
Abstract
This paper presents a method for unique renaming

declarations and references in Java programs using source
transformation to XML markup. Each entity declaration and
reference in the Java program is assigned a globally unique
identifier (UID) based on its declaration scope and file. The
UID serves as a key by which the entity's original declaration
and all references can be found, and more importantly, by which
information about the entity can be stored or retrieved from the
design database. The resulting uniquely renamed source code
makes it convenient and efficient to do further business logic
and technical analysis that crosses the boundary between source
code and the design database.

UIDs are attached to entity references in the source code
using XML markup, so that both the UID and the original
source text of the declaration or reference are available in the
renamed source program. While it is possible to generate
unique names in an ad hoc manner, we show how to generate
them using a combination of source transformations and design
database inferences. This ensures that the notion of UID is
consistent and well defined.

1. Introduction
A common technique in program comprehension is the

extraction of a database of design facts from source code. These
facts describe the properties of entities in the software system
and relations between them. Examples are structural
relationships such as methods declared within classes and
semantic relationships such as the call relation between
methods, or the use relation between methods and variables.
The extraction of this database of design facts from source code
is known as design recovery [35].

The recovered facts are at a lower level than in a
conventional forward design model since developer intention is
not explicitly present in the code. Much of the current research
in design recovery focusses on analyzing the recovered design
database to deduce higher level design information about the
system. This analysis involves complex queries such as indirect
dependencies, impact analysis, reachability and type analysis.
* This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

For example, variables representing calendar dates can be
identified using a combination of analysis of names, record
structure and variable use in comparisons and assignments [9].

While the design database is useful for many tasks that
produce summary style reports such as graph visualization and
structural analysis, relating the results of the analysis back to the
original source code can be difficult. One might want to use the
results of the analysis performed on the design database to guide
a transformation of the source, or to report analysis results in the
context of the source code. While including the abstract syntax
tree (AST) in the design database [32, 33] and using lexical
coordinates can tie results back to static source [11], this method
fares less well when used in the context of source transformation
and automated reprogramming tasks.

Unique naming [9] uses a different approach. Unique naming
provides a uniform position-independent means of associating
the declaring and referencing instances of an entity in the source
code with the corresponding entity in the design database.
Using unique naming, all instances referring to an entity in both
the source and the database use the same unique name, which
serves as a kind of key linking the one to the other.

This representation has two quite distinct advantages - first,
because analysis artifacts are represented with both the source
and design representations, the database need not be constrained
to carry source information, and the source need not be
restructured to match the design representation, making it easier
to analyze and transform each. Secondly, because source and
design are implicitly linked to one another by the unique names
of the entities, analysis and transformation of source and
analysis and transformation of design can each be carried out
independently without losing the connection to the other. Tasks
more appropriate to source can be carried out on source, and
tasks more appropriate to design can be carried out on the design
database. In either case, the changed result of tasks carried out
on one are automatically attached to the other by the unique
names of the entities involved.

In order to be effective, unique names must provide entity
identifiers that are globally unique across entire systems, while
at the same time easy to derive locally so that source files can be
uniquely named on a file by file basis. One way to do this is to
derive the unique identifier (UID) of each entity from the source
file and scope context of its defining declaration, in the style of
internet URLs.

Unique Renaming of Java Using Source Transformation*

Xinping Guo
James R. Cordy
Thomas R. Dean

School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6

{guo,cordy,dean}@cs.queensu.ca

By encoding the UIDs in source declarations and references
using markup rather than replacement, we preserve the original
source text of each reference and declaration in the uniquely
named source while attaching each to the design database.
Unique naming using markup has been used for COBOL, RPG
and PL/I systems in LS/2000 [9] and has been extended to
complex analysis of maintenance hotspots in these languages
using HSML [31].

While unique naming has worked well for analysis and
transformation of these older procedural languages, legacy
systems in object-oriented languages such as Java [27] are an
increasing concern. In this paper we extend the scope-based
unique naming of these older languages to handle the more
complex scope and inheritance rules of modern object-oriented
languages, and show how object-oriented linking can be
reflected directly into source using unique name resolution. We
introduce a method for resolution of unique names in the
presence of class instances and inheritance, and extend the
notion to handle shared object-oriented class libraries.

We use XML [1] tags as the markup notation to add unique
naming tags to Java source. XML is already widely used in
reverse engineering systems to represent both syntactic analysis
information and software designs [2,3,4,5,6,14]. XML tags
provide a flexible way to represent many kinds of information,
such as syntax and semantic analysis information, design graphs,
and source elisions, all of which can be built on our unique
renaming.

2. Unique Identifiers (UIDs)
Java program comprehension and Java design recovery are

currently popular research topics. These activities become more

challenging when working with Java source artifacts because of
the use of name spaces. For example, it is possible that all of the
following names in a Java program could be the same:

• class, constructor and field names in a class
• two class names in different packages
• overloaded method names
• local variables in different methods
• parameters / local variables and class / instance variables

One way to distinguish between these entities is by using
scope rules to give each declared name a UID [9]. Sample Java
source code and generated UIDs are shown in Figure 1. We use
this sample throughout the paper to demonstrate the process of
generating and manipulating UIDs.

In our approach, the UID of an entity is based on the original
name of the entity, along with information encoding the entity’s
scope and location in the code, in the form:

“entity_name enclosing_class_and_interface_names
package_name file_name”

Using this approach, in the example of Figure 1 we can see:

• The class and local variables named x are assigned the
different UIDs, "x Ex bar foo Ex.java" and "x main Ex
bar foo Ex.java",

• The local variables named y in the two methods are
assigned the different UIDs, "y x Ex bar foo Ex.java"
and "y main Ex bar foo Ex.java".

Two classes in different packages with same name would
also have different UIDs because the package names are
included in the UIDs, and so on. However, in the example we

UID id="bar foo Ex.java"
UID id="Ex bar foo Ex.java"
UID id="Applet applet java library"
UID id="x Ex bar foo Ex.java"
UID id="x Ex bar foo Ex.java"
UID id="y x Ex bar foo Ex.java"
UID id="init Ex bar foo Ex.java"
UID id="setLayout Container awt java library"
UID id="BorderLayout awt java library"
UID id="action Ex bar foo Ex.java"
UID id="Event awt java library"
UID id="ev action Ex bar foo Ex.java"
UID id="Object lang java library"
UID id="arg action Ex bar foo Ex.java"
UID id="println PrintStream io java library"
UID id="out System lang java library"
UID id="System lang java library"
UID id="main Ex bar foo Ex.java"
UID id="String lang java library"
UID id="args main Ex bar foo Ex.java"
UID id="x main Ex bar foo Ex.java"
UID id="y main Ex bar foo Ex.java"
UID id="Frame awt java library"
UID id="f main Ex bar foo Ex.java"
UID id="resize Component awt java library"
UID id="ex main Ex bar foo Ex.java"

 1. package foo.bar;
 2. import java.applet.*;
 3. import java.awt.*;
 4. public class Ex extends Applet {
 5. public static int x = 100;
 6. public static void x (){
 7. int y;
 8. y = x;
 9. x = x * 10;
10. }
11. public void init () {
12. setLayout (new BorderLayout ());
13. }
14. public boolean action (Event ev, Object arg) {
15. System.out.println(x);
16. return true;
17. }
18. public static void main (String args []) {
19. int x = 120;
20. int y = 100;
21. x ();
22. if (y < x)
23. y = x;
24. Frame f = new Frame ("C");
25. f.resize (210, 200);
26. Ex ex = new Ex ();
27. ex.init ();
28. }
29. }

declaration
reference

Figure 1. The use of unique identifiers in a sample Java program.

see that both the field and the method x have been assigned the
same UID "x Ex bar foo Ex.java". The reason is that it is not
necessary to distinguish these two, because in both source code
and the design database it is unambiguous which is meant in
every context. In source code, field references and method
references are easily distinguished because method declaration
and invocation always includes parentheses with zero or more
arguments. In the design database, field and method entities are
contextually distinguished by the database schema. This was a
conscious decision in our model. If necessary, method and field
UIDs can be distinguished simply by adding the word “method”
or “field” in the UID strings as appropriate.

 Overloaded methods are assigned the same UIDs in this
schema as well, because this makes working with our reference
design model simpler. If the distinguishability is important, we
can modify our model to recognize the signature match.

3. The Java Unique Renaming Process

Our unique renaming process involves assigning UIDs to all
declared entities in Java source code and libraries. UIDs are
assigned based on declaration context in the source code.
References in the code to external and library entities must also
be annotated.

There are eight steps in Java unique renaming process,
described in detail in the eight following sections. The eight
steps are as follows:

1. Uniquely rename declarations in each class file.
2. Uniquely rename internal direct references to declarations

in each class file.
3. Uniquely rename the Java library interfaces (once for all

programs).
4. Uniquely rename external direct references to library and

other class files.
5. Uniquely rename qualified references in each class file.
6. Extract a simple data design model from the renamed

library and all program class files.
7. Analyze the data model to link all external reference

unique names to their external target library and class file
entities.

8. Implement the links in each class file to replace external
reference unique names with the unique names they are
linked to.

When the process is complete, every entity declaration and
reference in every class file in the program will be globally
uniquely renamed to refer directly to the UID of the referenced
entity.

3.1 Step 1: Rename Declarations
The goal of this first step is to assign each declared name in

each class file a UID in the source code. The entities to be
annotated include package, class, interface, variable,
constructor, and method. UIDs are created layer by layer from
the outside in.

Adding file and package names is straightforward; however,
adding other information is tricky, especially for inner classes.
The use of recursive transformation rules is a good solution for
handling these cases. We begin by annotating all declarations
with XML tags containing partial UIDs, of the form:

<UID id=“file_name”> declared_name </UID>

We then incrementally add each level of scope information to
the UIDs in the XML tags one level at a time by processing each
scope of the program from the outside in. The final result UID
encodes the file name, declared name and the names of all
enclosing scopes in inside out order:

<UID id=“declared_name inner_scope_name …
outer_scope_name package_name file_name”>

 declared_name </UID>

Figure 2 shows the annotated source code from this first step
for the sample program in Figure 1. When we are done, the UID
for each declared entity represents all of its scope information.
For example, the UID “y x Ex bar foo Ex.java” means that local
variable y is located in method x, method x is in class Ex, class
Ex is in package foo.bar and the source class file name is
Ex.java. After this step UIDs have been assigned to all declared
names, but references have still to be renamed (Figure 2).

All declared names inside class Ex contain "… Ex bar foo
Ex.java" in their UIDs. All declared names nested in a method
contain the method name as well. For example, in the main()
method, all UIDs of declarations end with "… main Ex bar foo
Ex.java". This property makes our UIDs a rich source of
scoping information which can be exploited to optimize source
analysis and transformation tasks by avoiding reference to the
design database to look up structural information such as
containment relationships.

3.2 Step 2: Rename Internal Direct References
Once all declarations have been annotated with their unique

names as shown in Figure 2, we must annotate direct references
to these declared names in each class file. Direct references are
leftmost unqualified names of reference expressions, for
example, Applet, y, and f in f.resize(). We will uniquely rename
the qualifications in a later stage of the process.

Most references are internal – references to declared names
in the class file itself (e.g. variables y and f), but others are
external references to entities in the library (e.g. Applet and
Frame) or other class files. Binding references to declarations
must of course follow the scope rules of the language, so the
correct UID for any reference is the UID of the declaration of
the entity to which the reference refers. For example, in Figure
1, the x in the statement x=x*10 is a reference to the variable x
declared in the statement public static int x = 100, so the UID
for the reference is "x Ex bar foo Ex.java".

The steps in renaming of references mirror the steps in the
scope rules of Java. We begin in this section with the simplest
case, resolving direct references to already uniquely named
declarations and annotating each with the UID of the
declaration. Unique naming of references to libraries and
external packages is handled in the following sections.

We tag each internal direct reference with the UID of the
declared entity it refers to, if any. If none is found, the reference
is assumed to be external and is handled in the step 4. When
this step is complete, all declarations and their internal direct
references in each class file have been annotated with UIDs as
shown for our sample code example in Figure 3.

While direct references to x, class Ex and local variables x, y,
f and ex have been uniquely renamed in the source as shown in
Figure 3, there still remain several unresolved references. These
are of two kinds. First, there are references to entities contained
in Java libraries and other class files such as classes (Applet,
System, Frame) and inherited methods (setLayout()). Second,
there are qualifiers in compound references, such as method and
field names. Examples are resize() in f.resize() and init() in
ex.init(). We continue by addressing the first issue, references to
external class files and Java libraries.

3.3 Step 3: Rename Java Library Interfaces
In order to accurately uniquely rename external references to

the library in Java source code, we must first address the
question of uniquely renaming the Java library files themselves.
We need only do library unique renaming once – we can store
the results and use the same unique names to resolve external
Java library references in all Java programs.

A difficulty with this approach is the fact that we do not have
the sources for all of the Java libraries. As it turns out, this is
not a serious problem – we can use the javap command to
disassemble the Java class files of the library to source interfaces

and rename those instead. The output of javap is an interface
source file similar to the original library source code but without
package name and implementation details. We simply use the
declaration and reference unique renaming transformations
described in Sections 3.1 and 3.2 to implement unique renaming
of the library. In place of the source class file name, the special
file name “library” is used in all library UIDs to ensure
consistency among library files.

3.4 Step 4: Rename External Direct References
Once we have the uniquely renamed libraries, we are ready

to uniquely rename external references in any Java program.
Once again, at this stage we only rename direct references
(leftmost unqualified names in reference expressions) in each
class file. Qualifications will be uniquely renamed in step 5.
The result of these two steps on our sample program is shown in
Figure 4.

We begin by uniquely renaming all references to types (class
types and interface types) declared in the library and other class
files. We do this by resolving the names used in all still
remaining unrenamed direct references using the declarations
from the uniquely renamed libraries created in step 3 and other
annotated Java files created in step 2.

In the sample program of Figure 4, references to Applet,
BorderLayout, Event, Object, System, String and Frame have all
been uniquely renamed as library references. For example, the
UID of Applet was found to be “Applet applet java library",
denoting a reference to the Applet class of the Java library.

package <UID id="bar foo Ex.java">foo.bar</UID> ;
import java.applet.*;
import java.awt.*;
public class <UID id="Ex bar foo Ex.java">Ex</UID> extends Applet {
 public static int <UID id="x Ex bar foo Ex.java">x</UID> = 100;
 public static void <UID id="x Ex bar foo Ex.java">x</UID> () {
 int <UID id="y x Ex bar foo Ex.java">y</UID> ;
 y = x ;
 x = x * 10;
 }
 public void <UID id="init Ex bar foo Ex.java">init</UID> () {
 setLayout(new BorderLayout());
 }
 public boolean <UID id="action Ex bar foo Ex.java">action</UID> (Event

<UID id="ev action Ex bar foo Ex.java">ev</UID> , Object <UID id="arg action Ex bar foo Ex.java">arg</UID>){
 System.Out.println(x);
 return true;
 }
 public static void <UID id="main Ex bar foo Ex.java">main</UID>

(String <UID id="args main Ex bar foo Ex.java">args</UID> []){
 int <UID id="x main Ex bar foo Ex.java">x</UID> = 120;
 int <UID id="y main Ex bar foo Ex.java">y</UID> = 100;
 x() ;
 if (y < x)
 y = x ;
 Frame <UID id="f main Ex bar foo Ex.java">f</UID> = new Frame ("C");
 f.resize(210, 200);
 Ex <UID id="ex main Ex bar foo Ex.java">ex</UID> = new Ex();
 ex.init();
 }
} Figure 2. Rename declarations.

Once we have resolved all library references, the only
remaining unresolved direct references must be to external user
symbols such as inherited members of other class files. To
complete the unique renaming of references, we assign each of
these references a temporary UID as if they were declared in
current class, for example, the reference to the inherited member
setLayout() of our sample program is approximated as
“setLayout Ex bar foo Ex.java”. Section 3.7 describes our
strategy for the linking of these temporary UIDs to the actual
external entities they refer to in other class files.

3.5 Step 5: Rename Qualified References
Once unique names have been assigned to all external

references, there remain no unresolved direct references in the
program. At this point we are ready to tackle refinement of
UIDs for qualified references, e.g. System.out.println(), f.resize()
and ex.init(). Previous steps have already uniquely renamed the
direct (or base) reference of every qualified name. For example,

<UID id="System lang java library">System</UID>
 .out.println ()

In this step we expand these base references to create UIDs
for the entire qualified references level by level. This is actually
a very simple process. Since Java does not allow partial
qualification, the UID for a reference x.y where x has UID “x
blat bar foo prog.java” is always simply “y x blat bar foo
prog.java”, that is, y followed by the UID for x.

By applying this algorithm at every level, we get fully
renamed qualified names. For example, the uniquely named
qualified expression System.out.println() shown above becomes:

 <UID id=“println out System lang java library”>
 <UID id=“out System lang java library”>
 <UID id=“System lang java library”>
 System</UID>.out</UID>.println()</UID>

The result of the resolution of qualified names for our sample
program is shown in Figure 4.

While this simple qualification naming algorithm works
correctly for most internal qualified references, at this stage
UIDs for qualified references are really an approximation.
Firstly, qualified object references have been renamed as if the
fields and methods were members of the object, when in fact
they should be renamed to refer to the corresponding class
member declaration. Secondly, external references are an
approximation because we have not yet taken into account
inheritances that may be present in the external class hierarchies.

For example, the UID “println out System lang java library"
should really refer to “println PrintStream io java library”. In
the next two sections, we address both these issues by
implementing a link analysis of the entire renamed data model
of all program class files and the library together.

3.6 Step 6: Extract the Data Design Model from
Renamed Source Files

At this point in the unique renaming process we have
assigned unique names to every declaration and reference in all
class files of a Java program. However, references to qualified
and inherited members have been represented by internal
approximate UIDs. The problem now is to link these
approximate local UIDs to the entities to which they refer. In
order to do this, we use a static data design model to imitate the
actions of a Java run-time linker.

package <UID id=“bar foo Ex.java">foo.bar</UID>;
…
public class <UID id=“Ex bar foo Ex.java">Ex</UID> extends Applet {
 public static int <UID id=“x Ex bar foo Ex.java">x</UID> = 100;
 public static void <UID id=“x Ex bar foo Ex.java">x</UID> () {
 int <UID id=“y x Ex bar foo Ex.java">y</UID> ;
 <UID id=“y x Ex bar foo Ex.java">y</UID> = <UID id=“x Ex bar foo Ex.java">x</UID>;
 <UID id=“x Ex bar foo Ex.java">x</UID> = <UID id=“x Ex bar foo Ex.java">x</UID> * 10;
 }
 …
 public boolean <UID id=“action Ex bar foo Ex.java">action</UID> (Event
 <UID id=“ev action Ex bar foo Ex.java">ev</UID>, Object <UID id=“arg action Ex bar foo Ex.java">arg</UID>){
 System.Out.println(<UID id=“x Ex bar foo Ex.java">x</UID>);
 return true;
 }
 public static void <UID id= "main Ex bar foo Ex.java">main</UID> (String
 <UID id=“args main Ex bar foo Ex.java">args</UID> []) {
 int <UID id=“x main Ex bar foo Ex.java">x</UID> = 120;
 int <UID id=“y main Ex bar foo Ex.java">y</UID> = 100;
 <UID id=“x Ex bar foo Ex.java">x()</UID> ;
 if (<UID id=“y main Ex bar foo Ex.java">y</UID> < <UID id=“x main Ex bar foo Ex.java">x</UID>)
 <UID id="y main Ex bar foo Ex.java">y</UID> = <UID id=“x main Ex bar foo Ex.java">x</UID>;
 Frame <UID id=“f main Ex bar foo Ex.java">f</UID> = new Frame ("C");
 <UID id=“f main Ex bar foo Ex.java">f</UID> . resize(210, 200);
 <UID id=“Ex bar foo Ex.java">Ex</UID> <UID id=“ex main Ex bar foo Ex.java">ex</UID> =
 new <UID id="Ex bar foo Ex.java">Ex</UID> ();
 <UID id=“ex main Ex bar foo Ex.java">ex</UID> . init();
 }
} Figure 3. Rename internal direct references

package <UID id=“bar foo Ex.java">foo.bar</UID> ;
…
public class <UID id=“Ex bar foo Ex.java">Ex</UID> extends <UID id=“Applet applet java library">Applet</UID>{
…
 public void <UID id=“init Ex bar foo Ex.java">init</UID> () {
 <UID id=“setLayout Ex bar foo Ex.java">setLayout(
 new <UID id=“BorderLayout awt java library"> BorderLayout </UID> ())</UID>;
 }
 public boolean <UID id=“action Ex bar foo Ex.java">action</UID> (
 <UID id=“Event awt java library">Event</UID> <UID id=“ev action Ex bar foo Ex.java">ev</UID>,
 <UID id=“Object lang java library">Object</UID> <UID id=“arg action Ex bar foo Ex.java">arg</UID>) {
 <UID id=“println out System lang java library"><UID id=“out System lang java library">
 <UID id="System lang java library">System</UID> . Out</UID>
 . println(<UID id=“x Ex bar foo Ex.java">x</UID>)</UID>;
 return true;
 }
 public static void <UID id= "main Ex bar foo Ex.java">main</UID> (
 <UID id=“String lang java library">String</UID> <UID id=“args main Ex bar foo Ex.java">args</UID> []){
 …
 <UID id=“Frame awt java library">Frame</UID> <UID id=“f main Ex bar foo Ex.java">f</UID> =
 new <UID id="Frame awt java library">Frame</UID> ("C");
 <UID id=“resize f main Ex bar foo Ex.java"> <UID id=“f main Ex bar foo Ex.java">f</UID>.resize(210, 200)</UID>
 <UID id=“Ex bar foo Ex.java">Ex</UID> <UID id=“ex main Ex bar foo Ex.java">ex</UID> =
 new <UID id="Ex bar foo Ex.java">Ex</UID> ();
 <UID id=“init ex main Ex bar foo Ex.java "> <UID id=“ex main Ex bar foo Ex.java">ex</UID>.init()</UID>;
 }
} Figure 4. Rename external and qualified references

 We begin by extracting a database of data design facts from
each of the uniquely renamed source files in the program. This
database can be useful in many design analysis tasks, but in
particular, we can use it to resolve the actual entity targets of our
approximate external UIDs in section 3.7.

We use the design recovery technique described by
Schneider et al. [29] to infer and gather data design facts from
our uniquely renamed source and library files. TXL rules are
used to search for patterns in the source and annotate the source
with design facts [8].

In the following paragraphs, we describe the facts inferred in
our data design recovery for linking. Figures 5 and 6 show
examples of the data design facts extracted from the library and
class files of our sample program.

Entity Facts. We extract entity facts from each of the renamed
library files and class files. These facts describe the defined
packages, classes and interfaces in the files.

Type Structure Facts. The type structure facts describe the
relationships between entities and types. These include
inheritance, abstraction, members and inner types. We derive
the following facts:

• hasFieldType – Represents the types of declared fields.
• hasMethodType – Represents the types of declared methods.
• hasMemberForClass – Represents the member relationship.
• hasInnerType – Represents the inner class relationship .
• hasSuperType – Represents the extends relationship.
• hasImplement – Represents the implements relationship.

Method Facts. Parameter, local variable and type facts are
extracted at the level of methods/constructors. These facts
encode not only implementation detail but also relationships

with other classes and interfaces.
• paramVar & localVar – Method contains parameter and

local variable.
• funRef – The method references another method.
• varRef – The variable references in methods.
• typeRef – Representing class or interface references

particularly in class instance creation expressions and casting
conversions.

• genRef – The method contains references that need to be
generalized.

• varType - The type of the variable.
All unknown entities, which link to external entities or the

library, are included in the facts funRef, varRef and genRef.
They might be inherited members or they might come from
qualified references. They will be resolved to their exact UIDs
in the next section. So far, from source code we have derived
that each funRef refers to an internal or external method, each
varRef refers to an internal or external field, and so on. But
genRef facts are ambiguous, meaning that the correct semantics
for the reference has yet to be determined. We do not know if
the entity refers to a class type, package, field, or method.

3.7 Step 7: Deriving Link Relationships

Based on the data design model (i.e. the facts) recovered
from the source and library files in Section 3.6 (Figure 5, Figure
6), we can derive the final linking relationships between class
instance and external entity references. Those external entities
are defined in libraries or other source files of the program.
Once we have determined these links, we can replace the
approximate UIDs generated for these references in Section 3.5

by the UIDs of their actual target entities. The link relationships
are derived by encoding Java linking rules as inference rules
using the Tarski relational algebra system Grok [10,24].

Linking Through Inheritance. Some external fields and methods
are inherited from super classes. In a current class, an entity can
be used as a reference which refers to an entity defined in a
super class. For example, setLayout() is an inherited method
from java.awt.Container.

Input to our Grok scripts includes all the facts recovered
from all program class files and the library. We start by
identifying all the temporary references that need to be linked.
These references include both the qualified object references and
the qualified external references in all of the renamed class files.
The result of this analysis is stored in the relationship needlink,
which documents all of the approximate UIDs for which we
need to resolve a target entity.

We compute the needlink relationship using Grok to find
those tuples in funRef, typeRef, varRef and genRef for which
there is no directly defined entity in any program class file or
library file. Thus, in our sample example, the derived needlinks
are:

needlink ("init Ex bar foo Ex.java",
 "setLayout Ex bar foo Ex.java")
needlink ("action Ex bar foo Ex.java",
 "println out System lang java library")
needlink ("main Ex bar foo Ex.java",
 "resize f main Ex bar foo Ex.java")
needlink ("main Ex bar foo Ex.java",
 "init ex main Ex bar foo Ex.java")

We now have all the information needed in order to actually
resolve the links. We use Grok to explore the class hierarchy to
resolve references to inherited (super class) methods and fields.
We encode the results of this analysis as the superLink
relationship. In our example, we obtained:

superLink (“setLayout Ex bar foo Ex.java”,
 “setLayout Container awt java library”)

Linking Through Object Instances of Classes. The only
remaining unresolved links are qualified object references

referring to the members of an object’s class or super classes.
To resolve these references, we use Grok once again to explore
the object’s class hierarchy. We start with the class of the object
itself and look upward until the member it refers to is found.
We encode the results of this analysis in the classLink
relationship. In the sample program, we derive the links:

classLink (“println out System lang java library”,
 “println PrintStream io java library”)
classLink (“init ex main Ex bar foo Ex.java”,
 “init Ex bar foo Ex.java”)
classLink (“resize f main Ex bar foo Ex.java”,
 “resize Component awt java library”)

3.8 Step 8: Push Links into Uniquely Renamed Source
Based on the links found, the approximate UIDs are replaced

in the renamed source. Those approximate UIDs used for object
and external qualified names in the uniquely renamed source are
replaced by the UIDs of the corresponding actual external
entities derived by the linking process. This is done using a
final TXL source transformation that uses the inferred link facts
of the previous section to replace each linked UID instance in
the source with the UID that it is really linked to. In the case of
our sample program, we come up with the final uniquely
renamed Java source code of Figure 7. The final annotated
source code is about five times larger than the original.

4. Implementation
Our unique renaming is implemented using a sequence of

source transformations written in the TXL language. Data
design recovery from the initial renamed source yields a set of
base facts used as input to a Grok script to infer links between
external references and the appropriate external entities.

 A TXL program has two parts: an arbitrary context free
grammar (in BNF-like notation) and a set of by-example
transformation rules. TXL uses the grammar to automatically
parse input files containing source code and then successively
applies the transformation rules to the parsed input until the
rules fail. The transformed source is then output as annotated
code.

hasSuperType ("System lang java library", "Object lang java library")
hasMemberForClass ("System lang java library",

"out System lang java library")
hasFieldType ("out System lang java library",

"PrintStream io java library")
hasSuperType ("Panel awt java library", "Container awt java library")
hasSuperType ("Applet applet java library", "Panel awt java library")
hasMemberForClass ("Applet applet java library",

"init Applet applet java library")
hasMethodType ("init Applet applet java library", void)
hasSuperType ("Container awt java library", "Component awt java library")
hasMethodType ("setLayout Container awt java library", void)
hasMemberForClass ("Container awt java library",

"setLayout Container awt java library")
hasMethodType ("action Component awt java library", boolean)
hasMemberForClass ("Component awt java library",

"action Component awt java library")

Figure 5. A subset of the facts for the Java library.

hasSuperType ("Ex bar foo Ex.java", "Applet applet java library")
hasFieldType ("x Ex bar foo Ex.java", int)
hasMethodType ("init Ex bar foo Ex.java", void)
hasMethodType ("action Ex bar foo Ex.java", boolean)
hasMemberForClass ("Ex bar foo Ex.java", "x Ex bar foo Ex.java")
hasMemberForClass ("Ex bar foo Ex.java", "init Ex bar foo Ex.java")
hasMemberForClass ("Ex bar foo Ex.java", "action Ex bar foo Ex.java")
paramVar ("action Ex bar foo Ex.java", "ev action Ex bar foo Ex.java")
localVar ("main Ex bar foo Ex.java", "x main Ex bar foo Ex.java")
funRef ("init Ex bar foo Ex.java", "setLayout Ex bar foo Ex.java")
funRef ("action Ex bar foo Ex.java",

"println out System lang java library")
funRef ("main Ex bar foo Ex.java", "init ex main Ex bar foo Ex.java")
genRef ("action Ex bar foo Ex.java", "System lang java library")
genRef ("action Ex bar foo Ex.java", "out System lang java library")
typeRef ("main Ex bar foo Ex.java", "Frame awt java library")
varType ("ev action Ex bar foo Ex.java", "Event awt java library")
varType ("arg action Ex bar foo Ex.java", "Object lang java library")

Figure 6. A subset of the facts for the sample program.

Our TXL Java grammar [23] is based on the Java language
specification [13]. We extend the nonterminal definitions of the
Java grammar to allow transformation rules to add XML tags
around entities. For example, step one (annotate all declarations
with the file name) uses the following rule:

rule addFileName
 % Get the name of the input source file
 import TXLinput [stringlit]
 % Annotate all declarations
 replace $ [declared_name]
 ID[id] DotId [repeat dot_id]
 by
 <UID ‘id=TXLinput> ID DotId </UID>
end rule

The global variable TXLinput contains that name of the input
file and the rule finds each declaration and adds the XML
annotation to the name of the declared entity.

5. Related Work

The unique renaming paradigm and UID approach on which
our work is based was originally designed by Schneider [29] for
design recovery and analysis of programs written in the Turing
programming language. LS/2000 [9] was a TXL-based process
that used similar design recovery techniques to analyze source

code for Year 2000 risks. This process guided source
transformations that were able to automatically migrate over
99% of the Year 2000 risks in over three billion lines of
production source written in COBOL, PL/I and RPG. The use
of UIDs to link between source code and design databases was
further explored in the HSML language [31]. The main
contribution of this paper to the LS/2000 work is the extension
of the unique naming concept to the object oriented language
constructs present in Java and not in COBOL, PL/I or RPG. The
work in this paper also addresses the more flexible relationships
possible between Java source entities that are also not present in
the languages supported by LS/2000.

Cox and Clarke [11] developed the Jupiter repository system.
Maia is a data model that is encoded using XML-like markup.
Tags are used to mark entities such as blocks, declarations, and
control flow. Source tokens are numbered sequentially and the
markup tokens are assigned fractional token positions based on
these source token numbers. Links between tokens are done
using attributes that give the source token positions. So a
declaration is annotated with markup tokens that give the source
token positions of the use of the entity while references tokens
are annotated with markup that gives the declaration of the
entity. The approach has the flexibility that the tags may be
stored in the source code or separately in a design database. The

package <UID id=“bar foo Ex.java">foo.bar</UID> ;
import java.applet.*;
import java.awt.*;
public class <UID id=“Ex bar foo Ex.java">Ex</UID> extends <UID id=“Applet applet java library">Applet</UID> {
 public static int <UID id=“x Ex bar foo Ex.java">x</UID> = 100;
 public static void <UID id=“x Ex bar foo Ex.java">x</UID> () {
 int <UID id=“y x Ex bar foo Ex.java">y</UID> ;
 <UID id=“y x Ex bar foo Ex.java">y</UID> = <UID id=“x Ex bar foo Ex.java">x</UID> ;
 <UID id=“x Ex bar foo Ex.java">x</UID> = <UID id=“x Ex bar foo Ex.java">x</UID> * 10;
 }
 public void <UID id=“init Ex bar foo Ex.java">init</UID> () {
 <UID id=“setLayout Container awt java library">setLayout(new
 <UID id=“BorderLayout awt java library">BorderLayout</UID> ())</UID> ;
 }
 public boolean <UID id=“action Ex bar foo Ex.java">action</UID> (
 <UID id=“Event awt java library">Event</UID> <UID id=“ev action Ex bar foo Ex.java">ev</UID>,
 <UID id=“Object lang java library">Object</UID> <UID id=“arg action Ex bar foo Ex.java">arg</UID>){
 <UID id=“println PrintStream io java library"> <UID id=“out System lang java library">
 <UID id="System lang java library">System</UID> . Out</UID>
 . println(<UID id=“x Ex bar foo Ex.java">x</UID>)</UID> ;
 return true;
 }
 public static void <UID id= "main Ex bar foo Ex.java">main</UID> (
 <UID id=“String lang java library">String</UID> <UID id=“args main Ex bar foo Ex.java">args</UID> []){
 int <UID id=“x main Ex bar foo Ex.java">x</UID> = 120;
 int <UID id=“y main Ex bar foo Ex.java">y</UID> = 100;
 <UID id=“x Ex bar foo Ex.java">x()</UID> ;
 if (<UID id=“y main Ex bar foo Ex.java">y</UID> < <UID id=“x main Ex bar foo Ex.java">x</UID>)
 <UID id="y main Ex bar foo Ex.java">y</UID> = <UID id=“x main Ex bar foo Ex.java">x</UID> ;
 <UID id=“Frame awt java library">Frame</UID> <UID id=“f main Ex bar foo Ex.java">f</UID> =
 new <UID id="Frame awt java library">Frame</UID> ("C");
 <UID id=“resize Component awt java library"> <UID id=“f main Ex bar foo Ex.java">f</UID>.resize(210,200)</UID>;
 <UID id=“Ex bar foo Ex.java">Ex</UID> <UID id=“ex main Ex bar foo Ex.java">ex</UID> =
 new <UID id="Ex bar foo Ex.java">Ex</UID> ();
 <UID id=“init Ex bar foo Ex.java"> <UID id=“ex main Ex bar foo Ex.java">ex</UID>.init()</UID> ;
 }
} Figure 7. Final linked and renamed Java source code

disadvantage of using token positions in the references is that
the markup is more sensitive to changes in the code.

Middle level models such as the Dagstuhl Middle Model
(DMM) [30] encode the source position of entities in the model.
In DMM, model objects are associated with source objects using
the defines and declares relations. The source objects in the
design database have an identity of their own and are linked to
the source code by attributes defining the start and end position
as line and column numbers. Datrix [32,33], an abstract syntax
graph (ASG) approach, also stores the source code locations
directly in the model as line and column attributes. Both of the
DMM and Datrix approaches share the disadvantage of Maia.
One could argue that the ASG based models do not need the link
to the source code other than for reporting purposes, since they
are source code complete. Any transformations could be done
entirely in the design database. However, the fixed schema (i.e.
fixed grammar) of the design database limits some techniques
that can be used to simplify transformations [34].

There are many papers that explore how to represent source
code information for different languages in XML format. Power
and Malloy [2] modify the GNU bison parser generator to
generate parse trees in XML format for C, Objective C, C++,
Java and FORTRAN. Another program analysis tool, XMLizer
[3], also outputs XML format to represent program structure for
Java, PL/IX and Pascal. In both cases the XML is used to
represent the parse tree, and does not contain any attributes
linking the use of an identifier to its declaration. Power and
Malloy absorb all of the source text into tags and attributes.
XMLizer has the ability to represent partial parse trees. For
example, a statement nonterminal may mark text for an entire
statement with no parse representation embedded in the
statement. When fully parsed, most text is absorbed into XML
tags and attributes, although constant and identifiers remain as
marked up text. JavaML [14] uses a similar representation as
Power and Malloy, but includes a unique identifier in each
attribute. This attribute links variables and methods within a
file. Methods between files are not attributed.

There are many techniques and tools for source analysis of
Java. Sun's JavaCheck [15] can analyze the use of library APIs
for compatibility. SHriMP [16, 17, 18], Chava [19], GUPRO
[20, 21] and the Software Bookshelf [22] are tools that can
extract and visualize information from Java programs.

6. Conclusions and Future Work
We have described a unique renaming system for Java

programs that accurately resolves relationships between program
entities in source using unique names (UIDs). Each declared
name and reference is annotated with its unique name in the
source using XML markup. The UIDs serve as keys uniquely
identifying each program entity in both the source and the
design database. They form a kind of bridge between the two
which allows for independent processing of both source and
design without losing the connections between the two. The
fully linked uniquely named source representation of the
program is suitable for complex program comprehension,
analysis, visualization and transformation tasks.

Renamed Java programs localize scope and linking
information at the point of reference. Both declarations and
references are clearly marked with the UIDs of the entities to
which they refer, in order to free further analysis from worrying
about name ambiguities. Renamed code can be easily parsed at
different levels (light, middle or heavy weight) as either Java
source or an XML document. Because unique naming is
represented entirely as XML markup of original source text,
output of subsequent analysis or transformation tasks can easily
include or exclude UIDs in results. Unique renaming can be
easily integrated to other reverse engineering tools. For example,
very little modification of our data design facts would be input
to Rigi [28] or van Emden and Moonen’s code smell detection
process [12].

The unique renaming described in this paper has thus far
been used for only one actual application, a system to assist in
Java library version migrations. Using unique renaming of
different versions of the AWT library and source programs
using it, an accurate analysis of AWT version dependencies and
migration path was easily derived. The technique is completely
generic and can be used for any other library version migration.

In future work, we may consider adding resolution to
distinguish overloaded methods with different UIDs. Also, thus
far our method is based entirely on static analysis. For some
applications it would be more useful if information from
dynamic analysis were added as well. For example, Java reverse
engineering projects based on Java byte code [25, 26] could
provide more facts to enrich the data model.

We believe that unique renaming is a very basic and
important step in Java design recovery and analysis. For
example, renamed Java code already has the class dependency
information necessary to derive UML or other representations of
the program design [25]. We also hope to explore and exploit
the properties of uniquely renamed code to make more effective
use of existing analysis tools and techniques in the coming
years.

Acknowledgments.
This paper has been significantly improved by the numerous

helpful and specific suggestions of the anonymous referees, for
which we thank them.

References.
[1] World Wide Web Consortium. Extensible Markup
Language (XML). http://www.w3.org/xml/
[2] J. F. Power and B. A. Malloy. Program annotation in XML:
a parse-tree based approach. 9th Working Conference on
Reverse Engineering (WCRE 02), pp. 190-198, Oct. 2002.
[3] G. McArthur, J. Mylopoulos, and S. K. K. Ng. An Extensible
Tool for Source Code Representation Using XML. 9th Working
Conference on Reverse Engineering (WCRE 02), pp.199-208,
Oct. 2002.
[4] A. Asencio, S. Cardman, D. Harris, and E. Laderman.
Relating Expectations to Automatically Recovered Design
Patterns. 9th Working Conference on Reverse Engineering
(WCRE 02), pp. 87-96, Oct. 2002.

[5] C. Riva and Y. Yang. Generation of Architectural
Documentation using XML. 9th Working Conference on
Reverse Engineering (WCRE 02), pp. 161-169, Oct. 2002.
[6] E. Mamas and K. Kontogiannis. Towards Portable Source
Code Representations Using XML. 7th Working Conference on
Reverse Engineering (WCRE 00), pp. 172-182, Nov. 2000.
[7] TXL Project, The TXL Programming Language, Version
10.2. http://www.txl.ca/docs/TXL102LangRef.pdf, Apr. 2002.
[8] J.R. Cordy, T.R. Dean, A.J. Malton and K.A. Schneider.
Source Transformation in Software Engineering using the TXL
Transformation System. Special Issue on Source Code Analysis
and Manipulation, Journal of Information and Software
Technology 44(13), pp. 827-837, Oct. 2002.
[9] T.R. Dean, J.R. Cordy, K.A. Schneider and A.J. Malton.
Experience Using Design Recovery Techniques to Transform
Legacy Systems, IEEE International Conference on Software
Maintenance (ICSM 2001), pp. 622-631, Nov. 2001.
[10] R.C. Holt. Structural Manipulations of Software
Architecture Using Tarski Relational Algebra. 5th Working
Conference on Reverse Engineering (WCRE 98), pp. 210-219,
Oct. 1998.
[11] A. Cox and C. Clarke. Representing and Accessing
Extracted Information. IEEE International Conference on
Software Maintenance (ICSM 2001), pp. 12-21, Nov. 2001
[12] E. van Emden and L. Moonen. Java Quality Assurance by
Detecting Code Smells. 9th Working Conference on Reverse
Engineering (WCRE 02), pp. 97-106, Oct. 2002.
[13] J. Gosling, B. Joy, G. Steele and G. Bracha. Sun
Microsystems Inc. The Java Language Specification (2nd
edition). Addison Wesley, 2000.
[14] G.J. Badros. JavaML: A Markup Language for Java Source
Code. 9th International World Wide Web Conference, pp. 159-
177, May 2002.
[15] Sun Microsystems Inc. JavaCheck - Platform Compatibility
Insurance for your Applications and Applets.
http://java.sun.com/products/personaljava/javacheck.html.
[16] M.-A. D. Storey, H. A. Müller and K. Wong. Manipulating
and Documenting Software Structures. Series on Software
Engineering and Knowledge Engineering, Vol. 7 Software
Visualization, pp. 244-263, Nov. 1996.
[17] J. Michaud, M.-A. Storey and H. Muller. Integrating
Information Sources for Visualizing Java Programs. IEEE
International Conference on Software Maintenance (ICSM
2001), pp. 250-259, Nov. 2001.
[18] University of Victoria. SHriMP Views.
http://shrimp.cs.uvic.ca/.
[19] J. Korn. Chava: Reverse Engineering and Tracking of Java
Applets. 6th Working Conference on Reverse Engineering
(WCRE 99), pp. 314-325, Oct. 1999.
[20] C. Lange, H. M. Sneed and A. Winter. Comparing graph-
based program comprehension tools to relational database-based
tools. 9th International Workshop on Program Comprehension
(IWPC 01), pages 209-218, May 2001.

[21] GUPRO - Generic Understanding of PROgrams.
http://www.uni-koblenz.de/~ist/gupro.en.html.
[22] J.!Finnigan, R.C.!Holt, I.!Kalas, S.!Kerr, K.!Kontogiannis,
H.A. Müller, J.!Mylopoulos, S.G.!Perelgut, M.!Stanley,
K.!Wong. The Software Bookshelf. IBM Systems Journal 36(4),
pp. 564-593, Nov. 1997.
[23] TXL Project, The TXL Grammar Collection.
http://www.txl.ca/nresources.html.
[24] R.C. Holt. Introduction to the Grok Language.
http://plg.uwaterloo.ca/~holt/papers/grok-intro.html.
[25] L. A. Barowski and J. H. Cross II. Extraction and Use of
Class Dependency Information for Java. 9th Working
Conference on Reverse Engineering (WCRE 02), pp. 309-315,
Oct. 2002.
[26] D. Rayside, S. Kerr and K. Kontogiannis. Change and
adaptive maintenance detection in Java software systems. 5th
Working Conference on Reverse Engineering (WCRE 98), pp.
10-19, Oct. 1998.
[27] Sun Microsystems Inc. The Java Language: An Overview.
http://java.sun.com/docs/overviews/java/java-overview-1.html.
[28] M.-A. D. Storey, K. Wong, and H. A. Mller. Rigi: A
visualization environment for reverse engineering. 19th
International Conference on Software Engineering (ICSE '97),
pp. 606--607, May 1997.
[29] J.R. Cordy and K.A. Schneider. Architectural Design
Recovery Using Source Transformation, 7th International
Workshop on Computer Aided Software Engineering (CASE’95)
Workshop on Software Architecture, Toronto, July 1995.
[30] T.C. Lethbridge et al. The Dagstuhl Middle Model version
0.005, http://scgwiki.iam.unibe.ch:8080/Exchange/uploads/2/
DMMDescriptionV0005.pdf
[31] J.R. Cordy, K.A. Schneider, T.R. Dean and A.J. Malton.
HSML: Design Directed Source Code Hot Spots. 9th
International Workshop on Program Comprehension (IWPC
2001), pp. 145-154, May 2001.
[32] Bell Canada. DATRIX™ Abstract Semantic Graph
Refernece Manual Version 1.4. Bell Canada, Inc., Montreal,
May 2000.
[33] T.R. Dean, A.J. Malton and R.C. Holt. Union Schemas as
a Basis for a C++ Extractor. 8th Working Conference on
Reverse Engineering (WCRE 2001), pp. 59-67, Oct. 2001.
[34] T.R. Dean, J.R. Cordy, A.J. Malton and K.A. Schneider.
Grammar Programming in TXL. IEEE 2nd International
Workshop on Source Code Analysis and Manipulation (SCAM
2002), pp. 93-102, Oct. 2002.
[35] T.J. Biggerstaff. Design Recovery For Maintenance and
Reuse, IEEE Computer, 22(7), pp. 36–99, July 1989.

