Implementation and Verification of Implicit-Invocation Systems
Using Source Transformatiory

Hongyu Zhang, Jeremy S. Bradbury, James R. Cordy, Juergen Dingel

School of Computing, Queen’s University, Kingston, Canada
E-mail: zhang@namzak.com, (bradbury,cordy,dingel)@cs.queensu.ca

Abstract rent execution of components. This high degree of non-
eterminism makes them particularly challenging to certify

framework to support uniform testing and model checkin nd hence a good proving ground for comparing and com-
oo PP g . g‘oining software verification and validation methods such as
of implicit-invocation software systems. The framework in-

cludes a new domain-specific programming language théesting and model checking.
P brog g guage, In previous work we proposed a framework for the uni-

Implicit-Invocation Language (lIL), explicitly designed for ﬂorm testing and model checking of Il systems [23] based on

In this paper we present a source transformation-baseog

directly expressing implicit-invocation software systems, an . -

a set of formal rule-based source transformation tools tha he Il model checking system orlglnally developed by Garlan

allow automatic generation of both executable and formalf’Ind Khersgnslky [7, S]Kind eXtequ()j("\rA‘L[%];[Ourgra;nework

verification artifacts. We provide details of these transfor- everages Larian an Ersonsky’s intermediate repre-
sentation for Il systems and its automated translation to finite

mation tools, evaluate the framework in practice, and discus
the benefits of formal automatic transformation in this con-Stat€ Models checkable by the Cadence SMV model checker

text. Our approach is designed not only to advance the state24- . . .
of-the-art in validating implicit-invocation systems, but also At the core of our framework is thénplicit-Invocation

to further explore the use of automated source transformation-2"9uag&(lIL), a new special purpose language specifically
as a uniform vehicle to assist in the implementation, valida-designed for expressing verifiable software systems that use

tion and verification of programming languages and softwarethe Il architectural style. IIL is designed to address several

systems in general. problems: the lack of explicit features for Il in existing pro-
gramming languages, leading to code that does not well ex-
1. Introduction press its real semantics; the large gap between Il code and its

i i] . hand-created modelling representation, for example as Garlan
With the growing size and complexity of software systems,ang Khersonsky’s XML representation; the lack of any con-
software verification and validation techniques such as testingenient simulation and testing framework for Il systems; the
and model checking are increasingly important. While testingack of the ability to both test and model check Il systems in
focuses on the actual behaviour of the program, model checlg yniform and consistent manner; and the lack of automated
ing focuses on its mathematical model. Testing and modglyols to assist in these processes.
checking are complementary: testing is lightweight but in- \ye have chosen to implement IIL entirely using formal
complete while model checking is heavyweight but completeg ;e transformations, both as an experiment in that tech-

A major problem with testing and model checking is that e and in order to allow for the future possibility of formal
they require different software artifacts. In fact, there is often, g iication of the translations to execution and modelling ar-

a big semantic gap between the code artifacts that can be ey, 15 themselves. One set of transformations provides the
ecuted and tested and the modelling artifacts that can be ver, ibility to execute and test IIL programs by translation to the

fied using model checkers. This gap must typically be bridge xisting general concurrent programming language Turing

by hand with little tool support, leading to a real possibil- pj,5 [10], while another set provides the ability to verify and
ity of errors and spurious results when the finite-state model, 4el check IIL programs by translation to the XML inter-

does not correspond exactly to the implemented software sy$jeiate representation of Garlan and Khersonsky’s Il mod-
tem. Corbett, Dwyer, et al. note that hand-constructed mod;

. s o élling method (Figure 1).
els are“expensive, prone to errors, and difficult to optimize’ g (Fig)

! ! . In the remainder of this paper, we provide a quick
[4]. The time required to convert artifacts by hand and theoverview of the Il architectural style in Section 2 and in-

possibility of spurious results can be greatly reduced USir‘Qroduce the Implicit-Invocation Language (lIL) in Section 3.

lidate ismplicit invocation(ll) or publish-subscribsys- tion artifacts of ourtrgnsformatlonal framework. In section 5
:Zn\gaslwhich arlzz increasinaly po ul:fr as an inte ratior){mec we present the detalls of our auto_mated_ source transforma-
anisn'1 for loosely coupledgg/orr)n;?onents in softvgare systemsIons to both execution and modelling art ffacts. We d_escnbe
Il systems feature a lot of non-determinism due to concur—GXpenenqe using our system and pc_)ssmlg future dlrectlpns

for exploring the complementary relationship between testing
*This work is supported by the Natural Sciences and Engineering Re@Nd model checking in Section 6. Finally, we discuss related

search Council of Canada and the Ontario Graduate Scholarship Program.work and draw conclusions in Sections 7 and 8.

(L Eieaii) tion are included. In order to guarantee that all programs can

with property in LTL, P be modelled, only language features that can be directly rep-
resented or transformed to Garlan and Kershonsky’s XML in-
Transformation Transformation termediate modelling language are included. And to attach
(/-/ \jx) verification closely to code, properties to be verified are di-
. rectly expressed as part of the program.
(T””“Q Plus Program, T) ML Ri‘igf,iiﬁ?i'?” ot As an illustrative example, Figure 2 shows a standard
with property in LTL, P implicit-invocation example, the Set-Counter system [20] ex-
, pressed in IIL. In order to directly express verifiable 1l sys-
Transformation
(X -> M) tems, IIL includes the following special features: component
v declarations, event declarations, announcement statements,
i prieppey (i L, 12 bindings, and property declarations.

The Set-Counter system declares two componerigta

[Finite State Machine, M] a dispatcher declaration, delivery statements, event-method
I | and aCounter . TheSet component contains a set of ob-

EXECUTION AND FORMAL ANALYSIS jects and th€ounter component keeps count of the objects
TESTING USING MODEL in the set. Figure 2 shows the IIL representation of both the
CHECKER Set andCounter components. All components in IIL can
Figure 1. Our transformational framework contain variables and methods.

The Set-Counter example declares four evefisvAdd
2. 1l Systems and EnvRemove areexternalor environmenevents, which

Il systems are characterized by six paramet@smpo- represent external behaviour affecting the Il system. Their
nents events event-method bindingsin event delivery pol- declarations give the event name and its announcement prop-
icy, a shared stateand aconcurrency model Components erties. The other declared evemtsert andDelete are
in the system can announce events, which are the primargcal events which give the event name and optional data.
method of communication between components. Upon reComponents in IIL usennouncestatements to send local
ceiving events from the components, the event dispatchegvents to the dispatcher. For example,lagert event is
sends the events out to all subscriber components that ha@nounced in thédd method of theSet component.
requested to receive that particular type of event. As well as components and events, @rent dispatcher

The correspondence between announced events and tifedeclared. The dispatcher is responsible for event delivery
methods to be invoked in response to these announcemerit8d defines the delivery policy. Environment events are deliv-
is defined in the event-method bindings. Event-method bindered immediately, while local events are delivered according
ings instruct the dispatcher where to send events. The eveff the policy usingleliverstatements. In our Set-Counter ex-
delivery policy, a set of conditional delivery rules, instructs @mple the delivery policy says that if there are miorgert
the dispatcher on when and how to send them. events waiting to be delivered th@elete events, then an

Il systems we have studied include [1]: Set-Counter Insert eventis delivered immediately andelete event
example in which one component stores elements in a sé¢ delivered randomly, otherwise the opposite occurs.
and another keeps count of the number of elementsAthe ~ Event-method bindings are needed to register the meth-
tive Badge Location Syste(ABLS), an electronic tagging ©ds to the events for event delivery. For example, in the
alternative to pagers, in which different components issuéet-Counter example tienvAdd event is bound to thadd
requests, store information, and announce the location dpéthod in the Set componesit That is, when arEnvAdd
users; and th&/nmanned Vehicle Control SysteidvVCS), ~ €ventis announced thmd method ins will be invoked. .
in which vehicle components announce information such !IL @lso allows for direct expression of the temporal logic
as their movement plan, and other components monitor thBroperty declarationsto be verified for the program us-
movement to ensure vehicles reach their destinations withouflg the model checking process. For example the property

collision. All of these systems are specified and integrated\lwaysCatchesUp in the Set-Counter example says that
using implicit invocation. global variablesetSize will always eventually equal the

counter variable in the Counter component
3. The Implicit-Invocation Language IIL .
P guag 4. |l Framework Artifacts

To help bridge the gaps between coding, testing and . . .
verifying implicit-invocation systems we have designed the Our transformational framework for running, tesjung and
special-purpose programming language IIL. IIL is explicitly verifying IIL consists of three main types of artifacts:
designed to allow for direct expression of implicit-invocation Programming/specification artifacts in IIL itself
semantics using custom syntax for Il features and concepts on
top of a Java-like core. In order to guarantee that all programs
can be executed and tested, only features that can be directlye Verification artifacts in the XML intermediate language
implemented or transformed to simulated concurrent execu- and the SMV modelling language

e Execution/testing artifacts in the Turing Plus language

system SetAndCounter {
external event EnvAdd {1..N},

EnvRemove {l..N}; component Set
event Insert(int {1..2} numElements); announces Insert, Delete
event Delete(int {1..2} numElements); accepts EnvAdd, EnvRemove {

int {0..2} value;
dispatcher delivers Insert, Delete {

if (Insert.count > Delete.count) { Add() {
deliver Immediate Insert; value = {1,2}; // nondeterministic
deliver Random Delete; if ((setSize + value) < 4) {

} else { setSize = setSize + value;
deliver Random Insert; announce Insert(value);
deliver Immediate Delete; }

} }

}

Remove() {
int {0..3} setSize;

}

SetAndCounter() { }
Set s = new Set();
Counter ¢ = new Counter(); component Counter
accepts Insert, Delete {
bind EnvAdd to s.Add(); int {0..3} counter = 0;
bind EnvRemove to s.Remove();
bind Insert to CountIns(int {1..2} number) {
c.CountIns(Insert.numElements); counter = counter + number;
bind Delete to }

c.CountDel (Delete.numElements);
CountDel(int {1..2} number) {
property AlwaysCatchesUp = e
(G F (setSize = c.counter)); }
property ... }
} }

Figure 2. The Set-Counter example in IIL (slightly elided due to space constraints)

Programs are expressed entirely in lIL, then automatically Dispatcher
transformed to Turing Plus [10] for execution and testing and Delivers the evants in the system
. . . . cvents warchouse
to the XML intermediate representation for modelling and —
. g ven!
SMV for verification. Because it is explicitly designed to access
express Il systems, IIL programs are very concise — substan- -
. . . . System Event Warehouse
tially smaller than both the corresponding Turing Plus im- event Receives and stores the events event
plementations used for testing and the XML and SMV rep- delivery announced by components delivery
resentations used for model checking. Figure 3 shows a file Tt
size comparison of three example Il systems in IIL, Turing event announcement
Plus, XML and SMV, and illustrates the advantage of using a Set Counter
SpeCia|—purpose Ianguage ConVinCingly. Component Event Warehouse Component Event Warehouse
Receives and stores the events Receives and stores the events
E— . T TP) XML | XML | SMV | _SMV delivered by the dispatcher delivered by the dispatcher
(KB) | (KB) | (%IIL) | (KB) | (%IIL) | (KB) | (% IIL)

Set-Counter 2 13 650% 9 450% 24 | 1200%
ABLS 3 13 | 444% 8 278% | 23 | 767% . o . .
uvcs 8 | 16 | 200% | 21 | 263% | 38 | 469% Figure 4. Implicit method invocation for the Set-
5

Overall 14 315% 13 281% 28 622% Counter eXampIe in Turing PIUS

Figure 3. File size comparison

implementation uses explicit method calls in event announce-

4.1 Execution Artifacts in Turing Plus ment, in event delivery (Figure 4), and in components to in-
Execution and testing artifacts are derived from IIL using a/0k€ Pound methods when a delivered event is received.

formal source transformation to Turing Plus [10], a general- The concurrency model determines how to assign and
purpose concurrent extension of the programming languag@anage threads in the system. Based on the Garlan and Ker-
Turing [11]. We decided to target Turing Plus for execution ofShonsky modelling semantics, our implementation fixes the
Il systems because of its simple, general concurrency modéPncurrency model to use a separate Turing Plus thread for
and randomized simulation scheduling framework, which al-€ach component, the event dispatcher, and the system itself.

lows for lightweight, realistic testing of concurrent programs. T0 €nsure that the execution semantics of an IIL program in
A critical part of our transformation from IIL to Turing Turing Plus maiches its model checking semantics in SMV,

Plus is the design of a representation for implicit method in-2ll of the threads in the Turing Plus implementation of an I
vocation and component concurrency in Turing Plus that acSyStem are synchronized using barrier synchronization.
curately reflects IIL semantics. In designing these, we used Structurally, the Turing Plus implementation consists of a
as a reference semantics for IIL the corresponding features ¢hodule and nested monitor for each component declaration
Garlan and Kershonsky’s XML notation for 1l systems [7, 8]. and the dispatcher, and a main procedure that handles envi-
Turing Plus does not support implicit method invocationronment event generation. These vary with system and are
directly, so in our Turing Plus model we used explicit invoca-derived from the IIL program by source transformation.
tion to implement implicit-invocation. Thus the Turing Plus The Turing Plus implementation is based on a set of com-

Turing Plus

e IIL program(] SMV program(]

Variable(

. Componentd » | ComponentD
System constantd | Declarations(] }\ » modules(]
initialization & fileD) o
inclusions] Global Variable[] —
Declarations(] Main modulel]
—
: Declarations(]

Global Variable(] | “ Constructor] :
Declarations(J
| | Component L %
‘,/ Instantiations[] | AssignmentO]

AqYyy

>
Componentl] < Statements
< Event-method[] -
modules] « -
A d | | Bindings[)
| ly-| Assertions(]
i A Property([|
DispatcherC]] Declarations(J
modules[] -
¥ > Dispatcherd
Dispatcher(] ; modulel)
Environment[] Declaration(]
Event generation(] Variable Typer]
& system setuplJ] Definitionsr]
L

Figure 5. Diagram showing how the parts of an IIL program are used in generating the corresponding
Turing Plus program and SMV model

mon definitions for the underlying mechanisms of Il that aresummary of how the parts of an IIL program are used to auto-
program independent, such as type definitions for eventsnpatically transform IIL programs into a Turing Plus program
event queues, and event warehouses (collections of evefdr execution and an SMV model for verification.
gueues), as well as modules to manage the system event ware-))
house, component event warehouses, and thread synchronizal Source Transformation using TXL
tion. These modules are independent of the IIL program be- TXL [5] is a programming language designed to support
ing transformed and are included from a library using genersource transformation tasks. It combines features of both
atedincludedirectives in each transformed result. functional and rule-based programming, and supports unifi-
. . . cation, implied iteration and deep pattern match. A TXL pro-

4.2 Verification Artifacts in SMV gram conspists of two parts: a Copn?ext-free, possibly amlra)igu-

To model check systems written in IIL, we use the ap-ous grammar describing the syntactic structure of the artifacts
proach previously presented in [1, 7, 8]. This approach foto be transformed, and a set of by-example formal transfor-
cuses on the automatic analysis of Il by representing an Iiation rules that use pattern-replacement pairs to describe
system in an XML intermediate representation and using aithe desired transformations. TXL has been used in a range of
existing Java tool to transform it into an SMV model acceptedapplications from software design recovery to artificial intel-
by the Cadence SMV model checker. The challenge thereforigence, in both academic and industrial contexts [6].
was to create a source transformation for lIL programs to the
limited features of the XML modelling representation. 5.2 Transformation to Execution Artifacts

The SMV model for an IIL program represents each com- Qur automated tool for transforming IIL to Turing Plus
ponent and the dispatcher as an SMV module. There is alsogonsists of a set of formal transformation rules written in
main module which instantiates the other components. ModTXL. The structure and syntax of Turing Plus programs is
ules in SMV have input and output parameters which are usegery different from IIL — some of these differences have been
for event announcement. For example, in the Set-Counter extiscussed in Section 4.1. The transformation to Turing Plus
ample an output parameter of the Set component is connectgsl divided into four steps: component transformation, dis-
to an input parameter of the Dispatcher for the announcemematcher transformation, system and environment setup gen-
of an Add event, and an output parameter of the Dispatchesration, and restructuring of the resulting system body.
is connected to an input parameter of the Counter component The fours steps form a tightly coupled transformation:
for delivery of the event. The model checking semantics ofeach must be completely consistent with the other for the
the SMV program is (by design) identical to the executioncombined result to be correct. In order to facilitate this con-

semantics of the Turing Plus program outlined above. sistency, each of the steps is derived by formal source trans-
. . formation from the same source artifact: the entire IIL source
5. Transformations in the Il Framework program itself. This demonstrates the advantages of the main

Now that we have introduced the artifacts involved in ourdesign goal of IIL: to capture all aspects of the Il system in
framework, we can discuss TXL and our automated transforene uniform source artifact. Each step takes as input the en-
mation tools for artifact conversion. Figure 5 shows an overaltire source program in IIL, using different parts of the source

module Set

1
2 export Fork, receiveEvent 29 function getCount (ename : string) : int
3 include "queueManager.i" 30 result queueManager.getCount (ename)
4 queueManager.createEventQueue ("EnvAdd") 31 end getCount
5 queueManager.createEventQueue ("EnvRemove") 32
6 var value : int 33 procedure receiveEvent (e : event)
7 34 queueManager.receiveEvent (e)
8 monitor SetMonitor 35 end receiveEvent
9 export receiveEvent, getCount, 36 end SetMonitor
Remove, Add 37
10 procedure Add 38 procedure receiveEvent (e : event)
11 var e : event 39 SetMonitor.receiveEvent (e)
12 queueManager.getEvent ("EnvAdd", e) 40 end receiveEvent
13 var Arr : 41
array 1..2 of int := init (1, 2) 42 process run : 100000
14 var Sel : int 43 for 1 : 1..999999999
15 randint (Sel, 1, 2) 44 Rendezvous.readySetGo
16 value := Arr (Sel) 45 if SetMonitor.getCount ("EnvRemove")
17 if ((setSize + value) < 4) then > 0 then
18 setSize := setSize + value 46 SetMonitor.Remove
19 var etba Insert : event 47 elsif SetMonitor.getCount ("EnvAdd")
20 etba Insert.name := "Insert" > 0 then
21 etba Insert.param (1).intPara := 48 SetMonitor.Add
value 49 end if
22 announce (etba Insert) 50 end for
23 end if 51 end run
24 end Add 52
25 53 procedure Fork
26 procedure Remove 54 fork run
27 e 55 end Fork
28 end Remove 56 end Set

Figure 6. Generated Turing Plus module/monitor for the Set component of the Set-Counter example

as needed to transform or generate its result. evident in this example, TXL's by-example concrete syntactic
Step 1: Component transformation. Component trans- patterns and functional decomposition style help make it con-
formation combines information from the event declarationsyenient to express and validate our source transformations.
component declarations, and constructors in the IIL program. Step 2: Dispatcher transformation. The dispatcher in
In Turing Plus components are represented as modules addiring Plus is constructed using the event declarations, the
the component transformation occurs in 5 parts. To clarifydispatcher declaration, and the system constructor of the IIL
the component transformation we refer to the Turing Plus improgram. All of this remote information must be combined
plementation of the Set component in Figure 6, which wasausing a global-to-local transformation to generate the result.
automatically transformed from the Set-Counter IIL example For each event in a system the dispatcher creates a queue
in Figure 2. For each part of the transformation we make refin the system event warehouse. Event queues are not repre-
erence o the corresponding parts of Figure 6. sented in the IIL program and are generated using the same
First, module and monitor names for components in thenethod as described for component queues above. The event
Turing Plus program are generated from the componendelivery policy is translated directly from the dispatcher body
names in IIL {ines 1,§. Second, an event warehouse (a col-of the IIL program into code for the Turing Plus dispatcher
lection of event queues) is created for each type of event thatmodule. In order to complete the event delivery transforma-
component acceptsirfes 4,5. Third, each method in a com- tion we also need to use information from the component in-
ponent is added to the export list for its monitting¢ 9). This stantiations and the event-method bindings.
makes the methods public, so that they can be called from Figure 8 shows the result of generating the Dispatcher for
outside the monitor, for example in the run procds®(48. the Set-Counter example. Random delivery is simulated us-
Fourth, the method bodies for each component are geneirg the Turing Plugandintlibrary routine to flip a coin. The
ated. In addition to the syntactic transformation of the methodnain TXL rule to generate the Dispatcher module from the
bodies from IIL to Turing Plus, the invoking event must be dispatcher section of the IIL program is similar in form to the
retrieved (ines 45-48. A method requires the retrieval of rule for components shown in Figure 7.
the invoking event in order to use data contained in the event. Step 3: System and environment setupln this step we
Since the information about the invoking event s not includedgenerate declarations for global variables specified in the IIL
in the method body of the IIL program, we must extract thisprogram and initialize system constants of the Turing Plus
information from the remote component instantiations andmplementation. We incorporate the parts common to all sys-
the event-method bindings during transformation. tems (discussed in Section 4.1) by generating file includes
Fifth, the run processlifes 42-5) needs to check each such as thénclude "rendezvous.i; which adds the module
event queue and invoke the appropriate bound method that handles barrier synchronization. Finally, we generate
the event queue is not empty. During transformation, thestatements at the end of the program to fork a concurrent pro-
accepts statements in the IIL program are used to gen-cess for each of the component and dispatcher modules.

erate the conditional expression of tiie statement in the Environment setup generates a procedure using a method
run process, and event-method binding information is used t@all for each external event, similar to the component event
generate the method call. announcement shown in Figure 4. An example TXL function

As an example of the TXL transformation rules used infrom this step is shown in Figure 9. This function demon-
this step, Figure 7 shows the main rule used to generate tharates the use of TXL's functional control paradigm to im-
module and monitor structure from an IIL component. As isplement a source transformation that inherits global contex-

rule tr_component Bindings [repeat event_binding]

Events [list event_declarator]
replace [component_declaration]

'component CompNamel[id]
EventAnn [opt event_announces]
EventAcc [opt event_accepts]

Body [repeat var res_met_declaration]

% Translate variable declarations

construct VarDecls [repeat variable_declaration]

_ [gather_var_decl Body]
[tr_var_decl]

% Translate method declarations

construct MetDecls [repeat method_declaration]

_ [gether_met_decl Body]
[tr_met_decl Events Bindings CompName]

% Method names to export
construct ExportMets [list method name]
_ [get_list_method name MetDecls]

% Monitor name
construct MonitorName [id]
CompName [+ ‘Monitor]

% First method to run
deconstruct ExportMets

FirstMet [id], RestMets [list method_name]

% Event name for first method
deconstruct * [event_binding] Bindings
'bind FirstEvent [id] 'to CompNameId .
FirstMet '(_ [list expression]') ;
construct QuotedFirstEvent [stringlit]
_ [quote FirstEvent]

% Rest of methods to run
construct Elsifs [repeat elsif inrun]
_ [get_elsifs RestMets Bindings

‘module CompName
'export Fork, receiveEvent

'include "queueManager.i"

EventAcc [tr_event_accepts]
NewVarDecls

'monitor MonitorName
'export receiveEvent, getCount, ExportMets
NewMetDecls

'function getCount(ename: string): int
‘result queueManager.getCount (ename)
'end getCount

'procedure receiveEvent(e: event)
queueManager.receiveEvent (e)
'end receiveEvent
'end MonitorName

'procedure receiveEvent(e: event)
MonitorName.receiveEvent(e)
'end 'receiveEvent

'process 'run: 100000
‘for : 1 .. 999999999
Rendezvous.readySetGo
'if MonitorName.getCount
(QuotedFirstEvent) > 0 'then
MonitorName '. FirstMet
Elsifs
'‘end 'if
'end 'for
'end run

'procedure Fork
‘fork run
'end Fork
'end CompName

CompName MonitorName]

end rule

Figure 7. Main TXL Rule for generation of the Turing Plus module/monitor structure for an [IL component

module Dispatcher

export Fork

eventsManager.createEventQueue("EnvAdd")
eventsManager.createEventQueue ("EnvRemove")
eventsManager.createEventQueue("Insert")
eventsManager.createEventQueue("Delete")

procedure deliverEvent

% External events are always immediate
if eventsManager.getCount("EnvAdd") > 0 then

elsif eventsManager.getCount("Delete") > 0 then
var e: event
eventsManager.getEvent ("Delete", e)
Counter.receiveEvent (e)
var flip: int
randint(flip, 0, 1)
if flip = 1 then
if eventsManager.getCount("Insert") > 0 then

var e : event eventsManager.getEvent("Insert", e)

eventsManager.getEvent ("EnvAdd", e) Counter.receiveEvent(e)
Set.receiveEvent (e) egd if
end if end if
end if
if eventsManager.getCount("EnvRemove") > 0 then end deliverEvent
var e : event
eventsManager.getEvent ("EnvRemove", e) % The actual process of the Dispatcher
Set.receiveEvent(e) process run : 100000
end if for 1 : 1 .. 999999999

$ Delivery policy for internal events Rendezvous.readySetGo

if eventsManager.getCount("Insert") > deliverEvent
eventsManager.getCount("Delete") then end for
var e: event end run

eventsManager.getEvent ("Insert", e)
Counter.receiveEvent (e)
var flip: int

% Procedure to start up Dispatcher when appropriate
procedure Fork

randint(flip, 0, 1) fork run
if flip = 1 then end.Fork
if eventsManager.getCount("Delete") > 0 then end Dispatcher

eventsManager.getEvent ("Delete", e)
Counter.receiveEvent (e)
end if
end if

Figure 8. Generated Turing Plus Dispatcher module for the Set-Counter example

tual information to generate its result - in this case the list ofreordering the program elements to match the order in Fig-
events passed in from the main system setup generation rulare 5. In essence, this transformation is a topological sort of
the program into declaration-before-use dependency order. A

Step 4: System body re-ordering. Unlike IIL, Turing gimp1e TXL rule used in this step is shown in Figure 10.
Plus is a declaration-before-use language, and Turing Plus

programs must follow a strict order and structure of decla-5.3 Transformation to Verification Artifacts

ration. In order to separate concerns and avoid overly con-

straining transformation rules, the previous three transforma- A major drawback to the model checking work we pre-
tion steps ignore these constraints. This leaves the orderirgented in [1] was that it was not completely automated, since
problem to this last separate transformation, which involvesiser interaction was required to develop the XML modelling

by
'procedure 'randomEvent (eventName : string,
maxEventCount : int,
function add_event_declaration var eventCount: int, frequency : int)
Events [list event_declarator] ‘if eventCount < maxEventCount then
. ‘var flip: int
% List of external events X randint (flip, 1, frequency)
construct ExtEventNames [list reference] ‘if flip = 1 then

_ [get_ext_event_name_declarator Events] 'var e: event

e.name := eventName
announce(e)
eventCount += 1

% List of external event limits
construct EndOfEvents [list reference]
_ [build_endOfEvents ExtEventNames]

'end' if
) 'end 'if
% List of external event counters ‘end 'randomEvent
construct EventsCount [list reference]
_ [build_eventsCount ExtEventNames] 'var EndOfEvents : int
'var EventsCount := 0
% Make the "randonEvent(...)" statements 'var clockLimit: int
construct RandomEvents [repeat randomEvent] s
_ [build_randomEvent ExtEventNames process run L
EndOfEvents EventsCount] ‘for 1 : 1 .. clockLimit
Rendezvous.readySetGo
% Make the statement to print total events generated ‘put "main loop ", 1
construct RandPuts [repeat randint_and_put]) RéndomEvents
_ [build_randPut EndOfEvents ExtEventNames Events] 'endevgunfor

replace * [repeat declaration_or constructor]

'randomize
% Add to end of generated code

RandPuts

"

‘put "Please input clockLimit:
‘get clockLimit

end function

Figure 9. TXL function to make the Turing Plus external event generator for an IIL program

representation for the program. Our current approach ovemniquely renamed using the method name as a prefix.
comes this deficiency and bridges the gap between artifacts Third, IIL allows the convenience @witch statements
by completely automating the process of generating finitén the dispatcher and bosiwitch statements anfdr loops
state models for software systems written in IIL. in component methods, while the XML modelling represen-

The transformation from IIL to SMV finite state models tation has onlyf-then-else statements in order to sim-
involves three steps: program restructuring, conversion t@lify its modelling task. The transformation therefore trans-
XML, and finite state machine translation. The first two stepsformsswitch statements intd-then-else and unrolls
convert lIL into the XML modelling notation using cascaded for loops into statement sequences, using classic transfor-
TXL source transformations of the IIL program. The third mations borrowed from the compiler community.
step uses an existing Java tool to transform the XML repre- Recall that by design IIL is restricted to expressing pro-
sentation to a set of finite state machine models in SMV thagrams that have a modelling language equivalent - thus be-
can then be verified using the Cadence SMV model checkercause the XML modelling representation does not have loops,

Step 1: Program restructuring. The original goal of the 1IL for loops are constant bounded and can always be un-
IIL language was as a convenient replacement for the verboselled. Similarly, although the XML modelling representa-
XML representation that would be easier to read, write andion has noswitch statement, the transformation can con-
understand. In the end, IIL has evolved into a full special-vert them to theiiif-then-else equivalents. The TXL
purpose language that includes many other notational corrule for convertingswitch — statements used in this stage is
veniences, such as true global variables, local variables ishown in Figure 11.
methodsfor loops andswitch —statements, none of which Finally, the program is restructured into the strict order
are available in the XML intermediate language. In this firstrequired by the XML modelling representation. In IIL there
step of our modeling transformation, these notational conveare no restrictions on ordering, but the XML representation
niences are resolved, in essence by compiling and reorderingust be strictly structured according to its schema. As in the
the IIL program using source transformation. The result is aransformation to Turing Plus, we simplify the previous steps
simplified IIL program which is isomorphic to its XML mod- by implementing the ordering constraints as a separate source
elling language equivalent, but not yet in XML notation. transformation on the result.

Three main language features of IIL are not present in the Following this step the IIL program has been restructured
XML representation and must be converted. First, globainto a statement-by-statement match to the target XML mod-
variable access is transformed to match the indirect globatlling representation, but has not yet been converted to XML.
variable access of the XML representation. IIL componentsAgain, rather than convert to XML tag notation while re-
have direct access to globals, while the XML representatiorstructuring the IIL program, we have separated the conversion
uses the SMV model, in which global variables must be acto XML tags into a separate cascaded source transformation
cessed indirectly through special local input/output variablesin order to separate concerns. This cascaded transformation

Second, IIL supports variable declaration at both the comstyle is characteristic of complex TXL transformations and
ponent and method level while the XML modelling represen-has served us well in this project as in others.
tation allows variables at the component level only. This step Step 2: Conversion to XML mark-up. The second step
involves moving all method level variables to the componenf the modeling transformation involves the syntactic map-
level. To avoid potential name clashes, method variables anging of the simplified and reordered IIL program to XML

notation. For example consider an event-method binding, de-
fined in abind statement, from Figure 2:
bind Insert to c.Countins(Insert.numElements);

Thebind statement causes émsert event to invoke the
Countlns method in the instance of the Counter com-
ponent. In the XML intermediate representation the bind
statement is transformed into:

<event-binding event-name="Insert">

</event-binding>

The TXL rule for the XML markup translation dfind

rule tr_event_binding

replace [event_binding]
'‘bind EventName [reference]
‘to ListMethods [list method_invocation];

construct QuotedEventName [stringlit]
_ [quote EventName]

construct RepMethods [repeat method binding]
_ [construct_method_binding ListMethods]
by
<event-binding event-name=QuotedEventName>
RepMethods
</event-binding>
end rule

Figure 12. TXL rule to convert bind statements

statements is shown in Figure 12. The rule matches every to XML markup form

IIL bind statement and captures its event name and list of
method invocations. The event name is quoted so that it ca
be used in the XML tag, and a sequence of XML method-
binding tags for the bound method invocations is generate
by the subruleconstruct _method _binding . The rule

{Fwen be checked using the Cadence SMV model checker to
erify the property constraints declared in the IIL program.
dditional details of this step can be found in [1, 7, 8].

then replaces thbind statement by an XML tag with the 5§ 4 Evaluation of Transformations

event name around the tagged sequence of method bindings.
Step 3: Generation of finite state machinesFollowing
the transformation from IIL to the XML modelling notation,
we use the Java tool developed by Garlan and Khersonsky [
(modified in [1]) to transform the XML representation of the

To evaluate our framework we used the three examples
introduced in Section 2Set-Counterthe Active Badge Lo-
tion System{ABLS) and theUnmanned Vehicle Control
ystem(UVCS). For each example, our evaluation involved

program into a set of finite state machines in SMV. These caﬁ;

% In every scope, sort variable declarations
% before anything else

rule var_decl_first

replace $ [repeat declaration_or_constructor]
Anything [declaration_or_constructor]
VarDecl [variable declaration]
Rest [repeat declaration_ or_constructor]

deconstruct not Anything
_ [variable_declaration]
by
VarDecl
Anything
Rest
end rule

Figure 10. Example TXL rule used in reordering
generated Turing Plus code

rule tr_switch_statement

replace [statement]
'switch '(Expl [expression] ')

'case Exp2 [expression] ':
CaseBlock [repeat declaration_or_statement]
Rest [repeat switch_alternative]
"}
deconstruct Expl
ExXplRE [relational_expression]

deconstruct Exp2
ExXp2RE [relational_ expression]

construct IfBlock [block]
'{ CaseBlock [remove_break] '}

construct ElseClause [opt else_clause]
[tr_switch_alternative_l ExXplRE Rest]
[tr_switch_alternative_2 Rest]

by
'if '(EXplRE == EXp2RE ')
IfBlock
ElseClause
end rule

Figure 11. TXL rule to convert ILL switch state-
ments to if-then-else form

ogramming the system in the IIL language and verifying
y hand) that our transformation tools from IIL to Turing
Plus and from IIL to the XML modeling representation per-
formed correctly. We demonstrated that semantics was well
preserved across all of the transformations by checking that
the execution behaviour and the model checking behaviour
matched the original semantics of the IIL programs. Finally,
we verified that the specified properties of the IIL programs
held, both empirically and formally, by testing and model
checking the results of our transformations.

6. Testing and Model Checking using the Il
Framework

We have discussed the programming, execution and verifi-
cation artifacts and the automated transformations used in our
framework. We now detail how the framework can be used in
both testing and model checking.

6.1 Testing

Ouir first transformation converts an IIL program into a se-
mantically equivalent Turing Plus program which can then be
compiled using the Turing Plus compiler and concurrency li-
brary to an executable program. The result of executing this
Turing Plus program is the production of an execution trace.
For purposes of validation, we used manual code instrumen-
tation in the Turing Plus program to output run-time informa-
tion into the traces. Here for example is a partial execution
trace of the Set-Counter system:

clock tick 20
EnvAdd announced
clock tick 21
setSize = 1

Insert announced
clock tick 22
counter = 1

clock tick 23

In this example we have output the clock tick, the name of One possibility would be representing execution traces as
each announced event, and the new values of updated glob@irL properties and using model checking to verify that each

and local variables. The above trace shows an announcememnace is also possible in the model.

of the EnvAdd event by the environment, which causes the) S o

number of elements in the set (the variabbSize) to be * How can testing be used to simplify or optimize model

increased. Th&et component then announces lasert checking?

event which is delivered to tHeéounter component causing

thecounter variable to be increased. One of the primary optimizations in model checking is de-

. composition. Testing could be used to identify parts of the

techniaues on all three of our example Il svstems. Our Tu:}%stem that can be easily abstracted or removed for model
d P y : checking. For example, if a component is not used in a test

ing Plus programs aré convement for testing because.the teﬁ‘ﬁce it may be safe to remove it from the verification.
harness for environment events is generated automatically as
part of our transformation. Moreover, because Turing Plus ¢ Can model checking be used to evaluate the coverage
uses a randomized simulation scheduler, multiple executions offered by a test suite?

of the same program with the same inputs generally result in

different execution traces, allowing for bulk testing of many Model checking could be used to guarantee output cover-

different concurrent executions. age in black box testing. For example, we could verify that a
) variable always is one of a set of values that covers the out-
6.2 Model Checking puts, or model-check the converse to find a counter-example.

Our second automated transformation converts IIL pro- Model checking could also provide guarantees in white
grams to the XML modelling representation and then to SMVbox testing. For example, if we wanted to provide state-
finite state models for formal verification. We have verified ament coverage for an IIL program we could instrument the
variety of liveness and safety properties in the context of ourfuring Plus program to record a program counter in the ex-
lIL examples. IIL currently allows for expression of proper- ecution trace. If we noticed that certain statements were not
ties written in Linear Temporal Logic (LTL) but we also have covered, we could use model checking to prove that the pro-
the ability to check Computational Tree Logic (CTL). The gram counter can never have those values, or to generate a
LTL operators used in the expression of properties arg: X counter-example input to add to the test suite.

in the next statep holds), G holds globally), F o . :
(holds eventually;zl U ¢2)(¢1 ﬁo(l(gs at Ieagt unti&i) do(gs()(.ﬁ ¢ M'ght it be use_ful to integrate temp(_)ral logic proper-

For example, consider the Unmanned Vehicle Control Sys- ties into the testing effort through, for instance, run-time
tem (UVCS) example system. On one hand, we need to guar- Safety analysis?

antee liveness properties such as each vehicle in the system 5o possibility would be to use the safety specification of

eventually reaches its destination: a program to automatically generate a run-time monitor that

F ((Vehiclel.currRegion = Vehiclel.destRegion) P T o
& (Vehiclelxpos = Vehiclel destxpos) checks if a finite event trace satisfies the property [9].

& (Vehiclel.ypos = Vehiclel.destypos))
On the other hand, we need to verify safety properties such & Related Work

collision avoidance between two vehicles: Rapide[13] and Eventua[17] are other special-purpose lan-
G ((vehiclel.curRegion = Vehicle2.curRegion) guages for event-based systems. Rapide is an executable lan-
| veheleLaros 2 Vehcienybod) guage intended for modeling the architectures of concurrent

In our experiments we verified that vehicles would in factand distributed systems. Eventua is an object-oriented lan-
reach their gestination location and that vehicles do not cold“29€ that includes native support for events. Eventua pro-
lide. Detailed results of our model checking experimentsa, o> ¢an be transformed to thes-calculus for execution.
Weré resented in a pervious paper [1] g exp Our work differs from these approaches in that we focus on
P P pap ' formal analysis in addition to execution traces.
6.3 Future Directions . B]E)th Bandera [éll] and Spin [12] provi_de ?utomatic ttrans{a-
. ion from a general purpose programming language to a stan-
Although the design purpose of our IIL language anddard model checker. Our approach differs in that we focus

ransformational framework is th mparison and explo- .
transformational framework is the comparison and e poonaspeual—purpose Il language that expresses all aspects of

ration of synergy between testing and verification, thus far Voth program and properties in one uniform notation, and in
have only independently evaluated testing and model CheclYhat we achieve all our results using formal source transfor-

Ing. Ne_xt we plan to use our framework to gxplore i " mation rules which at least in theory allow for formal verifi-
lationship between testing and model checking. We be“ev%ation of the translations themselves

that it provides a goqq testbed for stl_dei_ng the synergies b_e- As an alternative to our approach, it would be interesting
tween these two verification and validation methods, and in explore using Java to represent event-based systems (e.g
particular can allow us to investigate questions such as: using the Message-Driven Thread API for Java[15], or pub-' '
e Can testing help increase confidence in model checkingjsh/subscribe infrastructures like Elvin[19] or Siena[2]) and
and the correctness of the model checker? to use Bandera for model generation and analysis. However,

because IIL expresses implicit invocation semantics and ver-

ification conditions in custom syntax rather than through li-

scriptions, Tools and Applications, Electronic Notes in Theo-
retical Computer Scien¢d 10:3—-31, 2004.

brary calls, and in a single uniform notation, it encodes the [6] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source trans-

program, its execution and modelling much more directly.

Although as we have shown that TXL expresses the source

transformations in our framework very clearly, our method
does not depend on any particular tool and other source

transformation languages and systems such as Stratego [22],

ASF+SDF [21], ANTLR [16] and others have their own ad-

vantages and could serve as well.

(8]

Ours is also not the only system that has proposed using

formal source transformation to bridge gaps between verifi- [9]

cation and practice. In our own previous work we have used

formal source transformation to extend the capabilities of th

VeriSoft C++ model checker to handle Java RMI verificatio

10]

[3], and at Microsoft Research formal source transformation; 1
has been used to transform concurrent device drivers to se-

guential approximations that can be checked for some conf12]

currency properties using sequential model checking [18].

8. Conclusion

[13

We have presented a uniform source transformation-
based framework for specifying, testing, and model checking

implicit-invocation (1) systems. It consists of IIL, a special [14]

purpose high-level language for specifying Il systems, and

two fully automatic, formally specified source translations: [15]
one to the Turing Plus language for execution and testing
and one to the input language of a standard model checker f

b

verification. The framework demonstrates how formal source

transformation can be used to combine the convenience

7]

a special-purpose language with the benefits of two com-

plementary quality assurance techniques: testing and mod¢18]

checking. Furthermore, it shows how the significant gaps be-
tween artifacts can be bridged using transformation. Auto-
matic source translation makes the analysis in our framework

less error prone, less time consuming and more reliable.

The contribution of our work lies not only in the develop-
ment of the transformation framework but also in the oppor-

[7]

formation in software engineering using the TXL transforma-
tion systemJ. Inform. and Software Technolagi4(13):827—
837, 2002.

D. Garlan and S. Khersonsky. Model checking implicit-
invocation systems. IRroc. Int. Work. on Software Spec. and
Design Nov. 2000.

D. Garlan, S. Khersonsky, and J. Kim. Model checking
publish-subscribe systems. Rmoc. Int. SPIN Work. on Model
Checking of Softwarévlay 2003.

K. Havelund and G. Rosu. Synthesizing monitors for safety
properties. InProc. Int. Conf. on Tools and Algorithms for
Construction and Analysis of Systempages 342—356, 2002.
R. Holt and J. Cordy. The Turing Plus repo@SRI, Univ. of
Torontq 1987.

] R. Holt and J. Cordy. The Turing Programming Language.

Communications of the ACN1(12):1410-1423, 1988.

G. J. Holzmann and M. H. Smith. An automated verifica-
tion method for distributed systems software based on model
extraction.|IEEE Trans. on Software Engineerir@g(4):364—
377, 2002.

] D. Luckham and J. Vera. An event-based architecture def-

inition language. IEEE Trans. on Software Engineering
21(9):717-734, 1995.

K. McMillan. Getting started with SMV.Cadence Berkeley
Laboratories 1998.

mdthread.org. Message-driven thread API for the Java pro-
gramming language. Web page: http://www.mdthread.org.

T. Parr and R. Quong. ANTLR: A predicated- LL(k) parser
generatorSoftware-Practice and Experiencs(7):789-810,
1995.

J. Patterson. An object-oriented event calculus. Technical Re-
port TR02-08, lowa State University, 2002.

S. Qadeer and D. Wu. KISS: Keep it Simple and Sequential.
In Proc. PLDI 2004, ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementatipages 14—
24, June 2004.

19] B. Segall and D. Arnold. Elvin has left the building: A pub-

lish/subscribe notification service with quenching. Rroc.
AUUG’97, Sept. 1997.

[20] K. Sullivan and D. Notkin. Reconciling environment integra-

tunities for future research. The framework provides an ex-
cellent testbed for exploring both automated transformation

and the synergies between testing and model checking.

References

[1] J. Bradbury and J. Dingel.
automatic analysis of implicit invocation systems. Rroc.
ESEC/FSE 2003ept. 2003.

[2] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-

uation of a wide-area event notification servid®CM Trans.
on Computer System$9(3):332—-383, Aug. 2001.

[3] T. Cassidy, J. Cordy, T. Dean, and J. Dingel. Source transfor-

mation for concurrency analysis. Froc. 5th Int. Workshop
on Language Descriptions, Tools and Applicatigpages 26—
43, April 2005.

[4] J. Corbett, M. Dwyer, and J. H. et al. Bandera: Extracting

finite-state models from Java source codePiac. Int. Conf.
on Software Engineerindune 2000.

[5] J. Cordy. TXL — a language for programming language tools
and applications.Proc. 4th Int. Workshop on Language De-

10

Evaluating and improving the

(21]

(22]

[23

tion and software evolution. IRroc. SIGSOFT ‘90 Symp. on
Software Development Environmerigec. 1990.

M. van den Brand and P. K. et al. The ASF+SDF meta-
environment: a component-based language development envi-
ronment. Proc. 1st Int. Workshop on Language Descriptions,
Tools and Applications, Electronic Notes in Theoretical Com-
puter Scienceg44(2), 2001.

E. Visser. Stratego: A language for program transformation
based on rewriting strategiesProc. Rewriting Techniques
and Applications (RTAO1), Lecture Notes in Comp. Science
2051:357-361, 2001.

] H. Zhang, J. Bradbury, J. Cordy, and J. Dingel. A transfor-

mational framework for testing and model checking implicit-
invocation systems. IRroc. Int. Work. on Distr. Event-Based
Systems (DEBS '04May 2004.

