
 1

CISC 860: Course Project
A Case Study on TCL Language

By H. Shahriar

Abstract

The Tool Command Language (TCL) is a widely used command language in today’s
programming world. Although it was designed and developed around 1988, it is still
evolving through ongoing addition of features every year by an active community of
programmers and researcher. This project aims at understanding the original design
goals of TCL language, study the current features of TCL, and relate the features with
initial design goals. Moreover, an analysis has been performed to identify whether TCL
features violate any of general language design principles proposed by Weinberg. Our
study and analysis indicate that most TCL features came from other language features
and several features affects Weinberg’s language design principles. Still, TCL features
and implementation can be considered a success in realizing the initial design goals.

1. Introduction

 The Tool Command Language (TCL) was designed by John Ousterhout around the
year 1988. There are several motivations behind the development of TCL [1, 2]. First,
while working in a research lab at Berkley, Ousterhout observed that researcher built
their own tools for circuit design task. Each tool had its unique languages to invoke
commands. As a result, language for one particular tool cannot be used or extended to
another tool. However, a general purpose programmable command language can amplify
the power of a tool by allowing users to write programs in the command language to
extend a tool’s built-in facilities.
 Second, the number of interactive applications increased significantly (around 1988’s)
compared to the number of batch-oriented applications. Each new interactive application
requires a new command language to be developed. Although there were command
languages around that time such as UNIX shell, they tend to be tied to specific programs.
Moreover, application programmers do not have the time or inclination to implement a
general purpose command languages. As a result, command languages developed tend to
have insufficient power and clumsy syntax.
 To overcome these, John introduced the notion of “embeddable command language”
and implemented it in TCL language. The primary idea is that an interpreter will provide
a set of relatively generic facilities such as variables, control structures, and procedures.
On top of these features, an application can add its own features (or new commands).
 Although the development of TCL started around the Spring of 1988, the first version
of TCL came to public in 1990 through the USENIX winter conference [1]. The current
version of TCL is 8.6. TCL comes with a nice GUI based library called TK. This project
focuses on the TCL scripting language only. We address the following issues in details:

1. The design goals of TCL and the way TCL features meet these goals.
2. We discuss if any TCL feature is similar to other languages, any feature is entirely

new and influence future language.

 2

3. We analyze TCL language features with respect to language design principles
proposed by Weinberg [3]. These include uniformity, compactness, locality,
linearity, and tradition.

 The paper is organized as the following. Section 2 describes the overall design goals of
TCL, basic syntax of TCL, different features of TCL commands, relating design goals
with TCL features (i.e., syntax rules and commands). Section 3 relates TCL language
features with other programming languages, and discusses if TCL brings any new
features. In Section 4, we analyze several features of TCL based on Weinberg’s language
design principles that might affect TCL programming in a bug free manner. Finally,
Section 5 draws conclusions and future work of this project.

2. Design goals, syntax rules, and features of TCL

 This section is organized as following. Section 2.1 describes the design goals of TCL,
followed by the basic syntax rules of TCL in Section 2.2. Section 2.3 provides a brief
description of the different commands of TCL. Section 2.4 relates the features of TCL
with original design goals.

2.1 Design goals of TCL

 According to John Ousterhout, there are three design goals for the TCL language [1, 2].
First, the language must be very simple and generic so that it can work easily with
different applications and does not restrict features that applications can provide. The
reason behind this is because the language is for commands [1]. Most TCL programs will
be short and executed once or perhaps a few times, and then discarded. This goal also
emphasizes that the language should have a simple syntax so that it is easy to type
commands.
 Second, the language must be extensible so that an application can add its own features
in TCL language. Moreover, the application-specific features should appear natural, as if
they had been designed into the language from the start. In other words, the language
should permit a simple interface to applications implemented in other languages. It
should be easy for those applications to invoke TCL interpreter and extend TCL built-in
commands with application-specific commands. It enforces TCL to support data types
that are accepted to other language (e.g., string type is common in C). Moreover, this
design goal emphasizes that TCL is programmable, have simple set of syntax rules, and
contain general programming constructs such as variables, procedures, conditionals, and
loops. Therefore, users can extend built-in command sets by writing TCL procedures.
 Finally, since most of the interesting functionalities will come from applications, the
primary purpose of the language is to glue together the extensions. Therefore, TCL must
have good facilities for integration, and an efficient interpreter. The interpreting
mechanism of TCL commands must be fast enough to be usable for events that occur
very frequently, such as mouse motion. Moreover, the interpreter must not occupy much
memory, and handle internal details while integrating TCL interpreter with another
languages such as garbage collection.

 3

 The first and second goals provide the roadmap for syntactic and semantic notions of
TCL languages, while the third goal is more related to machine portability and
performance.

2.2 TCL Syntax rules

 TCL language has 11 simple rules that define the syntax and semantics [4]. These
minimal set of rules comply with the first design goal. We briefly describe them below:
(i) Commands: A TCL script consists of one or more commands separated by either
semi-colons or newlines, except when commands are enclosed with quotation and close
brackets. We describe these exceptions later in this section.
(ii) Evaluation: A command is evaluated in two steps. First, a TCL interpreter breaks the
command into words and performs substitutions of variables. The first word is considered
as a command and the remaining words are passed as arguments of a command (or
procedure). Commands might have their own interpreters for arguments.
(iii) Words: Words (or arguments) of a command are separated by white space, except
newline and semicolon, which are command separators.
(iv) Double quotes: If the first character of a word is a double-quote (''), the word must
be terminated by the next double-quote character. If semi-colons, close brackets, or white
space characters (including newlines) appear between the quotes, they are treated as
ordinary characters. Command substitution, variable substitution, and backslash
substitution are performed on the characters between the quotes. The start and end quotes
are not considered as part of a word.
(v) Braces: If the first character of a word is an open brace (i.e., {) then the word must be
terminated by a matching close brace (i.e., }). For each additional open brace located in a
word, there must be an additional close brace. However, an open brace or close brace
preceded by a backslash character is not counted as a matching close brace. There is no
substitution on the characters between the braces except for backslash-newline
substitutions. Moreover, semi-colons, close brackets, or white spaces do not have any
special interpretation. The word will consist of exactly the characters between the outer
braces, not including the braces themselves.
(vi) Command substitution: If a word resides in an open bracket (i.e., [) then TCL
performs command substitution. TCL interpreter is invoked recursively to process
characters following the open bracket as a TCL script until terminated by a close bracket
(i.e.,]). The result of the script (i.e., the result of its last command) is substituted into the
word in place of the brackets and all of the characters between them. There can be any
number of command substitutions in a single word.
(vii) Variable substitution: If a word contains a dollar sign ($) followed by one of the
forms described below, then TCL performs variable substitution. A variable substitution
can be one of the forms: $name (a scalar variable), $name(index) (an element of an array
named name at index), and ${name} (a scalar variable).
(viii) Backslash substitution: If backslashes (i.e. \) appear within a word, substitutions
occur (e.g., \n for newline or 0xA). Only a specific set of backslash characters are
substituted as described in [4].
(ix) Comments: TCL comments begin with a hash character (i.e., #).

 4

(x) Order of substitution: Each character is processed exactly once by a TCL interpreter
as part of words in a command. Substitutions occur from left to right. If command
substitution occurs then the nested command is processed entirely by recursive call to the
TCL interpreter. For example, command sequences set y [set x 0][incr x][incr x] will set
the variable y to the value 012.
(xi) Substitution and word boundaries: Substitutions do not affect word boundaries of
a command even if the value of a variable contains spaces.

2.3 Features of TCL built-in commands

 TCL is a scripting language where most of the language features are implemented by
set of built-in commands. These are often sufficient to do various programming tasks.
While we describe these built-in commands, we also highlight language design goals that
are obtained by commands.

Data types, variables, and assignment of variables
 There are two three basic data types namely numeric, string, and list. A variable needs
not be declared explicitly like other programming languages such as C. However, naming
convention of a variable is similar to ANSI C. Moreover, there are no static typing of
variables (i.e., a variable can take integer, float, and string type values). Assigning data
value to a variable is performed using the set command. Every variable stores value by
default as string type (aligned with the second design goals to extend of TCL with other
languages). For example, set name “John” command would assign the value John in the
variable name. We will discuss more about list data type and scoping rules of variables
later in this section.

Expression, operators, and operands
 A TCL expression consists of a combination of operands, operators, and parentheses. If
white space characters are used to separate between operands, operators, and parentheses,
then they are ignored by the expression command processor. The expr command
evaluates a list of arguments located in square brackets (e.g., expr [2 + 2]), and returns
the value. Various operators are allowed inside brackets such as math library functions
(e.g., sqrt(),cosh()), logical operators, and bitwise operators. For example, the command
set a [expr 3*10] assigns the value of variable a to 30. Operands are first interpreted as
integer values if possible; if not then a floating-point number; otherwise a string value.
TCL has all numeric format supported by ANSI C.
 As string is a basic data type, four operators perform textual comparison which include
eq (equality among two strings), ne (inequality among two strings), in (a string is in a
list), and ni (a string is not in a list). TCL has a ternary operator of the form x?y:z. Here, y
is evaluated, if x is true. Otherwise, z is evaluated.

Conditional statement
 TCL has an if command that supports single and nested if else like statement. The
general syntax is if expr1?then? body1 elseif expr2 ?then? body2 elseif ... ?else?
?bodyN?. If a test expression (e.g., expr1) is evaluated to true (i.e., any non zero numeric
value, ‘true’, or ‘yes’), the block corresponding to if will be executed. If a test expression

 5

is evaluated to false, then the word after body1 will be examined. If the next word is
elseif, then the next test expression will be tested as a condition. If the next word is else,
the final body will be evaluated as a command. The word else and then are optional.
Braces are used to group the body argument. Table 2.1 shows an example of if statement
(the left column), which results 1 is 1 in the console (the right column).

Table 2.1: Example of if commands
Program Output
set x 1
if {$x != 1} {
 puts "$x is != 1"
} else {
 puts "$x is 1"
}

1 is 1

 The syntax of switch command is switch string pattern1 body1? pattern2 body2? ... ?
patternN bodyN? Here, string is the string to test, and pattern1, pattern2, etc. are the
patterns that the string is compared to. If string matches a pattern then the associated code
body is executed. The command is flexible enough to compare both strings and integers.
If there is no default argument and no patterns are matched, the switch command will
return an empty string.

Loop commands
 TCL has two loop commands: while and for. The syntax for the while loop is while test
body. The command evaluates test as an expression. The code in body is executed, if test
is true. After the code is executed, test is evaluated again as long as test is evaluated as
true. Table 2.2 shows an example while loop (the left column) that prints the value of x
from 0 to 4.

Table 2.2: A while (left column) and for loop (right column) in TCL
while loop for loop
set x 0
while {$x < 5} {
 set x [expr {$x + 1}]
 puts "x is $x"
}

for {set x 0}{$x<5}{incr $x}{
 puts "x is $x"
}

 The general syntax of for loop is for start test next body, which is similar to C for loop.
It takes four arguments; an initialization (start), a test (test), an increment (next), and the
body of code (body) to evaluate on each pass through the loop. The right column of Table
2.2 shows an example for loop equivalent to the while loop of the left column. A break
within body will break out of the while loop, and execution will continue with the next
line of code after body. The continue statement within loop body will stop the execution
of the code and re-evaluate the test. TCL has a special command incr for incrementing
loop variable (incr varName?increment?). By default the command increases a variable
value by one.

 6

Addition of new commands
 One of the design goals (the second one) of TCL is that it must be extensible. The proc
command is a way to achieve this goal. The syntax for the proc command is proc name
args body. When proc is evaluated, it creates a new command with name name that takes
arguments args, and runs the code contained in body. An example of procedure creation
(sum) and its invocation is shown in the left column of Table 2.3. The bottom row of the
left column shows the output.
 In procedure, argument values are passed without creating any aliases. Argument
values can be set to default values (unlike Perl and similar to C++). For example, in the
right column of Table 2.3, arg2 has a default value 1. Arguments can also be specified as
required (e.g., arg1). Moreover, a procedure can accept variable number of arguments by
mentioning the last argument as args. In this case, arguments are considered as a string
list.

Table 2.3: Example of procedures having fixed and variable number of arguments
proc sum {arg1 arg2} {
 set x [expr {$arg1 + $arg2}];
 return $x
}
puts " Result = [sum 2 3]"

proc sum {required arg1 {arg2 1} args} {
 set x [expr {$arg1 + $arg2}];
 return $x
}
puts "Result = [sum 10]”

Output: Result = 5 Output: Result = 11

Variable scope changes
 By default a variable is local with respect to the block where it is defined (e.g., in a loop
body, procedure body, etc.). However, there are two commands to change variable’s
scope: global and upvar. The global command allows accessing and modifying a variable
declared in main code from a procedure. The upvar command can be considered similar
to call by reference in a procedure. It ties the name of a variable in the current scope to a
variable in a different scope. The syntax for upvar is upvar ?level? otherVar1 myVar1...
?otherVarN myVarN? Here, the command causes myVar1 to become a reference to
otherVar1, and so on. The otherVar variable is declared to be at level relative to the
current procedure. By default level is 1, which is the next level up (or the procedure that
invoked the current procedure). If the level number is preceded by a # symbol, it
references that many levels down from the global scope. If level is #0, the reference is to
a variable at the global level.

Procedure scope changes
 The uplevel command executes a script in a different stack frame. The syntax of the
command is uplevel ?level? arg1 ?arg2 ...?, which concatenates all the arguments and
evaluates in the variable context indicated by level. It was intended to create custom
control structures in procedural calls. For example, suppose that procedure x is invoked
from top-level, and it calls y, which calls z. Suppose that z invokes the uplevel command
uplevel 1 {set x 43; p}. This results in setting 43 to x in the context of procedure y (that is
one level up of current procedure) followed by invocation of procedure p. The uplevel
command causes the invoking procedure to disappear from the procedure calling stack
while the command is being executed.

 7

Variable deletion
 The unset command removes a variable definition. The syntax is unset ?name1
?name2?..., which deletes variables name1, name2, etc.

List data structure
 The list is a basic TCL data structure (similar to Awk, Perl, and Lisp language). A list is
an ordered collection of elements. Several commands facilitate list manipulation such as
accessing an element using index (lindex), obtaining length (llength), and adding
elements (linsert).

String subcommands
 Several built-in commands facilitate high level string manipulation in TCL. These
include obtaining string length (string length), accessing an element through index (string
index), extracting a substring between two indexes (string range), comparing two strings
(string compare), identifying the first and last occurrence location of a substring (string
first and string last), and matching pattern (string match pattern). Strings can be
formatted using the format command, which is similar to sprintf function of ANSI C.

Regular expressions
 There are also two commands for parsing regular expressions: regexp and regsub. The
syntax for regexp is regexp?switches?exp string?matchVar? ?subMatch1 ... subMatchN?.
Here, a string (string) that matches a regular expression (exp) is copied to matchVar. If
subMatchN variables exist, then the parenthetical parts of the matching string are copied
to the subMatch variables, working from left to right. The Regsub command not only
matches an expression, but also substitutes the matched string with a new one. The syntax
is regsub?switches? exp string subSpec varName, where an expression (exp) is searched
in a string. If there is a match, then it is replaced with subSpec. The result is copied in
varName.

Associative array
 Like most scripting languages (Perl, Python, PHP), TCL supports associative arrays
(also known as hash tables), where indexes of arrays cab be strings. There are several
commands to access, create, and modify an array (through array command). Table 2.4
shows a list of commands with brief description.

Table 2.4: Several commands related to associative array
Command Brief description
array exists arrayName Returns 1 if arrayName is an array variable;

otherwise, the command returns 0.
array names arrayName ?pattern Returns a list of the indices for the associative

array arrayName.
array size arrayName Returns the number of elements in array

arrayName.

 8

File access
 TCL has several commands to open, access, and modify files that are similar to C
library function calls. The simplest methods to access a file are via gets and puts. For
large amount of data to be read, it is possible to load an entire file in a string, and then
parse the string with the split command.

Running external commands and catching error
 Applications implemented in other languages can be executed by open and exec
command. The open command runs a new program with an I/O connected to a file
descriptor. If the first character in the file name argument is a pipe symbol (|), then open
will treat the rest of the argument as a program name, and run that program with the
standard input or output connected to a file descriptor. This pipe can be used to read
output from other program or to write fresh input data to it.
 The exec command invokes a program as a sub-process (similar to invoke an
application from shell). It supports output redirection. Note that if a command in exec call
fails, it returns an error and the error output includes the last line describing the error. The
exec considers any output to standard error an indication of external program failure. This
assumption often results in wrong conclusion that error occurred. The workaround is to
either write to standard error indicating that this not an error or guard against this using
the catch command. The catch command helps to catch errors and write error handling
code. Table 2.5 shows an example of using exec and catch commands, where error
identified through catch does not represent a true error. A failure can be understood by
inspecting the global errorInfo variable.

Table 2.5: A sample program showing exec and catch commands
if { [catch { exec ls *.tcl } msg] } {
 puts "Something seems to have gone wrong but we will ignore it"
}

Executing scripts with eval
 TCL allows executing one or more lines of script through the eval command. For
example, let us consider the command, eval [list exec ls -l] [glob *.tcl]. In this case, the
eval command takes two arguments enclosed in brackets, which together comprise a
script. The script is passed to interpreter. The glob command returns a list of files that are
tcl type. Finally, eval returns all file names as a list structure.

Integrating TCL with other languages
 TCL can be extended or embedded [5, 6, 7]. The extension means that new commands
implemented in other languages (e.g., C) can be run with TCL interpreter just like it’s a
built-in command in TCL. Embedding implies that TCL script can be invoked run from
other languages through suitable API library functions. We describe both of the
approaches in brief below for C programming language, although embedding and
extension can be done with other languages such as C++, FORTRAN, and Java.

TCL commands implemented in C: The C code that implements a TCL command is
called a command procedure. The interface to a command procedure takes an array of

 9

values as inputs in a main method that corresponds to the arguments in the TCL script
command. The result of the command procedure becomes the result of the TCL
command. There are two kinds of command procedures: string-based and object-based.
We discuss the string-based interface.
 Strings are generalized into the Tcl_Obj type, which can be a string or another native
representation like an integer, floating number. Conversions between strings and other
types are done in a lazy fashion, and the saved conversions help your scripts run more
efficiently. One can set and query TCL variables from C using the Tcl_SetVar and
Tcl_GetVar procedures. The Tcl_LinkVar procedure creates an alias of a TCL variable
with a C variable. Tcl_Invoke is used to invoke a TCL command without the parsing and
substitution overhead of Tcl_Eval. The string-based interface to a C command procedure
is much like the interface to the main program.
 A command implemented in C needs to be registered with TCL interpreter using the
command, Tcl_CreateCommand (interp, data, "cmd", CmdProc, DeleteProc). Here,
interp is an instance of TCL interpreter (Tcl_Interp *), data is client data pointer, cmd is a
TCL command, and CmdProc is the implementation of cmd in C. The DeleteProc is
called when the command is destroyed (i.e., when the TCL interpreter is deleted). When
cmd is invoked, TCL calls CmdProc as follows: CmdProc (data, interp, argc, argv). The
arguments from the TCL command are available as an array of strings (argv parameter)
and argc parameter holds total number of arguments. Table 2.6 shows an example C
program that implements a TCL procedure named same, where the actual C
implementation is the function equal.

Table 2.6: An example implementation of TCL command in C
#include <stdio.h>
#include <tcl.h>

int equal (ClientData cdata, Tcl_Interp *ipointer, int argc, Tcl_Obj *CONST argv[]) {
 if (strcmp (eq_argv[1],eq_argv[2]) == 0) {
 ipointer->result = "1";
 } else {
 ipointer->result = "0";
 }
 return TCL_OK;
}
main (int argc, char *argv[]) {
 Tcl_Interp *myinterp;
 int status;
 myinterp = Tcl_CreateInterp();
 Tcl_CreateCommand (myinterp,"same",equal, (ClientData) NULL, (Tcl_CmdDeleteProc *) NULL);
 status = Tcl_Eval (myinterp,argv[1]);
}

 We note that extending TCL command set using native implementation language also
servers the third design principles (i.e., gluing together TCL extension with host
application) as TCL shell (created by Tcl_CreateInterp function) handles the details of
startup and shutdown, and it provides an interactive console.

 10

Embedding TCL scripts in C: TCL script code can be embedded and evaluated inside a
C application, which means that script code can be executed from C through standard
API function Tcl_Eval. As before, an instance of interpreter has to be created. Table 2.7
shows an example C program that executes two lines of TCL script: set a [expr 5*8] and
puts $a.

Table 2.7: An example of embedding TCL scripts in C
#include <stdio.h>
#include <tcl.h>
main (int argc, char *argv[]) {
 Tcl_Interp *myinterp;
 char *action = "set a [expr 5 * 8]; puts $a";
 int status;
 myinterp = Tcl_CreateInterp();
 status = Tcl_Eval (myinterp, action);
}

2.4 Relationship between TCL features and design goals

 In this section, we relate TCL language syntaxes and commands with the initial design
goals. There are three design goals that include simplicity and generality of TCL,
extensibility, and capability of gluing together extension with TCL interpreter (already
discussed in Section 2.1). A brief summary of the relationship between the three goals
and features is shown in Table 2.8.
 The first design goal includes two parts simplicity and generic language. The simplicity
lies within minimum set of syntax rules (11 rules discussed in Section 2.2). TCL is also
generic due to its rich set of built in commands. These include commands for structured
programming (expression evaluation, loop, if, switch), data manipulation (list and
associative array processing, regular expression, file operation), and the built in rich data
structure (list, associative array). Like any generic language, TCL provides necessary
mechanism to define procedure, accessing global variables, creating aliases, as well as
creating arbitrary accessing of procedure no matter where it is located in the stack. All
these features make it generic and simple.
 The second design goal (easy to extend TCL) is achieved by three ways. First, the proc
command generates new TCL commands written in TCL language. Second, rich set of
API library functions in other language such as C makes it possible to implement TCL
command in another language followed by running them from TCL interpreter (shown in
Section 2.3). Third, TCL script code can be run in another implementation language. We
notice that arguments passing between TCL and other languages are done with Tcl_Obj
objects that can capture any primary data types not only for TCL but also for other
languages. Therefore, TCL is successful in terms of extensibility as a design objective.
 The third design goal is satisfied with several features of TCL interpreter. A TCL
interpreter handles internal startup and shutdown procedure during command invocation.
TCL interpreter also performs several hectic low level tasks such as garbage collection.
Therefore, programmers can only write the functional code as required. Even when a new
TCL command is executed from other languages, interpreter states can be accessed and

 11

controlled from the implementation language. Thus TCL glues together the extension
efficiently.

Table 2.8: Mapping between TCL design goals and language features
Design goals Features
Simple and generic
language

1. Fewer syntax rules.
2. Structured programming like loop and nested if
condition.
3. Data type manipulation facilities through rich set of
operators (e.g., string comparison, list enumeration), and
file handling.
4. Procedure (proc) declaration and aliasing (upvar).
5. Advanced control structure through uplevel command.

The language must be
extensible

1. Extension of TCL built-in command through proc
command.
2. Extension by having command implementation in
other implementation language and register them as TCL
commands.
3. Embedding TCL script code and run them with TCL
interpreter in an application implemented in another
language.
4. Data types passing between TCL and other languages
are passed as a generic Tcl_Obj to wrap almost all native
data types into TCL types and vice versa.

Gluing together extension 1. Handling of startup and shutdown of TCL shell
(Tcl_CreateInterp function) as well as other low level
tasks such as garbage collection.
2. Conversion of data type to its nearest possible types
with expression evaluator.
3. Accessing and controlling of interpreter states with
API functions.

 3. Comparing TCL features with other languages

 This section describes features of TCL that are similar to other programming or
scripting languages. We also discuss if any feature is novel in TCL that has not appeared
in other languages or influence any future programming language.
 Table 3.1 shows a non-exhaustive summary of TCL features that are similar to other
previous languages. Array indexing using parenthesis in TCL is similar to FORTRAN
language. The list data structure and list processing features mainly follows the Lisp
language. The uplevel command in TCL is similar to LIST macros. The basic notion that
every data is by default a string is derived from the TRAC language. Several features
such as command separation by semicolon or newline, using ‘#’ character as comment
marker, grouping of words using quotations have been taken from the Multics command
language. The upvar feature is similar to pass by name in Algol68. The regular

 12

expression, pattern matching, and associative array features are common to the Awk
language.

Table 3.1: Relation between TCL features with other languages
Language Year Features
Assembler 1950 1. incr command.
FORTRAN 1954 1. Parenthesis as marker for array elements.
LISP 1958 1. list as a primary data structure.

2. High level operators for list manipulation.
3. Polish prefix notation, command is always first word.
4. uplevel (LISP macros)

TRAC (Text Reckoning
and Compiling)

1960 1. Everything is a string and the environment is a string to
string mapping.

Multics Command
Language

1965 1. Separation of commands by semicolon or newline and
separation of parameters by whitespaces.
2. # as comment marker.
3. Grouping of words with double quotation.

Algol68 1968 1. pass by name (upvar).
Awk 1970 1. regular expressions, [regexp], [regsub].

2. Associative array from Awk.
ANSI C 1972 1. for and while loop.

2. fopen, fputs, fgets, and fclose (TCL has similar name except
the leading f).
3. sprintf like formatting by the format string syntax in TCL.
4. Putting code blocks in braces.

UNIX tools 1978 1. expr command and dash as switch marker.
Bourne family of shells 1987 1. Expansion of variables with $.

 Since TCL has been implemented in ANSI C, many features are similar to C. For
example, string formatting (sprintf like function), for and while loop structure, and file
processing commands work like C language. Moreover, loop and if-else structure body
are written in braces in TCL (similar to C as well). Before TCL language was developed,
UNIX already had a tool that evaluated expressions using expr, although in TCL the expr
process is more powerful. Replacing a variable with its value through the use of ‘$’
symbol is common in Bourne shell family. It can be inferred that almost all the features
of TCL are brought from previous languages.

4. TCL features and Weinberg’s language design principle

 Weinberg [3] addressed several language design principles that affect programmers
while learning a new language and correctly writing code. Sometimes, bugs remain
silent, and programmers need considerable time to discover the problems and
workaround solutions. These include uniformity, compactness, locality, linearity,
tradition, and innovation. We describe the first five principles for TCL features in Section
4.1 to 4.5.

 13

4.1 Uniformity
 Lack of uniformity implies inconsistencies among syntaxes of a language. Weinberg
defined it as “the same things should be done in the same way whenever they occur”. We
observe several features of TCL violate uniformity, which are mainly based on its syntax
and command features.
(i) Passing argument to procedures: In TCL, as long as arguments are scalar (i.e.,
numeric or string), their values are passed without any problem. However, if an argument
is array data type, then an alias of the array must be created by using upvar command
inside a procedure. Table 4.1 shows two examples of this non uniform argument passing
to procedures. The program in the left column results in error. The right hand column
shows a correct way to pass array in the proc print12.

Table 4.1: Non uniform rule for passing array to procedures
Code that does not pass array Code that passes array
proc print12 {a} {
 puts "$a(1), $a(2)"
}
set array(1) "A"
set array(2) "B"
print12 $array

proc print12 {array} {
 upvar $array a
 puts "$a(1), $a(2)"
}
set array(1) "A"
set array(2) "B"
Print12 array

Output: can't read "array":
variable is array

Output: A, B

(ii) Quoting hell: The test expression following if can be enclosed within quotes or
braces (the left column of Table 4.2) or not (the right column of Table 4.2). The
expression is evaluated just like an expr command if inside quotes. However,
programmers must be careful in this case. If expression is enclosed within braces, it will
be evaluated within the if command, and if enclosed within quotes it will be first
substituted before evaluated. The additional substitution might result in unwanted errors.
For example, the program example shown in the right column of Table 4.2 will end up
stopping just evaluating the condition expression due to additional substitution. In
contrast, the left column will show the result “$x is 1”.

Table 4.2: Example of if commands
If expression with braces If expression with quotes
set y x
if {"$$y != 1"} {
 puts "$$y is != 1"
} else {
 puts "$$y is 1"
}

set y {[exit]}
if "$$y != 1" {
 puts "$$y is != 1"
} else {
 puts "$$y is 1"
}

Output: $x is 1 Output: Script stops!

(iii) Catching error is not error sometimes: The catch command does not always
distinguish between actual error and a script in progress. Let us assume the following

 14

script code: exec f77 -o myprog myprog.f. Here, two cases might appear: (i) the file
myprog.f does not exist, or (ii) exist. The first and second rows of Table 4.3 show the
same program running without and with the file myff2.f. By observing the corresponding
outputs (the second column), it is clear that the return value of the catch command is 1 in
both cases. The only distinguishing mechanism is by looking at the value of errorCode.

Table 4.3: Example error messages while using catch command
Program Output
set rc [catch { exec f77 -c myff2.f } msg]
 set errc $errorCode; set erri $errorInfo
 puts "rc: $rc"
 puts "errc: $errc"
 puts "erri: $erri"
 puts "msg: $msg"

rc: 1
errc: CHILDSTATUS 7612 1
erri: myff2.f:
 Error: Cannot open file myff2.f
 while executing
 "exec f77 -c myff2.f "
msg: myff2.f:
 Error: Cannot open file myff2.f

Same as above rc: 1
errc: NONE
erri: myff.f: myff:
 while executing
 "exec f77 -c myff.f "
msg: myff.f:
 myff:

3.2 Compactness
 Compactness criterion is judged by different features of a language which allow
expressing statements more concisely. We observe that TCL has several interesting
features that go in favor of compactness. These can be found through the rich command
sets.
(i) Several high level operations on complex data structures are done just like scalar
variables. For example, it is possible to convert a list structure (dataList) into associative
array (named by arrayName) by using the command array set arrayName dataList. Each
element of a list can be iterated easily by foreach command (foreach varname list body).
The lsort and lrange commands sort lists and provide a subset of lists, respectively.
(ii) The x?y:z operator concisely express if-then-else statement. Moreover, the incr
command increases a variables value by 1.
(iii) Forcing a variable to become float can be done by appending a dot at the end of an
operand as opposed to use an explicit float function. For example: set x 1; set j 2; expr
$x/$j. will result in 0.5. The alternative way is to use expr { $x / double($j) }.

4.3 Locality
 The locality feature can be justified by features of the language which allows a
programmer to find all parts of a code in the same place. Otherwise, one needs to go back
and forth for finding any variable or function declaration. TCL has several features which
allows better locality.
(i) There is no explicit variable declaration and typing. So, a variable can be set or reset
when required and it exists with its current local scope such as loop, if, and proc.

 15

(ii) There is no need to have a forward declaration of procedures in TCL. It can reside
anywhere in the source file.

4.4 Linearity
The linearity feature justifies how easily a program can be understood by reading it
sequentially. It is well understood that branching, goto, etc. causes difficulty in
understanding a program. TCL has no goto related command. However, the uplevel
command allows arbitrary control structure among procedure calls. This command
affects linearity considerably.
 Multiple substitution rules related to brackets and quotes hamper linearity, especially
when an expression is written in double quote. For example, the left column of Table 4.4
results in a syntax error. Here, the interpreter assumes that the first word is a command in
if, and it calls that command, passing other words as arguments. The if command treats its
first argument as an expression. The expression has seven arguments separated by spaces.
The expr command will try to perform its own set of substitutions. This causes an error,
because the string contains unbalanced braces and brackets. This is the effect of multiple
substitutions that result annoying syntax errors and often makes it difficult to understand
program.

Table 4.4: Example TCL programs having syntax error and no error
Incorrect version Correct version
set myString "This is a string with \[special
characters\}"
 if $myString=="" {puts "empty string"} …

set myString "This is a string with \[special
characters\}"
if {$myString==""} {puts "empty string"} …

4.5 Tradition
 Tradition identifies whether any language syntax or design principles are considered
usual with respect to other languages. Several features are brought from contemporary or
past language as a tradition. For example, TCL accepts white space character as argument
separator. Moreover, it does not differentiate between single and multiple space
characters. Statements are separated by new line characters or semicolon. We have
discussed features similar to previous language in Section 3. Here, we discuss some more
features that are not related to traditional languages.
(i) Closing braces in if and loop command: When braces are used for grouping, the
newline is not treated as the end of a TCL command. However, the opening brace must
be on the line with the for command. Otherwise, the TCL interpreter treats the close of
the next brace as the end of the command, and it results an error. This is different than
other languages like C or Perl, where it doesn't matter where you place your braces.
(ii) White space is often significant: Extra space characters matters in most of the
commands as they are used for separating arguments. For example: while{$x<5}{ will
result in syntax errors as the entire string is considered as one word. In contrast, in C,
C++, or Java, it does not matter whether one places spaces or not after while word. Thus
TCL parser is more sensitive to white space than, say, the C compiler. With no white
spaces between the braces and keywords, TCL treats the entire character string as a
potential command.
(iii) Indexing in list: In list data structure, indexing starts from 0, not from 1 (Similar to
C).

 16

5. Conclusion and future work

 This project studies the original design goals of a popular scripting language named
TCL (Tool Command Language). We identify three design principles of TCL that
include simple and generic language, ability to extend through other languages, and easy
gluing together the extension with the language. These goals have been fulfilled by a
small set of syntax rules, rich built-in set of command libraries that include structured
programming notions, rich data structures and their manipulation. We also notice that
TCL command features are blend of other previous languages. Moreover, extending
command sets in TCL through other languages are flexible and easy; many lower level
tasks such as garbage collection are not dealt by programmer. These combined features
make TCL a powerful, generic purpose, and extendable command language.
 We analyze TCL language syntaxes and related command features against language
design principles (proposed by Weinberg) such as uniformity, compactness, locality,
linearity, and tradition. While TCL has some nice appealing features, some of them
violate these design principles. These are primarily due to multiple parsing of words,
multiples substitutions, incorrect use of quotations and braces, and conservative
assumption on error catching. Instead of these limitations, we can infer that the original
goal of having an embeddable command language has been achieved by its design and
related features.
 The future work of this project is to study more features of TCL to identify if they
strengthen or weaker original design principles. The work is not an exhaustive analysis
TCL as the language itself is evolving in terms of novel features and commands every
year. It is also important to analyze novel features of TCL against general language
design principles. Furthermore, it will be interesting to explore whether inherent features
and design of TCL make it as a milestone in programming languages.

6. References
[1] John K. Ousterhout, “Tcl: An embeddable Command Language”, Proceedings of
Winter USENIX Conference, 1990, pp. 133-146.
[2] John Ousterhout, “History of TCL”, May 2008, Accessed from
www.tcl.tk/about/history.html,
[3] Gerald Weinberg, The Psychology of Computer Programming, Dorset House
Publishing, 1998.
[4] TCL Built-In Command, Accessed from http://www.tcl.tk/man/tcl8.4/TclCmd
[5] TCL Command Writing, Accessed from http://psg.com/~joem/CmdWrite.html
[6] Writing TCL-based Applications in C, Accessed from http://wiki.tcl.tk/2265
[7] C Programming and TCL, Accessed from www.beedub.com/book/3rd/Cprogint.pdf

