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Abstract.  Many companies in the automotive industry have adopted MDD in 
their vehicle control software development. As a major automotive company, 
General Motors has been using a custom-built, domain-specific modeling lan-
guage, implemented as an internal proprietary metamodel, to meet the modeling 
needs in its control software development. As AUTOSAR (AUTomotive Open 
System ARchitecture) is being developed as a standard to ease the process of 
integrating components provided by different suppliers and manufacturers, 
there is a growing demand to migrate these GM-specific, legacy models to 
AUTOSAR models. Given that AUTOSAR defines its own metamodel for var-
ious system artifacts in automotive software development, we explore using 
model transformations to address the challenges in migrating GM legacy mod-
els to their AUTOSAR equivalents. As a case study, we have built a model 
transformation using the MDWorkbench tool and the Atlas Transformation 
Language (ATL).  This paper reports on the case study, makes observations 
based on our experience to assist in the development of similar types of trans-
formations, and provides recommendations for further research. 

Keywords: Model Driven Development (MDD), model transformations, 
AUTOSAR, transformation languages and tools, automotive control software  

1 Introduction 

MDD is a relatively new software development methodology that uses models for 
software specification and communication. In MDD, software development is a se-
quence of model transformations where abstract models are successively converted 
into detailed models, and eventually into code. Model transformations are implement-
ed using a model transformation language, which can be declarative, imperative, or 
hybrid. While a declarative language yields a compact specification, an imperative 
language is more capable of specifying complex transformations.  

As one of the early MDD adopters in industry, General Motors (GM) has created a 
domain-specific modeling language, implemented as an internal proprietary meta-
model, for Vehicle Control Software (VCS) development. The metamodel defines 
modeling constructs for vehicle control software development, including schedules 
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and interfaces. VCS models conforming to this metamodel have been used in several 
vehicle production domains at GM, such as body control and monitoring.  

Recently, AUTOSAR (the AUTomotive Open System ARchitecture) [2] has been 
developed as an industry standard to facilitate integration of software components 
from different manufacturers and suppliers and enable exchangeability and interoper-
ability among them. AUTOSAR defines its own metamodel with a well-defined lay-
ered architecture and interfaces. Since converging to AUTOSAR is a strategic direc-
tion for future modeling activities, transforming GM legacy models to their equivalent 
AUTOSAR models becomes essential. Model transformation is a key enabling tech-
nology to achieve this convergence objective.  

Despite the existence of studies in MDD industry adoption [19][23], no transfor-
mation is reported to have migrated legacy models in the automotive industry. To test 
the practicality of using transformations for migrating industrial legacy models, we 
have implemented a transformation of GM legacy models to AUTOSAR models.  

The rest of this paper is organized as follows. Section 2 discusses the process con-
text in which our transformation is implemented. Section 3 describes the source and 
target metamodels of the transformation. Section 4 details the transformation devel-
opment. Section 5 discusses our experiences and issues that require further research. 
Section 6 provides a summary, a comparison to related work and future work.  

2 VCS Development, Models and Model Transformations  

Applying transformation requires understanding of the development process, which 
provides a context for the transformation. The VCS development process is described 
as a V-diagram (Fig. 1). The stages on the left-hand side of the V-diagram are design 
and implementation activities, and the stages of the right-hand are integration and 
validation activities. The design starts from system requirements models, which are 
decomposed into hardware and software subsystem requirements models. The subsys-
tem requirements models then are assigned to engineering groups for refinement into 
design models and then implemented by hardware and software components. These 
implemented components are integrated into Electronic Control Units (ECUs), con-
figured for a designated vehicle product. The components are then tested at various 
levels against their models on the same level on the left-hand side of the V-diagram.  

Different types of models in different formalisms are manipulated in the VCS de-
velopment process. For example, control models use differential equations and tim-
ing-variation functions; software models use dataflow diagrams or class diagrams; 
and architecture models use annotated block diagrams. Selected modeling tools (e.g., 
Simulink, Rhapsody) and languages (e.g., UML, AADL) are used for modeling.  

The transformations used in the VCS development process can be horizontal or 
vertical transformations.  Horizontal transformations manipulate models at the same 
abstraction level but possibly in different formalisms, e.g. transforming a Matlab 
Stateflow state machine into a UML state machine. Such transformations are normal-
ly used to verify integration of subsystems to realize a system function. The source 
and target modeling languages may have different syntax, but must share similar se-
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unit for software scheduling and manages services provided or required by behavior-
encapsulating entities. Thus, each Scheduler may provide or require many Services.  

 
 
 
 
 

Fig. 2. The subset of the GM metamodel used in our transformation. 

3.2 The AUTOSAR Metamodel 

The AUTOSAR metamodel is defined as a set of templates, each of which is a collec-
tion of classes used to specify an AUTOSAR artifact. The System template [3] is used 
to capture the configuration of a system or an Electronic Component Unit (ECU). An 
ECU is a physical unit on which software is deployed. When used for the configura-
tion of an ECU, the template is referred to as the ECU Extract. Fig. 3. shows the 
metatypes in the ECU Extract that capture software deployment on an ECU.  
 
 

 
 
 
 
 
 
 
 
 

 

Fig. 3. The AUTOSAR System Template containing relevant types used by our transformation. 

The ECU extract contains the System type which aggregates SoftwareComposition 
and SystemMapping elements. The SoftwareComposition type points to the Composi-
tionType type which eliminates any nested software components in a SoftwareCom-
position instance. The SoftwareComposition type models the architecture of the soft-
ware components deployed on an ECU, their ports, and the ports’ connectors. Soft-
ware components are modeled using the ComponentPrototype type; ports are modeled 
using the PPortPrototype type or RPortPrototype type for providing or requiring 
services; connectors are modeled using the ConnectorPrototype type.  

The SystemMapping type binds the software components to ECUs and the data el-
ements to signals and frames. The SystemMapping type aggregates the SwcToEcu-
Mapping type, which maps ComponentPrototype elements to an EcuInstance. Ac-
cording to AUTOSAR, only one SwcToEcuMapping instance should be created for 
every processing unit or memory partition in an ECU. 
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4 GM-to-AUTOSAR Model Transformation 

We implement a GM-to-AUTOSAR model transformation to demonstrate the practi-
cality of adopting transformations in the automotive industry. We rationalize our 
choice of the tool and language and we summarize the pragmatics of the chosen lan-
guage. We then discuss the transformation rules and implementation details. Our 
transformation takes as inputs the source GM metamodel, the target AUTOSAR sys-
tem template, and an input GM model. The output is an AUTOSAR model.  

4.1 Selecting Model Transformation Tool and Language 

Several tools and their accompanying languages have been considered for implement-
ing the transformation including IBM Rational Asset Manager (RAM) [13], the 
RulesComposer add-on for IBM Rhapsody [14], and MDWorkbench [18].  

After investigating the candidate tools, we concluded that IBM RAM and Rules 
Composer are not suitable for this transformation. RAM is a repository-based tool that 
offers APIs to create relationships between repository assets (e.g. models). The APIs 
can manipulate a model as a whole, not the individual model elements. As fine-
grained manipulations are essential for our transformation, the support provided by 
RAM is not sufficient. RulesComposer is a rule-based model-to-text generator. Rules 
are specified as templates composed of static text and placeholders. When executed, 
the static text is copied into the output, and the placeholders are extracted from the 
input models. When defining rules, one must ensure that the template generates well-
formed XMI files. Thus, defining the template is time-consuming and error-prone. 
Moreover, the rule templates can be very verbose, and thus, difficult to maintain. 

MDWorkbench is an Eclipse-based tool for developing model-to-model transfor-
mations using the Atlas Transformation Language (ATL) [1] or the Model Query 
Language (MQL) [18]. ATL has declarative and imperative constructs, while MQL 
has imperative constructs only. MDWorkbench can manipulate models conforming to 
the metamodels registered in the tool (e.g. AUTOSAR) using rules defined in ATL 
and MQL. Thus, we choose MDWorkbench to implement the transformation. ATL 
was chosen rather than MQL because ATL provides flexibility to mix-and-match 
declarative and imperative constructs in the same rule definition. 

4.2 ATL Pragmatics 

In ATL, a model transformation is defined as a set of rules and helpers. Rules specify 
the creation of output model elements. Helpers are used to modularize a transfor-
mation. ATL defines four types of rules and two types of declarative helpers.  

Rule Types. The four types of rules are matched rules, lazy rules, unique lazy rules, 
and called rules. A matched rule specifies how a source pattern is transformed to a 
target pattern. Matched rules are executed in the order of their specification and are 
automatically executed once for each matching pattern. A lazy rule is a rule that is 
executed only when called for a matching pattern and can be called multiple times for 
any match in the input model. A unique lazy rule is a rule that is executed only when 
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called and can be called at most once for any match in the input model. A called rule 
is a parameterized rule that is executed only when called and creates an element in the 
output model without matching any source patterns. The four kinds of rules have an 
optional imperative code block to specify complicated functionality. 

Matched rules are suitable for automatic detection of all pattern matches in the in-
put model and creation of their corresponding target patterns; lazy rules and unique 
lazy rules are suitable for selective pattern matching, with consideration of the num-
ber of times these rules should be run; and called rules are suitable for creating output 
model elements that do not match any input model elements. 

Helper Types. The two types of helpers are functional helpers and attribute helpers. 
A functional helper is a parametric function that is evaluated each time it is called. An 
attribute helper is a non-parametric function that is evaluated only in the first call. An 
attribute helper is more efficient to implement a non-parametric functionality. Other-
wise, a functional helper can implement a parametric functionality. 

4.3 Model Transformation Design and Development 

Our transformation rules were crafted in consultation with domain experts at GM to 
realize the required mappings between the metamodels. For reasons of confidentiality, 
we present a simplified version of the actual rules. Let M be the input GM model and 
M’ the to-be-generated output AUTOSAR model. The rules are defined as follows:  

1. For every element physNode of the PhysicalNode type in M, generate an el-
ement sys of the System type, an element swcompos of the SoftwareCompo-
sition type, a containment relation (sys, swcompos), an element composType 
of the CompositionType type, a relation (swcompos, composType), an ele-
ment sysmap of the SystemMapping type, a containment relation (sys, sys-
map) and an element ecuInst of the EcuInstance type in M’; 

2. For every element partition of the Partition type in M, generate an element 
swc2ecumap of the SwcToEcuMapping type and a containment relation 
(sysmap, swc2ecumap) in M’; 

3. For every containment relation (physNode, partition) in M, generate a rela-
tion (swc2ecumap, ecuInst) in M’; 

4. For every element mod of the Module type in M, generate an element comp 
of the ComponentPrototype type in M’; 

5. For every containment relation (partition, mod) in M, generate a containment 
relation (composType, comp) and a relation (sw2ecumap, comp) in M’; 

6. For every relation (sched, svc) of the provided type between a sched element 
of the Scheduler type and a svc element of the Service type with a contain-
ment relation (mod, sched), generate a pPort element of the PPortPrototype 
type and a containment relation (composType , pPort) in M’; 

7. For every relation (sched, svc) of the required type between a sched element 
of the Scheduler type and a svc element of the Service type with a contain-
ment relation (mod, sched), generate a rPort element of the RPortPrototype 
type and a containment relation (composType, rPort) in M’. 
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(a) Sample input GM model.   

  
 
 
 
 
 
 

(b) Output AUTOSAR model for (a). 

 

Fig. 4. (a) Sample GM input model and (b) its corresponding AUTOSAR output model.  

Fig. 4 demonstrates the required transformation from a sample GM model (Fig. 4 
(a)) to its expected output AUTOSAR model (Fig. 4(b)) based on the above men-
tioned rules. The PhysicalNode element is mapped to a System element, an EcuIn-
stance element, a SystemMapping element, a SoftwareComposition element, and a 
CompositionType element (Rule 1). The Partition elements are mapped to the 
SwcToEcuMapping elements (Rule 2), each of which is associated with the generated 
EcuInstance element (Rule 3). The Module elements are mapped to the Compo-
nentPrototype elements aggregated by a CompositionType element and referred to by 
their corresponding SwcToEcuMapping elements (Rules 4-5). The Scheduler element 
aggregating a provided Service is mapped to a PPortPrototype element (Rule 6). The 
other Scheduler element is mapped in a similar manner (Rule 7). 

The transformation development follows an iterative, incremental process. First, a 
simple GM model is created in the MDWorkbench model editor. Then, a transfor-
mation is implemented to transform the input GM model into an AUTOSAR model. 
The AUTOSAR model is then validated and if the transformation is correct, the pro-
cess is repeated with additional types in the input model and additional transformation 
rules. If the output model contains errors, the transformation is analyzed and fixed.  

Validation is performed manually. For an input GM model, an expected output 
AUTOSAR model is created in the MDWorkbench Model Editor. The transfor-
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mation‘s output model is compared with the manually-created model. Equivalence of 
the models implies a correct transformation. 

4.4 The Transformation Implementation Using ATL 

The GM-to-AUTOSAR transformation contains two ATL matched rules and 9 func-
tional helpers implementing the 7 rules in Section 4.3. We also define 6 attribute 
helpers to access the model attribute values. Table 1 lists the matched rules and func-
tional helpers and their implemented rules in Section 4.3. 

Table 1. Matched rules and functional helpers and the implemented rules. 

Matched Rule (MR)/ Functional Helper (FH) Corresponding Rules: Section 4.3 
MR1: createComponent 4 
MR2: initSysTemplate 1 
         FH1: initEcuInst 1 
         FH2: createSwc2EcuMappings 
         FH3: initSingleSwc2EcuMapping 

2-3 

         FH4: addComponents 5 
         FH5: getAllPPortsInEcu 
         FH6: createPPort 

6 

         FH7:  getAllRPortsInEcu 
         FH8: createRPort 

7 

         FH9: getAllSWCinEcu 5 
 

The matched rule createComponent maps Module elements to Compo-
nentPrototype elements. The matched rule initSysTemp maps a PhysicalNode 
element to a System element, a SystemMapping element, a SoftwareComposition ele-
ment and a CompositionType element by calling the 9 functional helpers to imple-
ment rules 1-3 and 5-7. The helper initECUInst initializes an EcuInstance ele-
ment. The helper initSingleSwc2EcuMapping initializes a SwcToEcuMap-
ping instance. The helper createSwc2EcuMappings creates a list of 
Swc2EcuMapping elements corresponding to all the Partition elements in the input 
model. The helper getAllSwcInEcu creates the containment relation between the 
CompositionType elements and the ComponentPrototype elements. The helper add-
Components creates the relation between the SwcToEcuMapping elements and their 
corresponding ComponentPrototype elements. The helper getAllPPortsInEcu 
creates a PPortPrototype element using the helper createPPort for Schedulers 
with at least one provided Service. Similar helpers generate RPortPrototype elements. 

The ATL predefined function resolveTemp connects the ComponentPrototype 
elements created by the createComponent matched rule to the CompositionType 
elements created by the initSysTemp matched rule.  

Implementing the transformation revealed some insights on using MDWorkbench 
and ATL in industrial applications. Both the GM and the AUTOSAR metamodels are 
complex in structure. To process models conforming to complex metamodels, ATL 
provides flexibility of using declarative and imperative constructs to implement com-
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plex transformations. Moreover, since the output models have many relationships 
among model elements, decisions on where an element should be created in the trans-
formation such that it will be accessible for the downstream transformation are re-
quired. One such example is the relation between the SoftwareComposition element 
and the ComponentPrototype element. The transformation can be either specified as 
one rule or modularized as many rules. Although modularization requires that the 
order of the rules be consistent with their dependencies, ATL mitigates this drawback 
through the resolveTemp function which allows a rule to reference the elements 
that are yet to be generated by other rules regardless of their specification order. 
However, the resolveTemp function makes the transformation less readable and 
difficult to debug, so the function should be used only when necessary.  

For validation, sample GM models were created in the MDWorkbench Model Edi-
tor, including the model in Fig. 4(a), and were used for evaluation. The output models 
were verified as described in Section 4.3. The transformation was found to produce 
the expected output models. Sample GM models were used for validation instead of 
actual GM models since many of the actual GM models did not conform to the GM 
metamodel, which represents a major challenge for adopting MDD in industrial envi-
ronments. 

5 Discussion 

Based on our case study, we present open issues requiring further investigation for 
successful adoption of model transformations in the automotive industry. Recommen-
dations for MDD tool and language development are also discussed.    

5.1 Interoperability of MDD tools 

One of the major challenges encountered in our study was the lack of interoperability 
between commercial tools for developing transformations. Specifying the model 
transformation using ATL was not straightforward due to the formats of the manipu-
lated metamodels. ATL can only manipulate MOF [21] or Ecore [23] metamodels, 
which the GM metamodel in Rhapsody native format is not compatible with. This 
required the conversion of the GM metamodel to a compatible format.  

MDWorkbench has a Rhapsody connector that allows importing the GM meta-
model into MDWorkbench and converting it to Ecore format. To avoid the issue of 
dual license from different vendors with different licensing policies with such an ap-
proach, we addressed the problem using XMI. An Ecore metamodel is essentially an 
XMI file and Rhapsody has an XMI toolkit to export Rhapsody metamodels to XMI 
files. Exporting the GM metamodel using the XMI toolkit generated an XMI file that 
does not conform to the Ecore meta-metamodel. To create an Ecore version, we im-
port the XMI into RulesComposer as a metamodel, which creates an Ecore metamod-
el and an Eclipse plugin project. Exporting the project from RulesComposer to 
MDWorkbench as a plugin generates a registered GM Ecore metamodel.  



10  

 

Blanc et al. [5] decomposed the interoperability problem into two concerns: the 
compatibility of the exchanged models, and the definition of an exchange mechanism. 
Their study proposed an architecture to address these two concerns. Implementing 
transformations between tools manipulating models that conform to different meta-
models was proposed in [6], [4]. Kolovos et al. [15] proposed a framework that sup-
ports composing model management tasks with software development tasks in coher-
ent workflows. Although these solutions have been integrated into IDEs, they are not 
fully automated in applications. MDD tools and transformation languages deserve 
further research to support easy integration and interoperability with each other. 

5.2 Optimization in Model Transformations 

Our transformation mapped GM models representing a deployment of the software 
components on physical nodes to their equivalent AUTOSAR models. The transfor-
mation exercised one mapping between the two metamodels and generated an 
AUTOSAR model reflecting the deployment configuration. From the deployment 
perspective, there are other design options that may yield a more desirable deploy-
ment in the output AUTOSAR model with respect to some utility function.  

Solutions exist to support optimization during the transformation. Schätz et al. [22] 
proposed a formalized approach to explore the design space using rule-based trans-
formations. Intermediate models were represented using a relational formalization and 
rules were represented using predicates. Drago et al. [9] proposed the QVT-Rational 
framework to explore design options which optimize quality metrics. First, a domain 
expert specifies the metamodels to be manipulated, the quality metrics of interest, the 
quality-prediction tool chain and the method for design feedback generation.   Then, a 
designer specifies desirable values for quality metrics and asks QVT-Rational for 
design solutions. Tools that target industry use need to support scalable design-space 
exploration to aid developers in exploring design options of the generated model.   

5.3 Dealing with Semantic Differences between Metamodels 

Identifying which target metamodel elements best represent a given source metamod-
el element can be a difficult task. Reasons include: (1) the precise semantics of a met-
amodel may not have been documented sufficiently and only be fully known to met-
amodel developers themselves; consultation of these developers may be time consum-
ing or even impossible. (2) The lack of support in metamodel evolution often means 
that the metamodels contain redundancies or inconsistencies. (3) The mapping of 
source to target elements is dependent on the transformation’s purpose, because it 
determines to what extent aspects of model semantics can be removed (e.g., for ab-
straction), preserved (e.g., for refactorings) or refined (e.g., for code generation).  

To facilitate transformation development, techniques to (1)enforce documenting  
metamodel semantics, (2) suggest mappings between metamodels using similarity 
matching or "learning" [17], [20], and (3) validate transformations are of high interest. 
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6 Conclusions and Future Work 

In this study, we present a solution to migrating legacy VCS design models using 
model transformations in the automotive industry. The study has two major goals: (1) 
exploring the practicality of using model transformations in an industrial context to 
map between industrial metamodels and (2) benefitting GM by supporting automated 
convergence to AUTOSAR. The implemented transformation converts domain-
specific GM models to their equivalent AUTOSAR models. We discussed the trans-
formation context in the development process. Based on our experiences, we discuss 
which tool and language are appropriate for implementing the transformation, the 
challenges encountered and open issues that need further investigation. 

Research studies on adopting MDD in industry have been published [19], [23], but 
a few investigated adopting transformations in industry. Daghsen et al. [8] trans-
formed AUTOSAR timing models to classical scheduling models to perform timing 
analysis. Giese et al. [12] used triple graph grammars to synchronize between SysML 
system engineering models and AUTOSAR software engineering models. Our study 
differs from other studies in that the two manipulated metamodels are complex, indus-
trial metamodels, which allows us to draw realistic conclusions regarding the practi-
cality of adopting transformations in industry. Our study considers the entire trans-
formation development process, from tool and language selection to transformation 
creation and validation. Future work includes extending the transformation to the full 
GM metamodel and using white-box or black-box testing [11], [16] for validation.  

Acknowledgements. This work is supported in part by NSERC, as part of the 
NECSIS Automotive Partnership with General Motors, IBM Canada and Malina 
Software Corp. 
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