
6 Documenting a Software Architecture

6.1 Introduction

Architecture documentation is often a thorny issue in IT projects. It’s
common for there to be little or no documentation covering the architec-
ture in many projects. Sometimes, if there is some, it’s out-of-date, inap-
propriate and basically not very useful.

At the other extreme there are projects that have masses of architecture
related information captured in various documents and design tools. Some-
times this is invaluable, but at times it’s out-of-date, inappropriate and not
very useful!

Clearly then, experience tells us that documenting architectures is not a
simple job. But there are many good reasons why we want to document
our architectures, for example:

• Others can understand and evaluate the design. This includes any of the
application stakeholders, but most commonly other members of the de-
sign and development team.

• We can understand the design when we return to it after a period of
time.

• Others in the project team and development organization can learn from
the architecture by digesting the thinking behind the design.

• We can do analysis on the design, perhaps to assess its likely perform-
ance, or to generate standard metrics like coupling and cohesion.

Documenting architectures is problematic though, because:

• There’s no universally accepted architecture documentation standard.
• An architecture can be complex, and documenting it in a comprehensi-

ble manner is time consuming and non-trivial.
• An architecture has many possible views. Documenting all the poten-

tially useful ones is time consuming and expensive.

116 6 Documenting a Software Architecture

• An architecture design often evolves as the system is incrementally de-
veloped and more insights into the problem domain are gained. Keeping
the architecture documents current is often an overlooked activity, espe-
cially with time and schedule pressures in a project.

I’m pretty certain the predominant tools used for architecture documen-
tation are Microsoft Word, Visio and PowerPoint, along with their non-
Microsoft equivalents. And the most widely used design notation is infor-
mal “block and arrow” diagrams, just like we’ve used in this book so far,
in fact. Both these facts are a bit of an indictment on the state of architec-
ture documentation practices at present. We should be able to do better.

This chapter examines some of the most useful architecture views to
document, and shows how the latest incarnation of the Unified Modeling
Language, UML v2.0, can help with generating these views. Using these
techniques and supporting tools, it’s not overly difficult or expensive to
generate useful and valuable documentation.

6.2 What to Document

Probably the most crucial element of the “what to document” equation is
the complexity of the architecture being designed. A two-tier client server
application with complex business logic may actually be quite simple ar-
chitecturally. It might require no more than an overall “marketeture” dia-
gram describing the main components, and a perhaps a structural view of
the major components (maybe it uses a model-view-controller architec-
ture) and a description of the database schema, no doubt generated auto-
matically by database tools. This level of documentation is quick to pro-
duce and routine to describe.

Another factor to consider is the likely longevity of the application. Will
the system serve a long-term business function, or is it being built to han-
dle a one-off need for integration, or is it just a stop-gap until a full ERP
package is installed? Projects with little prospect of a long life probably
don’t need a lot of documentation. Still, never let this be an excuse to hack
together some code and throw good design practices to the wind. Some-
times these stop-gap systems have a habit of living for a lot longer than
initially anticipated, and someone (maybe even you) might pay for these
hacks one day.

The next factor to consider is the needs of the various project stake-
holders. The architecture documentation serves an important communica-
tions role between the various members of the project team, including ar-

6.3 UML 2.0 117

chitects, designers, developers, testers, project management, customers,
partner organizations, and so on. In a small team, interpersonal communi-
cation is often good, so that the documentation can be minimal, and maybe
even maintained on a whiteboard or two. In larger teams, and especially
when groups are not co-located in the same offices or building, the archi-
tecture documentation becomes of vital importance for describing design
elements such as:

• Component interfaces;
• Subsystems constraints;
• Test scenarios;
• third party component purchasing decisions;
• Team structure and schedule dependencies;
• External services to be offered by the application.

So, there’s no simple answer here. Documentation takes time to de-
velop, and costs money. It’s therefore important to think carefully about
what documentation is going to be most useful within the project context,
and produce and maintain this as key reference documents for the project.

6.3 UML 2.0

There’s also the issue of how to document an architecture. So far in this
book we’ve used simple box-and-arrow diagrams, with an appropriate dia-
gram key to give a clear meaning to the notation used. This has been done
deliberately, as in my experience, informal diagrammatical notations are
the most common vehicle used to document IT application architectures.

There are of course many ways to describe the various architecture
views that might be useful in a project. Fortunately for all of us, there’s an
excellent book that describes many of these from Paul Clements et al. (see
Further Reading), so no attempt here will be made to replicate that. But
there’s been one significant development since that book was published,
and that’s the emergence of UML 2.0.

For all its greatly debated strengths and weaknesses, the UML has be-
come the predominant software description language used across the
whole range of software development domains. It has wide and now qual-
ity and low-cost tool support, and hence is easily accessible and useable
for software architects, designers, developers, students – everyone in fact.

UML 2.0 is a major upgrade of the modeling language. It adds several
new features and, significantly, it formalizes many aspects of the language.

118 6 Documenting a Software Architecture

This formalization helps in two ways. For designers, it eliminates ambigu-
ity from the models, helping to increase comprehensibility. Second, it sup-
ports the goal of model-driven development, in which UML models are
used for code generation. There’s also a lot of debate about the usefulness
of model-driven development, and this topic is specifically covered in a
later chapter, so we won’t delve into it now.

The UML 2.0 modeling notations cover both structural and behavioral
aspects of software systems. The structure diagrams define the static archi-
tecture of a model, and specifically are:

• Class diagrams: Show the classes in the system and their relationships.
• Component diagrams: Describe the relationship between components

with well-defined interfaces. Components typically comprise multiple
classes.

• Package diagrams: Divide the model into groups of elements and de-
scribe the dependencies between them at a high level.

• Deployment diagrams: Show how components and other software arti-
facts like processes are distributed to physical hardware.

• Object diagrams: Depict how objects are related and used at run-time.
These are often called instance diagrams.

• Composite Structure diagrams: Show the internal structure of classes
or components in terms of their composed objects and their relation-
ships.

Behavior diagrams show the interactions and state changes that occur as
elements in the model execute:

• Activity diagrams: Similar to flow charts, and used for defining pro-
gram logic and business processes.

• Communication diagrams: Called collaboration diagrams in UML 1.x,
they depict the sequence of calls between objects at run-time.

• Sequence diagrams: Often called swim-lane diagrams after their verti-
cal timelines, they show the sequence of messages exchanged between
objects.

• State Machine diagrams: Describe the internals of an object, showing
its states and events, and conditions that cause state transitions.

• Interaction Overview diagrams: These are similar to activity dia-
grams, but can include other UML interaction diagrams as well as ac-
tivities. They are intended to show control flow across a number of sim-
pler scenarios.

6.4 Architecture Views 119

• Timing diagrams: These essentially combine sequence and state dia-
grams to describe an object's various states over time and the messages
that alter the object’s state.

• Use Case diagrams: These capture interactions between the system
and its environment, including users and other systems.

Clearly then, UML 2.0 is a large technical area in itself, and some pointers
to good sources of information are provided at the end of this chapter. In
the following sections though, we’ll describe some of the most useful
UML 2.0 models for representing software architectures.

6.4 Architecture Views

Let’s return to the order processing example introduced in the previous
chapter. Fig. 44 shows an informal description of the architecture using a
box and arrow notation. In Fig. 45, a UML component diagram is used to
represent an equivalent structural view of the order processing system ar-
chitecture. Note though, based on the evaluation in the previous chapter, a
queue has been added to communicate between the OrderProcessing and
OrderSystem components.

id Component View

OrderProcessing

MailQueue

SendEmail

MailServer

OrderSystem

CustomerSystem OrderQueue

«table»

NewOrders

1
validate

1

readQ

1
writeQ

1

read

1
send

1

1readQ

1

1

writeQ

1

Fig. 45. A UML component diagram for the order processing example

120 6 Documenting a Software Architecture

Only two of the components in the architecture require substantial new
code to be created. The internal structure of the most complex of these,
OrderProcessing, is shown in the class diagram in Fig. 46. It includes a
class essentially to encapsulate each interaction with an existing system.
No doubt other classes will be introduced into the design as it is imple-
mented, for example one to represent a new order, but these are not shown
in the class diagram so that they do not clutter it with unnecessary detail.
These are design details not necessary in an architecture description.

cd OrderProcessing

OrderReader

Validate Store

QueueWriter

1

1

1 1

1

1

Fig. 46. Classes for the order processing component

With this level of description, we can now create a sequence diagram
showing the main interactions between the architectural elements. This is
shown in Fig. 47, which uses the standard UML stereotypes for represent-
ing Boundary (CustomerSystem, OrderQueue, MailQueue) and Entity
(NewOrder) components. This sequence diagram omits the behavior when
a new order is invalid, and what happens once the messages have been
placed on the OrderQueue and MailQueue. Again, this keeps the model
uncluttered. Descriptions of this additional functionality could either be
described in subsequent (very simple) sequence diagrams, or just in text
accompanying the sequence diagram.

Sequence diagrams are probably the most useful technique in the UML
for modeling the behavior of the components in an architecture. One of
their strengths actually lies in their inherent weakness in describing com-
plex processing and logic. Although it is possible to represent loops and

6.4 Architecture Views 121

selection in sequence diagrams, they quickly become hard to understand
and unwieldy to create. This encourages designers to keep them relatively
simple, and focus on describing the major interactions between architec-
turally significant elements in the design.

sd Interactions

OrderReader

MailQueue

Validate

OrderQueue

Store QueueWriter

NewOrders CustomerSystem

readOrderData

success:=
validateOrder

success:=
newOrder

success:=
storeOrder

success:=
writeQueue

success:=
acknowledgeOrderSuccess

success:=
writeQueue

Fig. 47. Sequence diagram for the order processing system

Quite often in this style of business integration project, it’s possible to
create a UML deployment diagram showing where the various components
will execute. This is because many of the components in the design already
exist, and the architect must show how the new components interact with
these in the deployment environment. An example of a UML deployment
diagram for this example is given in Fig. 48. It allocates components to
servers and shows the dependencies between the components. It’s often
useful to label the dependencies with a name that indicates the protocol
that is used to communicate between the components. For example, the
OrderProcessing executable component requires JDBC28 to access the Ne-
wOrders table in the OrdersDB database.

28 Java Database Connectivity

122 6 Documenting a Software Architecture

dd Deployment View

OrdersDB

OrderServer

«executable»

:
OrderProcessing

«table»

:NewOrders

MOMServer

:MailQueue

:OrderQueue

MailServer

:MailServer

OrderSystem

CustomerSystem

«executable»

:
CustomerSystem

«executable»

:
OrderSystem

:SendEmail

CRM

ERP

SOAP

JDBC

Fig. 48. UML Deployment diagram for the order processing system

6.5 More on Component Diagrams

Component diagrams are very useful for sketching out the structure of an
application architecture. They clearly depict the major parts of the system,
and can show which off-the-shelf technologies will be used as well as the
new components that need to be built. UML 2.0 has also introduced im-
proved notations for representing component interfaces. An interface is a
collection of methods that a component supports. In addition to the UML
1.x “lollipop” notation for representing an interface supported by a com-
ponent (a “provided” interface), the ‘socket’ notation can be used to spec-
ify that a component needs a particular interface to be supported by its en-
vironment (a “required” interface). These are illustrated in Fig. 49.
Interface definition is particularly important in an architecture, as it allows
independent teams of developers to design and build their components in

6.5 More on Component Diagrams 123

isolation, ensuring that they support the contracts defined by their inter-
faces.

By connecting provided and required interfaces, components can be
“plugged” or “wired” together, as shown in Fig. 49. The provided inter-
faces are named, and capture the dependencies between components. Inter-
face names should correspond to those used by off-the-shelf applications
in use, or existing home-grown component interfaces.

id Component View

OrderProcessing

MailQueue

SendEmail

MailServer

OrderSystem
CustomerSystem

OrderQueue

«table»

NewOrders

JDBC

SMTP

QueueRead

QueueRead

QueueWrite

CustomerServices

QueueWrite

Fig. 49. Representing interfaces in the order processing example

UML 2.0 makes it possible to refine interface definitions even further,
and depict how they are supported within the context of a component. This
is done by associating interfaces with ‘ports’. Ports define a unique, op-
tionally named interaction point between a component and its external en-
vironment. They are represented by small squares on the edge of the com-
ponent, and have one or more provides or requires interfaces associated
with them.

The order processing system architecture using ports for the OrderProc-
essing and CustomerSystem components is depicted in Fig. 50. All the
ports in this design are unidirectional, but there is nothing stopping them
from being bidirectional in terms of supporting one or more provides or
requires interfaces. UML 2.0 composite diagrams enable us to show the in-
ternal structure of a design element such as a component. As shown in Fig.

124 6 Documenting a Software Architecture

51, we can explicitly depict which objects comprise the component im-
plementation, and how they are related to each other and to the ports the
component supports. The internal objects are represented by UML 2.0
“parts”. Parts are defined in UML 2.0 as run-time instances of classes that
are owned by the containing class or component. Parts are linked by con-
nectors and describe configurations of instances that are created within an
instance of the containing component/class.

id Component View

OrderProcessing

validateOrder

getOrders writeConfirmation

writeOrder

MailQueue

SendEmail

MailServer

OrderSystem
CustomerSystem

validate

ProvidedInterface1

OrderQueue

«table»

NewOrders

JDBC

QueueWrite

QueueWrite

CustomerServices SMTP

QueueRead

QueueRead

Fig. 50. Using ports in the order processing example

Composite diagrams are useful for describing the design of complex or
important components in a design. For example, a layered architecture
might describe each layer as a component that supports various
ports/interfaces. Internally, a layer description can contain other compo-
nents and parts that show how each port is supported. Components can
also contain other components, so hierarchical architectures can be easily
described. We’ll see some of these design techniques in the case study in
the next section.

6.6 Architecture Documentation Template 125

cd Component View

OrderProcessing

getOrders

validateOrder

writeConfirmation

writeOrder

or: OrderReader

val: Validate

qw:
QueueWriter

st: Store

«delegate»

«delegate»

«delegate»

«delegate»

Fig. 51. Internal design of the OrderProcessing component

6.6 Architecture Documentation Template

It’s always useful for an organization to have a document template avail-
able for capturing project specific documentation. Templates reduce the
start-up time for projects by providing ready-made document structures for
project members to use.

Once the use of the templates becomes institutionalized, the familiarity
gained with the document structure aids in the efficient capture of project
design details. Templates also help with the training of new staff as they
tell developers what issues the organization requires them to consider and
think about in the production of their system.

Fig. 52 shows the headings structure for a documentation template that
can be used for capturing an architecture design. To deploy this template in
an organization, it should be accompanied by explanatory text and illustra-
tions of what information is expected in each section. However, instead of
doing that here, this template structure will be used to show the solution to
the ICDE case study problem in the next chapter.

126 6 Documenting a Software Architecture

Architecture Documentation Template
Project Name: XXX
1 Project Context
2 Architecture Requirements

2.1 Overview of Key Objectives
2.2 Architecture Use Cases
2.3 Stakeholder Architectural Requirements
2.4 Constraints
2.5 Non-functional Requirements
2.6 Risks

3 Solution
3.1 Relevant Architectural Patterns
3.2 Architecture Overview
3.3 Structural Views
3.4 Behavioral Views
3.5 Implementation Issues

4 Architecture Analysis
4.1 Scenario analysis
4.2 Risks

Fig. 52. Architecture documentation outline

6.7 Summary and Further Reading

Generating architecture documentation is nearly always a good idea. The
trick is to spend just enough effort to produce only documentation that will
be useful for the project’s various stakeholders. This takes some upfront
planning and thinking. Once a documentation plan is established, team
members should commit to keeping the documentation reasonably current,
accurate and accessible.

I’m a bit of a supporter of using UML-based notations and tools for
producing architecture documentation. The UML, especially with version
2.0, makes it pretty straightforward to document various structural and be-
havioral views of a design. Tools make creating the design quick and easy,
and also make it possible to capture much of the design rationale, the de-
sign constraints, and other text based documentation within the tool reposi-
tory. Once it’s in the repository, generating design documentation becomes
a simple task of selecting the correct menu item and opening up a browser
or walking to the printer. Such automatic documentation production is a
trick that is guaranteed to impress non-technical stakeholders, and even
sometimes the odd technical one!

6.7 Summary and Further Reading 127

In addition, it’s possible to utilize UML 2.0 flexibly in a project. It can
be used to sketch out an abstract architecture representation, purely for
communication and documentation purposes. It can also be used to closely
model the components and objects that will be realized in the actual im-
plementation. This “closeness” can be reduced further in the extreme case
to “exactness”, in which elements in the model are used to generate execu-
table code. If you’re doing this, then you’re doing so-called model-driven
development (MDD).

There’s all manner of debates raging about the worth and value of using
the UML informally versus the precise usage required by MDD. Back in
Chapter 1, the role of a software architecture as an abstract representation
of the system was discussed. Abstraction is a powerful aid to understand-
ing, and if our architecture representation is abstract, then it argues for a
more informal usage of the UML in our design. On the other hand, if our
UML models are a precise representation of our implementation, then they
are hardly much of an abstraction. But such detailed models make code
generation possible, and bridge the semantic gap between models and im-
plementation. I personally think there’s a place for both, it just depends
what you’re building and why. Like many architecture decisions, there’s
no right or wrong answer, as solutions need to be evaluated in the context
of their problem definition. Now there’s a classic consultant’s answer.

For in-depth discussions on architecture documentation approaches, the
Views & Beyond book from the SEI is the current font of knowledge:

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, J. Stafford. Documenting Software Architectures: Views and Be-
yond. Addison-Wesley, 2002

Good UML 2.0 books are starting to emerge. The one I find useful is:

S. W. Ambler. The Object Primer 3rd Edition: Agile Model Driven De-
velopment with UML 2. Cambridge University Press, 2004

This book also gives an excellent introduction into agile development
methods, and how the UML can be used in lightweight and effective ways.

There’s an IEEE standard, IEEE 1471-2000, for architecture documen-
tation, which is well worth a read if you’re looking at defining architecture
documentation standards for your organization. This can be found at:

http://standards.ieee.org/reading/ieee/std_public/description/se/1471-
2000_desc.html

