
Model Transformation Testing:
The State of the Art

Gehan M. K. Selim
School of Computing,

Queen’s University

Kingston, ON, Canada

gehan@cs.queensu.ca

James R. Cordy
School of Computing,

Queen’s University

Kingston, ON, Canada

cordy@cs.queensu.ca

Juergen Dingel
School of Computing,

Queen’s University

Kingston, ON, Canada

dingel@cs.queensu.ca

ABSTRACT
Model Driven Development (MDD) is a software engineering
approach in which models constitute the basic units of soft-
ware development. A key part of MDD is the notion of auto-
mated model transformation, in which models are stepwise
refined into more detailed models, and eventually into code.
The correctness of transformations is essential to the success
of MDD, and while much research has concentrated on for-
mal verification, testing remains the most efficient method
of validation. Transformation testing is however different
from testing code, and presents new challenges. In this pa-
per, we survey the model transformation testing phases and
the approaches proposed in the literature for each phase.

Keywords
Model Driven Development, Model Transformation Testing,
Test Case Generation, Mutation Analysis, Contracts.

1. INTRODUCTION
In MDD, software models or abstractions are first class ar-
tifacts, with development beginning with high-level models
that are successively refined and transformed into detailed
models and finally into code. The correctness of transfor-
mations is therefore essential to the success of MDD.

A model transformation is a program that maps input mod-
els conforming to a source metamodel to output models con-
forming to a target metamodel. To reason about the cor-
rectness of transformations it is important to ensure that
they satisfy their expected properties. While formal meth-
ods have been applied to this problem, they are heavyweight.

By contrast, testing is the most popular quality assurance
technique for code, since it is lightweight, automatable and
can easily uncover bugs, although it does not guarantee their
absence. Testing is also a natural candidate for lightweight
analysis of transformations’ correctness. Transformation test-
ing executes a transformation on input models and validates
that the actual output matches the expected output [13].

Several studies have discussed the challenges facing trans-
formation testing [2, 3, 10, 15, 20]. Despite these challenges
and despite the fact that testing does not fully verify the cor-
rectness of a transformation, it has been gaining increasing
interest for several reasons. The major advantage of testing
is its usefulness in uncovering bugs while maintaining a low
computational complexity [12]. Other advantages include
the ease of performing testing activities, the feasibility of
analyzing the transformation in its target environment and
the ease of automating most of the testing activities [20].

In this paper, we propose four transformation testing phases
and survey the state of the art in the proposed phases with
the goal of identifying topics that require further research.

We differentiate between a transformation’s implementation
and specification. A transformation implementation con-
sists of the rules that carry out the mapping between the
source and target metamodels. 1 By contrast, a transforma-
tion specification includes the source and target metamodels
(and their constraints), and the transformation contracts. A
contract is composed of three sets of constraints [7]: (1) con-
straints on input models, (2) constraints on output models,
and (3) constraints on relationships that must be maintained
between input model elements and output model elements.

Several studies have proposed taxonomies of transformation
contracts. Baudry et al. [2] define three levels of contracts:
transformation contracts, subtransformation contracts and
output contracts. (Sub)transformation contracts include pre-
/post-conditions of (sub)transformations and their invari-
ants. Output contracts are expected properties of output
models. Mottu et al. [24] categorized contracts as either
syntactic or semantic. Syntactic contracts ensure that the
transformation can run without errors. Semantic contracts
are context-dependent and can be subdivided into precon-
ditions on input models, postconditions on output models,
and postconditions linking input and output models.

The remainder of this paper is organized as follows: Sec-
tion 2 overviews the proposed model transformation testing
phases; Sections 3, 4, and 5 explain the testing phases in
more detail and survey the state of the art related to each
phase; and finally Section 6 concludes the paper.

1We use the notion of a model transformation and a model

transformation implementation interchangeably.

2. PHASES OF MODEL TRANSFORMA-
TION TESTING

We break down the model transformation testing process
into four phases, inspired by those defined by Baudry et

al. [3] with minor changes. The first phase, test case gener-

ation, involves generating a test suite or a set of test models
conforming to the source metamodel for testing the trans-
formation of interest. Efficient criteria are necessary to gen-
erate an adequate test suite to test the transformation. Such
criteria are referred to as adequacy criteria. The percentage
of adequacy criteria satisfied by a test suite is referred to as
the coverage achieved by the test suite [22] (Eqn. 1).

Coverage =
|AdequacyCriteriaSatisfiedByTestSuite|

|AdequacyCriteria|
∗ 100%

(1)

The second phase is assessing the generated test suite. A
test suite that has a positive assessment is more likely to
expose faults in an incorrect transformation. A test suite
that has a negative assessment can be improved by adding
relevant test models to the test suite.

The third phase is building the oracle function. The oracle
function is the function that compares the actual output of
a transformation with the expected output to evaluate the
correctness of the transformation [10].

The fourth phase involves running the transformation on the
generated test suite and evaluating the actual outputs us-
ing the oracle function. For each model in the test suite, if
the oracle function detects a discrepancy between its corre-
sponding actual and expected outputs, then the tester can
analyze the transformation and fix any faults accordingly.

In the following sections, we explain the first three phases
and we survey studies related to them. The fourth phase is
a straightforward process given that the test suite and the
oracle function are built correctly.

3. PHASE 1: TEST CASE GENERATION
Test case generation involves defining test adequacy cri-
teria and building a test suite that achieves coverage of
the adequacy criteria. Defining test adequacy criteria, and
hence test case generation, can follow a black-box, grey-box or
white-box approach. A black-box approach assumes that the
transformation implementation is not available and builds
a test suite based on the transformation specification (i.e.,
source metamodel or contracts). A grey-box approach as-
sumes that the transformation implementation is partially
available and builds a test suite based on the accessible parts
of the transformation implementation [13]. A white-box ap-
proach assumes that the full transformation implementation
is available and builds a test suite based on the transforma-
tion implementation. We discuss criteria proposed for black-
/ white-box test case generation in more detail. We do not
discuss grey-box test case generation, since it has been rarely
investigated in the literature. Moreover, grey-box test case
generation can use the same approaches as those proposed
for white-box test case generation but only on the accessible
parts of the transformation implementation.

3.1 Black-Box Test Case Generation Based on
Metamodel Coverage

Different adequacy criteria have been proposed in the litera-
ture to achieve coverage of the different source metamodels
of model transformations.2 For example, if a transformation
manipulates class diagrams, then adequacy criteria for class
diagrams can be leveraged for black-box testing.

McQuillan and Power [22] surveyed the black-box adequacy
criteria proposed in the literature for one structural model
(class diagrams) and five behavioural models (sequence di-
agrams, communication diagrams, state machine diagrams,
activity diagrams and use case diagrams). None of the sur-
veyed studies discussed adequacy criteria for deployment
diagrams, component diagrams, composite structure dia-
grams, interaction overview diagrams or timing diagrams.
The study also reviewed how the different criteria were eval-
uated and compared with each other. The paper concluded
that little work has been done on evaluating the effective-
ness of the criteria in detecting faults and on comparing the
criteria in terms of the coverage they provide.

In this section, we summarize adequacy criteria proposed for
class diagrams since they are the only structural models with
criteria proposed in the literature. Due to space limitations,
we summarize the adequacy criteria for only two behavioural
models (interaction diagrams and statecharts).

Adequacy Criteria for Class Diagrams: Three criteria
have been investigated for class diagrams [1, 10, 11]: the
association-end multiplicity (AEM) criterion, the general-
ization (GN) criterion and the class attribute (CA) crite-
rion. The AEM criterion requires that each representative
multiplicity-pair of two association ends gets instantiated in
the test suite. The GN criterion requires that each subclass
gets instantiated. The CA criterion requires that each rep-
resentative class attribute value gets instantiated.

In the AEM and CA criteria, representative values are used
since the possible values of multiplicities and attributes can
be infinite. Representative values are created using parti-

tion analysis [26] where multiplicity and attribute values
are partitioned into mutually exclusive ranges of values. A
representative value from each range must be covered in the
test suite. For building partitions, either default partitions
can be automatically generated or knowledge-based parti-
tions can be generated by the tester [9].

Some studies [10, 11] propose the notion of a coverage item,
which is a constraint on the test suite that requires cer-
tain combinations of objects, representative CA values and
AEM values to be instantiated in the test suite. A test ade-
quacy criterion can then be defined for each coverage item.
Fleurey et al. [9] also combined classes, representative CA
values and representative AEM values into coverage items.
A coverage item for an object was referred to as an object

fragment. A coverage item for a model was referred to as a
model fragment and is composed of several object fragments.
The study then proposed different adequacy criteria speci-

2We survey black-box adequacy criteria for testing models
and transformations, since in both cases, criteria are depen-
dent on the input metamodel only.

fying different ways of combining object fragments into a
model fragment. A tool was built to implement the proposed
criteria and to guide the tester by generating the required
model fragments and to point out model fragments that were
not covered by the test suite. The tool was found to sug-
gest model fragments that are not feasible, e.g., suggesting
a model fragment with zero transitions and one transition
in an input state machine.

Adequacy Criteria for Interaction Diagrams: Seven
adequacy criteria have been investigated for interaction dia-
grams [1, 11, 28]: each message on link (EML), all message
paths (AMP), collection coverage (Coll), condition coverage
(Cond), full predicate coverage (FP), transition coverage,
and all content-dependency relationships coverage.

The EML criterion requires that each message on a link con-
necting two objects gets instantiated in the test suite. The
AMP criterion requires that each possible sequence of mes-
sages gets instantiated in the test suite. The Coll criterion
requires each interaction with collection objects of represen-
tative sizes gets instantiated in the test suite. The Cond
criterion requires that each condition gets instantiated in
the test suite with both true and false. The FP coverage
criterion requires that each clause in every condition gets
instantiated in the test suite with both true and false such
that the value of the condition will always be the same as
the value of the clause being tested. The transition coverage
criterion requires that each transition type gets instantiated
in the test suite. The all content-dependency relationships
coverage criterion is based on extracting data-dependency
relationships between system components and requires that
each identified relationship gets instantiated in the test suite.

Adequacy Criteria for Statecharts: Six adequacy cri-
teria have been investigated for statecharts [25, 28, 13, 28]:
full predicate (FP) coverage, all content-dependency rela-
tionships coverage, transition coverage, transition pair cov-
erage, complete sequence coverage, and all-configurations-
transitions coverage for statecharts with parallelism.

The FP coverage criterion, the all content-dependency re-
lationships coverage criterion, and the transition coverage
criterion are similar to their equivalents for interaction dia-
grams. The transition pair coverage criterion requires that
each pair of adjacent transitions gets instantiated in the test
suite. The complete sequence coverage criterion requires
that each complete sequence of transitions that makes full
use of the system gets instantiated in the test suite. Due to
the infinite possible sequences, a domain expert must define
a set of sequences that are crucial to be tested. The all-
configurations-transitions coverage criterion for statecharts
with parallelism requires that all transitions between all
state configurations in the reachability tree of a state chart
get instantiated. Similarly to class diagrams, coverage items
can be created for interaction diagrams and statecharts and
test adequacy criteria can be defined accordingly.

3.2 Black-Box Test Case Generation Based on
Contract Coverage

Different adequacy criteria have been proposed in the liter-
ature to achieve coverage of the input contracts of model
transformations. Fleurey et al. [10] proposed construct-

ing an effective metamodel composed of only those source
metamodel elements that are actually used in the pre-/post-
conditions of a transformation. The values of attributes and
multiplicities in the effective metamodel can then be parti-
tioned, and the defined partitions can be used to generate
coverage items and adequacy criteria. No case study was
conducted to evaluate the proposed approach.

Bauer et al. [4] propose a combined specification-based cov-

erage approach for testing a transformation chain, where
contract-based and metamodel-based adequacy criteria were
generated from the transformations in the transformation
chain. Contract-based criteria were generated that require
the execution of each contract by the test suite. Tradi-
tional metamodel-based criteria, e.g., the AEM criterion,
were used. Using the generated criteria and an initial test
suite, a footprint was generated for each test model. A foot-
print is a vector of the number of times a test model covers
each criterion. The quality of the test suite was then mea-
sured using the footprints of all the test models to assess
the covered criteria, the uncovered criteria and the redun-
dant test models. The generated information was used to
guide the tester to add or remove test cases to improve the
quality of the test suite. A case study was conducted on
a commercial transformation chain with a test suite of 188
test models. Several test adequacy criteria were found to
be unsatisfied and adding test models to cover these criteria
revealed faults in the transformation chain. Moreover, 19
redundant test models were identified and removed.

Bauer and Küster [5] investigated the relationship between
specification-based (black-box) test adequacy criteria used
in [4] and code-based (white-box) test adequacy criteria de-
rived from the control flow graph of a transformation chain.
Such a relation can be useful in many ways. First, the rela-
tion can be used to determine parts of the specification that
are relevant to a code block and vice versa. Second, the re-
lation can be used to identify code and specification relevant
to a test model to facilitate debugging the transformation
for failing test models. Third, the relation can be used to
determine how closely related the two types of criteria are
and hence how closely the implemented code reflects the
specification. The relation between specification-based and
code-based test adequacy criteria was generated using the
test suite in the following manner: if a test model satisfies
a code-based test adequacy criterion c1 and a specification-
based test adequacy criterion s1, then c1 and s1 are related.
The coverage of the two types of criteria were computed for
each test model and was used to generate a scatter plot
and a correlation coefficient. A positive linear scatter and a
correlation coefficient close to one implied that the code im-
plemented its specified behavior. The study used the same
transformation chain used in [4] to investigate the relation
between the two types of criteria using the proposed ap-
proach. Several conclusions were reached. For example, the
coverage achieved for the code-based and specification-based
criteria were found to be linearly correlated. Thus, proper-
ties of code blocks were deduced from their related specifi-
cations without having to manually analyze the code.

3.3 White-Box Test Case Generation
Different adequacy criteria have been proposed in the lit-
erature to achieve coverage of a model transformation im-

plementation. Fleurey et al. [10] proposed using a static
type checker to build an effective metamodel composed of
the source metamodel elements referenced in the transfor-
mation implementation. Attributes and multiplicities that
constitute the effective metamodel can then be partitioned
and the defined partitions can be used to generate coverage
items and adequacy criteria. No case study was conducted
to evaluate the proposed approach.

Küster and Abd-El-Razik [15] proposed three white-box ap-
proaches to test transformations specified as conceptual rules
and built using IBM WebSphere Business Modeler. The
first approach was based on transforming a conceptual rule
into a source metamodel template, from which model in-
stances can be created automatically. To create a source
metamodel template from a transformation rule, abstract
elements in conceptual rules must be parameterized. Thus,
several templates were generated from each rule to ensure
source metamodel coverage per rule. The second approach
was proposed to experiment with output models with con-
straints. For each constraint on an output model element,
a test model that affects the constraint of interest was gen-
erated. The third approach generated critical input models
that contain overlapping match patterns of rule pairs to test
if errors can occur due to the interplay of rules. The study
concluded that the third approach based on rule pairs re-
vealed fewer errors than the first two approaches. However,
no detailed results were demonstrated in the study.

McQuillan and Power [21] assessed the coverage of ATL rules
by profiling their operation during execution. ATL has two
features which allow it to support such profiling. First, com-
piled ATL rules are stored in XML files and are executed
on top of a special purpose virtual machine. Second, ATL
prints out a log file of the executed instructions. To assess
rule coverage of ATL transformations, a two phase-approach
was proposed. In the first phase, the XML file resulting from
compilation of the transformation is processed to extract the
available rules and helpers. In the second phase, the trans-
formation was executed using the available test suite. The
resulting log file was processed to find out how much of the
rules and helpers extracted in the first phase were covered
according to three white-box criteria: rule coverage, instruc-
tion coverage and decision coverage.

Lämmel [16] proposed a criterion for grammar testing. The
criterion can be leveraged for transformation testing since
using a grammar or a parser to transform a language is sim-
ilar to using a transformation to transform models. The
study proposed a modified version of the rule coverage cri-
terion that requires the test suite to trigger each rule in the
grammar. The proposed criterion, referred to as context-
dependent branch coverage, requires each rule to be trig-
gered in every possible context. For example, if the outcome
of rule r1 can trigger either rule r2 or rule r3, then there
must be one test model that triggers r1 then r2, and an-
other test model that triggers r1 then r3. No case study
was conducted to evaluate the efficiency of the criterion in
detecting faults.

4. PHASE 2: TEST SUITE ASSESSMENT
Many studies use the coverage achieved by a test suite with
respect to some adequacy criteria to assess the quality of test

suites [1, 10, 11, 9, 28, 25, 13, 22, 4, 5, 15, 21]. Other stud-
ies use mutation analysis instead [24, 17, 22, 23, 25]. We
discussed in Section 2 how to measure the coverage achieved
by a test suite with respect to some adequacy criteria. In
this section, we discuss mutation analysis in depth.

Mutation analysis [23] is a technique used to evaluate the
sensitivity of the test suite to faults in the transformation
of interest. Mutation analysis involves applying mutation

operators to inject faults in the original transformation and
generate mutants. The injected faults represent fault mod-

els committed by developers when building transformations.
The mutants and the original transformation are then exe-
cuted using the test suite under assessment. For each mu-
tant, if one test model produces different results for the
transformation and the mutant, then the mutant is killed.
The mutant stays alive if no test model detects the injected
fault. A mutant that can not be killed by any test model is
an equivalent mutant and has to be discarded. A mutation

score is computed to evaluate the test suite (Eqn. 2).

MutationScore =
|KilledMutants|

|Mutants| − |EquivalentMutants|
(2)

Mottu et al. [23] propose semantic mutation operators that
model semantic faults which are normally not detected when
programming, compiling or executing a transformation. Four
basic operations were identified in any transformation: input
model navigation, filtering of the navigation result, output
model creation or input model modification. The study then
proposed mutation operators related to each of the four op-
erations. Using the proposed mutation operators, mutants
were generated for a Java transformation and were compared
with the mutants generated using a commercial tool, Mu-
Java. MuJava uses classical mutation operators that exist in
any programming language and are not dedicated to MDD.
MuJava generated almost double the number of mutants
generated from the proposed operators, with more mutants
being not viable, i.e., detected at compile- or run-time.

Dinh-Trong et al. [8] discussed mutation operators for UML
models that can be easily leveraged for transformations.
Three main fault models were identified: design-metric re-
lated faults, faults detectable without execution and faults
related to behavior. Design metric related faults result in
undesirable values for design metrics. Undesirable values for
such metrics do not necessarily imply a fault, but can imply
problems in non-functional properties of the transformation,
such as understandability. Faults detectable without exe-
cution result from syntactic errors and are easily killed by
MDD environments. Faults related to behavior result from
an incorrect transformation specification that is syntacti-
cally correct. Several mutation operators were discussed and
classified according to the proposed fault models.

5. PHASE 3: BUILDING THE ORACLE
FUNCTION

An oracle function compares the actual output with the ex-
pected output to validate the transformation of interest [10].
If the expected output models are available, then the ora-
cle function is a model comparison or a model differencing

task [19, 14, 20]. However, if the expected output mod-
els are not available, then the oracle function validates the
transformation’s output with respect to predefined output
specifications or contracts [7, 6, 24, 12, 17].

5.1 Model Comparison as Oracle Functions
Model comparison or differencing has been identified as a
major task in transformation testing [14]. Lin et al. [20] pro-
posed a framework which was integrated with the transfor-
mation engine C-SAW and used model comparison as the or-
acle function. The transformation language used in C-SAW
is ECL, an extension of OCL. In ECL, a transformation can
be either a strategy or an aspect. A strategy specifies the
required transformation, while an aspect binds a strategy to
an input. The proposed framework has three components: a
test case constructor, a test engine and a test analyzer. The
input of the test case constructor are the paths of the input
models and their expected output models, and the strategy
specifying the transformation. For each input model, the
test constructor generates an aspect. The test engine exe-
cutes the generated aspects and compares the actual output
models with the expected output models. The comparison
results are then passed to the test analyzer which visualizes
the results using different colors and shapes. A case study
was conducted to show how the framework helped detect
errors in a transformation example.

However, model comparison or differencing has many di-
mensions that need to be addressed to be carried out suc-
cessfully [19]. These dimensions include syntactic/ semantic
differencing and visualisation of differences. Thus, in this
paper, we do not discuss model differencing any further.

5.2 Contracts as Oracle Functions
Contracts specify expected properties of the transforma-
tion’s output, and can be used as oracle functions. Many
languages for defining transformation contracts have been
proposed, e.g., Java Modeling Language (JML) [18] can be
used to define contracts for Java transformations. However,
OCL [27] has been used in many studies for specifying trans-
formation contracts.

Cariou et al. [7] discuss two approaches to specify OCL con-
straints on relationships between input and output models.
In the first approach, OCL expressions that manipulate el-
ements of a single metamodel were specified in the trans-
formation’s postcondition. In this approach, the mapping
between input and output model elements is implicit, i.e.,
input model elements that are not manipulated in the post-
condition will automatically be maintained in the output.
Moreover, OCL expressions are simple due to the use of one
metamodel for both the source and target. On the other
hand, a disadvantage of this approach is that it can only be
used when the source and target metamodels are the same
since the transformation must be owned by a classifier of one
metamodel. Thus, for transformations manipulating differ-
ent metamodels, a common metamodel needs to be defined
and a classifier of the metamodel must own the transforma-
tion. Finding a common metamodel is not always easy; the
metamodels may have contradicting constraints. Further,
the classifier must be carefully chosen to enable all elements
in the OCL expressions to be easily referenced. The first
approach was applied to two transformations [6] to demon-
strate the construction of a common metamodel and the
choice of the classifier to own the transformation.

In the second approach, OCL expressions that manipulate
models as packages were specified in the postcondition. The

second approach can be used to define contracts for trans-
formations that manipulate different metamodels. However,
disadvantages of the second approach include the need for
an OCL extension to define explicit mappings between in-
put and output model elements. Further, OCL navigational
expressions can be verbose due to the use of different meta-
models. The study applied the second approach to a trans-
formation to demonstrate the definition of an OCL extension
and the definition of the contracts.

Gogolla and Vallecillo [12] propose a framework for test-
ing transformations based on a generalized type of contracts
called tracts. A tract defines a set of OCL constraints (source
tract constraints, target tract constraints, source-target tract
constraints) and a tract test suite. Source tract constraints
are constraints on input models; target tract constraints are
constraints on output models that must be satisfied together
with the target metamodel constraints; source-target tract
constraints are constraints on relationships between input
and output models; the tract test suite is a test suite built
to satisfy the source tract constraints and the source meta-
model constraints. The context of the tract constraints was
a tract class that contained functions and attributes used
to specify the tract constraints. A framework was imple-
mented and was used to verify a transformation. The paper
discussed the advantages of using tracts in testing. However,
no case study was conducted to evaluate the framework.

Improving Transformation Contracts: Some studies fo-
cused on the importance of contracts and the need to im-
prove them. Two approaches were proposed to improve
contracts [24, 17]: mutation analysis [24] and mathemat-
ical modeling [17]. Both approaches aimed to improve
two transformation metrics that reflect the effectiveness of
its contracts: vigilance and diagnosability. Vigilance is the
probability that the contracts dynamically detect errors [24,
17]. Diagnosability is the effort needed to locate a fault once
it has been detected by a contract [17].

Mottu et al. [24] improved the vigilance of transformations
by improving the consistency between a transformation’s
test suite, implementation and contracts using mutation anal-
ysis in three steps. First, an initial test suite was analyzed
repeatedly using mutation analysis until an acceptable mu-
tation score was achieved. Second, the optimized test suite
was used to test the transformation and fix errors. If the
final transformation after fixing errors differs significantly
from the original one, mutation analysis was repeated since
different mutants can be generated. Finally, the accuracy
of the contracts was evaluated using mutation analysis to
assess the percentage of mutants detected by the contracts.
If a mutant was killed by a test model but was not killed by
any contract, then a contract had to be added. The study
evaluated their approach on a transformation and were able
to improve the contracts’ mutation score to detect up to 90%
of the mutants detected by the test suite.

Le Traon et al. [17] used contracts to improve the vigilance

and diagnosability of a system using mathematical model-
ing. Although the study focused on systems captured as
models with OCL constraints, the approach can be lever-
aged for transformations with contracts. A system’s vigi-
lance was expressed as a function of the isolated and local

vigilance of its constituent components and the probability
that this specific component causes a system failure. Simi-
larly, a system’s diagnosability was expressed as a function
of two attributes: the probability that a faulty statement in
a set of statements bounded by two consecutive contracts
is detected by any contract that comes after the fault and
the diagnosis scope. Three case studies were conducted and
it was proven that a system’s vigilance and diagnosability
improved significantly with the addition of contracts.

6. CONCLUSION
In this paper, we have reviewed the state of the art in three
model transformation testing phases. We discussed different
approaches that can be used in each phase, and we surveyed
studies related to the different approaches.

Based on our study, we propose requirements that need fur-
ther research in the three testing phases. For test case gen-
eration and test suite assessment, one possible area of future
work is relating the two phases by identifying adequacy crite-
ria that are effective in uncovering certain fault models. By
relating criteria to fault models, testers can decide on the
criteria to use to build their test suites based on the kinds
of faults they expect in a transformation. For building the
oracle function, if OCL is to be adopted as a standard for
defining contracts, then constructs need to be incorporated
into OCL to facilitate defining contracts for transformations
manipulating different metamodels while avoiding complex
navigational expressions and the need for defining explicit
mappings between model elements, as done in [7].

7. REFERENCES
[1] A. Andrews, R. France, S. Ghosh, and G. Craig. Test

Adequacy Criteria for UML Design Models. Software
Testing, Verification and Reliability, 13(2), 2003.

[2] B. Baudry, T. Dinh-Trong, J. Mottu, D. Simmonds,
R. France, S. Ghosh, F. Fleurey, and Y. Le Traon.
Model Transformation Testing Challenges. In
Integration of Model Driven Development and Model

Driven Testing., 2006.
[3] B. Baudry, S. Ghosh, F. Fleurey, R. France,

Y. Le Traon, and J. Mottu. Barriers to Systematic
Model Transformation Testing. Communications of

the ACM, 53(6), 2010.
[4] E. Bauer, J. Küster, and G. Engels. Test Suite

Quality for Model Transformation Chains. Objects,

Models, Components, Patterns, 2011.
[5] E. Bauer and J. M. Küster. Combining

Specification-Based and Code-Based Coverage for
Model Transformation Chains. ICMT, 2011.

[6] E. Cariou, R. Marvie, L. Seinturier, and L. Duchien.
Model Transformation Contracts and their Definition
in UML and OCL. Technical Report 2004-08, LIFL,
2004.

[7] E. Cariou, R. Marvie, L. Seinturier, and L. Duchien.
OCL for the Specification of Model Transformation
Contracts. In OCL and Model Driven Engineering,
volume 12, 2004.

[8] T. Dinh-Trong, S. Ghosh, R. France, B. Baudry, and
F. Fleury. A Taxonomy of Faults for UML Designs. In
MoDeVa, 2005.

[9] F. Fleurey, B. Baudry, P. Muller, and Y. Traon.

Qualifying Input Test Data for Model
Transformations. SoSyM, 8(2), 2009.

[10] F. Fleurey, J. Steel, and B. Baudry. Validation in
Model-Driven Engineering: Testing Model
Transformations. In MoDeVa, 2004.

[11] S. Ghosh, R. France, C. Braganza, N. Kawane,
A. Andrews, and O. Pilskalns. Test Adequacy
Assessment for UML Design Model Testing. In
ISSRE, 2003.

[12] M. Gogolla and A. Vallecillo. Tractable Model
Transformation Testing. In ECMFA, 2011.

[13] S. Haschemi. Model Transformations to Satisfy
All-Configurations-Transitions on Statecharts. In
MODEVVA, 2009.

[14] D. Kolovos, R. Paige, and F. Polack. Model
Comparison: A Foundation for Model Composition
and Model Transformation Testing. In Global

Integrated Model Management, 2006.
[15] J. Küster and M. Abd-El-Razik. Validation of Model

Transformations – First Experiences using a White
Box Approach. In MoDeVa, 2006.

[16] R. Lämmel. Grammar Testing. FASE, 2001.
[17] Y. Le Traon, B. Baudry, and J. Jézéquel. Design by

Contract to Improve Software Vigilance. IEEE
Transactions on Software Engineering, 32(8), 2006.

[18] G. Leavens, A. Baker, and C. Ruby. Preliminary
Design of JML: A Behavioral Interface Specification
Language for Java. ACM SIGSOFT Software

Engineering Notes, 31(3), 2006.
[19] Y. Lin, J. Zhang, and J. Gray. Model Comparison: A

Key Challenge for Transformation Testing and
Version Control in Model Driven Software
Development. In Best Practices for Model-Driven

Software Development, volume 108, 2004.
[20] Y. Lin, J. Zhang, and J. Gray. A Testing Framework

for Model Transformations. Model-Driven Software

Development, 2005.
[21] J. McQuillan and J. Power. White-Box Coverage

Criteria for Model Transformations. In Model

Transformation with ATL, 2009.
[22] J. A. McQuillan and J. F. Power. A Survey of

UML-Based Coverage Criteria for Software Testing.
Technical report, Department of Computer Science,
2005.

[23] J. Mottu, B. Baudry, and Y. Le Traon. Mutation
Analysis Testing for Model Transformations. In
ECMDA-FA, 2006.

[24] J. Mottu, B. Baudry, and Y. Le Traon. Reusable
MDA Components: A Testing-for-Trust Approach. In
MODELS, 2006.

[25] J. Offutt and A. Abdurazik. Generating Tests from
UML Specifications. UML, 1999.

[26] T. Ostrand and M. Balcer. The Category-Partition
Method for Specifying and Generating Fuctional
Tests. Communications of the ACM, 31(6), 1988.

[27] J. Warmer and A. Kleppe. The Object Constraint

Language: Getting your Models Ready for MDA.
Second edition, 2003.

[28] Y. Wu, M. Chen, and J. Offutt. UML-Based
Integration Testing for Component-Based Software.
ICCBSS, 2003.

