Topics in Programming Languages CISC 860* Fall 2014

The Structure and Design of Programming Languages

An advanced course in the design and evaluation of programming languages: history and evolution of
programming languages, relation to programming methodology; principles of programming language
design, psychology of notation, uniformity, linearity and locality; objective criteria for the evaluation of
programming languages with relation to design goals; case studies of specific languages. Students
will undertake independent research studies and present results in the form of class seminars.

Text:
None.

References:
Wegner, Milestones in the History of Programming Languages.
Weinberg, The Psychology of Computer Programming.
Horowitz, Programming Languages: A Grand Tour.

Instructor:
J.R. Cordy

Prerequisites:
At least one undergraduate level course in the study of programming languages.
Some knowledge of automata theory and formal semantics (axiomatic or denotational).
Thorough knowledge of at least three distinct and preferably diverse modern
programming languages.

Outline:
1. History of Programming Languages (3 weeks)

A series of lectures and discussions led by the instructor on the early history and
comparative study of programming languages, emphasizing the evolution of
algorithmic notation and its relation to programming methodologies. This
section of the course will be based on material from Horowitz's Programming
Languages: A Grand Tour, in particular Wegner's paper Milestones in the
History of Programming Languages. The section will end with proposals from
students for new milestones in the spirit of Wegner from more recent history.

2. Design of Programming Languages (3 weeks)

Lectures and discussions led by the instructor on the general principles of
programming language design and the criteria by which a programming language
can be objectively evaluated. This section will be based on relevant material
from other disciplines including linguistics, the psychology of memory and
perception, industrial engineering and mathematics as well as the psychology of
computer programming. A primary reference for this section of the course

will be Weinberg's Psychology of Computer Programming. The section will end
with student presentations on specific design issues drawn from the literature.

3. Language Case Studies (3 weeks)

Case studies of specific programming languages and language features with

an aim to understanding the goals of the language and how the design attempts
to meet those goals. The section will end with student case studies for more
recent programming languages and features.

4. Student Project Seminars (3 weeks)

The remainder of the course will consist of seminars led by individual students
reporting the results of independent research projects in programming language
structure and design. Projects may include new language designs,
comparative or evaluative studies of languages for particular paradigms or
domains, proposals for new features or paradigms, and so on.




Goals:
All too often programming languages are considered only from the point of view of
vehicles to express algorithms for execution by a computer. In point of fact, computer
programs are read more by people than by machines, and thus their major role is as a
notation for communication between programmers. The goal of this course is foster the
study of programming languages in this more fundamental role, with an aim to
understanding the criteria by which programming languages can be designed and
objectively evaluated.

Bibliography on Programming Language Structure and Design:
As part of the course, students will be expected to contribute to an ongoing annotated
bibliography on programming language structure and design. Each member of the class
will research and submit written reports on at least six new articles of significant
interest in the area, assigned as two reviews for each part of the course. One of the two
submitted in each case will be formally presented to the class for open discussion.

Sources for this research will include relevant scientific journals such as
Communications of the ACM, ACM Transactions on Programming Languages
and Systems, Proceedings of the SIGPLAN Symposia on Principles of
Programming Languages, Proceedings of the IFIP Conference on System
Implementation Languages, Proceedings of the ACM Conference on Language
Design for Reliable Software, Proceedings of the ACM Conference on Language
Issues in Software Environments, IEEE Transactions on Software Engineering,
Proceedings of the ACM Conference on Atrtificial Intelligence and Programming
Languages, Proceedings of the International Conference on Software Language
Engineering, and so on.

Course Project:
Each member of the class will be expected to undertake a formal written independent
language design project on some relevant aspect of programming language design and
structure, and to make an oral presentation of their findings in the form of a seminar of
approximately one hour's length. If the class is large then projects will be undertaken in
teams of two. Projects involving significant original research will be encouraged, as will
projects that consist of simply researching the literature and intelligently distilling key
ideas for presentation.

Marking:
Marks will be assigned on the basis of a short midterm examination on the lecture
material, bibliography contributions, oral and written presentation of the course projects
and class participation. The midterm examination will be given in the first class following
completion of the two initial lecture series by the instructor. Students will be expected to
participate actively in seminars and class discussions.

Tentatively, marks will be divided in roughly the following proportions :

Midterm Examination 20%
Bibliography Contributions 20%
Course Project 50%

Class Participation 10%



