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Abstract

This paper describes how structural transfor-
mation can be applied to the problem of trans-
lating schemas expressed in one data model
into equivalent schemas expressed in another
data model. We explain our approach to the
problem, which involves translating a schema
in the source data model into a set of facts in a
knowledge base and from there into a schema in
the target data model. We present an example
transformation in detail and outline how one
can analyze the information capacity preserv-
ing properties of the transformation.

1 Introduction

Schema translation is the process of transform-
ing a schema in one data model into a cor-
responding schema in a different data model.
Historically, the main use of schema transla-
tion has been in the wiew integration phase
of conceptual schema design, which takes sev-
eral user views representing the information
requirements of different users and integrates
them into a single conceptual schema [3]. The
user views may be expressed in different data
models, in which case they must be translated
to a common data model before performing in-
tegration.

Recent interest in the problem of dealing
with legacy information systems has renewed
interest in schema translation as it applies to
the problems of database integration in multi-
database, or federated database, systems [13],
database migration [11], and schema evolu-
tion [16]. As part of the CORDS Multi-
database System (MDBS) project, our main
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use of schema translation is in database integra-
tion which takes the schemas from a collection
of heterogeneous component database systems,
and provides an integrated view of the available
data [6, 20].

In this paper we discuss our approach to
schema translation. Section 2 presents a brief
review of related work. Section 3 defines the
problem of schema translation and gives an ex-
planation of structural transformation and how
it can apply to the problem. Section 4 presents
our approach in more detail and gives an ex-
ample of how it may be used. Section 5 out-
lines how the notion of information capacity
may be used to formally evaluate the correct-
ness of the translation schemes produced using
our approach. Section 6 presents our conclu-
sions.

2 Related Work

Schema translation schemes have been devel-
oped to translate between a variety of data
models. Most of the work related to concep-
tual schema design has focussed on schemes
to translate schemas in high-level conceptual
models, most commonly the entity-relationship
(ER) model, into schemas in the three tradi-
tional data models, namely the hierarchical,
network, and relational models [12, 15, 22].
Dumpala and Arora [12] also present reverse
mappings to translate relational, hierarchical,
and network schemas to the ER model which
can be used to extract the conceptual struc-
ture of existing schemas. Johannesson [16],
Castellanos and Saltor [5], Markowitz and
Makowsky [19], and Davis and Arora [10] all
describe approaches to extracting the logical
structure from relational schemas. Work has
also been reported on mapping schemas be-



tween the traditional data models. The two ap-
proaches used have been either to map schemas
directly between data models, for example Zan-
iolo [24], or to map to an intermediate repre-
sentation. Biller [4], for example, uses a se-
mantic data model as an intermediate form
when mapping relational schemas to network
schemas.

One problem with most of these translation
schemes, except the one described by Davis
and Arora [10], is that they require knowl-
edge of the semantics of the source schema, and
thus they are intended to be performed manu-
ally by a database designer. In practice, how-
ever, source schemas can be large and complex,
which makes the translation process tedious,
time consuming, and prone to error. Another
problem with most of the proposed translation
schemes is that, with the exception of Johan-
nesson [16] and Markowitz and Makowsky [19],
they are all informal and do not show that the
schemas produced have the same information
capacity as the original schemas.

The approach discussed in this paper over-
comes both shortcomings. The translation
schemes produced can be automated and trans-
late existing schemas without the added infor-
mation. Our approach does, however, accom-
modate extended schemas. It also lends itself
to a formal analysis of the relative information
capacities of the source and target schemas.

3 Schema Translation

A data model is a tool that provides an inter-
pretation for data describing real-world situa-
tions. It consists of a set of constructs to de-
scribe the structure and constraints of the data,
or data definition language (DDL), a set of op-
erations to access the data, or data manipula-
tion language (DML), and, at least informally,
a set of rules for arranging the structures to
represent the situation. The description of a
particular database in the DDL is called the
database schema. Schema translation produces
a new schema in a different, or perhaps the
same, data model, which consists of different
structures but which provides the same inter-
pretation of the database.

The rules for defining a schema in a particu-

lar data model may be formal, in the sense that
they are inherent to the model, or they may
be part of standard design practice. An exam-
ple of the former type of rule is the representa-
tion of a one-to-many relationship in the entity-
relationship model, for example the “works for”
relationship in Figure 1. An example of the
latter type of rule is to usually model the same
relationship in the relational model by placing
the foreign key of the “DEPARTMENT” rela-
tion in the “EMPLOYEE” relation. In either
case, the rule used is represented by a distinc-
tive structure in the schema. The structure is
in turn represented by a particular pattern in
the DDL definition of the schema.

Structural transformation recognizes struc-
tures in a source object (schema, program, etc.)
and transforms them into other structures in a
target language to produce a translation of the
original object. One can naturally apply it to
the problem of schema translation by searching
for the structures in a schema that represent
the design rules followed in building the schema
and then transforming them to corresponding
structures in order to construct the translated
schema. A structure in the source schema for
which there is no corresponding structure in
the target data model means there is a poten-
tial loss of information.

Figure 1 shows a simple example of struc-
tural transformation. The source schema,
in part A of the figure, is an ER diagram
consisting of the entities “DEPARTMENT”,
“PROJECT”, and “EMPLOYEE”, and the re-

lationships “works for”, “controls”, and “works

on”, which are a one-to-many mapping from
“DEPARTMENT” to “EMPLOYEE”, a one-
to-many mapping from “DEPARTMENT” to
“PROJECT”, and a many-to-many mapping
between “EMPLOYEE” and “PROJECT”, re-
spectively. The target data model is a hierar-
chical model and the target schema is shown in
part C. The transformations of entities to seg-
ments and one-to-many relationships to parent-
child links are straightforward. The transfor-
mation of the many-to-many relationship, as
depicted in part B, involves the generation of
virtual segments matching “EMPLOYEE” and
“PROJECT” and an unfolding of the “works
on” relationship into two one-to-many relation-
ships.
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Figure 1: Sample Structural Transformation



As we noted earlier, a major concern in de-
veloping a translation scheme from one data
model to another is potential loss of informa-
tion, that is, there may be patterns in the
source schemas that cannot be adequately rep-
resented in the target schema. We may eval-
uate the correctness of a translation scheme
based on the relative information capacities of
the source and target schemas, that is, do the
source and target schemas model the same real
world information? An evaluation of the cor-
rectness of a translation scheme should also
consider the operational goals of the schema
translation. For example, if a multidatabase
system must support querying of the source
database through the target schema, then a
correct translation scheme should ensure that
all data in the source database maps to a rep-
resentation under the target schema. If, how-
ever, the multidatabase system must also sup-
port updates of the source database through
the target schema, a correct translation scheme
must ensure that data maps to representations
in both directions. The issues related to in-
formation capacity of schemas produced with
our translation schemes are discussed in more
detail in Section 5.

4 Structural Transforma-

tion

The approach we have taken consists of im-
plementing the structural transformations be-
tween data models such as those shown in
Figure 1 as syntactic transformations between
the data description language (DDL) repre-
sentations of the schemas to be transformed.
To limit the number of transformation tasks,
we have chosen to use the Entity-Relationship
(ER) data model as a kind of “lingua franca”
through which we can translate schemas from
the data description language of any one data
model to that of any other. Thus, for example,
to translate a schema from the hierarchical to
the relational model, we will first translate the
hierarchical schema to the ER model and then
translate the new ER schema to the relational
model.

The Entity-Relationship model serves as an
appropriate translation medium because it is

a superset of the three traditional data mod-
els. The only practical difficulty is that, unlike
other models, the ER model has no standard
DDL for expressing schemas. Our solution to
this problem is to use a Prolog factbase (i.e., se-
quence of predicates) to represent ER schemas
as lists of facts about entities and their rela-
tionships.

Structural transformations can be imple-
mented as source-to-source syntactic transfor-
mations provided that, for each data model,
(i) there exists a concrete data description lan-
guage for expressing schemas in the model and
(ii) the syntactic structure of the data descrip-
tion language representation of a schema re-
flects the logical structure of the schema in
some way. When both these constraints hold,
we can implement the structural transforma-
tlon as a syntactic transformation from the
data description language of the original data
model to the data description language of the
target data model. Our approach does exactly
this, using the TXL source transformer [7] to
implement the syntactic transformations.

TXL is a general purpose source-to-source
translation system designed for implementing
syntactic transformations. TXL has been used
to prototype programming languages [8], to im-
plement software engineering tasks such as re-
modularization of source code [23], metapro-
gramming [9], design recovery [17], and for
many other tasks.

TXL “programs” consist of a context-free
grammar describing the syntactic forms of the
input and output languages and a set of by-
example transformation rules to be applied to
inputs parsed using the grammar. TXL op-
erates in three phases: parse, transform, and
unparse. The parse phase involves parsing the
input according to the grammar defined in the
program. The result is a labeled parse tree of
the input. The fransform phase involves ap-
plying the transformation rules provided in the
program to the parse tree to produce a trans-
formed parse tree that corresponds to the de-
sired output. Finally, the unparse phase un-
parses the transformed tree to produce the
source output.

In our case, the input will be a database
schema described in the DDL of one data
model, the output a database schema described



in the DDL of another model, and the transfor-
mation rules will describe the structural trans-
formations between the models as syntactic
transforms between the syntactic forms of the
input DDL and the syntactic forms of the out-
put DDL. In the following section, we demon-
strate this technique using the relational to ER
translation as an example.

4.1 Implementation of the
Relational-to-ER Translation
Scheme

In this section, we discuss as an example the
implementation of a Relational-to-ER transla-
tion scheme as a representative source trans-
formation task using TXL. The implementa-
tion of any other translation will be similar.
The Relational-to-ER translation translates a
relational schema to an ER schema. The
translation is implemented as a TXL program
which takes a relational schema written in the
SQL data definition language [2] as input and
produces the corresponding ER schema repre-
sented as a Prolog factbase as output. The gen-
eral strategy of the transformation is

The main transformation rule of this TXL
program is shown in Figure 2. The two include
statements begin the program with grammars
describing the syntactic forms of the input SQL
data definition language and the output Pro-
log factbase. To allow the TXL program to
transform from one to the other, the new syn-
tactic type program combines these two gram-
mars into one syntactic form defined as a se-
quence of relation definitions (that is, a rela-
tional schema) followed by a sequence of Prolog
predicates (that is, a factbase representing the
corresponding ER schema).

The transformation proceeds by adding ER
facts for each relation definition to the ini-
tially empty factbase until all of the relation
definitions have been translated and the en-
tire schema is represented in the ER fact-
base. This same approach is used by all four
TXL programs which implement our transla-
tion schemes.

The input to the program is defined as two
possibly empty schemas; one schema corre-
sponds to the input data model, whereas the
other corresponds to the output data model.

When an input schema is given to the pro-
gram, 1t is parsed into a tree of type program,
which is composed of two subtrees A and B; A
is the parse tree of the input schema, while B
corresponds to the output schema and is ini-
tially empty. In the transform phase, a parse
tree of the output schema is iteratively added
to B, while A is gradually removed. Finally,
the result parse tree is unparsed to produce the
source text form of the output schema.

We now describe some of the transforma-
tion rules used in the implementation of the
Relational-to-ER translation scheme. The gen-
eral strategy of the Relational-to-ER transla-
tion is to represent each table definition and
its attributes as an enfity fact and a set of as-
sociated entityAtiribute facts. Each unique or
primary key is translated into a key fact, and
each foreign key is represented by a relationship
fact along with associated entityInRelationship
facts. In the following sections, we discuss the
TXL main rule and subrules that implement
these translations as syntactic transformations.

4.2 The Main Rule

The main transformation rule is shown in Fig-
ure 2. mamRule is a TXL function, which
means it is a rule applied once to the entire
parse tree of the input. TXL transformation
rules may either be functions, which means
that they are to be applied exactly once, or
rules, which means that they are to be repeat-
edly applied until no more instances of their
transformation can be made.

The pattern of function mainRule (the part
following the keyword replace) consists of two
variables RS and FB, of syntactic type [re-
peat tableDefinition] (that is, a sequence of
relational table definitions) and [repeat predi-
cate] (that is, a sequence of Prolog predicates),
respectively. RS corresponds to the input rela-
tional schema, and FB corresponds to the ini-
tially empty factbase. The type of the pat-
tern is [program], the root syntactic type of
the combined grammars. The replacement of
the function (the part following the keyword
by) is the original empty factbase FB as mod-
ified by two other TXL functions, ProcessRe-
lations Without FKs and ProcessRelations With-
FKs, parameterized by the original relational



include “Relational DDL.Grammar”

include “ER_Factbase.Grammar”

define program

[repeat tableDefinition]

[repeat predicate]

end define

function mainRule

replace [program]

RS [repeat tableDefinition]
FB [repeat predicate]

by

FB [ProcessRelationsWithoutFKs each RS]
[ProcessRelationsWithFKs each RS]

end function

Figure 2: mainRule TXL program Relational-to-ER

schema RS.

When mainRule is applied to the parse tree
of the input, RS is bound to the sequence
of relation definitions in the input relational
schema, while FB is bound to an empty se-
quence of predicates. mainRule replaces the
entire input with an empty sequence of re-
lation definitions (implied by the absence of
RS in the result) and the result of apply-
ing the TXL functions ProcessRelations With-
outFKs and ProcessRelations WithF Ks applied
to the initially empty factbase FB. These two
functions construct the output ER factbase by
successively adding predicates for each table
definition in RS to FB.

RS is given as an actual parameter to each
of the two functions. In both functions, the ac-
tual parameter RS is preceded by the TXL key-
word each; this means that each transforma-
tion function is to be applied once for each re-
lation definition in the input relational schema.

The two functions partition the transforma-
tion into two independent cases, relation def-
initions without foreign keys and those with
foreign keys. If a table definition passed to the
function ProcessRelations WithoutFKs does not
contain FOREIGN KEY statements, then the
relation represents an entity; ProcessRelation-
sWithoutF Ks constructs a sequence of predi-
cates which represent the entity, and the pred-

icates are appended to the factbase FB. If the
relation definition passed does contain FOR-
EIGN KEY statements, ProcessRelations With-
outFKs fails (and does nothing).

ProcessRelations WithF Ks processes the rela-
tion definitions for which the first function fails,
namely the relation definitions which contain
FOREIGN KEY statements, which correspond
to definitions of entities with relationships or
multi-valued attributes for which correspond-
ing facts must be generated. Thus every rela-
tion definition in the relational schema is trans-
formed by exactly one of these two functions.
In either case, a number of predicates repre-
senting the definition are added to the factbase
FB.

4.3 The ProcessRelations Without-
FKs function

The function Process-
Relations Without FKs handles the first case in
the Relational-to-ER translation scheme; it is
shown in Figure 3. It has one formal parameter
TD of type [tableDefinition], the syntactic type
in the relational DDL grammar corresponding
to a relational table definition. As explained
above, the function is applied once for each ta-
ble definition in the original relational schema.

The first statement in the function is a TXL



function ProcessRelationsWithoutFKs TD [tableDefinition]
deconstruct TD
‘CREATE ‘TABLE T [table] ( ADList [list attributeDefinition] )
UniqueStatements [repeat uniqueConstraint|
‘PRIMARY ‘KEY ( PKAList [list attribute] )

construct ENT [entityName]
T

construct InitialPred [repeat predicate]
‘entity ( ENT )

construct NewPredicates [repeat predicate]

InitialPred [ProcessAttributeDef ENT each ADList]
[AddPKPreds_Atomic ENT PKAList]
[AddPKPreds_Composite ENT PKAList]
[AddUniquePreds_Atomic ENT each UniqueStatements]
[AddUniquePreds_Composite ENT each UniqueStatements]

replace [repeat predicate]

FB [repeat predicate]

by

FB [. NewPredicates]

end function

function ProcessAttributeDef ENT [entityName]
AttrDef [attributeDefinition]
deconstruct AttrDef
Attr [attribute] Type [dataType] _ [opt notNull]
construct EAPred [predicate]
entity Attribute ( ENT, Attr, Type )

replace [repeat predicate]
Predicates [repeat predicate]
by
Predicates [. EAPred]
end function

Figure 3: The function ProcessRelations WithoutFKs and one of the functions that it applies.



deconstruct statement that splits the table
definition TD into its constituent parts using
a syntactic pattern. TXL patterns attempt to
match the parse tree they are given (in this
case the parse tree of the table definition bound
to TD) to a particular syntactic form, in this
case that of a table definition with a PRIMARY
KEY statement. In this case, the pattern of the
deconstruct matches only table definitions that
do not have FOREIGN KEY statements and
thus will fail to match if TD contains any FOR-
EIGN KEY statements. In TXL this means
that the function will fail and thus do noth-
ing. If TD does not contain any FOREIGN
KEY statements, then the pattern match suc-
ceeds and the function proceeds. According to
our translation, relations which do not contain
foreign keys represent entity types. Thus the
function maps the table definition TD to a set
of predicates which represent a corresponding
entity type in the ER factbase.

The two construct statements following the
deconstruct create the TXL variable InitialPred
and bind it to the predicate entity ( ENT ),
where ENT is a variable of syntactic type [en-
tityName] bound to the name of the original re-
lation. TXL construct statements construct a
new parse tree by parsing the sequence of sym-
bols and TXL variables given in the construct
body into a parse tree of the specified type,
and bind the result to a new TXL variable.
In this case, the first constructor makes the
table name bound to T into an [entityName]
bound to variable ENT and the second one con-
structs the entity predicate for the table using
ENT. The “construct NewPredicates” state-
ment constructs the actual sequence of pred-
icates that correspond to the table definition
and binds them to the TXL variable NewPred-
tcates. NewPredicates is constructed by apply-
ing a number of transformation rules to the
variable InitialPred. Each rule is passed a part
of the table definition as a parameter; it then
constructs one or more predicates to represent
that part of the definition and adds them to the
sequence of predicates bound to InitialPred.

As an example, the function ProcessAttribut-
eDef constructs the predicates which repre-
sent the attributes of the entity type. It is
passed each attribute definition in the rela-
tion by passing the variable ADList (attribute

definition list) preceded by the TXL keyword
each. (Thus the function is applied once for
each attribute definition in ADList.) For each
attribute, it creates a corresponding entity At-
tribute predicate and appends it to the predi-
cate sequence.

AddPKPreds_Atomic and AddP-
K Preds_-Composite construct the predicate(s)
that correspond to the primary key of the rela-
tion definition. Only one of the two functions
succeeds: AddPKPreds_Atomic succeeds if the
primary key of the relation contains one at-
tribute, whereas AddPKPreds_Composite suc-
ceeds if the primary key of the relation con-
tains more that one attribute, in which case
the primary key of the entity type becomes a
composite attribute.

The functions AddUniquePreds_Atomic and
AddUniquePreds_Composite add a key predi-
cate for each UNIQUE statement in the re-
lation definition. Again, one rule handles
UNIQUE statements which refer to one at-
tribute, while the other handles statements
which refer to multiple attributes.

Once the sequence of predicates representing
the entity type is constructed, it is appended
to the sequence of predicates constructed so
far (FB). This is done by the replace and by
statements at the end of the function. The se-
quence FB isreplaced by FB [. NewPredicates].
The rule [.] is a built-in TXL rule that appends
the sequence passed to it as a parameter to the
sequence to which it is applied.

To illustrate the operation of the function
ProcessRelations Without FKs, consider the re-
lation table definition

CREATE TABLE DEPARTMENT (
Dnumber INTEGER NOT NULL,
Dname CHARACTER (20) NOT NULL,
Location CHARACTER (20))

UNIQUE(Dname)

PRIMARY KEY (Dnumber)

This table definition does not contain any
FOREIGN KEY statements, and therefore it
represents an entity type according to the
Relational-to-ER translation scheme. If this
table definition is passed to the function Pro-
cessRelations Without F Ks, the function creates
the following predicates:



function ProcessRelationsWithFKs TD [tableDefinition]
deconstruct TD
‘CREATE ‘TABLE T [table] ( ADList [list attributeDefinition] )
UniqueStatements [repeat uniqueConstraint|
‘PRIMARY ‘KEY ( PKAList [list attribute] )
FKStatements [repeat foreignKeyDefinition]

construct EmptyFKStatements [repeat foreignKeyDefinition]

where not
FKStatements [= EmptyFKStatments]

construct FKAttributes [repeat attribute]
- [I FKStatements]

replace [repeat predicate]
FB [repeat predicate]
by
FB [ProcessManyToManyRelationship T ADList PKAList
FKStatements FKAttributes]
[ProcessEntity T ADList UniqueStatements PKAList
FKStatements FKAttributes]
[ProcessWEorMVA T ADList PKAList FKStatements FKAttributes]
end function

Figure 4: The function ProcessRelationsWithFKs applied by the mainRule of the TXL program
Relational-to-ER



entity (DEPARTMENT)

entityAttribute (DEPARTMENT, Dnumber,
INTEGER)

entityAttribute (DEPARTMENT, Dname,
CHARACTER (20))

entityAttribute (DEPARTMENT, Location,
CHARACTER (20))

key (DEPARTMENT, Dnumber)

key (DEPARTMENT, Dname)

This sequence of predicates is bound to
the variable NewPredicates, which is then ap-
pended to the whole sequence of predicates cre-
ated so far as explained above.

The function ProcessAttributeDef, which is
applied by ProcessRelations WithoutF Ks, is also
shown in Figure 3. It is passed the entity
name and an attribute definition as parame-
ters. The attribute definition is then split into
its constituent parts using a deconstruct pat-
tern; these parts are used along with the entity
name to construct a predicate that corresponds
to the attribute definition. The predicate con-
structed is then appended to the sequence of
predicates constructed so far.

4.4 The ProcessRelations WithF'Ks
function

The function ProcessRelationsWithFKs per-
forms the second step in the Relational-to-ER
translation scheme; it is shown in Figure 4.
It is similar in structure to the function Pro-
cessRelations WithoutFKs, and is also applied
once for each relation definition in the rela-
tional schema. However, it succeeds only if
the table definition passed to it contains one
or more FOREIGN KEY statements.

The function begins with a TXL decon-
struct statement that breaks up the tables def-
inition TD into its constituent parts. In partic-
ular, the foreign key statements in the table, if
any, are bound to the TXL variable FKState-
ments.

The application of the function is guarded
by a TXL where condition that insists that
FKStatements is not equal to EmptyF KState-
ments, a constructed example of an empty se-
quence of foreign keys. where conditions allow
a TXL rule or function to place additional con-
ditions under which the rule or function is to

be applied. In this case, the where condition
will fail if and only if FKStatements is empty
- that is, there are no foreign key statements
in the table definition. If that is the case, then
the function fails (and does nothing). Hence
the function proceeds only if there is one or
more FOREIGN KEY statements in the table
definition passed to it.

Once the function ensures that FHKState-
ments is not empty, it adds the appropriate
set of predicates to FB by applying three sub-
rules to it. ProcessManyToManyRelationship
handles the case where FKStatements defines a
many-to-many relationship, ProcessEntity han-
dles the case where it contains the binary re-
lationships defining an entity, and Process WE-
orM VA handles the case where 1t represents a
weak entity or multi-valued attribute.

The components of the table definition to be
transformed are passed as parameters to each
of the subrules. Each subrule corresponds to
one of the three cases above and is guarded by
a where condition corresponding to the case
it handles. Since exactly one of the three con-
ditions is satisfied for a given table definition,
only one rule out of the three subfunctions suc-
ceeds and adds the appropriate predicates.

To illustrate the operation of the function
ProcessRelations WithFKs, consider the rela-
tion table definition

CREATE TABLE EMPLOYEE (
Fname CHARACTER (20) NOT NULL,
Lname CHARACTER (20) NOT NULL,
Ssn INTEGER NOT NULL,
Bdate CHARACTER (8),
Address CHARACTER (40)
Dnumber INTEGER NOT NULL)
UNIQUE(Ssn)
PRIMARY KEY (Fname, Lname)
FOREIGN KEY (Dnumber)
REFERENCES DEPARTMENT

The presence of a FOREIGN KEY statement
in the definition implies that one of several
translations is possible: a separate entity and
a one-to-many relationship to another entity; a
many-to-many relationship; a multi-valued at-
tribute, or a weak entity and a relationship. In
this case, since the foreign key is not part of the
primary key, ProcessRelationsWithFKs trans-
lates the EMPLOYEE table into an entity-type



EMPLOYEE and a relationship-type between
the entity-types EMPLOYEE and DEPART-
MENT which are represented by the following
predicates:

entity (EMPLOYEE)

entityAttribute (EMPLOYEE, primaryKey,
COMPOSITE, Fname, Lname)

entityAttribute (EMPLOYEE, Fname,
CHARACTER (20))

entityAttribute (EMPLOYEE, Lname,
CHARACTER (20))

entityAttribute (EMPLOYEE, Ssn,
INTEGER)

entityAttribute (EMPLOYEE, Bdate,
CHARACTER (8))

entityAttribute (EMPLOYEE, Address,
CHARACTER (40))

key (EMPLOYEE, primaryKey)

key (EMPLOYEE, Ssn)

relationship (D-E, Binary)

entityInRelationship (D-E, EMPLOYEE,
(1,1), employee)

entityInRelationship(D-E, DEPARTMENT,
(1,n), department)

In this section, we have discussed the imple-
mentation of only one of our six translation
schemes as source transformation tasks using
TXL. We have so far implemented translations
between the ER model and the relational, hier-
archical, and network models. The implemen-
tations of the other schemes are all similar, it-
eratively taking each part of the input schema
definition and translating it to its representa-
tion in the output data model syntax.

5 Information Capacity

We observed earlier in the paper that one of
the problems with much of the previous work
on schema translation is that it has been based
on an intuitive, rather than a formal, notion of
correctness. Some recent work, however, has
succesfully used information capacity as a ba-
sis for judging the correctness of transformed
schemas [14, 16, 21].

The information capacity of a schema S, as
defined by Miller, Ioannidis and Ramakrish-
nan [21], determines the set of valid instances

I(S) of that schema. Intuitively, we say that
a schema T has a greater information capacity
than a schema S if every instance ¢ € I(S) can
be mapped to some instance j € I(7T') without
loss of information, that is we can recover the
original instance from its image under the map-
ping. We define these concepts more precisely
below.

Definition 1 An information capacity pre-
serving mapping between the instances of two
schemas S and T is a total injective function

£ 1(8) — I(T).

Definition 2 If f : I(S) — I(T) is an in-
formation capacity preserving mapping, then T
dominates S via f, denoted S <T.

Definition 3 Let S and T be families of
schemas specified in different data models. A
schema translation s a total function F': § —

T. A schema translation is information capac-
ity preserving if for all S € 8§, S < F(S).

The important practical implication of an
information capacity preserving translation is
that the entire database stored under the
source schema may be viewed and queried
through the target schema [21].

We discuss the Relational-to-ER scheme as
an example.

Proposition 1 The Relational-to-ER transla-
tion scheme ts an information capacity preserv-
g schema translation.

Sketch of Proof:

A sketch of the proof of the proposition is pro-
vided here. A more detailed discussion is given
in Abu-hamdeh’s M.Sc. thesis [1].

In our approach to schema translation, a
translation scheme is expressed as a set of in-
dependent transformation rules rather than as
an algorithm as in most other approaches. The
rules are functions in the mathematical sense,
that is they do not produce side-effects, and
they produce the same result independent of
the order in which they are applied [18]. Thus
the proof of the proposition can be reduced
to proving that each individual rule is an in-
formation capacity preserving translation, and
that the set of rules in the translation scheme



is complete, that is, that all syntactic struc-
tures in the source schema are translated to a
corresponding structure in the target schema.

The proof of the claim that the Relational-to-
ER translation scheme is complete is based on
the observation that table definitions are parti-
tioned into two disjoint sets, namely those ta-
bles with foreign keys and those tables without
foreign keys, and that this partitioning obvi-
ously includes all table defintions. As an ex-
ample of proving that a rule is information ca-
pacity preserving, consider the rule ProcessRe-
lations Without F Ks described in Section 4.

Suppose that the function on the sets of in-
stances induced by the rule is

Trwrk : I(Sr) — I(TER)

where Sg is a source relational schema and Tgg
is the target ER schema. frwrpx maps tuples
from a relation without a foreign key into en-
tities in an entity type of the same name as
the relation. Attribute values of the tuple are
mapped to values of corresponding attributes
of the entity, which are established by the rules
which create the attributes, and “UNIQUE”
and “PRIMARY KEY” constraints on the tu-
ple are reflected as “KEY” constraints on the
entity.

One piece of information that cannot be cap-
tured in the syntax of the ER factbase is, in
the case of multiple candidate keys, which key
is the primary key since they are all mapped to
a fact of type “KEY”. The translation scheme
annotates the fact with a comment that it rep-
resents a primary key which the reverse transla-
tion scheme can then exploit in reconstructing
the original schema. If there is no annotation,
the first “KEY” fact is assumed to be the pri-
mary key.

The function frwrpk is total since every tu-
ple in I(Sg) from a relation without a foreign
key can be mapped to a corresponding entity in
I(Tggr)- It is also an injection since its inverse,
jEI}VFK, is guaranteed to map an entity back
to its original source tuple because all attribute
values, and the primary key information, are
maintained by the mappings. In other words,

for all i € I(Sgr)

i = frwrk © frwrk (i)

Since the translation rule induces a function
on the sets of instances that is both total and
injective, we conclude that the rule is an infor-
mation capacity preserving translation.

We have been able to show, using this form
of proof, that all of our translation schemes be-
tween the various data models are information
capacity preserving. These results mean that
we are able to query the data represented by
the source schema through the target schema
and obtain valid results. We have also obtained
even stronger results for the transforms map-
ping hierarchical to relational and to ER, and
mapping relational to ER, namely, that the
transformation schemes are equivalence pre-
serving, which implies that the source database
may be updated through the target schema.

6 Summary

Schema translation is important for provid-
ing integration and interoperability in multi-
database systems. Two shortcomings of many
of the existing approaches to the problem are
that they are not easily automated and that
they lack a formal basis for evaluating the
correctness of the resulting translations. We
have discussed an approach based on structural
transformation that overcomes both of these
problems.

Structural transformation is a technique for
recognizing structures in a source language and
translating them into structures in a target lan-
guage. The structural transformations are im-
plemented as source-to-source syntactic trans-
formations. As we show in the paper, the tech-
nique can be successtully applied to the prob-
lem of schema translation.

We have developed translation schemes to
transform schema descriptions in representa-
tive relational, hierarchical, and network DDLs
into an ER factbase representation, and vice
versa. We can compose the translation schemes
to translate among the three traditional data
models.

Our approach expresses a translation scheme
as a set of independent transformation rules.
We indicated in the paper how one can prove
the correctness of a scheme by showing that
the rules preserve information capacity. We



have been able to prove that all of our schema
translation schemes among the models are in-
formation capacity preserving and that some
are even equivalence preserving. This latter
property means that one can update the source
database through the target schema.

We plan to continue to study the problem of
schema translation and, in particular, to look
at translation from an object-oriented data
model and at automatic query translation. We
are also incorporating the TXL implementa-
tions of the translation schemes into a suite of
tools to support database integration in a pro-
totype multidatabase system [20].
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