] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption
for fine-grained access control in cloud storage services,” in Proceedings
of the 17th ACM Conference on Computer and Communications Security,
pp.735-737, 2010.

[26] S. Sanka, C. Hota, and M. Rajarajan, “Secure data access in cloud
computing,” in IEEE 4th International Conference on Internet Multimedia
Services Architecture and Application (IMSAA), pp. 1-6, 2010.

[27] X. Gao, Z. Jiang, R. Jiang R, A novel data access scheme in cloud
computing,” in Proceedings of the 2nd International Conference on
Computer and Information Applications, pp. 124-127, December 2012.

[28] C. Danwei, H. Xiuli, and R. Xunyi, ”Access control of cloud service
based on ucon,” in Cloud Computing, pp. 559-564, 2009.

[29] Y. Zhu, H. Hu, G. J. Ahn, D. Huang, and S. Wang, "Towards temporal
access control in cloud computing,” in IEEE Proceedings, INFOCOM,
pp. 2576-2580, March 2012.

[30] L. Fan, W. Buchanan, C. Thummler, O. Lo, A. Khedim, O. Uthmani,
A. Lawson, and D. Bell, "DACAR Platform for eHealth services cloud,”
in Proceedings of the 4th International Conference on Cloud Computing,
pp. 219-226, July 2011.

