
Adventures in NICAD:
A Ten-Year Retrospective

MIP Abstract

Chanchal K. Roy
University of Saskatchewan

Saskatoon, SK, Canada

chanchal.roy@usask.ca

James R. Cordy
Queen’s University

Kingston, ON, Canada

cordy@cs.queensu.ca

ABSTRACT

Based on the simple, naive idea of text-line differencing of pretty-

printed code, at ICPC 2008 we introduced NICAD [5], the first

code clone detector explicitly aimed at finding intentional “near-

miss” (Type 3) clones. Using the TXL [2] parser to identify and

pretty-print all instances of a code unit of interest (functions, blocks,

etc.), NICAD provides several ways to pre-process the code before

comparison, including flexible formatting, renaming, normalization

and abstraction, making it suitable for finding all kinds of clones in

a wide range of different applications. In this talk we will outline the

journey from that initial naive idea to an efficient, scalable, flexible

clone detection tool that handles more than ten different languages

with high accuracy in both precision and recall [8]. Along the way

we will highlight our experience in tuning our initial prototype to

production speed and scalability [4], we will review its application

in a range of large-scale clone experiments [3, 6, 7], and describe

its evolution to handle new domains such as subsystem clones in

graphical models [1]. Finally, we will close with new methods based

on NICAD [9, 10] and its lessons for clone detection research in the

future.

BIOGRAPHIES

Chanchal K. Roy is Associate Professor of Software Engineering

at the University of Saskatchewan, Canada. He is the co-lead of

the Big Data Analytics group of an NSERC Canada First Research

Excellence Fund (CFREF) on Food security. As the co-author of the

widely used NICAD code clone detection system, he has published

more than 140 refereed publications that have been cited more

than 3600 times. His contributions to the software maintenance

community, and particularly to the software clones community,

have been highly influential, recently winning Most Influential

Paper awards at both SANER 2018 and ICPC 2018. Dr. Roy was a

vision keynote speaker at WCRE/CSMR 2014 on software clones,

and a keynote speaker at both IWSC 2018 and IEEE R10HTC 2018.

He serves widely on the program committees of major software

engineering conferences such as ICSE, ICSME, SANER, MSR, ICPC

and SCAM, and has chaired several.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196325

James R. Cordy is Professor and past Director of the School of

Computing at Queen’s University in Kingston, Ontario, Canada,

and recent Director of the NSERC CREATE Graduate Specialization

in Ultra-Large Scale Software Systems. From 1995 to 2000 he was

Vice President and Chief Research Scientist at Legasys Corporation,

a software technology company specializing in legacy software

system analysis and renovation. As leader of the TXL source trans-

formation project with hundreds of academic and industrial users

worldwide, he has been involved in software analysis and transfor-

mation systems for more than 30 years. He has published more than

200 refereed contributions in software engineering, programming

languages and artificial intelligence, three of which have recently

won ten-year Most Influential Paper awards. The 2016 winner of

the Queen’s University Prize for Excellence in Research, he is an

ACM Distinguished Scientist, a Senior Member of the IEEE, and an

IBM CAS Faculty Fellow.

ACKNOWLEDGMENTS

The authors wish to acknowledge NSERC, the Natural Sciences

and Engineering Research Council of Canada, for their continuing

support over the many years of the NICAD project.

REFERENCES

[1] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson. 2012. Mod-
els are code too: Near-miss clone detection for Simulink models. In 28th IEEE
International Conference on Software Maintenance, ICSM 2012. 295–304.

[2] J.R. Cordy. 2006. The TXL source transformation language. Science of Computer
Programming 61, 3 (2006), 190–210.

[3] J. R. Cordy. 2011. Exploring large-scale system similarity using incremental clone
detection and live scatterplots. In 19th IEEE International Conference on Program
Comprehension, ICPC 2011. 151–160.

[4] J. R. Cordy and C. K. Roy. 2014. Tuning research tools for scalability and perfor-
mance: the NICAD experience. Science of Computer Programming 79, 1 (2014),
158–171.

[5] C.K. Roy and J.R. Cordy. 2008. NICAD: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization. In 16th IEEE
International Conference on Program Comprehension, ICPC 2008. 172–181.

[6] C. K. Roy and J. R. Cordy. 2010. Are scripting languages really different?. In 4th
International Workshop on Software Clones, IWSC 2010. 17–24.

[7] C. K. Roy and J. R. Cordy. 2010. Near-miss function clones in open source software:
an empirical study. Journal of Software Maintenance and Evolution: Research and
Practice 22, 3 (2010), 165–189.

[8] J. Svajlenko and C. K. Roy. 2015. Evaluating clone detection tools with Big-
CloneBench. In 31st IEEE International Conference on Software Maintenance and
Evolution, ICSME 2015. 131–140.

[9] Jeffrey Svajlenko and Chanchal K. Roy. 2017. Fast and flexible large-scale clone de-
tection with CloneWorks. In 39th International Conference on Software Engineering
Companion, ICSE-C 2017. 27–30.

[10] M. S. Uddin, C. K. Roy, and K. A. Schneider. 2013. SimCad: An extensible and faster
clone detection tool for large scale software systems. In 21st IEEE International
Conference on Program Comprehension, ICPC 2013. 236–238.

19

2018 ACM/IEEE 26th International Conference on Program Comprehension

