
SMITH845
Smith, B.C.;
Reflection and Semantics in Lisp;
Proceedings of ACM Symposium on Principles of Programing Languages
(May 1984).

This paper steps through the design of a dialect of Lisp containing
primitives that give a programmer the ability to manipulate control
structures in a manner similar to how most programming languages have
allowed the manipulation os data structures. The model used in this
Lisp dialect, known as 3-Lisp, is that of having an infinite tower of
processors, each processor executes the processor one level below
itself. Arguments are made that this infinite hierarchy is in fact
finitely and efficiently implementable, and code for a 3-Lisp processor
written in 3-Lisp is presented.

Although the idea of reflection or introspection is very old, it is only
recently that formalisms based on the concept have been presented. In
the last 20 years there had been intermittent attempts at such formalization,
but the only practical results before 3-Lisp was Weyhrauch’s FOL (First
Order Logic) language. Brian Smith is applying the ideas of reflective
hierarchies of processors in a procedural context, namely as an embedding
in a language that is traditionally thought of as self-descriptive (Lisp).
As he points out, the self-descriptive abilities of Lisp are still limited to
manipulating data structures; what is missing, and the contribution of
Smith’s reflective 3-Lisp is the ability to create new control structures
within the language. This capability is equivalent to what one could do
if the Lisp processor (interpretor) was written entirely in Lisp. In
practice this is a circular definition of the language, and therefore
impossible.

In order to build 3-Lisp, the author argues that an intermediate step is
desirable due to the semantic ambiguities of Lisp notation. The 2-Lisp
dialect of Lisp is constructed in a very orthogonal manner, drawing clear
distinctions between the use and the mention of a language object; Smith
calls 2-Lisp a "semantically rationalized" dialect. The important difference
from normal Lisp is that there are precise notations for making these
distinctions, and so the issue of semantic ambiguity does not cloud the
design of 3-Lisp.

With 2-Lisp in hand as a precise tool for self-description, a "reflective
tower" of 2-Lisp interpreters is constructed, each running the interpreter
below it in the hierarchy. The code at each level of the tower is
identical. 3-Lispthen, is essentially the reflective tower with an
infinite number of levels (i.e. in the limit).

The code at each level of the reflective tower is based on a simple
2-Lisp interpreter (corresponding to a read-eval-print loop in normal
Lisp), but extended to allow a user program access to the control
structure information. This escape capability is accomplished through
"reflective procedures" that are run one level higher that the level
of their invocation. Reflective procedures have all the facilities
of the language they are implementing (sic) available for use.



-2-

The paper gives examples of how traditionally hardwired functions
lik binding predicates, returns, quoting, and new function types can
be implemented in 3-Lisp with judicious use of reflective procedures.
With the appropriate hooks, thes (or very similar) capabilities are
available in traditional Lisp, however one example that demonstrates the
power of the model is the implementation of the THROW/CATCH construct in
3-Lisp. Thecapability of 3-Lisp that makes it possible, is that reflective
procedures have access to the environment, and, in this case more importantly,
the continuation of their invoking process. The THROW/CATCH pair
essentially just says to return to the continuation of the CATCH instead of
the continuation of the throw. The continuation can be thought of as the
embodiment of the future execution path from some point in the execution.

The ability to pass continuations and environments around as parameters
definitely provide much of 3-Lisps power. One objection to this kind of
computational model is that the programmer needs explicit knowledge of it
to be able to take advantage of its power. The answer to this objection
is that the power of a language that manipulates control structure
increases as the information about that control structure becomes more
fine-grained, and so it is not unreasonable to expect a correspondingly
better understanding of the model of computation by the programmer.

The thing that makes the reflection model implementable is that almost
all the levels of the reflective tower, except for a few at the bottom
that the user code accesses directly, will always be in the same state.
This means that most of the reflective tower can be simulated by a single,
slightly expanded, reflective processor. In fact, a couple of
implementations of 3-Lisp exist, but they are naturally slower than their
host language (Lisp) because they essentially provide another level of
interpretation between the machine language and the task.

The ideas with reflective programming certainly seem very different from
the traditional restrictions in programming languages, namely that only
data structures can be manipulated. What the author does with Lisp
(developing 3-Lisp) is not something unique to Lisp. The methods are
generally applicable although their formal statement will be less
clear. The ideas in 3-Lisp will show up in special-purpose AI languages
because of the elegance of being able to encode data and strategic
(control) knowledge similarly and using the same tools to develop the
two aspects of a problem.


