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ABSTRACT

Based on the simple, naive idea of text-line differencing of pretty-

printed code, at ICPC 2008 we introduced NICAD [5], the first

code clone detector explicitly aimed at finding intentional “near-

miss” (Type 3) clones. Using the TXL [2] parser to identify and

pretty-print all instances of a code unit of interest (functions, blocks,

etc.), NICAD provides several ways to pre-process the code before

comparison, including flexible formatting, renaming, normalization

and abstraction, making it suitable for finding all kinds of clones in

a wide range of different applications. In this talk we will outline the

journey from that initial naive idea to an efficient, scalable, flexible

clone detection tool that handles more than ten different languages

with high accuracy in both precision and recall [8]. Along the way

we will highlight our experience in tuning our initial prototype to

production speed and scalability [4], we will review its application

in a range of large-scale clone experiments [3, 6, 7], and describe

its evolution to handle new domains such as subsystem clones in

graphical models [1]. Finally, we will close with new methods based

on NICAD [9, 10] and its lessons for clone detection research in the

future.
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