Identification of Simulink Model Antipattern
Instances Using Model Clone Detection

Matthew Stephan

Department of Computer Science and Software Engineering

Miami University
Oxford, Ohio, USA
Email: stephamd@miamioh.edu

Abstract—One challenge facing the Model-Driven Engineering
community is the need for model quality assurance. Specifically,
there should be better facilities for analyzing models automat-
ically. One measure of quality is the presence or absence of
good and bad properties, such as patterns and antipatterns,
respectively. We elaborate on and validate our earlier idea of
detecting patterns in model-based systems using model clone
detection by devising a Simulink antipattern instance detector.
We chose Simulink because it is prevalent in industry, has mature
model clone detection techniques, and interests our industrial
partners. We demonstrate our technique using near-miss cross-
clone detection to find instances of Simulink antipatterns derived
from the literature in four sets of public Simulink projects.
We present our detection results, highlight interesting examples,
and discuss potential improvements to our approach. We hope
this work provides a first step in helping practitioners improve
Simulink model quality and further research in the area.

I. INTRODUCTION

While Model-Driven Engineering (MDE) is becoming in-
creasingly prevalent in the Software Engineering commu-
nity, especially in both business and embedded domains [1],
there are still numerous areas that need to be addressed as
both model-based development and systems mature. In MDE,
higher-level abstractions, or models, are the primary artifacts
in all phases of the Software Engineering life cycle, including
requirements, design, implementation, testing, and mainte-
nance. Given the importance and longevity of these models,
ascertaining and improving quality of the models and other
artifacts of interest in MDE projects, known as model quality
assurance, becomes imperative [2], [3]. Compared to quality
assurance (QA) for more traditional software development
paradigms such as code-based development, model quality
assurance is much less refined and researched [4]. If MDE
is to continue to flourish and allow engineers to fully reap
all of its rewards, then evaluation and improvement of model
quality is essential.

One method of assessing the quality of Software Engi-
neering systems is to identify and report well-established
“good” and “bad” ways of solving specific design questions
and constructing the systems’ artifacts. These are known as
design patterns [5] and antipatterns [6], respectively, and will
be referred to collectively simply as “patterns” herein when we
are referring to both. Detection of instances of these patterns
provides analysts the facility to identify functional and non-
functional properties that can be used to reason about the

James R. Cordy
School of Computing
Queen’s University
Kingston, Ontario, Canada
Email: cordy @cs.queensu.ca

quality of their systems. Typically, patterns are derived by
practitioners based on experience. The pattern data includes
where and when the pattern is applicable, the various ways of
implementing or refactoring the pattern, and a description and
justification for the pattern. In many cases, the patterns are
accompanied by an abstract representation model [7], with
detection being accomplished by code evaluation [8] or, in
other cases, complex textual rules that evaluate models [9].

Recently, we argued that instances of model-based patterns
can be detected in model-based software using model clone
detection [10]. Existing non-model-based software pattern
detection can be onerous, requiring those analyzing systems
to switch abstraction levels between text and abstract pattern
representations, and delaying pattern instance identification to
later in the engineering process. Using model clone detec-
tion [11], which is a form of model comparison [12], to locate
instances of model design patterns and antipatterns (1) can be
done early in the Software Engineering process, (2) is appli-
cable to systems that are comprised fully or mostly of model-
based software, and (3) keeps the abstraction level consistent
between the patterns and the systems under investigation.

This paper builds upon our initial and general ideas of using
model clone detection to accomplish model pattern instance
detection [10]. In that previous work, we discussed various
model clone detection techniques’ suitability for detecting
pattern instances. In this paper, we flesh out that idea and val-
idate it by building a prototype SIMulink Antipattern Instance
Detector (SIMAID) capable of detecting model antipattern
instances in Simulink models. We focus on Simulink models
specifically because Simulink model clone detection is the
most mature of all model clone detection domains [13] and
is of interest to our industrial partners. We target Simulink
antipatterns because they are more researched and available
than Simulink design patterns and have a very immediate and
clear impact on model quality in that their detection indicates
refactoring opportunities. This is also a likely reason for the
increased availability of Simulink antipatterns over design
patterns. It is our hope that our work will inspire future model-
based pattern instance detectors for other modeling domains,
thus improving model quality assurance as a whole.

We begin this paper in Section II with background informa-
tion and related work on Simulink, Model Clone Detection,
pattern detection, and previous research. We then introduce

ohatacle

position

&
Logical @

Crperator

Mutiport
Switch

1

T3

welocity

damper

Muttiport
Switch2

Fig. 1. Window Obstacle Effects Subsystem'

SIMAID in Section III including the Simulink antipatterns
included in its scope and an overview of its process. Section IV
presents our case study using SIMAID on four sets of publicly
available Simulink projects. We discuss evaluation, threats to
validity, and future work in Section V, and conclude the paper
in Section VI

II. BACKGROUND AND RELATED WORK

This section provides background information on Simulink,
model clone detection, and patterns. In addition, we highlight
the novelty of our work by comparing it with existing pattern
instance detection and analysis techniques. Much of this
section is paraphrased and extended from the initial short paper
in which we proposed the model clone-based technique [10].

A. Simulink

Simulink [14] is a modeling language in the Matlab devel-
opment environment that is intended for model-based design
and simulation. Simulink models are data-flow models that are
comprised of three levels of granularity: whole models, (sub)
systems, and blocks. Models are composed of systems, and
systems contain other (sub) systems and blocks. Each block
type has its own unique semantics and parameters, typically
comes from a library, and is connected to other blocks using
lines to allow for simulation.

Figure 1 illustrates a Simulink system modeling a car
window that encounters an obstacle in its path!'. The system
and blocks within it represent the spring and damping effects
during the window’s interaction with an obstacle to calculate
force. The blocks on the left of the figure represent the input
to the system, while the rightmost block outputs the force
to be applied. The Multiport Switch blocks use their first
input to determine which of their remaining inputs will be
output to the gain blocks (spring and damper) that follow. In
many cases, Simulink blocks have corresponding C code that
can automatically be generated for embedding on a variety
of target platforms. Engineers and analysts edit Simulink
models through the Matlab environment by navigating through
systems and adding, modifying, and deleting blocks and lines.

Uhttp://www.mathworks.com/products/simulink/model-examples.html

B. Model Clone Detection

Model comparison refers to comparing and contrasting sets
of models and identifying similarities and differences, respec-
tively. While it is an emerging field, there are many different
model comparison techniques and approaches [13], including
model clone detection. Model clone detection is a special-
ization of model comparison that accomplishes similarity-
based model matching [11]. It works by finding similar or
identical fragments within sets of models in an MDE project
and identifying those fragments as clone pairs, which can
be clustered as classes. For non-identical, or near-miss (Type
3) clones, this similarity is capped by a specific threshold,
for example, clone pairs that are 80% similar. For identical
(Type 1) clones and renamed clones (Type 2), no threshold is
needed [15].

Model clone detection techniques have been developed for
different types of models and domains, the most mature being
Simulink [11], [15], [16]. More recently, however, model
clone detection approaches have been emerging for other
types of models such as Stateflow models [17], [18], UML
models [19], [20], and others. Some model clone detectors
employ a graph-based analysis approach, while others use a
text-based approach, each having their own unique benefits
and shortcomings [13].

1) Cross Clones: One extension to model clone detection
is the notion of detecting “cross clones”. Instead of executing
model clone detection on a project and revealing model clone
pairs and classes within that project in isolation, cross clone
detection involves running a model clone detection tool on
two or more projects and ascertaining what clones “cross”, or
intersect, between the projects. A non-model-based example
of this can be seen in our previous work on DebCheck [21],
which uses cross cloning to find licensing issues in code-based
software systems. Specifically, DebCheck finds near-miss C
function clones that cross between a given application’s code
and the Gnu-licensed Debian source distribution. This same
idea can be applied to model clones, as we have proposed [10].

C. Design Patterns and Antipatterns

Design patterns provide tested and generic solutions for
prevalent Software Engineering design problems and proper-
ties. Antipatterns are general representations of bad practices
and properties that software engineers should avoid. Patterns
have been utilized in a variety of domains for different pur-
poses, including Java enterprise system design patterns [22],
predicting performance [23], and finding design patterns in
multi-agent systems [24]. In all cases, the patterns have a
description of their applicable contexts and an abstraction of
the solution, allowing it to be used in different situations.

1) Related Pattern Instance Detection Techniques: When
it comes to assessing software quality, one generally accepted
form of metrics is detecting the existence of design patterns
and absence of antipatterns [26], [27]. Often, pattern detection
involves textual analysis rules, such as Prolog, that examine
systems at the source code level [8], [25], [28], [29], or
design level [30]. Textual code level pattern detection is most

Somr

pattem ‘\' P2l -y
(==)
/ S _\\- | structural

analysis

DZprolog I—-k PROLOG
JES

DRDLDG

rules partem \

instance

'\\candldahe

F'R
query

Fig. 2. Sample C++ Prolog Analyzer [25]

common. One textual approach involves extracting meta data
from C++ classes and comparing it to meta data for known
patterns [25], [28]. As illustrated in Figure 2, Kramer and
Prechelt [25] accomplish this by converting patterns into
Prolog rules and considering system properties, like C++
meta data, as Prolog facts. We include this figure as it is
representative of the general process taken by many existing
model pattern detection approaches and helps contrast them
with what we do with SIMAID. In this example, they run
Prolog queries using the pattern rules on the extracted system
facts, and then present instance candidates to the user. Stoianov
and Sora [8] also use Prolog rules to analyze code. These
approaches differ from the research we present in this paper
in that they use textual rules and work on source code.

The Mate Project [31] performs “guideline” checks using
codified rules. In contrast to Prolog approaches, they use
visual model analysis rules and activity diagrams to generate
an implementation of their guideline rules in Java. This
process performs textual analysis using those Java rules, while
our approach and SIMAID tool are strictly model-based.
A similar reverse engineering approach to detecting design
patterns is realized by Tsantalis et al. [29]. They develop a
matrix representing the pattern properties they are looking
for and compare these matrices to the graph-based version
of the code. Some notable shortcomings of this technique
include “convergence of the similarity algorithm (depending)
on the system graph size” and “the time needed for the
calculation of similarity scores ...can be prohibitive for large
systems.” We conducted similar research where we expressed
Java Enterprise Edition (J2EE) framework implementations
as framework specific models (FSM) [32]. We were able
to detect antipattern instances by reverse engineering Java
code, obtaining a model, and performing analysis on that
model’s properties. Unlike the approach in this paper, both
these approaches require and reverse engineer the code, and
include a textual codification of the patterns. In addition, the
FSM approach works only with software frameworks.

Most closely related to our work is that of Wenzel and
Kelter [33]. They also note the problems with translating
patterns into “non-familiar formalisms”, such as Prolog. Their
approach employs model comparison by defining patterns as
UML models and comparing those UML pattern models to
systems of interest. They specifically evaluate characteristics
unique to the patterns being sought after. This evaluation
involves converting all the UML models to attributed type
graphs and associating a weight to model-language specific

properties, like having the same super class or sharing a
package. While their approach is tailored to detecting design
pattern occurrences, antipattern instance detection could be
accomplished in the same manner. Similar to our work, this is
an example of detection of model-based patterns using model
comparison. However, it is intended for UML class models
only, can experience performance problems with the heavily
cyclic graphs that can appear in data-flow and behavioral mod-
els, and can be accessed only within the FUJABA development
tool?. The approach we present in this paper uses the Simone
model clone detector [15], which avoids cyclic graph and sub-
graph isomorphism issues and is not restricted to any particular
tool environment. Simone reports its results as both an HTML
web page and an XML database, and can be viewed directly
in the Simulink environment using the SimNav interface [34].
While SIMAID works with Simulink specifically, the general
technique we use for SIMAID is applicable to any modelling
language for which a mature model clone detection technique
exists.

Mapelsden et al. have devised a domain specific modelling
language intended for design patterns called Design Pattern
Modelling Language (DPML) [35]. Their language allows for
linking design pattern solution elements to UML model ele-
ments in order to verify that design patterns have been adhered
too. In contrast to our model clone detection based process
and the work of Wenzel and Kelter, this also requires learning
and using the “non-familiar formalism” that is their language.
In addition, DPML is intended to be linked to the model
elements at design time and is used more for specification
and adherence, rather than pattern instance detection.

D. Identifying Model-Based Pattern Instances using Model
Clone Detection

In our previous short paper we proposed a general strat-
egy for detecting pattern instances using model clone detec-
tion [10] in order to improve model quality. The process,
which is based on the same principles as DebCheck [21], is
centered on cross cloning. Specifically, it begins by defining
and modelling each pattern of interest as a concrete (sub)
model, storing those model-based pattern representations as
their own library, and performing model cross clone detection
between the system being analyzed and the library of patterns.
Model clone pairs between a pattern model and the system can
then be viewed by a QA tester as an instance of that pattern in

Zhttp://www.fujaba.de/

the system, and used to reason about properties of the system
in model quality assessment.

1) Representation of Model Patterns: In a way similar to
Wenzel and Kelter’s [33] UML model comparison approach,
concrete instances of the patterns of interest must be rep-
resented as (sub) models to be compared to the models in
the system undergoing analysis. A key consideration is which
model patterns are to be represented and how this will be done.

The question of which model patterns to include depends
on what quality engineers are interested in and what is
available in the research and industrial literature. Regarding
the “how”, many patterns are already defined as examples at
the design/modelling level, such as those in Gamma et al.’s
“Gang of Four” design pattern textbook [5] and other works
on design patterns [36] and antipatterns [37]. In some cases
patterns are presented as a set of explicit model instances or
examples, and in other cases, as a single generalized or abstract
representation of the pattern model. In both situations, all that
is required is to represent these patterns and their defining
properties in a suitable concrete model form so that the clone
detection tool can identify clone pairs between pattern models
and target models. We elaborate on this notion in our previous
research [10].

2) Detecting Model Pattern Instances using Model Clone
Detection: When it comes to detecting model pattern instances
using model clone detection, earlier approaches that are capa-
ble of detecting Type 1 (exact) model clones only [11], [20]
may not be useful in their current form. This is because target
projects to be analyzed would have to have identical models, in
both structure and type naming, to those in our model pattern
library in order to be detected.

Model clone detectors capable of detecting Type 3 (near-
miss) and Type 2 (renamed) model clones [15]-[17], [19]
are suitable candidates. Detection of Type 2 model clones
will allow engineers to detect simple structure-based model
patterns that have identical structure to, but different element
names than, the systems being evaluated. Type 3 model clone
detection allows for more flexible and abstract definitions of
model patterns. Any model clones identified as Type 3 clones
to a model in pattern libraries are near-miss matches that
indicate potential pattern instances that can be verified by the
system analyst or domain expert. More discussion about model
clone types, with hypothetical examples, can be found in our
introductory paper [10].

IIT. SIMULINK ANTIPATTERN INSTANCE DETECTOR
(SIMAID)

In order to validate our idea of using model clone detection
for model pattern detection, we have developed a Simulink
antipattern instance detector (SIMAID) that employs Simulink
model clone detection. We chose this specific domain and
function because (1) Simulink is one of the most widely used
MDE methods in industry, (2) Simulink model clone detection
methods are mature and reliable [11], [15], [16], [38], [39], and
(3) our industrial partners are extremely interested in quality
assurance for Simulink. SIMAID uses the publicly available

Simulink model clone detection tool Simone [15], which is
both mature and has been thoroughly evaluated [38], [40].

A. Simulink Antipatterns Considered

As yet there is no established corpus of Simulink antipat-
terns, and for the antipatterns that we were able to find, there
are few clear antipattern definitions or models. However, one
source of Simulink antipatterns we found very helpful was
the preliminary list provided by Tran and Kreuz [41] based
on their experiences at Daimler. In their list, they briefly
describe in a sentence or two, without Simulink examples or
models, antipatterns that are analogues of traditional code-
based antipatterns. They simply enumerate the antipatterns
and are concerned solely with refactoring techniques for them,
rather than detecting instances in Simulink projects.

Another source of antipatterns is the MathWorks Auto-
motive Advisory Board’s (MAAB) modeling style guide-
lines [42], which we used to find good examples of Simulink
antipatterns. The style guidelines were originally composed
by Mathworks with Ford, Daimler Benz, and Toyota, and
now has contributions from “many of the major automotive
OEMs and suppliers”. Not all of the guidelines are directly
transferable to meaningful model antipatterns, for example
those dealing with aesthetics or documentation, but there are a
handful that immediately appeared ideal for model antipattern
representation.

The following subsections enumerate the Simulink antipat-
terns we have currently implemented in SIMAID. In each
case we extend the existing definitions for them, and provide
examples of our model pattern representations. All of our
Simulink antipattern models are publicly accessible at our
website?.

1) Primitive Obsession: The Primitive Obsession (PO) an-
tipattern [41] exists when there are small subsystems in a
Simulink project that encapsulate very simple or primitive
operations. The problem with this is there is no need the
impose a hierarchical subsystem structure for a system that
has one or two simple blocks in it. Simulink subsystems are
meant to “Keep functionally related blocks together” in order
to simplify Simulink models *.

In order to represent this Simulink antipattern, we created a
set of subsystems each containing a single block with a sink
and a source. Figure 3 presents four example PO antipattern
models from our Simulink antipattern library. Each of them
represents a subsystem suffering from PO and, given the right
similarity threshold, can facilitate detection of subsystems that
have very few, likely one to two, operations. When it came
to deciding which blocks to use and how many subsystems
to create in the PO pattern models, we simply relied on
Simulink’s own “Commonly Used Block™ library. The blocks
have Simulink default names, which will be ignored by any
model clone detector capable of detecting Type 2 or 3 clones.
In addition, our PO antipattern representations are such that

3 http://www.users.miamioh.edu/stephamd/projects/simaid/
“http://www.mathworks.com/help/simulink/ug/creating-subsystems.html

In1 T
=
] T Cor— D
v Tl Int L= ol
Logical [iscrete- Time
Operator Irtegratar
Iri2
In1
b | @ o ()
Product Butt I &ain Ot
Iri2

Fig. 3. Example Primitive Obsession (PO) Antipattern Models

b
Y

Out1 —{In1

[
Ot

n1 Ot — Inl
Subsystem —‘

Subsystem3

Gain2

Ot
Subesyste md —‘

st 1 | In1

Ot 1 — le

st 1

Subsystem]

Subsystemi

SubsystemS

Fig. 4. Example Middle Man (MM) Antipattern Model with 2 Blocks and 6 Subsystems

Type 3 model clone pairs of systems with 2 function blocks
are also identified.

2) Middle Man: The Middle Man (MM) Simulink antipat-
tern describes a case where a (sub) system is doing too much
delegation and not contributing significantly to the behavior
of the overall system [41]. This is a problem because it adds
to the complexity of the system hierarchy unnecessarily.

An identifiable symptom of an MM antipattern instance
is having a system contain very few operational blocks and
many subsystems. To model this antipattern, our Simulink
antipattern library includes a model with a set of subsystems
representing a variety of cases of blocks and subsystems. One
example variant includes the one depicted in Figure 4. This
subsystem contains two blocks and six subsystems and, with
near-miss model clone detection, will catch similar and related
antipattern instances. To complete the MM antipattern model
set, we include systems covering the cross product of zero to
three blocks and zero to six subsystems. We could have easily
included more variations of these systems, but chose three
blocks and six subsystems based on our Simulink experience
and to demonstrate the feasibility of SIMAID. SIMAID could
handle a larger cross-product set if the antipattern libraries
included one.

3) Feature Envy: The Feature Envy (FE) Simulink an-
tipattern refers to an instance where a subsystem is “more
interested” in another subsystem than the one it is actually
in [41]. It is similar to the Middle Man antipattern in that it
will have very few blocks, but differs in that it is overly fixated
on a single subsystem.

The properties of antipattern instances of those suffering

from this antipattern are having very few blocks and having
one or more calls/signals sent to a single (not many, like
MM) subsystem. For brevity we have left out the FE model
representation as it is similar to MM, except with a single
subsystem.

4) Block/Signal Clumps: The Block/Signal Clumps (BSC)
Simulink antipattern, analogous to the “Data Clumps” code
smell [27], describes instances where a set of primitive blocks
or signals appear often together throughout a Simulink system
or project. Since these are not encapsulated, in either a bus or
subsystem, this antipattern increases the numbers of ports and
the sizes of subsystems.

Instances of this antipattern can be detected directly using
model clone detection, and does not require cross cloning.
Essentially, the definition of this antipattern corresponds with
that of Type 2 model clones if there are many occurrences
of them throughout a project. So, in SIMAID, we simply
perform Simulink model clone detection looking for identical,
but potentially renamed clones. Because types are factored in
and not filtered out for the comparison by Simone [15], this
is an ideal approach. In addition, we want to limit ourselves
to roughly five or less blocks for it to be considered a BSC
instance as the clumps are small in nature and more spread to
permeation as a result.

We arbitrarily chose clone classes with five or more model
clone instances to be those that are instances of the BSC
antipattern and viable targets for subsystem creation. We could
have easily chosen different numbers for our clump sizes and
clone pair counts, but five seemed to make sense for our
purposes.

il .
Vi FIDiz)

Sine Wf qve

Cizcrete PID Controller

I >

Fuke
Genarator

S >

Fandom
Humber

PID(s)

FIl Confroller

PlDis)

FID Confroller

Fig. 5. Sample of JN_0001 Guideline Antipattern Models

5) MAAB Guidelines: There were three MAAB guidelines
[42] that seemed appropriate to treat as antipatterns for quality
evaluation in Simulink models. We outline these guidelines
and provide some of our Simulink model-based representa-
tions of them.

a) Prohibited Simulink Blocks for use with Controllers:
Guideline JM_0001 in the MAAB guidelines notes that control
algorithm models must be designed from discrete blocks. So,
the Simulink modeling implication of this is there is a list of
sources that should not be used in conjunction with control
blocks. Figure 5 provides three of our model antipattern
examples including three discouraged sources and various PID
controller blocks.

b) Mismatch of Logical and Numerical Operations: This
MAAB guideline, NA_0002, indicates that blocks performing
numerical operations must not be used in conjunction with
logic blocks. The two manifestations of this guideline that we
model include (1) numerical output should not be connected
as input to logic blocks and (2) logical output should never be
directly connected to numerical blocks. We once again took
the cross-product of the logic block, Logical Operator, with
the common numerical Simulink blocks, like gain, product,
sum, and others. Figure 6 illustrates three examples of our
antipattern model representations including one numerical
operator as a source to logic block and two examples of a
logical operator as input to a numerical block.

¢) Number of Inputs to Variant Subsystems: Variant
subsystems allow different and dynamic signal paths to be exe-
cuted at run time. A variant subsystem has multiple subsystems
and one set of in ports and one set of out ports. What makes a
variant subsystem unique is those ports are not connected until
the Simulation begins. As such, it is possible for subsystems
to have a different number of in ports than their containing
variant subsystem. The MAAB guideline NA_0020 says this
is fine as long as the unused inputs are terminated using
the terminator block. Our antipattern Simulink representations
model the case where they are not terminated. Specifically,
we model the cases covering the cross product of variant
subsystems with one to four inports and contained subsystems

AND e 1
.-5)*

Inte gr ator

Lagical
]

AND by

Lagical
Operatar

7
b
Logical
Operatar

Fig. 6. Sample of NA_0002 Guideline Antipattern Models

with one to five inports. For example, we have a set of four
variant subsystems with four inports and inner subsystems
with inports of one, two, three, and five. Beyond that, these
antipattern models are quite straightforward not necessitating
an example.

B. Overview of the SIMAID Process

The first step in the SIMAID process involves modelling
the Simulink antipatterns and storing them in a library. We
outlined this step in the previous subsection. When ready, this
library and the projects undergoing model quality assurance
must be placed in an appropriate location such that they can
be subject to model clone detection. So, in our case, we simply
placed the folders containing the antipattern library alongside
each respective project to analyze in the same higher-level
containing folder.

Once the library and project are ready, Simone has to
be configured for antipattern detection. We established from
evaluation [38] and consultation with our industrial partners
a near-miss threshold between 20% and 30% yields the
most applicable clones. We require near-miss flexibility for
antipattern instance detection since they will rarely, if ever, be
exact matches, but also have some smaller patterns. Thus, for
all antipatterns but BSC, we configure Simone to use blind
renaming, with a 25% difference threshold. For BSC clones,
we set Simone to use blind renaming, but with a 0% difference
threshold. This will give us clumps of blocks, allowing for
changes in names, but not types. We were able to utilize
Simone as is, without changing its implementation.

The last step in the SIMAID process involves extracting
the antipattern instances. At this point, we accomplish this by
simply noting any clones present in cross-clone detection, that
is, those that intersect our antipattern libraries and the projects
undergoing evaluation. The exception to this is for BSC clones
where we look at the Type 2 model clone classes and note any
model clone instances contained in classes with a size of five
or more clones. In the future, we will work on fully automating
this process to present this information to the model QA tester
directly in the native Simulink environment using the SimNav

TABLE I
PUBLIC SIMULINK PROJECTS

Project # of Simulink Systems
Simulink Demonstration Examples (SDE) 1852
Matlab Central (MC) - 5 Projects 723
ConQAT Example Models (CM) 638
Advanced Vehicle Simulator (AVS) Version 3 1876

interface [34].

IV. SIMAID CASE STUDY

In order to validate our SIMAID process, and the idea
of using model clone detection to detect model patterns in
general, we performed a case study using SIMAID to detect
Simulink antipatterns in four public Simulink projects. We
make these projects publicly available on the same web page
as our antipattern models?. The only exception to this is the
Simulink example demonstration set, which are public, but
are owned by Mathworks and available for download on their
website?.

Table I lists these projects and the number of Simulink
systems they are composed of. The first project includes
the set of all the Simulink example demonstration models,
including aerospace, automotive, and other types of models.
The second project is a collection of five Simulink systems
from Matlab Central, which is an online repository of Matlab
artifacts. The third project is one consisting of open-source
models provided to us by the developers of ConQAT [11]
that they had used for evaluation in the past. That set includes
systems related to “Aircraft Library Source” and “Surveillance
System Design Source”. The last system is the third version
of a large open-source Simulink application called Advanced
Vehicle Simulator, called Advisor, which allows for simulation
of various properties found in automobiles. From a run time
performance perspective, the tool performed nearly identically
on the projects in the case study to running basic Simone on
them. That is, running SIMAID did not significantly impact
the run time of the model clone analysis.

Table II summarizes the results from our case study on using
SIMAID to perform antipattern instance detection on each
respective Simulink project. Each row presents the findings of
SIMAID when analyzing the four systems presented in Table
I. Each column indicates the number of Simulink antipattern
instances detected for our antipatterns under consideration.
For PO anti pattern clone pairs, there was a lot of overlap
(similarity) in our model representations because they were
such simple systems. As such, we divided the number of PO
clone pairs by a reduction factor of 2.5 to better represent the
recall. This factor was based on our experience with two of
the smaller open source systems: MC and CM. Unfortunately,
none of our analysis of the projects revealed any MAAB
antipattern instances, leaving us unable to conclude anything
about SIMAID’s ability to detect occurrences of those antipat-
terns. In each of the following subsections, we discuss the

Shttp://www.mathworks.com/products/simulink/model-examples.html

C]]

Enable

TimeOut
Timeout ——m 1

setup ime I

10ms Clock

Fig. 7. Feature Envy Antipattern Instance found in SDE

results for each project and present example model antipattern
instances we found interesting.

A. Simulink Demonstration Examples

SIMAID discovered a nice range of different antipattern
occurrences in the SDE systems. Despite being a smaller
project than the Advanced Vehicle Simulator, this project has
a higher number of primitive obsession antipattern instances.
The implication of this from a model quality perspective is
that this project has a lot of simple subsystems that should
be refactored into larger ones. Because of the larger amount
of primitive systems, this project, as a whole, has a lot of
unnecessary hierarchy and would be very difficult to navigate
through manually.

Our analysis of this project also yielded many Middle Man
and Feature Envy antipattern instances. One example of the
latter is presented in Figure 7, displaying the subsystem “10ms
Recurring H/W Timer”. Here we see the system is “fixated”
on the subsystem “10ms Clock” and adds to the functionality
only by adding one integration step delay for “setup time”.
Even though there is that additional delay, it is clear that this
system really just performs the clock operation.

B. Matlab Central

The Matlab Central project had a large number of
Block/Signal Clump instances relative to its size: 73 instances
spread throughout 723 systems. One such clump, illustrated in
Figure 8 contained 6 blocks that appeared together 20 times
in different places. Seeing as BSC are Type 2 clones, this
means the types of clones and structure were identical, but
the elements may have been renamed. From a model quality
assurance perspective, it would be in the interest of the QA
team to create a subsystem in a library containing those blocks
and replacing the 20 instances with a call to that subsystem.
Simulink even has a built-in feature to do it automatically in
one step in the Simulink UI simply by selecting a group of
blocks.®.

C. ConQAT Example Models

According to our analysis with SIMAID, the ConQAT
example models, containing aircraft library and surveil-
lance design systems, were relatively free of antipattern
instances. There were a notable number of block clumps
that could be refactored into libraries. In addition, there
were a handful of primitive obsession antipattern instances.
One such example is presented in Figure 9. Here we

5mathworks.com/help/simulink/ug/creating-subsystems. html#f4-7371

TABLE 11
SIMULINK ANTIPATTERN INSTANCES DETECTED USING SIMAID

Project Antipattern Middle Man | Primitive Obsession | Feature Envy Block/Signal Clumps Guideline
Simulink Demonstration Examples 28 170 10 7 Clumps; 83 Instances 0
Matlab Central 0 23 0 5 Clumps; 73 Instances 0
ConQAT Models 0 9 0 6 Clumps; 44 Instances 0
Advanced Vehicle Simulator 1 149 6 19 Clumps; 198 Instances 0

* Ly
In -+ i > 1

z
Gainz Add2 Unit D elay Dutt

3 3in3

299

Fig. 8. Example of Block Clump with 20 Instances in MC

Co—
u
' s w1

Ot

Selectar
I

Fig. 9. Primitive Obsession Antipattern Instance from CQ

see a subsystem, called “Enabled Subsystem” within the
“Pre_SysGen_Post_sh_fifo_nohwcs” model, that is “obsessed”
with a primitive operation. Specifically, it has only a single
selector block. A selector block is a simple Simulink block that
takes in an input vector, matrix, or signal, and outputs selected
elements’. Model quality can be improved immediately by
refactoring that single block to the upper level.

D. Advanced Vehicle Simulator

Figure 10 presents the lone Middle Man antipattern instance
found in the Advanced Vehicle Simulator. The system, “elec-
tric acc loads <acc>" in the model “BD_PAR_SA_AUTO”
has no real purpose other than acting as a Middle Man to the
subsystem handling electrical accessory loads, the lightning-
bolt subsystem in the diagram. This Middle Man antipattern
indicates a case where this system has no purpose other
than passing information to another system and unnecessarily
complicates the hierarchy of the Simulink AVS project.

Our analysis shows that this system has an inordinate num-
ber of Block/Signal Clumps: 19 classes totally 198 instances.
This model quality metric found during our quality assurance
analysis indicates that this system has serious opportunity for
refactoring and that there is a ton of repeated block clumps
that should be extracted into subsystems or buses.

Thttp://www.mathworks.com/help/simulink/slref/selector.htm]

Electrical Access ory
Loads v <acecr

Fig. 10. Middle Man Antipattern Instance found in AVS

V. DISCUSSION AND FUTURE WORK

When it comes to detection tools, an important and obvious
question is that of recall and precision, that is, the ability
to account for all theoretical instances and the accuracy of
the result set, respectively. From a model clone detection
perspective, SIMAID is built on Simone. In the past, we
evaluated Simone’s recall and precision [38], [40] and found
it to have a recall in the mid-to-high nineties and a precision
in the high nineties, with both values varying depending on
the similarity threshold. So, the overall question of recall and
precision for SIMAID is not related to model clone detection
in itself, but rather its ability to detect antipattern instances.
The run time performance of SIMAID is dependent on the
run time performance of Simone, which is quite efficient as it
uses text analysis and transformation technologies [15].

Pettersson et al. [43] point out the difficulties in evaluat-
ing pattern instance detectors. One problem is that there is
typically no “Gold Standard” for accuracy metrics that can
be used, or it takes a long time to construct correctly and
completely. Similar to our problems in constructing abstract
representations, potential over- and under- approximations can
occur, meaning the representations are too restrictive or not
restrictive enough, respectively. Another related issue is the
actual measure for precision and recall. They note “For pattern
detection applications involving human clients, ...one would
tolerate checking a list of pattern candidates manually if one
could be sure that the list contains all pattern occurrences.”
and also provide a weighted harmonic mean of precision
and recall. Because this needs to be done manually and
by someone qualified, our long-term plan involves enlisting
an experienced Simulink domain engineer and having them
validate our detected antipattern instances. In addition, they
could assist us in refining our model representations.

We selected Simulink model antipattern detection because
antipatterns were more available than design patterns and we
considered them instantly applicable to model quality since
refactoring them immediately improves system quality. In
contrast, for Simulink model design patterns, we would first
have to determine a lack of design patterns and additionally
detect places where design patterns can be exploited. In terms
of the effectiveness of detecting the presence of antipatterns in
judging model quality, that is something we are investigating
as future work. We believe that it will be just as effective
as it has been in the analogous code domain [26], [27].
Important questions to answer on that front include how “bad”
each antipattern is compared to other ones when it comes to
overall model quality for a project. Some of that may be able
to be calculated by looking at the connections and impact
factor of the systems containing antipattern instances. So, if
an antipattern is a more “severe” one and is in a “key” system,
then that would have a larger quality impact value.

There are a number of threats to validity to our case study.
Firstly, as pointed out by Pettersson et al. [43], choice of
projects is always a factor when evaluating detection tools.
For example, it is unfortunate that either none of our projects
contained MAAB guideline violations or SIMAID failed to
detect them, and we are unable to discern which it is. Because
of the accuracy of Simone and the relative simplicity of the
MAAB guidelines we modelled, we believe it is the former.
Similarly, we had a limited set of antipatterns and the ones
we had were relatively simple. In regards to our overall
objectives however, these publicly available projects and this
set of antipatterns allowed us to illustrate detection of Simulink
antipattern instances. Another threat to our case study is
that we semi-manually counted and extracted the antipattern
instances. While we were very careful and used automated
string search tools to guide us, any manual interaction always
introduces the possibility of error. For future work, we plan
on automating the extraction of the SIMAID results into
an easy to read form and, ideally, one that is natural and
integrated into the model engineers’ development and quality
assurance environments. This will include us consulting with
Simulink engineers from our industrial partners, and may, for
example, include presenting results using Simone’s SimNav
interface [34].

Furthermore, we will be focusing on applying our SIMAID
technique in industrial environments through collaboration
with our partners. Seeing as they already use Simulink in much
of their development, we want to introduce SIMAID to their
test engineers, refine it for their purposes, and help them use
it to further their quality assurance measures. Through obser-
vation and interaction, we can continue to evolve SIMAID
as a model quality assurance technique. In terms of Simulink
antipattern selection criteria for further research, we will be
discussing our existing corpus with our industrial partners and
also investigating what other ones are of known and of interest
to modellers.

Lastly, our continual future work involves improving both
the quantity and quality of Simulink Antipatterns covered by

SIMAID. There is limited research on Simulink antipatterns,
and Simulink patterns in general. In this research, we did our
best to leverage what is out there, extracting the antipatterns
from both Tran and Kreuz’s work [41] and the MAAB
guidelines [42] that fit well with our proposed approach. While
we considered all the antipatterns from both those sources,
the antipatterns we chose were relatively low-hanging fruit.
It may be possible to encode more antipatterns from those
sources, and we hope that publicizing our work and future
collaborations with Simulink experts will help increase the
quantity of Simulink antipatterns. In addition, we will continue
to look for additional sources of Simulink antipatterns, like
forums, and even considering transforming antipatterns from
other related domains, like Modelica [44], to Simulink.

VI. CONCLUSION

Improving model quality assurance is a crucial step in
ensuring the continued growth and success of Model-Driven
Engineering. As model artifacts permeate through all phases
of the Software Engineering development process and mature
over time, the need for analyzing and evaluating properties of
these models becomes increasingly important. One established
approach to assessing quality in software projects in general
is to detect known design solutions, or patterns, and poor
solutions, or antipatterns, to common problems. Traditionally,
this has been done by either evaluating source code or using
textual rules to evaluate design models. Recently, we proposed
the idea of detecting model patterns, at the model level, by
using model representations and performing a type of model
comparison known as model clone detection. This has the
benefit of (1) allowing earlier analysis in product creation,
(2) being able to be used on projects that are built mainly or
entirely using model-driven practices, and (3) allowing testers
to maintain the same level of abstraction between the patterns
and the projects undergoing quality assurance.

In this paper, we validated this idea by developing a
Simulink antipattern instance detector, named SIMAID. Using
existing corpora of Simulink antipatterns, we considered four
antipatterns and three guidelines to include within SIMAID.
SIMAID involves representing the Simulink antipatterns as
Simulink models and placing them in libraries. These libraries
and desired projects then undergo cross-clone detection using
our near-miss model clone detector, Simone. We evaluated
SIMAID through a case study targeted at four publicly avail-
able projects of varying natures and sizes, finding instances
of the antipatterns throughout all the projects. No instances of
MAAB Simulink guideline violations were detected in any of
our projects.

Better calculating recall and precision for SIMAID’s an-
tipattern detection is one area of future work we are pursuing.
Precision and recall for antipattern detection is best achieved
through manual interaction with domain experts and is an
avenue we will explore. Other future work includes providing
SIMAID’s data in a form conducive to engineers by seeking
feedback from our industrial partners on their desired quality
assurance capabilities they want to see from the tool. As

research and our industrial collaborations continue in this area,
we plan on improving the quality and quantity of Simulink
antipatterns within SIMAID’s scope.

It is our belief that research on model-based pattern detec-
tion has much promise in the area of model quality assurance
and analysis. Through SIMAID, we have improved Simulink
model quality evaluation by allowing analysts the ability to
detect “bad” system properties within their Simulink projects.

We

hope that this gives way to more advances in the field

of Model-Driven Engineering, not just for Simulink but for
modelling across the board.

ACKNOWLEDGMENT

This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada, as part of the
NECSIS Automotive Partnership with General Motors, IBM
Canada, and Malina Software Corp.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Volter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-driven
software development: technology, engineering, management. John
Wiley & Sons, 2013.

P. Mohagheghi and J. Aagedal, “Evaluating quality in model-driven
engineering,” in International Workshop on Modeling in Software Engi-
neering, 2007, p. 6 pp.

T. Punter, J. Voeten, and J. Huang, “Quality of model driven en-
gineering,” Model-Driven Software Development: Integrating Quality
Assurance, 2009.

R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering,
2007, pp. 37-54.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.
W. J. Brown, H. W. McCormick, T. J. Mowbray, and R. C. Malveau,
“Antipatterns: refactoring software, architectures, and projects in crisis,”
1998.

J. K. Mak, C. S. Choy, and D. P. Lun, “Precise modeling of design
patterns in UML,” in International Conference on Software Engineering,
2004, pp. 252-261.

A. Stoianov and 1. Sora, “Detecting patterns and antipatterns in software
using Prolog rules,” in International Joint Conference on Computational
Cybernetics and Technical Informatics, 2010, pp. 253-258.

D. Ballis, A. Baruzzo, and M. Comini, “A rule-based method to match
software patterns against UML models,” Electronic Notes in Theoretical
Computer Science, vol. 219, pp. 51-66, 2008.

M. Stephan and J. R. Cordy, “Identifying instances of model design
patterns and antipatterns using model clone detection,” in International
Workshop on Modelling in Software Engineering, 2015, p. 6 pp., to
appear.

F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz, S. Wagner, J. Gi-
rard, and S. Teuchert, “Clone detection in automotive model-based
development,” in /CSE, 2009, pp. 603-612.

M. Stephan and J. R. Cordy, “A survey of methods and applications of
model comparison,” Queen’s University, Tech. Rep. 2011-582, 2012.
——, “A survey of model comparison approaches and applications,” in
International Conference on Model-Driven Engineering and Software
Development, 2013, pp. 265-277.

C.-M. Ong, Dynamic simulation of electric machinery: using MAT-
LAB/SIMULINK. Prentice Hall, 1998, vol. 5.

M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for Simulink models,”
in International Conference on Software Maintenance, 2012, pp. 295—
304.

N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and
T. N. Nguyen, “Complete and accurate clone detection in graph-based
models,” in ICSE, 2009, pp. 276-286.

T. R. Dean, J. Chen, and M. H. Alalfi, “Clone detection in Matlab
Stateflow models,” Electronic Communications of the EASST, vol. 63,
2014.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

[35]

(36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. A. Kumar, “Efficient weight assignment method for detection of
clones in state flow diagrams,” Journal of Software Engineering Re-
search and Practices, vol. 4, no. 2, pp. 12-16, 2014.

E. Antony, M. H. Alalfi, and J. R. Cordy, “An Approach to Clone
Detection in Behavioural Models,” in International Working Conference
in Reverse Engineering, 2013, pp. 472-476.

H. Storrle, “Towards clone detection in UML domain models,” Software
& Systems Modeling, vol. 12, no. 2, pp. 307-329, 2013.

J. R. Cordy and C. K. Roy, “Debcheck: Efficient checking for open
source code clones in software systems,” in International Conference
on Program Comprehension, 2011, pp. 217-218.
W. Crawford and J. Kaplan, J2EE design patterns.
Inc., 2003.

A. I. Verkamo, J. Gustafsson, L. Nenonen, and J. Paakki, “Design
patterns in performance prediction,” in Workshop on Software and
Performance, vol. 2000, 2000, pp. 143-144.

S. Sauvage, “Design patterns for multiagent systems design,” in MICAI:
Advances in Artificial Intelligence, 2004, pp. 352-361.

C. Kramer and L. Prechelt, “Design recovery by automated search
for structural design patterns in object-oriented software,” in Working
Conference on Reverse Engineering, 1996, 1996, pp. 208-215.

B. Huston, “The effects of design pattern application on metric scores,”
Journal of Systems and Software, vol. 58, no. 3, pp. 261-269, 2001.
E. Van Emden and L. Moonen, “Java quality assurance by detecting code
smells,” in Working Conference on Reverse Engineering 2002, 2002, pp.
97-106.

M. Vokac, “An efficient tool for recovering design patterns from C++
code.” Journal of Object Technology, vol. 5, no. 1, pp. 139-157, 2006.
N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” Transactions on
Software Engineering, vol. 32, no. 11, pp. 896-909, 2006.

F. Bergenti and A. Poggi, “Improving UML designs using automatic
design pattern detection,” in International Conference on Software
Engineering and Knowledge Engineering, 2000, pp. 336-343.

I. Sturmer, I. Kreuz, W. Schafer, and A. Schurr, “The MATE approach:
Enhanced Simulink and Stateflow model transformation,” in MathWorks
Automotive Conference, 2007.

M. Stephan, “Detection of Java EE EJB antipattern instances using
framework-specific models,” Master’s thesis, University of Waterloo,
2009.

S. Wenzel and U. Kelter, “Model-driven design pattern detection using
difference calculation,” in Workshop on Pattern Detection for Reverse
Engineering, 2006.

J. R. Cordy, “Submodel pattern extraction for simulink models,” in
International Software Product Line Conference, 2013, pp. 7-10.

D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern modelling and
instantiation using dpml,” in Proceedings of the Fortieth International
Conference on Tools Pacific: Objects for internet, mobile and embedded
applications, 2002, pp. 3-11.

R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf, J2EE antipatterns.
John Wiley & Sons, 2003.

M. Stephan and J. R. Cordy, “Model clone detector evaluation using mu-
tation analysis,” in International Conference on Software Maintenance
and Evolution, 2014, pp. 633-638.

H. Petersen, “Clone detection in Matlab Simulink models,” Master’s
thesis, Technical University of Denmark, 2012, iMM-M. Sc.-2012-02,
2012.

M. Stephan, “A mutation analysis based model clone detector evaluation
framework,” Ph.D. dissertation, Queen’s University, 2014.

Q. Minh Tran and I. Kreuz, “Refactoring of Simulink models,” in
MathWorks Automotive Conference, Stuttgart, 2012.

MathWorks Automotive Advisory Board, Control Algorithm Mod-
eling Guidelines using MatLab, Simulink, and Stateflow Version
3.0. Mathworks Inc., 2012, http://www.mathworks.com/solutions/
automotive/standards/maab.html.

N. Pettersson, W. Lowe, and J. Nivre, “Evaluation of accuracy in design
pattern occurrence detection,” Transactions on Software Engineering,
vol. 36, no. 4, pp. 575-590, 2010.

M. M. Tiller, “Patterns and anti-patterns in modelica,” in Proceedings
of 6th International Modelica Conference, 2008, pp. 647-656.

O’Reilly Media,

