IEEE TRANSACTIONS ON COMPUTERS, VOL. C-25, NO. 12, DECEMBER 1976

1207

Programming Languages—The First 25 Years

PETER WEGNER

Abstract—The programming language field is certainly one of
the most important subfields of computer science. It is rich in
concepts, theories, and practical developments. The present paper
attempts to trace the 25 year development of programming lan-
guages by means of a sequence of 30 milestones (languages and
concepts) listed in more or less historical order. The first 13 mile-
stones (M1-M13) are largely concerned with specific programming
languages of the 1950’s and 1960’s such as Fortran, Algol 60, Cobol,
Lisp, and Snobol 4. The next ten milestones (M14-M23) relate to
concepts and theories in the programming language field such as
formal language theory, language definition, program verification,
semantics and abstraction. The remaining milestones (M24-M30)
relate to the software engineering methodology of the 1970’s and
include a discussion of structured programming and the life cycle
concept. This discussion of programming language development
is far from complete and there are both practical developments
such as special purpose languages and theoretical topics such as
the lambda calculus which are not adequately covered. However,
it is hoped that the discussion covers the principal concepts and
languages in a reasonably nontrivial way and that it captures the
sense of excitement and the enormous variety of activity that was
characteristic of the programming language field during its first
25 years.

Index Terms—Abstraction, assemblers, Algol, axioms, Cobol,
compilers, Fortran, Lisp, modularity, programming languages,
semantics, structures programming, syntax, verification.

I. THREE PHASES OF PROGRAMMING LANGUAGE
DEVELOPMENT

HE 25 year development of programming lan-

guages may be characterized by three phases corre-
sponding roughly to the 1950’s, 1960’s, and 1970’s. The
1950’s were concerned primarily with the discovery and
description of programming language concepts. The 1960’s
were concerned primarily with the elaboration and anal-
ysis of concepts developed in the 1950’s. The 1970’s were
concerned with the development of an effective software
technology. As pointed out in [96], the 1950’s emphasized
the empirical approach to the study of programming
language concepts, the 1960’s emphasized a mathematical
approach in its attempts to develop theories and general-
izations of concepts developed in the 1950’s, and the 1970’s
emphasized an engineering approach in its attempt to
harness concepts and theories for the development of
software technology.

Manuscript received September 3, 1976; revised August 23, 1976. This
work was supported in part by the AFOST, the ARO, and the ONR under
Contract N00014-76-C-0160. '

The author is with the Division of Applied Mathematics, Brown Uni-
versity, Providence, RI 02912.

1950-1960 Discovery and Description

A remarkahly large number of the basic concepts of
programming languages had been discovered and imple-
mented by 1960. This period includes the development of
symbolic assembly languages, macro-assembly languages,
Fortran, Algol 60, Cobol, IPL V, Lisp, and Comit [72]. It
includes the discovery of many of the basic implementation
techniques such as symbol table construction and look-up
techniques for assemblers and macro-assemblers, the stack
algorithm for evaluating arithmetic expressions, the acti-
vation record stack with display technique for keeping
track of accessible identifiers during execution of block
structure languages, and marking algorithms for garbage
collection in languages such as IPL V and Lisp.

This period was one of discovery and description of
programming languages and implementation techniques.
Programming languages were regarded solely as tools for
facilitating the specification of programs rather than as
interesting objects of study in their own right. The devel-
opment of models, abstractions, and theories concerning
programming languages was largely a phenomenon of the
1960’s.

1961-1969 Elaboration and Analysis

The 1960’s were a period of elaboration of programming
languages developed in the 1950’s and of analysis for the
purpose of constructing models and theories of program-
ming languages.

The languages developed in the 1960’s include Jovial,
PL/I, Simula 67, Algol 68, and Snobol 4. These languages
are, each in a different way, elaborations of languages de-
veloped in the 1950’s. For example, PL/I is an attempt to
combine the “good” features of Fortran, Algol, Cobol, and
Lisp into a single language. Algol 68 is an attempt to gen-
eralize, as systematically and clearly as possible, the lan-
guage features of Algol 60. Both the attempt to achieve
greater richness by synthesis of existing features and the
attempt to achieve greater richness by generalization have
led to excessively elaborate languages. We have learned
that in order to achieve flexibility and power of expression
in programming languages we must pay the price of greater
complexity. In the 1970’s there is a tendency to retrench
towards simpler languages like Pascal, even at the price of
restricting flexibility and power of expression.

Theoretical work in the 1960’s includes many of the
basic results of formal languages and automata theory with

1208

applications to parsing and compiling [1]. It includes the
development of theories of operational and mathematical
semantics, of language definition techniques, and of several
frameworks for modeling the compilation and execution
process [26]. It includes the development of the basic ideas
of program correctness and program verification [54].

Although much of the theoretical work started in the
1960’s continued into the 1970’s, the emphasis on theo-
retical research as an end in itself is essentially a phe-
nomenon of the 1960’s. In the 1970’s theoretical research
in areas such as program verification is increasingly mo-
tivated by practical technological considerations rather
than by the “pure research” objective of advancing our
understanding independently of any practical payoff.

In the programming language field the pure research of
the 1960’s tended to emphasize the study of abstract
structures such as the lambda calculus or complex struc-
tures such as Algol 68. In the 1970’s this emphasis on ab-
straction and elaboration is gradually being replaced by
an emphasis on methodologies aimed at improving the
technology of programming.

1970-2 Technology

During the 1970’s emphasis shifted away from “pure
research” towards practical management of the environ-
ment, not only in computer science but also in other sci-
entific areas. Decreasing hardware costs and increasingly
complex software projects created a “complexity barrier”
in software development which caused the management
of software-hardware complexity to become the primary
practical problem in computer science. Research was di-
rected away from the development of powerful new pro-
gramming languages and general theories of programming
language structure towards the development of tools and
methodologies for controlling the complexity, cost, and
reliability of large programs.

Research emphasized methodologies such as structured
programming, module design and specification, and pro-
gram verification [41]. Attempts to design verifiable lan-
guages which support structured programming and mod-
ularity are currently being made. Pascal, Clu, Alphard,
Modula, and Euclid are examples of such “methodology-
oriented languages.”

The technological, methodology-oriented approach to
language design results in a very different view of what is
important in programming language research. Whereas
work in the 1960’s was aimed at increasing expressive
power, work in the 1970’s is aimed at constraining ex-
pressive power so as to allow better management of the
process of constructing large programs from their com-
ponents. It remains to be seen whether the management
of software complexity can be substantially improved by
imposing structure, modularity, and verifiability con-
straints on program construction.

II. MILESTONES, LANGUAGES, AND CONCEPTS

The body of this paper outlines in greater detail some
of the principal milestones of programming language de-
velopment. The milestones include the development of

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

specific programming languages, and the development of
implementation techniques, concepts and theories.

The four most important milestones are probably the
following ones.

Fortran, which provided an existence proof for higher
level languages, and is still one of the most widely used
programming languages.

Algol 60, whose clean design and specification served as
an inspiration for the development of a discipline of pro-
gramming languages.

Cobol, which pioneered the development of data de-
scription facilities, was adopted as a required language on
department of defense computers and has become the
most widely used language of the 1970’s.

Lisp, whose unique blend of simplicity and power have
caused it to become both the most widely used language
in artificial intelligence and the starting point for the de-
velopment of a mathematical theory of computation.

We shall consider about 30 milestones, and use this
section as a vehicle for presenting a brief history of the
programming language field. The milestones can be split
into three groups. Milestones M1-M13 are concerned
largely with specific programming languages developed
during the 1950’s and 1960’s. Milestones M14-M23 con-
sider certain conceptual and theoretical programming
language notions. Milestones M24-M30 are concerned
with programming languages and methodology of the
1970’s.

M1—The EDVAC report, 1944 [81]: This report, writ-
ten by Von Neumann in September 1944, contains the first
description of the stored program computers, subsequently
called Von Neumann machines. It develops a (one address)
machine language for such computers and some examples
of programs in this machine language.

M2—Book by Wilkes, Wheeler, and Gill, 1951 [83]: This
is the first book on both application software and system
software. It discusses subroutines and subroutine linkage,
and develops subroutines for a number of applications. It
contains a set of “initial orders” which act like a sophisti-
cated loader, performing decimal to binary conversion for
operation codes and addresses, and having relative ad-
dressing facilities. Thus, the basic idea of using the com-
puter to translate user specified instructions into a con-
siderably different internal representation was already
firmly established by 1951.

M3—The development of assemblers, 1950-1960: The
term “assembler” was introduced by Wilkes, Wheeler, and
Gill [83] to denote a program which assembles a master
program with several subroutines into a single run-time
program. The meaning of the term was subsequently
narrowed to denote a program which translates from
symbolic machine language (with symbolic instruction
codes and addresses) into an internal machine represen-
tation. Early assemblers include Soap, developed for the
IBM 650 in the mid 1950’s and Sap developed for the IBM
704 in the late 1950’s.

The principal phases of the assembly process are as
follows:

1) scanning of input text;
2) construction of symbolic address symbol table;

WEGNER: PROGRAMMING LANGUAGES

3) transliteration of symbolic instruction and address
codes;
4) code generation.

The first assemblers were among the most complex And
ingeneous programs of their day. However, during the
1960’s the writing of assemblers was transformed from an
art into a science, so that an assembler may now be re-
garded as a “simple” program. The development of an
implementation technology for assemblers was an essential
prerequisite to the development of an implementation
technology for compilers.

Md4—Macro assemblers, 1955—-1965: Macro-assemblers
allow the user to define “macro-instructions” by means of
macro-definitions and to call them by means of macro-
calls. A macro-facility is effectively a language extension
mechanism which allows the user to introduce new lan-
guage forms (macro-calls) and to define the “meaning” of
each new language form by a macro-definition.

A macro-assembler may be implemented by generalizing
phases 2 and 3 of the previously discussed assembly pro-
cess. Phase 2 is generalized by construction of an additional
symbol table for macro-definitions. Phase 3 is generalized
by requiring table look-up not only for symbolic instruc-
tion and address codes but also for macro-calls. The table

.look-up process for macro-calls is no longer simple tran-
sliteration, since the determination of a macro-value may
involve parameter substitution and nested macro-calls.
However, the implementation technology for macro-as-
semblers may be regarded as an extension and generali-
zation of the implementation technology for assemblers.
The seminal paper on macro-assemblers is the paper by
Mcllroy [54]. A discussion of implementation technology
for macro-assemblers is given in [84].

Macro-systems may be generalized by relaxing restric-
tions on the form of the text generated as a result of a
macro-call. Macro-systems which allow the “value” of a
macro-call to be an arbitrary string (as opposed to a se-
quence of machine language instructions) are called
macro-generators. Trac [55] is an interesting example of
a macro-generator.

Macro-systems may be generalized even further by
generalizing the permitted syntax of macro-calls. Waite’s
Limp system [85] and Leavenworth’s syntax macros [52]
are early examples of such generalized macro-systems.
Macro-systems of this kind are useful for implementing
language preprocessors which translate statement forms
and abbreviations of an “extended language” into a “strict
language” which generally has a smaller vocabulary but
is more verbose.

Generalized macro-systems may be implemented by
macro-definition tables which are constructed and used
in precisely the same way as for macro-assemblers. Gen-
eralized macro “values” require more general macro-body
specifications in the macro-definition table while more
general syntax for macro-calls requires a more sophisti-
cated scanner for recognizing macro-calls in the source
language text.

Assembly and macro-languages have been discussed in
some detail because they illustrate how a simple language
idea (the idea of transliteration) backed up by a simple

1209

implementation mechanism (the symbol table) leads to a
class of simple languages (symbolic assembly languages)
and how progressive generalization of the language idea
together with a corresponding generalization of the im-
plementation technology leads to progressively more
complex classes of languages. This example is useful also
because it illustrates how the language and implementa-
tion mechanism for assemblers are related to the language
and implementation mechanisms for compilers.

Mb5—Fortran, 1954-1958 [27]: Fortran is perhaps the
single most important milestone in the development of
programming languages. It was developed at a time of
considerable scepticism concerning the compile-time and
run-time efficiency of higher level languages, and its suc-
cessful implementation provided an existence proof for
both the feasibility and the viability of higher level lan-
guages. Important language concepts introduced by-For-
tran include:

variables, expressions and statements (arithmetic and
Boolean);

arrays whose maximum size is known at compile-
time;

iterative and conditional branching control struc-
tures;

independently compiled (nonrecursive) subroutines;

COMMON and EQUIVALENCE statements for data
sharing;

FORMAT directed input-output.

Advances of implementation technology developed in
connection with Fortran include the stack model of
arithmetic expression evaluation.

Fortran was designed around a model of implementation
in which run-time storage requirements for programs, data
and working storage was known at compile-time so that
relative addresses of entities in all subroutines and COM-
MON data blocks could be assigned at compile-time and
converted to absolute addresses at load time.

This model of implementation required the exclusion
from the language of arrays with dynamic bounds and re-
cursive subroutines. Thus, Fortran illustrates the principle
that the model of implementation in the mind of the lan-
guage designers may strongly affect the design of the lan-
guage. Although Fortran is machine independent in the
sense that it is independent of the assembly level in-
struction set of a specific computer, it is machine depen-
dent in the sense that its design is dependent on a virtual
machine that constitutes the model of implementation in
the mind of the programming language designer.

M6—Algol 60, 1957-1960: Whereas Fortran is the most
important practical milestone in programming language
development, Algol 60 is perhaps the most important
conceptual milestone. Its defining document, known as the
Algol report [62], presents a method of language definition
which is an enormous advance over previous definition
techniques and allows us for the first time to think of a
language as an object of study rather than as a tool in
problem solution. Language syntax is defined by a variant
of the notation of context-free grammars known as Bac-
kus—Naur Form (BNF). The semantics of each syntactic

1210

language construct is characterized by an English language
description of the execution time effect of the construct.

The Algol report generated a great deal of sometimes
heated debate concerning obscurities, ambiguities and
trouble spots in the language specification. The revised
report [63] corrected many of the less controversial
anomalies of the original report. Knuth’s 1967 paper on
“The remaining trouble spots of Algol 60” [44] illustrates
the nature of this great programming language debate. The
participants in the debate were at first called Algol lawyers
and later called Algol theologians.

Important language constructs introduced by Algol 60
include:

block structure;

explicit type declaration for variables;

scope rules for local variables;

dynamic as opposed to static lifetimes for variables;

nested if-then-else expressions and statements;

call by value and call by name for procedure parame-
ters;

recursive subroutines;

arrays with dynamic bounds.

Algol 60 is carefully designed around a mddel of imple-
mentation in which storage allocation for expression
evaluation, block entry and exit and procedure entry and

_exit can be performed in a single run-time stack. Dijkstra
developed an implementation of Algol 60 as early as the
fall of 1960 based on this simple model of implementation
[23]. However, this semantic model of implementation was
implicit rather than explicit in the Algol report. Failure to
understand the model led to a widespread view that Algol
60 required a high price in run-time overhead, and to an
exaggerated view of the difficulty of implementing Algol
60. An explicit account of the model of implementation is
given in [69].

Algol 60 is a good example of a language which becomes
semantically very simple if we have the right model of
implementation but appears to be semantically complex
if we have the wrong model of implementation. The model
of implementation is more permissive than Fortran with
regard to run-time storage allocation, and can handle ar-
rays with dynamic bounds and recursive procedures.
However, it cannot handle certain other language features
such as assignment of pointers to pointer valued variables
and procedures which return procedures as their result.
These language features are accordingly excluded from
Algol 60, illustrating again the influence of the model of
implementation on the source language.

The Algol 60 notion of block structure quickly became
the accepted canonical programming language design
folklore and, in spite of its merits, excercised an inhibiting
influence on programming language designers during the
1960’s. Viewed from the vantage point of the 1970’s it ap-
pears that nested scope rules for accessibility of identifiers
and nested lifetime rules for existence of data structures
may be too restrictive a basis for specifying modules and
module interconnections in programming languages of the
future. Alternatives to block structures are discussed in the
sections on Simula 67, Snobol 4, and APL.

M7—Cobol 61, 1959-1961 [12]: Cobol represents the

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

culmination and synthesis of several different projects for
the development of business data processing languages,
the first of which (flowmatic) was started in the early
1950’s by Hopper. See [72] for an account of this devel-
opment. Important language constructs introduced by
Cobol include:

explicit distinction between identification division,
environment division, data division, and procedure divi-
sion;

natural language style of programming;

record data structures;

file description and manipulation facilities.

The two principal contributions of Cobol are its natural
language programming style and its greater emphasis on
data description. Natural language programming style
makes programs more readable (by executives) but does
not enhance writability or the ability to find errors. It
constitutes a cosmetic change of syntax, sometimes re-
ferred to as “syntactic sugaring.” It has not been widely
adopted in subsequent programming languages but may
possibly come into its own if and when the use of com-
puters becomes commonplace in the home and in other
nontechnical environments.

The contribution of Cobol to programming language
development is probably greater in the area of data de-
scription than in the area of natural language program-
ming. By introducing an explicit data division for data
description to parallel a procedure division for procedure
description Cobol factors out the data description problem
as being of equal importance and visibility as the procedure
description problem.

The significance of Cobol was greatly enhanced when
it was chosen as a required language on DOD computers.
Cobol was one of the earliest languages to be standardized,
and has provided valuable experience (both positive and
negative) concerning the creation and maintenance of
programming language standards. It is currently used by
more programmers than any other programming lan-
guage.

Why is it that Cobol, in spite of certain defects in its
procedure division, has become the most widely used
language among commercial, industrial and government
programmers? One reason is perhaps that standardization
carries with it advantages that make the use of an imper-
fect standard more desirable than a more perfect but
possibly more volatile alternative. Another perhaps more
important reason may be that the advantages of Cobol’s
powerful facilities in its data division outweigh its imper-
fections in the procedure division, making it more suitable
than languages like Fortran in the large number of medium
and large scale data processing applications in business,
industry and government. Cobol was behind the state of
the art in its procedure division facilities but ahead of the
state of the art in its data division facilities. The attrac-
tiveness of a language for data processing problems does
not appear to depend as critically on its procedure de-
scription facilities as on its data description facilities.

M8—PL/I, 1964-1969 [67]: Fortran, Algol 60, and Cobol
61 may be regarded as the three principal first generation
higher level languages, while PL/I and Algol 68 may be

WEGNER: PROGRAMMING LANGUAGES

regarded as the two principal second generation higher
level languages. PL/I was developed as a synthesis of
Fortran, Algol 60, and Cobol, taking over its expression and
statement syntax from Fortran, block structure and type
declaration from Algol 60, and data description facilities
from Cobol. Additional language features include the fol-
lowing:

programmer defined exception conditions (the ON
statement);

based variables (pointers and list processing);

static, automatic and controlled storage;

external (independently compiled) procedures;

multitasking.

PL/Iillustrates both the advantages and the problems
of developing a rich general purpose language by synthesis
of features of existing languages. One of the lessons learned
was that greater richness and power of expression led to
greater complexity both in language definition and in
language use. PL/I is a language in which programming is
relatively easy once the language has been mastered, but
in which verifiability and subsequent readability of pro-
grams may present a problem. Any language definition of
PL/I is so complex that its use for the informal or formal
verification of correctness for specific programs is intrac-
table.

M9—Algol 68, 1963-1969 [82]: Whereas PL/I was de-
veloped by synthesis of the features of a number of existing
languages, Algol 68 was developed by systematic general-
ization of the features of a single language, namely Algol
60. The language contains a relatively small number of
“orthogonal” language concepts. The power of the lan-
guage is obtained by minimizing the restrictions on how
features of the language may be combined. Interesting
language features of Algol 68 include:

a powerful mechanism for building up composite modes
from the five primitive modes int, real, bool, char, for-
mat;

identity declarations;

pointer values, structures, etc; :

carefully designed coercion from one mode to anoth-
er;

a parallel programming facility.

The generality of the language can be illustrated by
considering the mode (type) mechanism. Composite modes
can be built up from modes m,n by the mode construction
operators [| m (multiples), struct (m,n) (structures), proc
(m)n (procedures), ref m (references) and union (m,n)
(unions). Any mode constructed in this way may itself be
the “operand” of a further mode construction operator as
instruct ([| ref m, proc (ref ref m) ref n). Thus, an infinite
number of different modes can be constructed from the
primitive ones. Each definable mode has a set of values
which must be manipulatable by the assignment operator
and other applicable operators. Procedures may have any
definable mode as a parameter, so that there must be
provision for passing of parameters in any definable mode.
The above discussion illustrates how generality in Algol
68 is obtained by starting from a small set of orthogonal
concepts (the primitive modes and mode construction
operators) and generating a very rich class of objects

1211

(modes and mode values) by simply removing all restric-
tions on the manner of composition.

The defining document for Algol 68 (Algol 68 report)
[80], is an important example of a high quality language
definition, using a powerful syntactic notation for ex-
pressing syntax and semiformal English for expressing
semantics. However, the report introduces its own syn-
tactic and semantic terminology and can be read only after
a considerable investment of time and effort. The reader
must become familiar with syntactic terms such as “no-
tion,” “metanotion,” and “protonotion,” and with semantic
terms such as “elaboration,” “unit,” “closed clause,” and
“identity declaration.”

Algol 68 has not been widely accepted by the program-
ming language community in part because of the lack of
adequate implementation and user manuals. However, an
ultimately more important reason appears to be that the
language constructs of Algol 68 are too general and flexible
to be readily assimilated and used by the applications
programmer.

M10—Simula 67 1965-1967 [17]: Simula 67 is a mile-
stone in the development of programming languages be-
cause it contains an important generalization of the notion
of a block, which is called a class. A Simula class, just like
an Algol bleck, consists of a set of procedure and data
declarations followed by a sequence of executable state-
ments enclosed in begin-end parentheses. However, Sim-
ula has a “class” data type and allows the assignment of
instances of classes to class-valued variables. Whereas local
procedures and data structures of a block are created on
entry to the block and disappear on exit from a block, local
objects of a class (declared in its outer block) remain in
existence independently of whether the class body is being
executed as long as the variable to which the instance of
the class has been assigned as a value remains in exis-
tence.

Classes may function as coroutines with interleaved
execution of executable instructions of two or more class
bodies. Execution of a command “resume C5” in class C;
causes the current state of execution of C; to be saved
followed by transfer of control to the current point of ex-
ecution of Co. _

The separation between class creation and class execu-
tion allows data structures in a class to endure between
instances of execution and makes the class more useful
than the block as a modeling tool for inventory control
systems, operating system modules, data types and other
entities which may be characterized by a data structure
representing the “current state” and a set of operations for
querying and updating the current state.

The usefulness of classes in modeling is enhanced even
further by Simula conventions concerning the accessibility
of local procedure and data declarations in a class.

If an instance of the class C has been assigned to the
variable X, then the local identifier I of this instance of the
class C can be accessed as X - I. The ability to access local
identifiers of a class in this way has both advantages (direct
access to class attributes) and disadvantages (not enough
control over restricting communication between system
modules).

1212

The subclass mechanism-of Simula 67 allows the pro-
cedure and data declarations of a class C to'become part
of the environment of the class B by means of the decla-
ration “C class B.” If we think of the procedure and data
declarations of a class as its set of attributes, then “C class
B” causes B to have all the attributes of C plus any addi-
tional attributes local to B. B is called a subclass of C since
it is the subset of C which has the attributes of B in addi-
tion to those of C.

The subclass mechanism is a very effective language
extension mechanism. It has been used by the Simula 67
designers to design hierarchies of environments for Simula
67 users. Perhaps the best known of these environments
is the simulation environment, which is created by first
creating a list processing class containing a set of useful list
processing procedures, and then defining a subclass sim-
ulation which uses list processing procedures to implement
simulation primitives. Thus, Simula is not inherently a
simulation language but merely a language which may
easily be adapted to simulation by language extension.

A Simula class is a better primitive module for modeling
objects or concepts than the Algol procedure because of its
ability to remember its data state between instances of
execution. It has been used as a starting point for the de-
velopment of a notion of modularity appropriate to mod-
ular programming languages of the 1970’s.

M11—IPL V, 1954-1958 [65]: IPL V is a list processing
language developed specifically for the solutions of prob-
lems in artificial intelligence. It was widely used in the
1950’s and 1960’s for the programming artificial intelli-
gence applications in areas such as chess, automatic the-
orem proving and general problem solving.

IPL V has primitive instructions for creating and man-
ipulating list data structures. It is an assembly level list
processing language with a 1 + 1 address code (the first
address names an operand and the second address names
the next instruction). Both programs and data are repre-
sented by lists. There are a number of system cells with
reserved names, such as a communication cell for com-
municating system parameters, a subroutine call stack and
a free storage list cell. A large number (over 100) of system
defined subroutines (processes) are available to aid the
user. The semantics of IPL V instructions is specified by
defining an instruction interpreter for IPL V instruc-
tions.

IPL V was an important milestone both because it was
widely used for a period of over ten years by an important
segment of the artificial intelligence community and be-
cause it pioneered many of the basic concepts of list pro-
cessing. For example, the notion of a free storage list
serving as a source for storage allocation and as a sink to
which cells no longer needed are returned was pioneered
in IPL V. IPL V may well have been the first language to
define its instructions by a software specified instruction
execution cycle (virtual machine).

Mi12—Lisp, 1959-1960 [56]: Lisp, like IPL V, was de-
veloped for the solution of problems in artificial intelli-
gence. However, Lisp may be thought of as a higher level
(as opposed to machine level) programming language.

Lisp has two primitive data types referred to as lists and

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

atoms. It has the following simple but powerful set of
primitive operations. -

A constructor cons[x;y] for constructing a composite list
from components x and y.

Two selectors car[x], cdr[x] for, respectively, selecting
the first component and remainder of the list.

Two predicates atom[x], eq[x;y] which, respectively, test
whether x is an atom and whether two atoms x and y are
identical. '

A compound conditional of the form [p; — ay;ps —
ag; - - - ;pn —> a,] which may be read as “if p; then a; else
if pothen as - - - else if p,, then a,,” and results in execution
of the action a; corresponding to the first true predicate
pi- Binding operators lambda[x;f] and label[x;f] which
bind free instances of x in f so that they, respectively, de-
note function arguments and recursive function calls.

The set of primitive Lisp operations have been enu-
merated explicitly because they exhibit in the simplest
terms the essential operators in a nonnumerical processing
language. Every nonnumerical processing language must
contain constructors for constructing composite structures
from their components, selectors for selecting components
of composite structures and predicates which permit
conditional branching determined by the “value” of the
arguments. The compound conditional is a very attractive
control structure which was first developed for Lisp and
later incorporated into Algol 60. The Lisp binding opera-
tors (lambda and label) provide a mechanism for handling
functions which have functions as arguments as in the
lambda calculus.

Lisp is sufficiently simple to permit the development of
a relatively tractable mathematical model. McCarthy used
this model as a starting point for the development of a
mathematical theory of computation [57]. He considered
many of the basic theoretical programming language issues
such as mathematical semantics, proofs of program cor-
rectness (including compiler correctness) and proofs of
program equivalence (by recursion induction) several years
before they were considered by anyone else.

McCarthy also developed a definition of Lisp by means
of a Lisp interpreter (the APPLY function) which, given an
arbitrary Lisp program P with its data D executes the
program P with data D. The Lisp APPLY function dem-
onstrated as early as 1960 the technique of defining a
programming language L by an interpreter written either
in L or in some language definition language. It became the
starting point for the subsequent development of theories
of operational semantics [95], and for the development of
interpreter based language definition languages such as
VDL [49].

Lisp contributed a great deal to our understanding of
programming language theory. It is also the most influ-
ential and widely used artificial intelligence language, its
popularity being due in no small measure to its unique
blend of simplicity and power. Lisp is certainly among the
most important milestones in the development of pro-
gramming languages.

M13—Snobol 4 1962-1967 [32]: During the 1950’s it was
felt that mechanical translation and other glamorous

WEGNER: PROGRAMMING LANGUAGES

language understanding tasks could be greatly facilitated
by the development of string manipulation languages with
special purpose linguistic transformation aids. The Comit
language [99] was developed for this purpose during the
period 1957-1961. Comit was a good linguists language
with many special purpose linguistic transformation fea-
tures, but is not a clean programming language because it
does not have string-valued variables to which strings may
be assigned as values. The deficieneies of Comit led to the
development of Snobol 4 during 1962-1967.

Snobol 4 has data values of the type—integer, real, string
and pattern, as well as programmer defined data types.
However, Snobol 4 has no block structure or declarations.
A given variable, say X, may take on string values, nu-
merical values or pattern values at different points of ex-
ecution. The data type is carried along as part of the Sno-
bol 4 data value and is checked dynamically at execution
time to determine whether it is compatible with the op-
eration that is to be applied to it. Dynamic type checking
runs counter to the philosophy of static type checking in
conventional block structure languages. It introduces ad-
ditional run-time overhead and increases the proportion
of programming errors that will not be discovered until
execution time. However, introduction of block structure
and explicit type declarations into Snobol 4 would totally
change its character, and it is not clear that such a change
would be for the better.

The most important programming language contribu-
tion of Snobol 4 is the pattern data type. A pattern is an
ordered (finite or infinite) set of strings (and string at-
tributes). Snobol 4 has pattern construction operators for
constructing composite patterns from their constituents,
pattern valued functions, and pattern matching operations
which determine if a string S is an instance of the pattern
P. The pattern matching process may be extremely com-
plex involving the matching of a sequence of subpatterns,
back-tracking if a partial match of subpatterns cannot be
completed into a complete match, and possible side effects
during pattern matching caused by assignments triggered
by subpattern matching. The development of Snobol 4 has
considerably advanced both our theoretical understanding
of the nature of one dimensional (string) patterns and our
ability to manipulate such patterns. A good theoretical
discussion of Snobol 4 patterns is given by Gimpel [33].

Another nice feature of Snobol 4 is its programmer de- .

fined data types facility which allows selector names for
each field of a structured data type to be easily defined.
The mechanisms for defining, creating and manipulating
data types are greatly simplified because no explicit type
information need be specified in the program.

The use of the Snobol 4 data definition mechanism in
defining and using Lisp data structures will be briefly il-
lustrated. The data type definition “DATA(‘CONS-
(CAR,CDR)’)” defines a new data type called CONS with two
subfields called CAR and CDR. The assignment statement
“X = CONS(‘A’, ‘NIL’)” constructs an initialized instance
of this data structure and assigns it to X. The expression
“CAR(X)” selects the first subfield “A” of the data structure
assigned to X. The naturalness of Snobol 4 for specifying
nested construction and selection for programmer defined

1213

data structures is illustrated by the assignment statement
“Y = CONS(‘B’, CONS(‘A’, ‘NIL%)” and -the expression
“CAR(CDR(Y))” which retrieves the CAR subfield of the CDR
subfield of Y (which happens again to be the element
“A”).

Although Snobol 4 is a relatively rich and complex lan-
guage its implementation appears to be an order of mag-
nitude simpler than PL/I or Algol 68. In order to increase
portability of the language, it has been defined in terms of
a relatively machine-independent macro-language, and
can be implemented on a new machine simply by imple-
menting the macro-language. An efficient compiler—the
Spitbol compiler [18] —makes Snobol 4 competitive for a
wide range of nonnumerical programming problems.

M14—Language theory, 1948-1962: Whereas mile-
stones M1-M13 were concerned largely with the devel-
opment of programming languages, milestones M14-M23
will be concerned with concepts and theories in the pro-
gramming language field. The topics to be considered in-
clude language theory, models of implementation, lan-
guage definition, program verification, semantics and
abstraction. The starting point both historically and
conceptually, is the development of language theory.

Both natural languages and programming languages are
mechanisms for the communication of messages from a
“sender” or “generator” to a “receiver” or “recognizer.”

receiver or
recognizer

communication | -

sender or 1 —
medium

generator

This model of communication was used by Shannon in
the late 1940’s in developing a mathematical theory of
communication [73]. It was used in the late 1950’s by lin-
guists and psychologists, such as Chomsky and Miller [16],
in the development of a theory of natural languages. In the
field of computer science, the great success of the genera-
tive (context-free grammar) definition of Algol 60 [63] led
to the generative specification of language syntax for all
subsequent programming languages, and to the systematic
use of recognizers (finite automata and pushdown auto-
mata) in implementing translators and interpreters.

The study of natural languages concerns itself with the
study of mental mechanisms that allow human senders
and receivers to generate and comprehend a potentially
infinite class of sentences after having encountered and
learned only a small finite subset of the set of all possible
sentences in a language. The study of computer languages
is similarly concerned with finite structures that allow
languages with an infinite number of sentences to be de-
fined. However, in the case of computer languages, we are
not restricted to the study of preexisting human mental
mechanisms, but can create language generating and rec-
ognition mechanisms with nice mathematical and com-
putational properties. The language generating mecha-
nisms are called grammars while the language recognition
mechanisms are called automata.

One of the most important results in language theory is
due to Chomsky, who defined a hierarchy of grammars
(type 0, 1, 2, 3 grammars) and a hierarchy of automata
(Turing machines, linear bounded automata, pushdown
automata, finite automata) and proved the following re-

1214

markable four-part result concerning the equivalence of
language generating power of grammars and language
recognition power of automata.

1) A language L can be generated by a type 0 (unre-
stricted) grammar iff it can be recognized by a Turing
machine.

2) A language L can be generated by a type 1 (context-
sensitive) grammar if it can be recognized by a linear
bounded automaton.

3) Alanguage L can be generated by a type 2 (context-
free) grammar iff it can be recognized by a pushdown au-
tomaton.

4) A language L can be generated by a type 3 (finite-
state) grammar iff it can be recognized by a finite autom-
aton.

Proof of the above result provides a number of inter-
esting insights concerning the relation between the pro-
cesses of language generation and language recognition.
Moreover, the four part hierarchy allows us to distinguish
between type 0 and type 1 grammars and automata, which
are primarily of theoretical interest, and type 2 and type
3 grammars and automata, which are occasionally useful
in compiler construction. Much of the practical work in
language theory is concerned with the characterization and
study of subclasses of type 2 and type 3 grammars and
automata.

M15—Compiler technology and theory 1960-1970: The
notion of a compiler was developed in the early and mid
1950’s by Hopper, the developers of Fortran and many
others. By the early 1960’s the notion that compiling was
a three phase process consisting of lexical analysis, parsing
and code generation had been firmly established. During
the 1960’s there was a great deal of both practical and
theoretical work on the mechanization of lexical analysis
and parsing [28]. Lexical analysis was modeled by finite
automata while parsing was modeled by various subclasses
of context-free grammars, such as precedence grammars,
LR(k) grammars and LL(k) grammars. The mechaniza-
tion of code generation proved to be more difficult because
it was target language dependent but there was some
progress in this area also. The cost of building compilers
of given complexity decreased considerably in the 1960’s
as our understanding of compiler structure increased. In
the late 1960’s and 1970’s there was considerable work on
program optimization using techniques such as interval
analysis for analyzing the flowchart of a program. The state
of the art in compiler technology and theory is ably sum-
marized in [1].

M16—Compiler Compilers: Since there is a lot of sim-
ilarity between compilers for different languages, the no-
tion was developed of a program which, when primed with
the syntatic and semantic specification of a given pro-
gramming language L, would create a compiler for the
programming language L. This concept led to interesting
work on specifying the compiler-oriented semantics of
programming languages by rules for translating source
language constituents into the target language. However,
the creation of a working compiler compiler which could

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

actually be used in the production of compilers for new
languages or new target machines proved to be too ambi-

-tious, because the complexity and diversity of languages

and machines is simply too great to permit automation.
The purely syntactic task of creating an efficient automatic
parser from a BNF syntax specification of a language is
possible for certain restricted classes of grammars such as
precedence grammars, but becomes unmanageable for
more ambitious classes of grammars such as LR (k) gram-
mars because of the difficulty of automatically con-
structing the tables required for automatic parsing. The
automation of compiler semantics is even more difficult
than the automation of parsing. The best documented
example of a compiler compiler (compiler generator) is
probably [58].

M17—Models of implementation, interpreters,
1965-1971: Programming languages such as Fortran and
Algol 60 have a lot of “surface complexity” but derive their
“integrity” from a simple underlying model of imple-
mentation, which specifies how programs are to be exe-
cuted. A model of implementation is a programming lan-
guage interpreter rather than a compiler. In the early
1960’s compiler models of programming languages were
emphasized because compiler construction was a pressing
technological problem. By the late 1960’s it was realized
that interpreter models captured the important charac-
teristics of programming languages much more directly
than compiler models, so that serious students of pro-
gramming language structure discarded compiler models
in favor of interpreter models.

Fortran is based on a model in which subroutines and
COMMON storage areas occupy fixed size blocks, each
object is characterized by a relative address relative to the
beginning of its block, and no storage allocation is per-
formed during execution. This model gives rise to language
restrictions against arrays with dynamic bounds and rec-
ursive subroutines.

Algol 60 is based on an activation record stack model of
implementation [84] which can handle recursive proce-
dures and arrays with dynamic bounds but cannot handle
pointer-valued variables or procedures which return pro-
cedures as their values. Algol 68 can be clearly modeled by
a run-time environment with two stacks and one heap [86].
Simula 67 requires each created instance of a class to be
modeled by a stack. PL/I has no clean model of imple-
mentation, and its lack of integrity may be due precisely
to the fact that the language designers were more con-
cerned with the synthesis of source language features than
with the development of an underlying model of imple-
mentation.

The notion of a model of implementation is important
because it pinpoints the simple starting point from which
the apparent complexity of a programming language is
derived. Man is inherently incapable of handling or man-
ipulating great complexity so it stands to reason that there
is some simple internalized model that is used as a starting
point for designing complex structures such as program-
ming languages. It is argued here that the simple starting

WEGNER: PROGRAMMING LANGUAGES

point for developing a complex programming language
may well be a model of implementation in the mind of the
designer.

The 1971 conference on data structures in programming
languages [26] contained several papers on models of im-
plementation including a paper on the contour model by
Johnston [42], a paper on the B 6700 by Organick and
Cleary [66], and a paper on data structure models in pro-
gramming languages by Wegner [87].

Wegner [86] proposed a class of models called infor-
mation structure models for characterizing models of im-
plementation by their execution time states and state
transitions. An information structure model is a triple M
= (I,I9F) where I is a set of states I° = I is a set of initial
states and F is a state transition function which specifies
how a state S can be transformed into a new state S” by the
execution of an instruction. A computation in an infor-
mation structure model is a sequence So —>S; > Sy —> - - -
where S & I° and S;4 is otained from S; by the execution
of an instruction (state transition).

The Lisp APPLY function and the Vienna definition
language, discussed in the next section, can be character-
ized very naturally by information structure models.

Specific assumptions about the structure of the state I
and the state transition function F give rise to specific
models of implementation. For example states of a Turing
machine may be described in terms of three components
(t,q,1) where t is the current tape content, g is the current
state, and i is the position of the input head. Finite auto-
mata are distinguished from Turing machines by the fact
that the state transition function F cannot modify the tape
component. Pushdown automata have an additional state
component called a pushdown tape with characteristic
transformation properties.

Programming languages have more complex states and

state transitions than automata but may generally be

characterized by states with three components (P,C,D)
where P is a program component, C is a control compo-
nent, and D is a data component. Programming languages
may be classified in terms of attributes of the P,C,D,
components associated with models of implementation.
For example the model of implementation of Algol 60 as-
sumes an invariant (reentrant) program component P, a
control component C consisting of an instruction pointer
ip and an environment pointer ep, and a data component
D which is an activation record stack. Fortran does not
require P to be reentrant, but requires the size of P,C, and
D to be fixed prior to execution.

Information structure models provide a very natural
framework for describing programming languages and
systems operationally in terms of a specific, possibly ab-
stract, model of implementation. This approach goes
against the conventional view that higher level languages
should be defined in an implementation-independent way.
However, implementation-dependent models reflect the
fact that programming-language designers and system
programmers think in implementation-dependent ways
about programming languages. Implementation-depen-

1215

dent models are therefore valid and important for language
designers and system programmers, while implementation
independent models are important in other contexts such
as program verification. :

M18—Language definition, 1960-1970: It is convenient
to distinguish between interpreter-oriented language
definitions which define the meaning of programs and
program constituents in terms of their execution-time
effect and compiler-oriented language definitions which
define the meaning of source programs in terms of com-
piled target programs of a target language.

The Algol report is an example of an early (1960) inter-
preter-oriented language definition with verbal definitions
of the meaning of source program constituents. The Lisp
APPLY function is an interpreter-oriented language defi-
nition in which the execution time effect of source language
constructs is rigorously specified by a program.

During the 1960’s the interest in compiler technology
gave rise to a number of compiler-oriented definitions such
as the definition of Euler [89]. Feldman and Gries [28]
includes a good review of compiler-oriented language
definitions. Knuth [43] proposed an interesting com-
piler-oriented method of defining the semantics of con-
text-free grammars by associating inherited and synthe-
sized attributes with each vertex of the parse tree of lan-
guage strings.

During the late 1960’s interpreter-oriented definitions
of programming languages-came back into fashion. The
Algol 68 report [80] uses a powerful syntactic notation
(VWF notation) to define syntax and semiformal English
to define interpreter-oriented semantics. The Vienna
definition language [48], [86] is an extension of the Lisp
APPLY function definition technique which allows com-
plex languages like PL/I to be defined in terms of an exe-
cution-time interpreter.

The Vienna definition language is probably the most
practical of the above-mentioned language definition
mechanisms. However, it requires approximately 400 pages
of “programs” to define PL/I and about 50 pages to define
Algol 60. The work on language definition suggests that
languages like PL/I are inherently complex in the sense
that there simply is no simple way of defining them.

Programming language definitions are intended to serve
at least the following two purposes.

1) As a specification of “correctness” for the language
implementer.

2) As a specification of “correctness” for the user who
wishes to determine whether a program performs its in-
tended task.

The language definition of Algol 60 served as an im-
portant frame of reference for a spirited discussion of
ambiguities and trouble spots [44]. It was sufficiently
precise to serve as an informal tool in checking imple-
mentation correctness and program correctness, but was
of little help in developing formal methods of program
verification. Tools for specifying formal (axiomatic) models
of programming languages were developed in the late
1960’s and led to an intensive effort in the 1970’s to develop

1216

tractable formal language definition models [37], [71].

It is important that programming languages of the fu-
ture have tractable formal language definitions so that
program correctness can be formally determined. One of
the objectives of programming language design in the
1970’s is “simplicity” where simplicity is increasingly de-
fined in terms of ease of developing a formal definition.

M19—Program correctness, 1963—1969: A program is
said to be correct if it correctly performs a designated task
(computes a designated function). A program may be
thought of as a “how” specification and the designated task
or function as an associated “what” specification. A cor-
rectness demonstration is a demonstration that the how
specification determined by the program is a realization
(implementation) of the independently given what spec-
ification.

Program correctness was considered by McCarthy
(1962) [57], Naur (1965) [64], Dijkstra (1966) [19], Floyd
(1967) [29] and Hoare (1969) [36]. Floyd developed the
axiomatic approach to program correctness which specifies
axioms for primitive program statements and a rule of
inference for statement composition. Input-output rela-
tions of composite programs may be derived as theorems
from input-output relations for primitive statements using
the rule of inference for statement composition.

Hoare [36] developed a linear notation for the Floyd
formalism. Both axioms and theorems have the form
{P}S{Q} where S is a program statement, P is a precondi-
tion, and @ is a post condition. Hoare stated axioms for
assignment statements, if-then-else statements and while
statements, thus producing a formal system sufficient to
prove theorems for programs written in a strict structured
programming style. Subsequently, Hoare, together with
Wirth, developed a formal definition of Pascal [37] which
has been widely used as a starting point for correctness
proofs by research workers in program verification.

The axiomatic approach has been widely used for
proving the correctness of “small” programs [50], but there
are some unresolved problems which prevent its being used
as a standard tool for program verification in a production
environment. One of the principal limitations of correct-
ness proof techniques is that such techniques are appli-
cable only when the what specification of a program can
be given in a simple functional form. The majority of large
problems have intractable what specifications (require-
ments specifications) which may be several hundred pages
long, and constantly changing. Thus, it may turn out that
formal correctness proofs are simply not applicable to
“real” problems, being applicable only to “toy” problems
with simple functional what specifications.

M20—Verification, testing and symbolic execution:
Program verification may be regarded as an ambitious
attempt to prove the correctness of program execution for
all elements of an infinite input domain and may be con-
trasted with program testing which is concerned with es-
tablishing correctness for individual elements of the input
domain. Program correctness for subsets of the input do-
main may be established by a technique called symbolic

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

execution which is intermediate in generality between
program verification and program testing.

The concept of symbolic execution arrived on the scene
relatively late and was first publicly presented in 1975 at
the international conference on reliable software [41] in
papers by King [47] and Boyer, Elspas, and Levitt [6]. It
involves the tracing of execution paths of a program with
symbolic values of program variables. The set of all exe-
cution paths of a program may be thought of as a (possibly
infinite) execution tree. Terminal nodes of the tree rep-
resent completed execution paths. When a terminal node
is reached during symbolic execution then symbolic rela-
tions between input and output values for that terminal
node are available and program correctness (or incor-
rectness) can be determined for the subset of values of the
input domain which cause the particular execution path
to be executed.

Symbolic execution is marginally easier than complete
program verification because it is unnecessary to deter-
mine loop invariants of program loops. However, other
problems which arise in program verification such as the
algebraic simplification of algebraic expressions along an
execution path are, if anything, more acute because “un-
folding” of loops in symbolic execution requires longer
sequences of algebraic transformations to be handled. The
problem of keeping track of the input domain associated
with an execution path is also very difficult. The difficulty
of this problem is illustrated by the fact that the “empty-
ness problem” for execution paths is undecidable. That is,
we cannot in general determine whether the input domain
associated with a given execution path is empty.

Program testing for a particular value of the input do-
main is clearly easier than symbolic execution or complete
verification since it only involves running the program for
the particular input value. However, the key problem in
testing is to determine “good” test cases by means of a test
data selection criterion.

We may think of a “good” test case as a representative
of an equivalence class of “similar’’ data values with the
property that correct execution of the test case increases
our confidence in the correctness of the program for all
data elements in the equivalence class. If we can partition
the input domain into a finite, relatively small, number of
such equivalence classes then testing of the program for
one element of each equivalence class should increase our
level of confidence in the correctness of the complete
program.

A number of alternative criteria may be used for deter-
mining such equivalence classes. For example the set of all
data values associated with a given control path is an ex-
ample of such an equivalence class. Alternatively, we may
directly partition the input domain into input equivalence
classes (such as large, medium, and small). Equivalence
classes based on the internal program structure which
systematically select test cases to exercise all control paths
are on the whole more effective than arbitrary equivalence
classes imposed on the input domain.

‘Test data selection criteria can be developed by program

WEGNER: PROGRAMMING LANGUAGES

structure analysis (control path analysis) operational
profile analysis (classification of inputs by expected fre-
quency of use) and error analysis (testing for specific kinds
of errors). Tlig papers by Goodenough and Gerhardt [35],
Brown and Lipow [7], and Schneiderwind [74], all pre-
sented at the International Conference on Reliable Soft-
ware [41], illustrate these three approaches to test data
selection.

M21—Program verification, program synthesis and
semantic definition [98]: Program verification is the
process of verifying that a given program Prog correctly
performs the task specified by a predicate P. If we are given
axioms of the form {Q}S{P} for a set of primitive statement
types and an axiom for statement composition then veri-

fication that a program Prog correctly performs the task

P requires us to prove the theorem {true}Prog{P}. That is,
the postcondition P for the program Prog implies the
precondition true.

In the case of program synthesis, we are given a speci-
fication of a task P and are required to find a program Prog
that correctly performs the task. Program synthesis clearly
involves program verification of the synthesized program
P as a subtask. However, verification need be performed
only for the class of programs which can be synthesized and
not for all possible programs of a programming language.
Systematic (or automatic) program synthesis avoids un-
necessary complexity resulting from bad programming and
might actually turn out to be easier than the development
of a general purpose verifier for both good and bad pro-
grams.

The object of program synthesis is to convert a static
description P of what is to be computed into a dynamic
description Prog of how it is computed. This can be done
in a structured way by the stepwise introduction of dy-
namic features into the static description. At each step one
or more statically defined components is expanded into
a structure composed of dynamically defined components
which may have inner statically defined components as
parameters. A structured development of a program Prog
from a specification P consists of a sequence Py,Py,---, P,
of successively more dynamic descriptions of P where P,
= P,P, = Prog and P;. is obtained from P; by “expand-
ing” a component of P; into a more dynamic form. A formal
system such as Hoare [36] may be used to prove that P,

realizes P if P; realizes P. Examples of this approach are

given by Manna [59], Wirth [90] and Mills [60].

A semantic definition of a programming language L is
a mechanism which, given an arbitrary program Prog &
L, defines the “meaning” of the program. If the task
specification P for a program Prog is taken to be the
meaning of Prog, then the semantic definition supplies P
given Prog and may be regarded as an inverse process to
‘program synthesis (which supplies Prog given P).

It is very reasonable to think of the input-output pred-
icate P as the meaning of program Prog whenever Prog
‘determines a well defined input-output relation. Unfor-
tunately, there are programs (with an undecidable halting
problem) which have no associated input-output predicate

1217

P and therefore would have no “meaning” using this notion
semantics. Since a semantic definition of a programming
language L should associate a meaning with all programs
of the programming language, this method of assigning
meaning is not altogether satisfactory. The set of meanings
expressible by input-output predicates P is restricted to
the set of recursive functions while the set of meanings
expressible by programs is the richer set of recursively
enumerable functions.

Floyd [29] called his seminal paper or program verifi-
cation “Assigning Meaning to Programs,” implying that
a formal system for program verification also provides a
framework for program semantics. It is often convenient
for practical purposes to think of the meaning of a program
Prog as its input-output predicate. However, input-output
semantics determined by axiomatic models is incomplete
because the domain of meanings is not sufficiently rich to
express the meaning of all programs. In order to achieve
completeness, mathematically more sophisticated se-
mantic theories such as those of Scott [71], [80] must be
used which map programs into partial recursive functions
rather than total recursive functions.

M22—Semantic models: In order to clarify the notion
of semantics, it is convenient to introduce the notion of a
semantic model as a triple M = (E,D,¢) where E is a syn-
tactic domain (of programs) D is a semantic domain of
denotations and ¢ is a semantic mapping function which
maps elements e & E of the syntactic domain into their
denotations ¢(e) & D.

Semantic models for programming languages may be
classified in terms of the nature of the domain D of deno-
tations. In particular it is convenient to distinguish be-
tween compiler models in which the semantic domain D
is a set of programs in a target language, interpreter models
in which the meaning of a program is defined in terms of
the computations to which it gives rise, and mathematical
models in which the meaning of a program is defined in
terms of the mathematical function it denotes. Mathe-
matical models may in turn be subdivided into axiomatic
models which restrict the semantic domain to total func-
tions and specify functions by a relation between a pre-
condition (inputs) and a post condition (outputs), and
functional models (such as those of Scott {71]) in which the
meaning of a program is given by an abstract (partial rec-
ursive) function. The relation among these models is given
by the following figure:

Semantic
Models

Interpreter Models Mathematical
(Operational Models) Models

N

Axiomatic Models Functional Models
(Floyd—Hoare) (Scott)

Compiler
Models

1218

The above discussion makes it clear that the semantics
(meaning) of a program is not an absolute (platonic) notion
but rather a relative notion which depends on the context
of discourse. When we are concerned with compiling, it is
natural to think in terms of a compiler oriented semantics
for programs. When we are concerned with the process of
execution, it is natural to make use of an interpreter ori-
ented semantics. When we are concerned with program
verification, then axiomatic semantics is appropriate.
When programs are regarded as abstract mathematical
objects then the functional semantics of Scott is appro-
priate.

Each group of semantic models has given rise to a sub-
culture of computer science with its own group of re-
searchers. The subcultures associated with compiler
models, interpreter models and axiomatic models have
already been discussed (in the sections on compiler
methodology, models of implementation and program
verification). The Scott approach is the most abstract and
Scott’s notion of “meaning” has perhaps a greater claim
than any other to be considered the (platonic) meaning of
a program. However, one difficulty with Scott’s notion of
meaning is that the difference between the how specifi-
cation of a program and the what specification as an ab-
stract function is so great that the mapping from programs
to functions cannot be effectively performed. If it could be
effectively performed, then we could decide whether two
programs realize the same function by mapping them onto
their abstract functions and checking for identity. How-
ever, we know that the problem of determining whether
two programs realize the same function is undecidable (not
even partially decidable) and therefore conclude that the
semantic mapping function from programs to abstract
functions cannot be constructive.

M23—Abstraction [91]: An abstraction of an object
(program) is a characterization of the object by a subset
of its attributes. The attribute subset determines an
equivalence class objects containing the original object as
an element. The objects in the equivalence class are called
refinements, realizations or implementations of the ab-
straction. If the attribute subset captures the “essential”
attributes of the object then the user need not be con-
cerned with the object itself but only with the abstract
attributes. Moreover, if the attribute subset defining the
abstraction is substantially simpler than its realizations
then use of the abstraction in place of a realization
simplifies the problem addressed by the user.

The input-output relation realized by a program is an
example of a program abstraction. It determines an
equivalence class of programs (the set of all programs
realizing the given input-output relation). Any program
in the equivalence class is a realization (refinement) of the
abstraction. The input-output relation captures the es-
sential behavior of the program. When the input-output
behavior is a simple or well known mathematical function
then use of the abstraction in place of a realization serves
a useful purpose.

The input-output relation determined by a program

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

may be thought of as a whadt specification (of what the
program does) while the program itself is a how specifi-
cation (of how the program is realized). We may, in general,
think of an abstraction as a what specification and of its
realizations as associated how specifications. The process
of abstraction is useful if the what specification charac-
terizing the essential attributes of an object is substantially
simpler than the how specification.

Unfortunately, the what specification for programs is
not always simpler than the how specification. A program
is a relatively compact specification of a functional corre-
spondence between arbitrarily large input and output
domains and there is no reason why an explicit description
of the input-output relation in a mathematical notation
should be simpler than the implicit description by the
program. In fact, programs are a more powerful notation
for describing functional correspondences than input-
output relations because programs can describe recursively
enumerable functions (including functions with an un-
decidable halting problem) while input-output relations
can describe only recursive functions (for which the halting
problem is decidable).

The equivalence class of all programs (algorithms) as-
sociated with a given functional abstraction is studied in
the analysis of algorithms. Such equivalence classes can
be extraordinarily rich. For example, Knuth in [45] de-
velops an enormous number of different programs for the
problem of sorting. It can be shown that the problem of
determining whether two programs realize the same ab-
straction is undecidable (not even partially decidable). The
study of the structure of equivalences of how specifications
realizing a given what specification is of interest both for
programs and other kinds of abstraction.

The notion of abstraction is important in the study of
program modularity. All forms of modular programming
are concerned with breaking a complex task into modular
components where each component has a what specifica-
tion (abstraction) specifying what the module accom-
plishes and a how specification (refinement) which
specifies how the what specification is realized. If the how
specification is specified in terms of a collection of modules
which are what specifications to lower level how specifi-
cations, then we are led to stepwise abstraction and step-
wise refinement. The process of stepwise refinement is il-
lustrated in [88].

The notion of abstraction arises in many different dis-
ciplines and may always be characterized in terms of a
relation between an equivalence class specification and
elements of the equivalence class. The problem of speci-
fying abstractions (equivalence classes) as well as the
problem of characterizing the structure of the space of
realization (elements) is of interest in many domains of
discourse. However, the tools for studying the specification
problem and the equivalence problem is determined by the
nature of the elements in the domain of discourse. We have
already discussed the nature of the specification and
equivalence problems when our elements are programs.
In the section on “modularity” we will consider the spec-

WEGNER: PROGRAMMING LANGUAGES

ification and equivalence problems for a class of modules
called data abstractions which cannot be completely
specified by an input-output relation because they have
an internal state.

M24—Pascal [92]: Although Pascal was developed in
the late 1960’s, its structure and design objectives make
it a language of the 1970’s. Its designer, Wirth, participated
in the early stages of design of Algol 68 as a member of the
IFIP working group 2.1, but felt that the generality and
attendant complexity of the emerging language was a step
in the wrong direction. Pascal, like Algol 68, was designed
as a successor to Algol 60. However, whereas Algol 68 aimed
at generality, Pascal was concerned with simplicity at the
conceptual level, the user level and the implementation
level. Conceptual simplicity allows simple axiomatization
which facilitates verifiability. User simplicity gives the
programmer a better understanding of what he is doing
and results in more readable, better structured programs
with fewer errors. Simplicity of implementation enhances
efficiency and portability and ensures simplicity of the
associated operational semantic model.

Pascal provides richer data structures than Algol 60,
including records, files, sets and programmer defined type
specifications but is otherwise as simple as possible. For
example, it excludes arrays with dynamic bounds so as to
enhance compile time type checking, and excludes pointers
and parameters called by name in the interests of con-
ceptual and user simplicity. The notion of compile time
checkable data types is central to the structure of Pascal
and provides a degree of program redundancy that en-
hances program reliability. Control structures are designed
so as to encourage good programming style such as that
advocated in structured programming.

Because Pascal is conceptually simple, it has been pos-
sible to develop a fairly complete formal definition for the
language [37]. The existence of this formal definition has
in turn led to the widespread use of Pascal as a base lan-
guage for program verification research [50]. The avail-
ability of an axiomatized language has removed one of the
obstacles to the development of automatic program veri-
fication systems, thus allowing researchers to focus more
explicitly on other more formidable obstacles such as the
handling of tasks with complex or intractable what speci-
fications.

Pascal and Algol 68 represent two very different ap-
proaches to the development of a successor to Algol 60.
Although the verdict is not yet in, it may turn out that the
Pascal approach will turn out to be more relevant to the
development of future programming languages than the
Algol 68 approach. However, the discussion of “the APL
phenomenon” below indicates that the demands of inter-
active programming may require us to discard notions such
as block structure and explicit type declarations which are
fundamental to both Pascal and Algol 68.

M25—The APL phenomenon: The idea of time sharing
caught the imagination of the computing community as
early as 1960, and led to the development of a number of
on-line languages in the early 1960’s. Quiktran [60] was

1219

developed in 1961-1963 by IBM as an on-line dialect of
Fortran but never caught on, perhaps because it could not
be adequately supported by existing technology. Joss [75]
was developed in 1963-1964 by Shaw and others at the
Rand Corporation. Basic (beginners all purpose symbolic
instruction code) [48] was developed in 1965-1966 at
Dartmouth and has had great success in high schools, two
year colleges, and other environments concerned with
teaching elementary programming.

APL was developed by Iverson in the early 1960’s [40],
was implemented as an interactive language in 1967 [30],
and has proved to be enormously popular in the 1970’s
among engineers and mathematicians who need a versatile
“desk calculator” to aid them in their work.

APL has a richer set of operators than conventional
languages like PL/I or Pascal, including ingeneous ex-
tensions of scalar operations to vector and matrix opera-
tions which allow loop control structures of conventional
programming languages to be implicitly specified in APL.
Its emphasis on expressive power at the level of expressions
is appropriate to on-line languages, since use of on-line
languages in the desk calculator mode is largely concerned
with the evaluation of expressions. The richness of APL
operators and expressions permits a far greater number
of essentially different ways of accomplishing a given
computation than in conventional languages. The greater
scope for programmer ingenuity leads to greater pro-
grammer satisfaction but may lead to programs that are
more difficult to read, debug, or maintain.

APL has an explicit mechanism for specifying scopes of
identifiers, but has a mechanism for specifying local vari-
ables of subroutines. Workspaces are a very effective APL
mechanism for defining “modules” containing named
subroutines and data sets. There are APL extensions such
as APL*PLUS and APL SV [34] specifically designed to
allow use of APL for large data processing applications.

APL has no explicitly typed variables or block structure
and has the go to statement as its only form of transfer
control. There is not even an “if-then-else” statement, and
conditional branching is performed by an implementation
trick (branch to a label 0 is interpreted as exit from a
subroutine and branch to an ill-formed label is interpreted
as a “continue” statement with no effect). In these respects
the structure of APL differs markedly from the current
conventional wisdom of the software engineering com-
munity. However, it nevertheless strikes a strong respon-
sive chord among practical programmers, indicating that
explicit type declarations, block structure and control
structure might possibly be discarded in future on-line
languages, perhaps because the potential gains in program
efficiency and reliability are insufficient to offset the extra
program complexity resulting from redundant constituents
and additional interrelations among program constitu-
ents.

Arguments against block structure, explicit types and
explicit control structures may be formulated as follows.

Argument against block structure: One of the original
reasons for block structure was the savings in storage re-

1220

sulting from overlays of variables in disjoint blocks. The
price paid for this rather trivial saving is an inflexible set
of interrelations among program identifiers which adds
greatly to the program complexity. APL has scoping
mechanisms at the subroutine and workspace level, but
none at the block structure level. This looser scoping
mechanism appears to be very appealing to practical
programmers. Prior to 1970, we might have dismissed the
tendency towards looser scoping as being due to a lack of
education. However, now that we have become complexity
conscious, we can see that block structure imposes addi-
tional complexity on a program and that the desire to
" ruthlessly prune such complexity by eliminating block
structure may be justified by the canons of software en-
gineering.

Argument against explicit type declarations: APL is
designed so that types of variables may be determined
implicitly by context, and there are in fact many syntactic
checks on type compatibility between operators and op-
erands in an APL system. Implicit type definitions may
well correspond much more closely to the programmers
intuitive thought processes than explicit type definitions.
Moreover, explicit type declarations greatly increase the
number of interactions among program constituents, and
therefore increase the complexity of the program. If the
programmer needs explicit information about types, APL
has query facilities for providing such information to the
programmer.

Argument against explicit control structures: The rich
operator structure of APL often allows explicit loops and
other explicit control specifications to be avoided. Since
control structures are probably the single most significant
cause of program complexity, languages which allow con-
trol structures to be specified implicitly rather than ex-
plicitly clearly give rise to textually simpler programs.

Since language usage in the future is likely to become
increasingly interactive, and APL is probably the most
widely used interactive language, language designers
should analyze very carefully the reasons for the popularity
of APL. It is not at present clear how much the popularity
of APL is due to the quality of its programming system and
how much it is due to the quality of the language design.
However, it may well turn out that programming languages
of the future will be more APL-like than Pascal-like.

M26—Structured programming: The term “structured
programming” was introduced by Dijkstra in 1969 in a
seminal paper entitled “Notes on structured program-
ming” [24]. These notes are the culmination of several
years of personal development, documented by his 1965
paper entitled “Programming Considered as a Human
Activity” [20] which emphasizes the importance of pro-
gramming style and program verification and contains the
observation that “the quality of programmers is inversely
proportional to the density of go-to statements in their
programs,” and by his 1968 letter entitled “Go-to State-
ment Considered Harmful” [21] which sparked a debate
concerning the role of the go-to statements in program-
ming that is ably summarized by Knuth [46]. Dijkstra’s

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

recent book entitled A Discipline of Programming [22]
reflects his current thinking on the subject.

Structured programming in its purest (narrow) form is
concerned with the development of programs from as-
signment statements, conditional branching (if-then-else)
statements and iteration (while-do) statements by state-
ment composition. These statement forms can be nicely
axiomatized [36] and correspond to “natural” forms of
mathematical reasoning (the if-then-else statement cor-
responds to enumerative (case analysis) reasoning and the
while-do statement corresponds to inductive reasoning).
It was shown by Bohm and Jacopini [4] that these state-
ment forms are sufficient for expressing any computable
function. Moreover, it turns out that these statement forms
are appropriate for many practical problems although they
must be supplemented by other statement forms in certain
cases such as unusual exit from a loop.

Structured programming in its more general meaning
is concerned with the better organization of the program
development process to achieve objectives such as sim-
plicity, understandability, verifiability, modifiability,
maintainability, etc. In order to achieve these objectives
it is important to develop a methodology for the modular
decomposition of programs into components suitable both
for bottom-up and top-down program develspment. In this
connection, it is convenient to distinguish between “pro-
gramming in the small” concerned with modularity and
program structuring at the primitive statement level and
“programming in the large” concerned with modularity
at a higher (subprogram and data structure) level. The
if-then-else and while-do constructs are appropriate
module building constructs for programming in the small.
The Algol procedure, Simula class and APL workspace are
examples of module building constructs for programming
in the large. Current research on modularity will be dis-
cussed in a separate section.

Structured programming has affected programming
language usage in placing greater emphasis on if-then-else
and while-do constructs and deemphasizing the go-to
statement. It is likely to affect the design of future pro-
gramming languages by introducing new kinds of program
modules for programming in the large, and by placing
greater emphasis on verifiability as a programming lan-
guage design objective. The availability of appropriate
concepts of modularity should help the user in systematic
modular program development for complex problems.
However, there are important areas of program develop-
ment, such as choice of an appropriate modular data
structure where available tools are of little help to the
programmer. The influence of the choice of data structure
on program structure is discussed in a paper on “top-down
program development” by Wirth [90]. The duality between
program structure and data structure is discussed in a
provocative way by Hoare [38], [39].

The techniques of structured programming have had an
impact not only on academic computer science but also on
production programming [8]. The chief programmer team
approach developed by Mills and Baker [61] is an example

WEGNER: PROGRAMMING LANGUAGES

of a management structure which makes use of structured
programming. The New York Times project [9] is perhaps
the most widely advertised success story for the chief
programmer team approach, claiming a productivity of
10 000 instructions per man year with only one error per
man year. However, the reported success of this project was
subsequently challenged, on the basis that maintenance
and modifiability of the completed program was unsatis-
factory. It appears that the chief programmer team ap-
proach is designed to optimize program development but
pays insufficient attention to the operations and mainte-
nance part of the life cycle (see the section on life cycle).

M27—Structured model building: Specifications of
programming languages are effectively complex programs
in some specification language. The notions of abstraction
structuring, and stepwise refinement are just as applicable
to the construction of semantic models (definitions) of
programming languages as they are to the construction of
applications programs. Thus, the abstract notion of a se-
mantic model (for a specific language) can be realized by
a compiler model, interpreter model, axiomatic model, or
functional model (see M22). Once the desired class of
models has been chosen, there is enormous scope for
“structuring” the language definition by first making
“high-level” decisions concerning the overall structure of
the model and then filling in lower level details by a process
of stepwise refinement. The term “partial model” may be
used to describe an intermediate partial language speci-
fication in this process of stepwise refinement.

The above structured model building approach will be
briefly illustrated by showing how stepwise refinement
may be used to build an information structure model (in-
terpreter model) of Algol 60 [97]. In the case of information
structure models (,1° F) the partial models of the stepwise
refinement process will have partial (successively more
complete) specifications of the state components I,I°, and
the state transition function F. The initial model My would
be an arbitrary model with no restriction on I,I°,F. A
“first-order” model M, might require states I to be of the
form (P,C,D) where P is an invariant (read only) program
component, C has the form (ip,ep) where ip is an in-
struction pointer into P and ep is an environment pointer
into D, and D is a stack of activation records. A “second-
order” model My might then be introduced which defines
the state transitions (instructions) for block entry and exit
and procedure call and return. Eventually, a final model
M, would completely define the state structure I and state
transitions F for every Algol statement.

The partial models which arise in the above stepwise
refinement process specify partial (operational) semantics
for partial syntax specifications and may be thought of as
defining language classes which are abstractions of the
language that is being defined. For example, the abstrac-
tion “Algol-like languages” may in principle be defined by
a partial information structure model which fixes those
semantic and syntactic features that are essential if the
language is to be Algol-like and leaves open optional lan-
guage features of Algol-like languages.

1221

The use of structured techniques of model specification
is likely to lead to more understandable definitions of a
number of existing programming languages. However, an
even more potent way of developing programming lan-
guages with simple specifications is to use simplicity of
specification as one of the criteria of programming lan-
guage design, as was done in the case of the programming
language Pascal.

M28—The life cycle concept: The software life cycle as
formalized by department of defense agencies consists of
a concept formulation and requirements specification
stage, a software development stage, and an operations
and maintenance stage. These stages may in turn be re-
fined so that the software development stage might consist
of a requirements analysis stage, a program design stage,
an implementation and debugging stage and a testing and
evaluation stage. In analyzing three large military software
projects, it was estimated that such systems typically have
a life cycle of 16 years, consisting of a concept formulation
and requirements stage of 6 years, a software development
stage of 2 years, and an operations and maintenance stage
of 8 years [70]. Thus, the software development stage
comprises only one eighth of the total life cycle of a typical
large military software project.

The life cycle concept provides a basis for a more com-
plete analysis of software systems than was previously
possible. In the 1960’s and early 1970’s programming
projects were organized to minimize software development
costs rather than total life cycle costs. This led to a dis-
proportionate emphasis on program design and imple-
mentation and a comparative neglect of both the initial
determination of what it is that we really want to accom-
plish and the long years of program usage in an environ-
ment which may involve frequent program modifica-
tion. '

Emphasis on the life cycle as opposed to the software
development phase affects both programming language
design and programming language usage. For example
emphasis on software development requires programming
languages to be designed for rapid and correct program
development while emphasis on the life cycle requires
programs to be readable and modifiable during the long
operations and maintenance period, providing a strong
argument for simplicity of language design. Language
usage should be modular, so that modifications of one part
of the program do not have unexpected side effects in an-
other part of the program. Clever tricks which make the
program less readable should be avoided like the plague.

The life cycle approach allows the systematic study of
cost and effort in all stages of existence of a software sys-
tem [69]. Bottlenecks can be uncovered in the manner of
critical path analysis and tools and techniques may be
developed for eliminating such bottlenecks. Studies of
software systems have in fact uncovered some quite
unexpected facts about system behavior such as the fact
that 64 percent of errors are system design errors while
only 36 percent are system implementation errors. This
suggests that design, rather than implementation, is the

1222

bottleneck in software system development and has im-
plications concerning the allocation of funds for research
in software engineering.

M29—Modularity: The subroutine mechanism for
realizing program modularity was developed as early as
1951 [83]. It was a fundamental feature of Fortran, whose
design provided an enormous impetus towards modular
programming. Algol 60 was in some ways a backward step
from the viewpoint of modularity because its nested
module structure discouraged independent module de-
velopment and because procedure modules could not ad-
equately handle data which remained in existence between
instances of execution of a procedure.

The Simula class is a very flexible generalization of the
Algol 60 procedure module. It separates creation and de-
letion of instances of a class from entry and exit for pur-
poses of execution. Coroutine control allows the program
and data state at arbitrary points of execution to be pre-
served and subsequently restored. Access to objects de-
clared in the outermost block of a class provides a more
flexible (too flexible) mechanism for module intercom-
munication. The subclass facility is an ingenious syntactic
mechanism for providing the advantages of hierarchical
(nested) modular environments while avoiding the need
for physical textual nesting of the associated modules. The
class concept has served as an inspiration to designers of
modular programming languages but is probably too rich
in properties to serve as a prototype for modular design.

The collection of declarations in the outer block of a
module may be regarded as a set of attributes or resources.
One of the purposes of a module is to erect a “fence”
around this set of attributes which allows systematic in-
formation hiding [68] of internal (hidden) attributes of a
module and selective specification of a subset of externally
known (exportable) attributes. Recent research on Clu [51]
and Alphard [94] has been concerned with mechanisms for
hiding and exporting module attributes.

The experimental language Clu [51] requires its program
modules to consist of a collection of exportable procedures
operating on a hidden (internal) data structure, and refers
to such modules as clusters. Clusters are convenient for
defining data types (such as stacks) by means of operations
(such as push, pop, top, create, testempty) independently
of the internal data structure (linear list or array) used to
realize the cluster. The user sees an abstraction (the stack
abstraction) which is defined by hiding the internal data
structure and exporting only the operations. Such an ab-
straction is called a data abstraction because it abstracts
from a specific data representation. The effect of the op-
erators is defined by axioms such as “top(push(x,stack))
= x” which defines the effect of the “top” operation in
terms of previously executed “push” operations without
making any commitment to data representation. Any data
structure which causes the defining axioms for the oper-
ations to be satisfied is an adequate realization of the data
abstraction. Of course, the development of complete and
sound sets of axioms for characterizing the set of cluster
operations in a data independent way may, in general, be

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

difficult. However, in most practical cases, we can char-
acterize the behavior of “output” operations of a data
abstraction reasonably simply in terms of the effect of
previous input operations, and a complete set of axioms
can be developed by systematically using our knowledge
of what the operations are supposed to accomplish.

The experimental modular programming language Al-
phard [94] calls its modules forms. Recent research on
Alphard has emphasized verifiability as an objective of the
language. Forms have a representation component which
defines the representation of hidden data structures, an
implementation component which defines the imple-
mentation of external attributes (operators) of the form
and a specification component which specifies the “ab-
stract” properties of attributes so that the correctness of
their implementation can be verified.

Other work on modular programming languages in-
cludes Brinch Hansen’s development of monitors in con-
current Pascal [9] and Wirth’s introduction of modules in
a Pascal-like language for modular multiprogramming
called Modula [97]. Both monitors and modules are mo-
tivated by the need to provide the user with machine in-
dependent abstractions of machine resources such as disks,
user consoles, synchronization primitives, etc. In [9] the
relation between the implementation and user abstraction
for monitors is described by considering how monitors are
implemented. In [97] the relation between abstraction and
implementation of modules is described at the language
level by introducing notions such as define list of objects
defined in the module for use outside the module and a use
list of objects declared outside the module and used inside
the module.

Among the problems which must be addressed in any
modular programming language are the problems of
module interface definition and module interconnection.
These problems had already been identified in the 1950’s
in connection with the development of Fortran (the
transfer vector mechanism). One recent example of work
in this area is the thesis by Thomas [79] who develops a
module interconnection language (MIL) for specifying
module interfaces in terms of inherited attributes (use
lists), synthesized attributes (define lists), and locally
generated attributes using a model similar to Knuth’s at-
tribute grammars [43].

Although recent research on modularity and abstraction
has greatly increased our understanding of how modules
may be designed, it is not yet clear how effectively these
notions can be incorporated in future programming lan-
guages. The explicit support of clusters or Simula classes
introduces extra complexity into a language both at the
level of verifiability and at the level of implementation,
determining complete and consistent specifications for
clusters to serve as a starting point for formal verification.
Simula 67 has not become a widely used application lan-
guage in spite of its superior modularity facilities. The
modular programming facilities of a language are clearly
among its most important design features, and it is quite
likely that future programming languages will contain new

WEGNER: PROGRAMMING LANGUAGES

kinds of primitives for defining both program and data
abstractions. But the precise nature of these primitives has
not yet been determined.

M30—Data oriented programming languages: We may
distinguish between the program-centered and data-cen-
tered views of programming. The program-centered view
emphasizes program development and considers data only
piecemeal as and when it becomes the object of program
transformation. This view is appropriate to numerical
problems involving complex functional transformations
on simple data structures. The data-centered point of view
considers the data structure (data base) as the central part
of a problem specification and views programs as “bugs”
which crawl around the data base and occasionally query,
update or augment the portion of the data base at which
they currently reside. This view is appropriate for airline
reservation systems, management information systems,
information retrieval systems or any other systems whose
state description requires a complex data structure and
whose operations (transactions) are local queries or per-
turbations of that data structure.

Bachman in his Turing lecture [11] compares the shift
from the program-centered to the data-centered point of
view with the shift from an earth-centered to a sun-cen-
tered model of the universe brought about by the Coper-
nican revolution. There is no doubt that the increasing
importance of the data-centered view of programming will
affect the design of future programming languages.

Since programming was initially motivated by numerical
problems early programming languages and programming
methodology emphasized the programming centered point
of view. Algol 60 blocks and procedures are examples of
program-centered constructs since internal data structures
are forced to disappear between instances of execution.
Simula classes generalize block structure so that it becomes
appropriate for data-centered programming.

Cobol is an example of an early programming language
which allows program and data to be handled in a sym-
metrical fashion. Programming systems for data-centered
programming developed during the 1960’s include IDS
(integrated data store) [5], and IMS (information man-
agement system) [25]. The data-centered view of pro-
gramming led in the 1970’s to the development of data-
base languages and systems [14], [25].

Data-base systems may be classified [25] into network
systems which require the user to view the data base as a
network (spagghetti bowl); hierarchical systems which
require the data base to be tree structured, and relational
data-base systems which permit the user to view the data
base as a set of abstract relations. Network and hierarchical
systems give rise to “low level” data base languages since
they require the user to be explicitly aware of the data
structure implementation. Relational systems give rise to
high level data base languages which allow programs to
specify transactions independently of the internal data
structure representation, but lead to formidable imple-
mentation problems.

Network systems are a direct outgrowth of the work of

1223

the Codasyl data-base task group (DBTG) [14] and were
heavily influenced by Bachman’s work on IDS [5]. Hier-
archical systems are the simplest class of data-base man-
agement systems, and most of the practical systems of the
1960’s such as IMS were hierarchical. The relational ap-
proach to data-base management systems was pioneered
by Codd in 1970 [13]. A good recent survey of the state of
the art may be found in [77].

There is a great deal of current work on the design and
implementation of data-base language. Recently developed
relational data-base languages include Sequel [14], Quel
[2], and query by example [100].

CONCLUSIONS

The above collection of concepts and milestones is by
no means complete, but illustrates the great variety of
programming language concepts and products developed
during the last 25 years. One of the more interesting facts
that emerges from a study of programming language de-
velopment is the remarkable stability of early program-
ming languages like Fortran and Cobol, and the compar-
ative lack of success of subsequently developed languages
like PL/I, Algol 68, Simula 67, and Pascal in capturing
significant numbers of adherents in a nonuniversity en-
vironment. The exception is perhaps APL which has
captured the hearts of a new class of user (the desk calcu-
lator user).

All the programming languages described in this paper

-were developed and implemented in the 1950’s and 1960’s.

Although there have been a number of proposals for gen-
eral purpose languages in the 1970’s such as CS 4 [15] and
the Tinman requirements specification for a new DOD-
sponsored common higher order language [31], no new
general purpose languages comparable to PL/I, Algol 68,
or Pascal have been launched during this period. The
1970’s have been a period of retrenchment in the devel-
opment of general purpose languages. A number of new
insights have been developed such as the importance of
simplicity, readability, verifiability, and maintainability
in program design and language design. A better appre-
ciation of the concept of modularity has been developed
and we have made some gains in our understanding of
program verification. But these insights have-led to
changes in the mode of use of existing programming lan-
guages rather than in the design of a new class of pro-
gramming languages which are so clearly superior that they
are automatically accepted as a replacement for existing
programming languages.

The demonstrated reluctance of the programming
community to accept a new language is due partly to the
costs of a changeover, and partly to the natural resistance
to changes in technology. It is due partly to the fact that
programming language designers have not been able to
come up with an acceptable compromise between sim-
plicity and versatility that is a substantial improvement
over Fortran or Cobol. However, a further reason may be
that programmer productivity is not as sensitive to lan-

1224

guage changes as programming language professionals
would like to think. Fortran-like languages provided a
significant increment of productivity over assembly lan-
guage but it may well be that further language refinements
cause only marginal or even negative increments in pro-
grammer productivity. Programming style, structured
programming and other methodologies are largely lan-
guage independent and are probably far more important
in increasing programmer productivity than the develop-
ment of new languages. Ultimately, it is the quality of
programming rather than the programming language that
determines the cost and reliability of production pro-
grams.

The field of programming languages was central to the
development of computer science in the 1950’s and 1960’s,
leading to important practical products and to important
theoretical advances in our understanding of the nature
of computer sciences. It may well be that programming
language professionals did their work so well in the 1950’s
and 1960’s that most of the important concepts have al-
ready been developed. The programming language field
may play a less central (though still important) role in
computer science in the 1970’s and 1980’s than it did in the
1950’s and 1960’s.

REFERENCES

Note: OSIPL refers to [25]. ICRS refers to [40].

[1] A.V. Aho and J. R. Ullman, The Theory of Parsing, Translation
and Compiling. Englewood Cliffs, NJ: Prentice-Hall, vol. I, 1972;
vol. II, 1973.

[2] E. Allman, M. Stonebraker, and G. Held, “Embedding a relational
sublanguage in a general purpose programming language” SIG-
PLAN Notices, Mar. 1976.

[3] M. M. Astrahan and D. Chamberlin, “Implementation of a struc-
tured English query language,” Commun. Ass. Comput. Mach.,
Oct. 1975.

[4] C.Bohm and G. Jacopini, “Flow diagrams, turing machines, and
languages with only two formation rules,” Commun. Ass. Comput.
Mach., May 1966.

[5] C. W. Bachman, “A general purpose system for random access,
memories,” in FJCC Proc., 1964.

[6] R. S. Boyer, B. Elspas, and K. N. Levitt, “A formal system for
testing and debugging programs by symbolic execution,” ICRS,
Apr. 1975.

[7] J.R.Brown and M. Lipow, “Testing for software reliability,” ICRS,
Apr. 1975.

[8] F.T.Baker, “Structured programming in a production program-

.ming environment,” ICRS, Apr. 1975.

[9] P. Brinch Hansen, “The purpose of concurrent PASCAL,” ICRS,
Apr. 1975.

[10] F. T. Baker and H. D. Mills, “Chief programmer teams,” Data-

_mation, 1973.

[11] C. W. Bachman, “The programmer as navigator,” (1973 Turing
lecture), Commun. Ass. Comput. Mach., Nov. 1973.

[12] COBOL 1961: Revised Specifications for a Common Business
Oriented Programming Language, U. S. Govt. Printing Office,
1961.

[18] E.F.Codd, “A relational submodel for large shared data banks,”
Commun. Ass. Comput. Mach., June 1970.

[14] “CODASYL,” Data Base Task Group Rep., Apr. 1971.

[15} CS-4 Language Reference Manual and Operating System In-
terface, Intermetrics Publ., Oct. 1975.

[16] N.Chomsky and G. A. Miller, Introduction to the Formal Analysis
of Natural Languages, Handbook of Mathematical Psychology,
vol. II. New York: Wiley, 1963.

[17] D.Dahland C. A. R. Hoare, Hierarchical Program Structures, in
Dahl, Dijkstra and Hoare, Structured Programming. New York:
Academic, 1972.

[18] R. Dewar, “SPITBOL 2.0,” Illinois Inst. Technol. Rep., 1971.

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

[19] E. W. Dijkstra, “A constructive approach to the problem of pro-
gram correctness, BIT, Aug. 1968.

[20] ——, “Programming as a human activity,” Proc. IFIP Congress,

[21] ——; “Go to statement considered harmful,” Commun. Ass.
Comput. Mach. (Lett.), Mar. 1968.

[22] ——, A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1976.

[23] ——, “Making a translator for ALGOL 60,” APIC Bull., vol. 7,
1961.

[24] ——, Notes on Structured Programming, in Dahl, Dijkstra and

Hoare, Structured Programming. New York: Academic, 1972.

[25] C.d. Date, An Introduction to Data Base Systems. New York:
Addison-Wesley, 1975.

[26] Data Structures in Programming Languages, Proc. of Symp.,
SIGPLAN Notices, Feb. 1971.

[27] “FORTRAN vs. basic FORTRAN,” Commun. Ass. Comput.
Mach., Oct. 1964.

[28] J. Feldman and D. Gries, “Translator writing systems,” Commun.
Ass. Comput. Mach., Nov. 1968.

[29] R. W. Floyd, Assigning Meanings to Programs, Proc. Symp. App.
Math. vol XIX, AMS, 1967.

[30] A.D. Falkoff and K. E. Iverson, The APL Terminal System, in
Klerer and Reinfelds, Interactive Systems for Experimental
Applied Mathematics. New York: Academic, 1968.

[31] D. A. Fischer, “A common programming language for the depart-
ment of defense, background and technical requirements,” IDA
Sci. Technol. Division, paper P-1191, June 1976.

[32] R. Griswold, J. Poage, and 1. Polonsky, The SNOBOL 4 Pro-
gramming Language. Englewood Cliffs, NJ: Prentice-Hall,
1971.

[33] J. Gimpel, “A theory of discrete patterns and their implementation
in SNOBOL 4,” Commun. Ass. Comput. Mach., Feb. 1973.

[34] L. Gilman and A. J. Rose, APL, an Interactive Approach, 2nd Ed.
New York: Wiley, 1974.

[35] J.B.Goodenough and S. L. Gerhard, “Towards a theory of test data
selection,” ICRS, Apr. 1975.

[36] C.A.R.Hoare, “An axiomatic basis for computer programming,”
Commun. Ass. Comput. Mach., Oct. 1969.

[37] C. A. R. Hoare and N. Wirth, “An axiomatic definition of the
programming language PASCAL,” Acta Inform., vol. 2, no. 4,
1973.

[38] ——, Notes on Data Structuring, In Dahl, Dijkstra and Hoare,
Structured Programming. New York: Academic, 1972.

[39] ——, “Data reliability,” ICRS, Apr. 1975.

[40] K. E. Iverson, A Programming Language.
1962.

[41] Proc. Int. Conf. Reliable Software, Apr. 1975; also SIGPLAN
Notices, June 1975.

[42] J. Johnston, “The contour model of block structured processes,”
DSIPL, Feb. 1971.

[48] D. E. Knuth, “The Semantics of Context Free Languages,” in
Mathematical Systems Theory, vol. 11, no. 2, 1968.

New York: Wiley,

[44] ——, “The remaining trouble spots in ALGOL 60,” Commun. Ass.
Comput. Mach., Oct. 1967.
[45] ——, The Art of Computer Programming Volume III, Sorting and

Searching, 1973.

-, “Structured programming with go to statements,” Comput.

Surveys, Dec. 1974. .

[47] J.C. King, “Symbolic execution and program testing,” Commun.
Ass. Comput. Mach., July 1976.

[48] J. G. Kemeny and T. E. Kurtz, Basic Programming. New York:
Wiley, 1967.

[49] P.Lucas and K. Walk, “On the formal description of PL/I,” Annu.
Rev. Automatic Programming, vol. 6, pt 3. New York: Pergamon,
1969.

[50] R. L. London, “A view of program verification,” ICRS, Apr.
1975.

[51] B. H. Liskov, “A note on CLU,” Computation Structures Group
Memo 112, Nov. 1974.

[52] B. M. Leavenworth, “Syntax macros and extended translation,”
Commun. Ass. Comput. Mach., Nov. 1966.

[53] B. H. Liskov and S. N. Zillies, “Specification techniques for data
abstractions,” ICRS, Apr. 1975.

[54] M. D. Mcllroy, “Macro instruction extensions to compiler lan-
guages,” Commun. Ass. Comput. Mach., Apr. 1960.

[565] C. N. Mooers, “TRAC-A procedure-describing language for a re-
active typewriter,” Commun. Ass. Comput. Mach., Mar. 1976.

[46]

WEGNER: PROGRAMMING LANGUAGES

[56] J. McCarthy et al., LISP 1.5 Programmers Manual. Cambridge,
MA: MIT Press, 1965.

[67] J.McCarthy, “Towards a mathematical science of computation,”
in Proc. IFIP Congr., 1962.

[58] W. M. McKeeman, J. H. Horning, and D. B. Wortman, A Compiler
Generator. Englewood Cliffs, NJ: Prentice-Hall, 1970.

[59] Z. Manna, Mathematical Theory of Computation. New York:
McGraw-Hill, 1974.

[60] H.D. Mills, “Mathematical foundations for structured program-
ming,” IBM Corp., Gaithersburg, MD, FSC 72-6012, 1972.

[61] J. H. Morissey, “The QUIKTRAN system,” Datamation, Feb.
1964.

[62] P. Naur, Ed., “Report on the algorithmic language ALGOL 60,”
Commun. Ass. Comput. Mach., May 1960.

, “Revised report on the algorithmic language ALGOL 60,”
Commun. Ass. Comput. Mach., Jan. 1963.

[64] ——, Proofs of Algorithms by General Snapshots, BIT 6, 1966.

[65] Newell et al., Information Processing Language V Manual, 2nd
Ed. Englewood Cliffs, NJ: Prentice-Hall, 1965.

[66] E. I Organick and J. G. Cleary, “A data structure model of the
B6500 computer system,” DSIPL, Feb. 1971.

[67] PL/I, Current IBM System 360 Reference Manual, (or Bates and
Douglas), 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[68] D.I. Parnas, “A technique for software module specification with
examples,” Commun. Ass. Comput. Mach., May 1972.

[69] B. Randell and L. J. Russell, ALGOL 60 Implementation. New
York: Academic, 1964.

[70] D.J. Reifer, “Automated aids for reliable software,” ICRS, Apr.
1975.

[71] D. Scott and S. Strachey, “Towards a mathematical semantics for
computer languages,” PRG 6, Oxford Univ. Comput. Lab., 1971.

[72] J.Sammet, Programming Languages, History and Fundamentals.
Englewood Cliffs, NJ: Prentice-Hall, 1969.

[73] C. E. Shannon and W. Weaver, The Mathematical Theory of
Communicdtions. Urbana, IL: Univ. Illinois Press, 1962.

[74] N. F. Schneiderwind, “Analysis of error processes in computer
software,” ICRS, 1975.

[75] C. J. Shaw, “JOSS, a designers view of an experimental on-line
system,” in Proc. FJCC, 1964.

[76] ——, “A specification of JOVIAL,” Commun. Ass. Comput. Mach.,
Dec. 1963.

[77] E.H. Sibley, Ed., “Special issue: Data base management systems,”
Comput. Surveys, Mar. 1976.

[78] A.M. Turing, “On computable numbers with an application to the
entscheidungsproblem,” in Proc. London Math. Soc., 1936.

[79] J. Thomas, “Module interconnection in programming systems
supporting abstractions,” Ph.D. dissertation, Brown Univ.,
Providence, RI, May 1976.

[80] R. D. Tennent, “The denotational semantics of programming
languages,” Commun. Ass. Comput. Mach., Aug. 1976.

[81] J. Von Neumann, “The EDVAC report,” in Computer from
PASCAL to Von Neumann, H. Goldstein, Ed. Princeton, NJ:
Princeton Univ. Press, 1972, Ch. 7, discussion.

[82] V. Wingaarden et al., “Report on the algorithmic language ALGOL
68,” Numer. Math., Feb. 1969; also revised report, Numer. Math.,
Feb. 1975.

[83] M. V. Wilkes, D. J. Wheeler, and S. Gill, The Preparation of Pro-
grams for a Digital Computer. New York: Addison-Wesley, 1951
(revised Ed., 1957).

(63]

1225

[84] P. Wegner, Programming Languages, Information Structures and
Machine Organization. New York: McGraw-Hill, 1968.

[85] W. Waite, “A language independent macro processor,” Commun.
Ass. Comput. Mach., July 1967.

[86] P. Wegner, “Three computer cultures, computer technology,
computer mathematics and computer science,” in Advances in
Computers, vol. 10. New York: Academic, 1972.

[87] ——, “Data structure models in programming languages,” DSIPL,
Feb. 1971.

[88] ——, “The Vienna definition language,” Comput. Surveys, Mar.
1972,

[89] N. Wirth and H. Weber, “Euler—A generalization of ALGOL and
its formal definition,” Commun. Ass. Comput. Mach., Jan. and
Feb. 1966.

[90] N. Wirth, “Program development by stepwise refinement,”

- Commun. Ass. Comput. Mach., Apr. 1971.

[91] P. Wegner, “Abstraction—A tool in the management of com-
plexity,” in Proc. 4th Texas Symp. Comput., Nov. 1975.

[92] N. Wirth, “The programming language PASCAL,” Acta Inform.,
1971.

[98] P. Wegner, “Structured model building,” Brown Univ., Providence,
RI, Rep., 1974.

[94] W. Wulf, R. L. London, and M. Shaw, “Abstraction and verification
in ALPHARD, introduction to language and methodology,” Car-
negie-Mellon Univ., Dep. Comput. Sci. Rep., June 1976.

[95] P. Wegner, “Operational semantics of programming languages,”
in Proc. Symp. Proving Assertations about Programs, Jan.
1972.

[96] ——, “Research paradigms in computer science,” in Proc. 2nd Int.
Conf. Reliable Software, Nov. 1976.

[97] N. Wirth, “Modula: A language for modular multiprogramming,”
ETH Institute for Informatics, TR18, Mar. 1976.

[98] P. Wegner, “Structured programming, program synthesis and
semantic definition,” Brown Univ. Rep., Providence, RI, 1972.

[99] V. Yngve, “COMIT as an IR language,” Commun. Ass. Comput.
Mach., Jan. 1962.

[100] M. Zloof, “Query by example,” in Proc. Nat. Comput. Conf.,
1975.

Peter Wegner received the B.Sc. degree in
mathematics from the Imperial College, Lon-
don, England, the Diploma in numerical analy-
sis and automatic computing from Cambridge
University, Cambridge, England, the M.A. de-
gree in economics from Penn State University,
and the Ph.D. degree in computer science from
London University, London, England.

He has taught at the London School of Eco-
nomics, Penn State, Cornell University, and -
Brown University and has been on the staff of
the Computation Center at the Massachusetts Institute of Technology,
and Harvard University. He is currently with the Division of Applied
Mathematics, Brown University, Providence, RI. His publications are
primarily in the programming language area but include papers in op-
erations research and statistics.

Dr. Wegner has been consultant to the ACM Curriculum Committee
(1965-1968), SIGPLAN Chairman (1969-1971) and is presently a
member of the ACM Council.

