
CISC 322
Software Architecture

Lecture 02:

Course Overview

Emad Shihab
Adapted from: Ahmed E. Hassan

1

Waterfall Development Process

Requirement
Engineering

Architecture
Analysis

Design &
Implement.

Testing

Software Requirements
Specification (SRS)

Architecture Doc

Source Code

2

Course Overview

■ Requirements

■ Architectural Styles

■ Architecture Recovery

■ Design Patterns

■ Project Scheduling

■ Software Estimation

3

Requirements

4

Where Do Requirements

Come From?

■ Requirements come from users and
stakeholders who have demands/needs

■ An analyst/requirement engineer:
– Elicits these demands/needs (raw requirements)

– Analyzes them for consistency, feasibility, and
completeness

– Formulates them as requirements and write down a
specification

– Validates that the gathered requirements reflect the
needs/demands of stakeholders:

• Yes, this is what I am looking for.

• This system will solve my problems.

Types of Requirements

■ Functional Requirements
– Specify the function of the system

– F(input, system state)  (output, new state)

■ Non-Functional Requirements (Constraints)
– Quality Requirements

• Specify how well the system performs its intended functions

• Performance, Usability, Maintenance, Reliability, Portability

– Managerial Requirements
• When will it be delivered

• Verification (how to check if everything is there)

• What happens if things go wrong (legal responsibilities)

– Context / Environment Requirements
• Range of conditions in which the system should operate

Architectural Styles

7

Architectural Styles of

Software Systems
■ Architectural Style

– Form of structure, e.g.,

• "Pipes" between components, or

• "Layered" system, or

• "Bulletin board" system

– Analogy: Style of a building

■ It determines:

– the vocabulary of components and connectors that can be

used in instances of that style

– a set of constraints on how they can be combined. For

example, one might constrain:

• the topology of the descriptions (e.g., no cycles).

• execution semantics (e.g., processes execute in parallel).

SERG©

SERG©

Determining an

Architectural Style

■ We can understand what a style is by answering the
following questions:

– What is the structural pattern? (i.e., components,
connectors, constraints)

– What are the essential invariants of the style?

– What are some common examples of its use?

– What are the advantages and disadvantages of using that
style?

– What are some of the common specializations of that
style?

Architecture Recovery

10

Architecture Terminology

■ Conceptual Software Architecture
– Abstract structure: Large piece of software with many

parts and interconnections

– Analogy: Blueprint of house

■ Concrete Software Architecture
– Actual structure: Large piece of software with many

parts and interconnections

– Analogy: Actual structure of house

■ Reference Architecture
– General architecture for an application domain

– Example: Common structure for compilers or for operating
systems

– Analogy: Typical architecture of a house

 11

Linux Architecture

Concrete Architecture Conceptual Architecture

12

Design

13

Architecture vs. Design

■ Architecture
– Structure of system (components and connectors)

– High level and hard to change (better get it right!)

– Concerned with technical and non technical requirements (e.g.,
Security, Legal, Outsourcing)

– Makes sense for systems with MLOCs

– Very early in life cycle

■ Design
– Inner structure of the components

– Low level (information hidding and interfaces help it change)

– Mostly technical concerns

– Makes sense for systems with KLOCs

– Late in life cycle

14

Design Patterns

■ Good designers know not to solve every

problem from first principles. They reuse

solutions.

■ Practitioners do not do a good job of

recording experience in software design

for others to use.

SERG©

Design Patterns (Cont’d)

■ A Design Pattern systematically names,

explains, and evaluates an important and

recurring design.

■We describe a set of well-engineered

design patterns that practitioners can

apply when crafting their applications.

SERG©

Project Scheduling

17

Project

■ A project is
– a temporary endeavour undertaken to create a

"unique" product or service

■ A project is composed of
– a number of related activities that are directed to the

accomplishment of a desired objective

■ A project starts when
– at least one of its activities is ready to start

■ A project is completed when
– all of its activities have been completed

Project plan

■ A project plan is a schedule of activities

indicating

– The start and stop for each activity. The start and stop

of each activity should be visible and easy to measure

– When a resource is required

– Amount of required project resources

Project Planning

■Managers should consider:

– Resource availability

– Resource allocation

– Staff responsibility

– Cash flow forecasting

■Mangers need to monitor and re-plan as

the project progresses towards its pre-

defined goal

Cost Estimation

21

Software cost estimation

■Predicting the resources required

for a software development process

Topics covered

■ Productivity

■ Estimation techniques

■ Algorithmic cost modelling

■ Project duration and staffing

Course Webpage

■ Schedule

■ Project Deliverables

– Assignment 0 (last year’s projects)

– Assignments 1,2,3 (marking scheme)

– Peer evaluation

24

Next Class…

■ Tuesday Sept 14, BIOSCI 1120

■Will cover:

– Requirements

– Quality Attributes

25

