CISC 322

Software Architecture

Lecture 02:
Course Overview
Emad Shihab

Adapted from: Ahmed E. Hassan

Waterfall Development Process

Requirement
Engineering Software Requirements

‘- 1Specifica’rion (SRS)

Architecture
Analysis 1 Architecture Doc

t Design &
ImP|€menT, 1Sour'ce Code

L&

Testing

Course Overview

m Requirements

m Architectural Styles

m Architecture Recovery
m Design Patterns

m Project Scheduling

m Software Estimation

Reqguirements

Where Do Requirements
Come From?

m Requirements come from users and
stakeholders who have demands/needs

m An analyst/requirement engineer:
— Elicits these demands/needs (raw requirements)

— Analyzes them for consistency, feasibility, and
completeness

— Formulates them as requirements and write down a
specification

— Validates that the gathered requirements reflect the
needs/demands of stakeholders:

* Yes, this is what | am looking for.
* This system will solve my problems.

Types of Requirements

m Functional Requirements
— Specify the function of the system
— F(input, system state) - (output, new state)
m Non-Functional Requirements (Constraints)

— Quality Requirements
« Specify how well the system performs its intended functions
« Performance, Usability, Maintenance, Reliability, Portability
— Managerial Requirements
« When will it be delivered
 Verification (how to check if everything is there)
« What happens if things go wrong (legal responsibilities)
— Context / Environment Requirements
« Range of conditions in which the system should operate

Architectural Styles

Architectural Styles of
Software Systems

m Architectural Style

— Form of structure, e.g.,
* "Pipes" between components, or
« "Layered" system, or
« "Bulletin board" system

— Analogy: Style of a building
m It determines:

— the vocabulary of components and connectors that can be
used in instances of that style

— a set of constraints on how they can be combined. For
example, one might constrain:

* the topology of the descriptions (e.g., no cycles).
¢ execution semantics (e.g., processes execute in parallel).

SERGO ﬁ

Drexel

SERGO

Determining an
Architectural Style

We can understand what a style is by answering the
following questions:

— What is the structural pattern? (i.e., components,
connectors, constraints)

— What are the essential invariants of the style?
— What are some common examples of its use?

— What are the advantages and disadvantages of using that
style?

— What are some of the common specializations of that
style?

Drexel

Architecture Recovery

10

Architecture Terminology

m Conceptual Software Architecture

— Abstract structure: Large piece of software with many
parts and interconnections

— Analogy: Blueprint of house

m Concrete Software Architecture

— Actual structure: Large piece of software with many
parts and interconnections

— Analogy: Actual structure of house

m Reference Architecture
— General architecture for an application domain
— Example: Common structure for compilers or for operating
systems

— Analogy: Typical architecture of a house
11

Linux Architecture

File System

Memory [/ \ > Network

Manager Interface

/

w»| File System —__

Memory Network
Manager Interface

Process Inter-Process
Process Inter-Process o
L Scheduler Communication
Scheduler - Communication
& \ i/ \
"/ 1174 s 2
o . Initialization (= . Library
[nitialization Library ’
Legend: Subsystem | ——extracted dependency —m
Legend: Subsystem depends on——0

Conceptual Architecture Concrete Architecture

12

Design

13

Architecture vs. Design

m Architecture

Structure of system (components and connectors)
High level and hard to change (better get it right!)

Concerned with technical and non technical requirements (e.g.,
Security, Legal, Outsourcing)

Makes sense for systems with MLOCs
Very early in life cycle

m Design

Inner structure of the components

Low level (information hidding and interfaces help it change)
Mostly technical concerns

Makes sense for systems with KLOCs

Late in life cycle

14

Design Patterns

m Good designers know not to solve every
problem from first principles. They reuse
solutions.

m Practitioners do not do a good job of
recording experience in software design
for others to use.

SERGO Drexel

Design Patterns (Cont'd)

m A Design Pattern systematically names,
explains, and evaluates an important and
recurring design.

m We describe a set of well-engineered
design patterns that practitioners can
apply when crafting their applications.

SERGO Drexel

Project Scheduling

Project

m A projectis
— a temporary endeavour undertaken to create a
"unique" product or service

m A project iIs composed of

— a number of related activities that are directed to the
accomplishment of a desired objective

m A project starts when
— at least one of its activities is ready to start

m A project is completed when
— all of its activities have been completed

Project plan

m A project plan is a schedule of activities
Indicating
— The start and stop for each activity. The start and stop
of each activity should be visible and easy to measure
— When a resource Is required
— Amount of required project resources

Project Planning

m Managers should consider:
— Resource availabllity
— Resource allocation
— Staff responsibllity
— Cash flow forecasting

m Mangers need to monitor and re-plan as
the project progresses towards its pre-
defined goal

Cost Estimation

21

Software cost estimation

m Predicting the resources required
for a software development process

Topics covered

m Productivity

m Estimation techniques

m Algorithmic cost modelling

m Project duration and staffing

Course Webpage

m Schedule

m Project Deliverables
— Assignment O (last year’s projects)
— Assignments 1,2,3 (marking scheme)
— Peer evaluation

24

Next Class...

m Tuesday Sept 14, BIOSCI 1120

m Will cover:
— Requirements
— Quality Attributes

25

