
BUILDING BLOCKS
UML & more....

banerjee@cs.queensu.ca

1

mailto:banerjee@cs.queensu.ca
mailto:banerjee@cs.queensu.ca

Main Sections

UML

Use Case
Diagrams

Sequence
Diagrams

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

2

So, what is the problem ?

• Software is extremely complex.

- Once a structure is in place, very difficult to change.

- Requires teamwork to build.

- Software usually requires maintenance.

- Requirements need to be traced.

Should we reduce ‘effective’ complexity?

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

3

Structure in place, hard to change.
Teamwork required. Team mates need to communicate.
Maintenance, hence documentation.
Traceability is important to check if the final product delivers on the functional requirements.

Why Reduce ‘Effective Complexity’?

• Software is ubiquitous. Chances are, you will encounter it.

How to reduce effective complexity?

• Will require less work from each team member to get it right the
first time.

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

• Easier documentation and greater maintainability.

4

1. Definitely computer scientists.
2. If team members share a common vocabulary and can communicate, it’ll be easier for
everyone.
3. Reduce risk of failure.

How to reduce ‘Effective Complexity’?

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

Visualize software

A Plan

Visualize different layers of detail

Apply to new and legacy systems

Universal

Support parallel dev. of large systems

UML designed with the following major goals

5

Software construction needs a plan.
The overall scope of the software can quickly and easily be defined at the start of the project
with a high level model allowing for accurate estimation. Increasing levels of detail can then
be added to each part of the software as it is constructed
Universal + Unified = standard for software modelling languages.

Just like a building

UML (design and represent Building Blocks)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

UML - Unified Modelling Language

“The three amigos”

James Rumbaugh (OMT + UML, RUP)

Grady Booch (Booch Method, RUP)

Ivar Jacobson (RUP, EssUP)

6

OMT - Object modelling technique

UML (design and represent Building Blocks)

UML - Published by the OMG

Source: omg.org

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

7

OMG - Object Modelling Group
UML 2.4 - March 2011

UML (contd.)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

• Structure diagram (not our focus!)
- Shows the static structure of the system.

Implementation Class Diagram, Source: uml-diagrams.org

8

- The elements in a structure diagram represent the meaningful concepts of a system, and may include abstract, real world and
implementation concepts.

UML (contd.)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

• Behavior diagram
- Shows the dynamic structure of the system.

Sequence Diagram, Source: uml-diagrams.org

9

- The elements in a behavior diagram represent a series of changes to the system over time.

Use Case Diagrams

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

A closer look !

10

- Use case diagrams are also known as extensions of class diagrams.
- Use case diagrams are supposed to be behavior and structure diagrams according to UML 2.4

Use Case Diagrams (contd.)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

Use case diagrams are used to specify:

• (external) requirements.
• what a system can do;
• how environment should interact with the subject so that the

system will be able to perform its services.

Use Case - A set of actions

Subject - System under analysis to which a set
of use cases apply.

Actor - external users of a system

11

Use case - Set of actions performed by the system to yield an observable result.
Subject - The subject could be a business or company, software system, physical system or
device, or a smaller subsystem having some behavior.
Actor - Standard UML notation for actor is "stick man" icon with the name of the actor above
or below of the icon. Actor names should follow the capitalization and punctuation guidelines
for classes. The names of abstract actors should be shown in italics. Custom icons can be
used, such as the “non-human” payment service.
Actors are “associated” to use-cases, there can be multiple associations for each actor.

Use Case Diagrams (contd.)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

A Plan

Visualize different layers of detail

Apply to new and legacy systems

Universal

Support parallel dev. of large systems

Extend, Include - Shown using a dotted line.

12

Include similar to abstract use case defined in UML 1.xxx, UML 2.4 specifies an ‘include’
relationship, which means “what is left in the base use case is usually not complete”.
Extend - open arrowhead directed from the extending use case to the extended (base) use
case.

Sequence Diagrams

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

Focusses on message interchange between “lifelines”

13

Sequence Diagrams (Main Elements.)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

Lifeline: is a named element which represents an individual
participant in the interaction

Message: is a named element which defines a specific kind of
communication between lifelines.

14

Message specifies not only the kind of communication, but also the sender and the receiver.
Sender and receiver are normally two occurrence specifications (points at the ends of
messages).

Sequence Diagrams (Main Elements.)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

Message Types: Synchronous Call , Asynchronous Call, Asynchronous signal,
Create, Delete, Reply

Synchronous Call Asynchronous Call

Create Delete Reply

15

Synchronous Call - represents operation call - send message and suspend execution while
waiting for response
Asynchronous Call- send message and proceed immediately without waiting for return value.
Asynchronous Signal - message corresponds to asynchronous send signal
Create message is sent to lifeline to create itself
Delete message (called stop in previous versions of UML) is sent to terminate another lifeline
(x marks the destruction occurence).

Sequence Diagrams (Simplified for this course)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

Component 1

Lifeline

Component 1 Component II

Lifeline + Messages

16

Sequence Diagrams (example extract)

Problem Worth
Solving?

Solution?
Steps to

Solve
Evaluate

UI/Form

enters URL,
hits “go”

Browser Network

display (URL)
IsURLCached(URL) = false
getData(URL)

pageData

render(pageData)

LayoutEngine

Javascript +
DOM etc.

[displays bitmap] pageBitmap

[Building DOM]

17

The large gray box is abstracted for now, basically the DOM, XML parser etc. Note that this is
the partial sequence diagram when the page is not cached.
The dashed backwards arrow represents a “reply” (check earlier slides). You should use a
dashed forward arrow if there is a component that is created (not shown here).

THANK YOU

18

