
An Interactive Interface for Refactoring Using Source Transformation

Scott Grant, James R. Cordy

School of Computing
Queen’s University, Kingston, Canada
{grant,cordy}@cs.queensu.ca

Abstract

In this paper we present RUST, an environment that as-
sists the programmer in locating potential code improve-
ments by searching for a set of predetermined patterns,
identifying these areas as code smells, and providing a
means to automatically implement refactorings. Results
and changes are presented using an interface that allows
the user to examine the affected code, try out and see the re-
sults of applying potential refactorings, and accept or back
out of changes after performing them. This reversible sys-
tem allows for interactive programmer-driven modifications
to the source code in which programmers can test out refac-
torings before committing to them.

1. Introduction

Code smells are metaphors for areas of code that may
benefit from refactoring. Traditionally, the task of identi-
fying these smells has fallen to the programmer, who must
manually search through source code looking for potential
problem areas. Thus far, it appears that no set of metrics can
rival informed human intuition [1]. However, it is clear that
large programs with hundreds of thousands of lines of code
would benefit from some automated support for detecting
and refactoring these code smells.

In this paper, we present RUST, which stands for Refac-
toring Using Source Transformation. RUST is an environ-
ment that assists the programmer in locating potential prob-
lems by performing transformations directly on the source
code and attaching information embedded in XML tags. By
specifying a general smell using a pattern matching rule,
our tool can help to isolate code smells and bring them to
the attention of the programmer, who can then determine
whether or not they are valid concerns. We provide a point-
and-click way to automatically perform the suggested refac-
toring in the environment itself using similar source trans-
formation methods. In addition, the interface allows the
user to back out of refactorings after performing them, al-

lowing for interactive programmer-driven modifications to
the source code. This reversible refactoring implementation
allows programmers to test out refactorings before imple-
menting them. We also provide a means to summarize the
suggestions, which greatly benefits large projects.

In our previous work [2] we noted the need for leav-
ing decisions on software maintenance in the hands of the
programmer, not the automation, in order to help overcome
practical barriers to industrial adoption of maintenance au-
tomation. To this end, we have developed a prototype in-
teractive interface for refactoring C++ code in which the
programmer is presented with refactoring opportunities au-
tomatically identified using code smell patterns as a set of
possibilities highlighted using colour and summarized in a
concise list. The programmer can then choose to implement
any of the refactorings by clicking on the highlighted sec-
tion, which causes the system to automatically implement
the refactoring and present the result. While all steps are
fully automated using source transformation patterns and
rules, all decisions are left in the hands of the programmer,
who may choose which refactoring possibilities to act upon,
try them out, and undo them as they choose. In this way the
system assists, rather than prescribes, the maintenance task.

RUST is comprised of a collection of HTML web pages
with PHP and Perl scripting using TXL for source trans-
formation. TXL [3, 4] is a programming language specif-
ically designed to support computer software analysis and
source transformation tasks. C++ was chosen as it is a
common language in wide use today, with a valid and well
tested TXL grammar already available. However, this pro-
cess generalizes to other input languages or transformation
tools without much difficulty. The environment is built with
PHP scripting under the Apache Web Server. Perl is used
to generate custom transformations when necessary. TXL
is used on the server-side to perform the transformations.
Our choices for the scripting languages lie mainly in their
convenience. PHP and Perl are only used for their basic ad-
vantages, and can be replaced with other languages if nec-
essary.

Input Source�
Code�

Stage 1: Detecting�
Code Smells�

Stage 2: Performing�
Refactorings�

Tagged�
Source Code�

Refactored�
Source Code�

Interface�
Decision�

Undo - Revert to the Original Code�

Accept the Refactoring�

Reverse an Existing Refactoring�

Figure 1. The Flow of Data

Our refactoring process has two primary stages. We are first presented with input source code, which is parsed and analyzed
for code smells in the first stage. If any are found, we mark them up using XML tags, resulting in tagged source code. This
tagged source is presented to the interface, from which point refactoring suggestions can be made. The tagged source can be
passed to the second stage, which converts the tagged portions of the code into refactored versions. Output source code can
then either be used again as input source code for the first stage if the refactoring is accepted, or the code can be reverted to
the previous tagged source code.

2. Refactoring by Source Transformation

2.1. Detecting Code Smells

As seen in Figure 1, our approach works in two stages.
In the first stage, we are interested in searching for code
smells residing within the input source code. By writing a
collection of rules to identify predetermined code smells, it
becomes possible to automatically search for the features in
code that are traditionally tracked down manually by pro-
grammers.

Emden and Moonen [5] differentiate between primitive
smell aspects that can be observed directly in the code,
and derived smell aspects that are inferred from other as-
pects. Primitive aspects allow very clear and unambiguous
transformation rules to be written. Derived aspects are cer-
tainly more complicated in any approach, but code smells
like those that can be extracted from fact bases are equally
possible by reiterating the analysis. TXL has been used in
several fact extraction projects [6, 7], and experience has
shown that the necessary parsing and fact generating trans-
formations are fast and easy to perform.

Refactoring by source transformation lends itself very
well to primitive smell aspects. Since we are construct-
ing a parse tree, we need only specify the pattern that we
are looking for, perhaps using simple metrics, in order to
identify the area of interest. Derived smell aspects require a
slightly different approach. The source transformation ap-
proach to detecting code smells requires two features to be
identified: the pattern that we are looking for, whether it
is a block of code, or features found within the code itself;
and the way that the code block should be marked up using

XML tags. Performing additional steps such as fact extrac-
tion can provide more information that can be used in the
smell detection for derived smell aspects.

2.2. Performing Refactorings

In order to perform our refactoring transformations, we
must start by searching for the code smell markups found in
the first stage. These will take the form of blocks of code
surrounded by appropriate XML tags, as described in Sec-
tion 2.1. Once a code smell has been identified, we can
offer the option of automatically performing the suggested
refactoring.

The general layout of a rule to perform a refactoring
in our implementation will need two main features. First,
we need to roughly specify what the format of the previ-
ously identified smell will look like. Since we have already
marked up the section with XML tags, this task is very easy.
Figure 2 shows two possible examples that we could match.
Secondly, we need to specify the actual change that must
be made to the source code in order to perform the refactor-
ing. One of the major benefits of XML is that it allows us
to implement an essentially transparent markup of refactor-
ing information in the interface. It is possible to tag code
smells and refactored code using XML tags, and replace
them with HTML colour tags directly within RUST. An ex-
ample can be seen in Figure 3, where � indicates a high-
lighted markup.

The act of performing a refactoring on a block of code
has been explored for over ten years now [8]. Automatic
source code transformations that perform these refactorings
at a user’s request have also been in development for a num-

2

int ReallyBigMethod ()
<longMethod> {

// A lot of code omitted
} </longMethod>

<stv id="1" line="1">relevantStatement1;</stv>
irrelevantStatement;
<stv id="1" line="2">relevantStatement2;</stv>

Figure 2. Sample XML markups

By wrapping the interesting area in XML blocks, we indi-
cate to future stages of our environment that we have de-
tected an area that may benefit from refactoring. The first
shows a method body wrapped in XML tags that indicate a
long method. The second shows a Split Temporary Variable
refactoring, spanning several locations in the code. We can
indicate each particular stv instance with a unique id, and
each relevant line in the refactoring by a line parameter.

ber of years (for example, [9]), and many refactorings are
now performed by programs rather than by programmers.
Source transformation, as shown above, can clearly be used
to perform many refactorings. The benefit to our refactor-
ing technique is that the transformations are reversible; if it
is unclear which refactoring solution will work for a given
problem, RUST can be used to try refactorings, back out of
undesirable ones, and start anew from any point.

3. Presenting Information Effectively

A fundamental design feature of RUST is the efficient
presentation of information. In order to best convey our
results, we decided to use framed hypertext pages. Figure
3 shows the general layout. Initially, the user is presented
with a framed window with the source input on one side
and the output on the other. The input source code always
resides on the left side of the screen, while the parsed and
transformed code with summary information is presented
on the right.

Section � is the source code listing. While we currently
use a text box, allowing for very easy editing and cut-and-
paste operations, we have also successfully experimented
with a directory navigation frame, allowing full source files
to be sent directly to the parser. � is the parsed and tagged
source output, with code smell highlighting and method
markups; each method is tagged with a hypertext link to
examine specific methods directly. � is a code smell that
has been detected and highlighted in the source output. The
font colour has been altered, and a notification comment
has been inserted in the code. Adding the refactoring sug-
gestion as a comment retains the ability of the source output
to be compiled. � is the summary listing, providing a con-

cise overview of the refactoring suggestions with hypertext
links to the code smell location in the right frame. In this
example, the link points to the code smell located at �.

Once the code has been marked up with XML tags, we
use a transform to remove the source code and only keep
the core refactoring recommendations. This information be-
comes our summary, which can then be displayed at the top
of the page (4© in Figure 3). In order to make this summary
truly useful, we attach links to each summary line that point
to unique HTML anchors in the source output. This allows
the user to click on the summary line, and be immediately
directed to the relevant refactoring. By providing links to
these points in the summary, we allow the user to click on
any summary line that seems interesting and be shown the
smell without having to scroll through the entire source it-
self. This method works well for large projects. If a project
summary is generated, links to both the specific source file
and the anchor will provide a clear identification of any de-
tected code smells.

4. Related Work

Our environment provides the capability to automati-
cally perform refactorings. This approach has been ex-
plored as early as Brant and Roberts’ Smalltalk Refactoring
Browser [9]. The success of this browser has prompted a
number of other tools, including IDEA by IntelliJ [10] and
jFactor by Instantiations [11]. These tools focus on the code
transformation itself, but do not have great support for in-
dicating when and where a particular refactoring should be
applied. The real benefit of the RUST interface is the abil-
ity to interactively decide which of several refactorings may
be ideal in a given situation. Since the process is reversible,
users have the ability to move back and forth between refac-
torings. The difference between reversing a transformation
using RUST and a simple undo feature is that our XML
markups allow a refactoring to be undone at any point af-
ter its introduction. We simply store the information about
what was changed and how, and can present the user with
the ability to reverse the process at their discretion, even
after several other transformations have been made.

5. Summary

We have discussed the benefits and design of RUST, a
web-based environment that is based on code smell detec-
tion. We have shown how it is possible to detect code
smells using source transformation, and how to automat-
ically refactor those suggestions directly within our envi-
ronment. We have also illustrated its ability to back out of
refactorings that may later be undesirable. We show how
this method can be extended into a powerful tool with the
capability to detect a wide variety of code smells.

3

Figure 3. The RUST Environment

The layout of RUST as it appears in the browser. Section 1 is the source code listing, section 2 is the source output, section
3 is a highlighted code smell that can have a refactoring automatically performed by the environment, and section 4 is the
summary of all detected code smells.

Refactoring has traditionally been a technique used by
humans, as the automated detection of code smells has been
ineffective compared to the careful eye of an experienced
programmer. We seek to narrow the gap between the two
methods by providing a means to identify code smells di-
rectly in the source. This can be accomplished by looking
for features in the code. It is important to note that the pat-
terns that we search for are not restricted to mere source
code, but can also include features that can be extracted
from the source code and embedded within the source in
XML tags.

References

[1] M. Fowler, Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley, 2000.

[2] J. R. Cordy, “Comprehending Reality: Practical Chal-
lenges to Software Maintenance Automation,” IEEE
11th International Workshop on Program Comprehen-
sion, 2003.

[3] J. R. Cordy, C. Halpern, and E. Promislow, “TXL:
A Rapid Prototyping System for Programming Lan-
guage Dialects,” Computer Languages, vol. 16, no. 1,
pp. 97–107, January 1991.

[4] J. R. Cordy, T. Dean, A. Malton, and K. Schneider,
“Source Transformation in Software Engineering us-

ing the TXL Transformation System,” Journal of In-
formation and Software Technology, vol. 44, no. 13,
pp. 827–837, October 2002.

[5] E. van Emden and L. Moonen, “Java Quality Assur-
ance by Detecting Code Smells,” in Proceedings of
the 9th Working Conference on Reverse Engineering.
IEEE Computer Society Press, Oct. 2002.

[6] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A.
Schneider, “Source Transformation in Software Engi-
neering using the TXL Transformation System,” Jour-
nal of Information and Software Technology, 2002.

[7] J. R. Cordy, K. A. Schneider, T. R. Dean, and A. J.
Malton, “HSML: Design Directed Source Code Hot
Spots,” IEEE 9th International Workshop on Program
Comprehension, 2001.

[8] W. F. Opdyke, “Refactoring Object-Oriented Frame-
works,” Ph.D. dissertation, Urbana-Champaign, IL,
USA, 1992.

[9] D. Roberts, J. Brant, and R. Johnson, “A refactoring
tool for Smalltalk,” Theory and Practice of Object Sys-
tems, vol. 3, no. 4, pp. 253–263, 1997.

[10] JetBrains, IDEA 3.0 Overview, 2002.

[11] Instantiations, jFactor Documentation, 2002.

4

