
CISC 322
Software Architecture

Lecture 05:

Non Functional Requirements

(NFR) – Quality Attributes (2)

Emad Shihab
Adapted from Ahmed E. Hassan and Ian Gorton

Last Class - Recap

■ Use quality attributes to make NFRs

clearer and more precise

■ Performance

– Throughput

– Response Time

– Deadlines

■ Scalability

– Request Load

– Connections

– Data size

– Deployment

Today

■Modifiability

■ Security

■ Availability

■ Integration

What is Modifiability?

■Modifiability measures how easy it MAY

be to change an application

4

Why Consider Modifiability?

■ Software systems are (almost) guaranteed

to change

– New (non-) functional requirements

■Modifiable systems are easier to

change/evolve

– Estimate cost/effort

 5

How to Measure Modifiability?

■ Evaluate based on context

– Research projects vs. Industrial tools

– Avoid over-engineering!

■ Architect asserts likely change scenarios

6

Modifiability Scenarios

■ How hard is it to…..

– Incorporate new features for self-service
check-out kiosks.

– Replace COTS component since vendor
goes out of business

– Port application from Linux to the Microsoft
Windows platform.

7

Modifiability Analysis

■ Difficult to quantify impact!

■ The best possible is…

– Convincing impact analysis

– Solution can accommodate modification

without much change

8

Modifiability General Rules

■ Some general rules ….

– Minimizing dependencies increases

modifiability

– Avoid ripple effects!

9

Modifiability for ICDE

■ The range of events trapped and stored by

the ICDE client to be expanded

– e.g. Different types of search inputs

■ Third party tools to communicate new

message types

10

ICDE Schematic

ICDE

Repository

ICDE

Recording Software

Local information

repositories

Internet

Analyst

3rd Party

Tools

Security

■ Specialized quality attribute:

– Lots of technology available

– Depends on the application and the context

12

Security is…

■ Authentication
– Verify the identity of users

■ Authorization
– Access rights

■ Encryption
– Messages sent to/from application are encrypted

■ Integrity
– Contents are not altered in transit

■Many others…

13

Security Approaches

■ Internet application security (SSL,PKI)

■ Authentication and Authorization in Java

(JAAS)

14

ICDE Security Requirements

■ Authentication of ICDE users and third

party ICDE tools to ICDE server

■ Encryption of data to ICDE server from 3rd

party tools/users executing remotely over

an insecure network

15

Availability

■ The proportion of the required time it is

useable

– Example availability requirements

• 100% available during business hours

• No more than 2 hours scheduled downtime per

week

• 24x7x52 (100% availability)

■ Related to an application’s reliability

– Unreliable applications suffer poor availability 16

Measuring Availability

■ Period of loss of availability determined by:

– Time to detect failure +

– Time to correct failure +

– Time to restart application

17

Availability General Rules

■ Eliminate single points of failure

■ Replication and failover

■ Automatic detection and restart

■ Recoverability (e.g. Microsoft Word)
– reestablish performance levels and recover affected

data after an application or system failure

18

Availability for ICDE

■ Achieve 100% availability during business

hours

– Plenty of scope for downtime for system

upgrade, backup and maintenance

■ Include mechanisms for component

replication and failover

19

Integration

■ Ease with which an application can be

incorporated into a broader application

context

■ Typically achieved by:

– Programmatic APIs

– Data integration

20

Integration Strategies

■ Data – expose application data for access
by other components

■ API – offers services to read/write
application data through an abstracted
interface

21

Application

Data

Third Party

Application

API

Interoperability through an API facade

Interoperability achieved by direct data

access

ICDE Integration Needs

■ Revolve around the need to support third

party analysis tools

■Well-defined and understood mechanism

for third party tools to access data in the

ICDE data store

22

Misc. Quality Attributes

■ Portability

– Move to new HW/SW platform

■ Testability

– How easy/difficult to test?

– Consider program complexity

■ Supportability

– How easy to support once deployed?

– Consider modularity

23

Design Trade-offs

■ QAs are rarely orthogonal

– highly secure system, difficult to

integrate in open environment

– highly availability, may lead to lower

performance

– high performance, may require being

tied to a given platform

24

NFR – Final Remarks

Importance of NFR

■ Functional reqs must be met (ie. mandatory)

■ NFRs could be:
– Mandatory: eg. response time a valve to close

• The system is unusable

– Not mandatory: eg. response time for a UI
• The system is usable but provides a non-optimal experience

■ NFRs are very important: 20% of the
requirements, hardest to elicit and specify

■ NFR: importance increases as market matures

Expressing NFRs

■ Functional are usually expressed in Use-Case
form

■ NFR cannot be expressed in Use-Case form
■ usually do not exhibit externally visible functional

behaviour

■ Not enough to list NFRs,
– should be clear, concise, and measurable

■ Defining good NFRs requires not only the involvement of
the customer but the developers too
– Ease of maintenance (lower cost) vs. ease of adaptability

The effects of NFRs on

high level design and code

■ Their implementation does not map usually to a
particular subsystem

■ Very hard to modify a NFR once you pass the
architecture phase:
– Consider making an already implemented system

more secure, more reliable, etc.

Next Class

■ Tuesday, Sep. 20

■ Architectural Styles

Selected Further Reading

■ L. Chung, B. Nixon, E. Yu, J. Mylopoulos, (Editors).
Non-Functional Requirements in Software
Engineering Series: The Kluwer International Series
in Software Engineering. Vol. 5, Kluwer Academic
Publishers. 1999.

■ J. Ramachandran. Designing Security Architecture
Solutions. Wiley & Sons, 2002.

■ I.Gorton, L. Zhu. Tool Support for Just-in-Time
Architecture Reconstruction and Evaluation: An
Experience Report. International Conference on
Software Engineering (ICSE) 2005, St Loius, USA,
ACM Press

30

