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Abstract—In this position paper we briefly review the
Simulink model clone detection approaches in literature, in-
cluding a new one currently being developed, and outline our
plan for an experimental comparison. We are using public
and private Simulink models to compare approaches based on
clone relevance, performance, types of clones detected, user
interaction, adaptability, and the ability to identify recurring
patterns using a combination of manual inspection and model
visualization.
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I. INTRODUCTION

Clone detection at the code level is a heavily researched
and studied topic [1]. Clone detection of higher level rep-
resentations, or model clone detection, is much newer in
comparison. As the use of models in software development
becomes more and more prevalent, the need to identify prob-
lems at these higher levels is increasingly important. While
the underlying problem of code and model clone detection
is the same in that we are looking for identical or similar
artifacts, the different nature of the software representations
necessitates solutions with different approaches.

In this paper, we outline our plans for a comprehensive
qualitative comparison of existing approaches for model
clone detection. Our primary goal is the assessment of both
strengths and weaknesses in various areas. We begin by
briefly describing the problem of model clone detection and
listing the various approaches that have been applied thus
far, including a new one currently under development. We
continue by outlining the comparison we plan on performing
in Section IV including the model sets we will be using as
our sample sets and the various criteria being considered.

II. PROBLEM DEFINITION

Model clone detection involves finding multiple segments
of higher-level software models that are similar or identical
with respect to some measure of similarity. The particular
measure will depend on the types of models being analyzed,
the domain of the models, and the end goal and users of
the clone-detection analysis. Like code clones, there are
three types of model clones that can be discovered: Type
1 or exact clones, Type 2 or renamed clones, and Type
3 or near-miss clones. Exact clones are connected sets of
model elements that are identical to one another based on
the similarity measure. Renamed clones are identical except
for differences in names and values of labels and elements.
Near-miss clones are those that are are similar but may allow

for small structural or connectivity differences up to a certain
difference threshold.

For the purposes of this paper and our experiments, we
will be focusing on Matlab Simulink models1. Simulink
models are quite prevalent in the domains we are interested
in, and the majority of model clone detection work thus far
has been on Simulink. In the following section, we discuss
the Simulink model clone detection approaches from the
literature that we intend to evaluate.

III. APPROACHES

In general, all approaches begin by normalizing the mod-
els in order to filter out information that is not relevant to
the particular measure of similarity being used.

Deissenboeck et al. [2] have extended the ConQAT tool
suite to detect exact subsystem clones in Simulink models.
They detect clone pairs using a breadth-first search of the
model graph and an inspection of the nodes’ neighbour-
hoods. Clone pairs are then clustered into clone classes
by representing the pairs in a graph and identifying sets
of connected pairs as clusters. Pham et al. [3] attempt to
improve on ConQAT by providing eScan and aScan in order
to detect exact, and near-miss clones, respectively. Their
improvements utilize graph mining work and Simulink-
specific properties.

Recently, Petersen [4] developed a model clone detector
called Naive Clone Detector for exact clones. Like the
previous approaches, they use graph-based model properties
and Simulink information, but by contrast, they use a top-
down approach. Specifically, they identify a relatively small
number of large fragments and then match these against the
other large fragments to determine if there are any “cloned
core fragments”, and then proceed to deeper levels.

In our own work [5], we are currently extending
NiCad [6], a tool for detecting near-miss clones in source
code, to detect model clones in Simulink. By analogy with
NiCad’s code clone detection strategy, we proceed by (1)
building a grammar for the Simulink model representation;
(2) identifying “granules” in the grammar, that is, the
structural sub-units to be compared; (3) normalizing the
sub-model granules to sort internal elements and strip out
any extraneous or irrelevant information; and (4) running
the LCS-based clone detection algorithm of NiCad, which
allows for differences up to a given threshold.

1http://www.mathworks.com/products/simulink/



IV. A COMPARISON EXPERIMENT

The primary goal of our comparison is to compare the
strengths and weaknesses of each approach and to evaluate
the potential of the NiCad-based one that we are developing.
We are particularly interested in the question of which
methods may be better suited to identification of frequent
sub-model patterns in large model sets, a goal of our
industrially-sponsored research. And, of course, we hope to
identify areas for improvement and continued research in
model clone detection.

In keeping with our previous work on comparison of code
clone detection techniques [1], we will focus on qualita-
tive comparison. We will assess each approach’s ability to
detect exact, renamed and near-miss clones independently.
Specifically, for exact and renamed clones, we will compare
ConQAT, eScan, Naive Clone Detector, and our NiCad
approach after setting the NiCad difference threshold to
0.0, with and without renaming normalization. For near-
miss Simiulink clones, there is only aScan and our Nicad
approach. However, aScan is not publicly available and other
authors have had trouble implementing it [7], so NiCad may
have to be evaluated by itself.

Due to large differences in output formats, results from the
various methods will be compared primarily by hand in this
first experiment, assisted by the ConQAT Simulink Model
Quality Assessor2, an Eclipse plugin that allows model clone
detection results to be visually inspected in context given a
clone representation in the appropriate format.

A. Example Models

Similarly to the early comparison of ConQAT versus
eScan [3], we will be primarily relying on models that are
publicly available from Matlab Central3, in conjunction with
models available from our industrial partners. We choose the
same public models that were used by Pham et al. [3] and by
Deissenboeck et al. [7] in order to have an existing basis of
comparison. Neither Naive Clone Detection nor our NiCad-
based approach have yet been tested on these models.

B. Dimensions of Evaluation

Before beginning a qualitative comparison or evaluation, it
is important to be clear on the qualities to be compared. Our
first two aspects are the same ones used in the preliminary
work done by Deissenboeck et al. [7].

1) Relevance: Relevance, or precision, of the clones
retrieved is a key area of concern in model clone detection.
Deissenboeck et al. identify five qualities of relevance that
we will use in our evaluations: node size, clone weight,
relative weight, interface weight and interface node size.

2) Performance: Performance is an important measure
of usability and scalability. We will also consider the usual
tradeoff between recall and performance.

2http://www.cqse.eu/?page id=81
3http://www.mathworks.com/matlabcentral/

3) Clone detection type: We will consider which types
of clones (1, 2, and 3) [1] the approaches are able to detect.

4) User interaction required: It is important to consider
the amount of manual interaction required by each approach
to get the desired results. For example, some approaches
require multiple iterations, possibly with user feedback, to
discover relevant clones while others require none.

5) Adaptability: Adaptability refers to the ability of an
approach to deal with change. For example, if a tool is tied
to a specific model version or if we are interested in different
granularities of clone pairs, we must consider how much
work is required to adapt the approach to the new situation.

6) Model pattern granularity: Most of the tools attempt
to extract clone classes in order to identify potential libraries
for future reuse. Which approaches are well-suited to finding
useful patterns or antipatterns at appropriate granularities?

V. CONCLUSION

We have briefly introduced the state of the art in model
clone detection approaches, including one currently under
development, and outlined our plans to compare them. We
described the sample sets of models that we will be using
and the criteria we will be focusing on in our evaluation.
We hope to have early results ready for the workshop.
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