CISC 322Software Architecture

Lecture 05:

Non Functional Requirements (NFR) – Quality Attributes (2)

Emad Shihab

Adapted from Ahmed E. Hassan and Ian Gorton

Last Class - Recap

Use quality attributes to make NFRs clearer and more precise

- Performance
 - Throughput
 - Response Time
 - Deadlines

- Scalability
 - Request Load
 - Connections
 - Data size
 - Deployment

Today

- Modifiability
- Security
- Availability
- Integration

What is Modifiability?

Modifiability measures how easy it MAY be to change an application

Why Consider Modifiability?

- Software systems are (almost) guaranteed to change
 - New (non-) functional requirements

- Modifiable systems are easier to change/evolve
 - Estimate cost/effort

How to Measure Modifiability?

- Evaluate based on context
 - Research projects vs. Industrial tools
 - Avoid over-engineering!

Architect asserts likely change scenarios

Modifiability Scenarios

- How hard is it to.....
 - Incorporate new features for self-service check-out kiosks.

- Replace COTS component since vendor goes out of business
- Port application from Linux to the Microsoft Windows platform.

Modifiability Analysis

Difficult to quantify impact!

- The best possible is...
 - Convincing impact analysis
 - Solution can accommodate modification without *much* change

Modifiability General Rules

Some general rules

- Minimizing dependencies increases modifiability
- Avoid ripple effects!

Modifiability for ICDE

- The range of events trapped and stored by the ICDE client to be expanded
 - e.g. Different types of search inputs

Third party tools to communicate new message types

ICDE Schematic

Security

- Specialized quality attribute:
 - Lots of technology available

Depends on the application and the context

Security is...

Authentication

Verify the identity of users

Authorization

Access rights

Encryption

Messages sent to/from application are encrypted

Integrity

Contents are not altered in transit

Many others...

Security Approaches

Internet application security (SSL,PKI)

Authentication and Authorization in Java (JAAS)

ICDE Security Requirements

Authentication of ICDE users and third party ICDE tools to ICDE server

Encryption of data to ICDE server from 3rd party tools/users executing remotely over an insecure network

Availability

- The proportion of the required time it is useable
 - Example availability requirements
 - 100% available during business hours
 - No more than 2 hours scheduled downtime per week
 - 24x7x52 (100% availability)

- Related to an application's reliability
 - Unreliable applications suffer poor availability₁₆

Measuring Availability

Period of loss of availability determined by:

- -Time to detect failure +
- Time to correct failure +
- Time to restart application

Availability General Rules

Eliminate single points of failure

Replication and failover

Automatic detection and restart

- Recoverability (e.g. Microsoft Word)
 - reestablish performance levels and recover affected data after an application or system failure

Availability for ICDE

- Achieve 100% availability during business hours
 - Plenty of scope for downtime for system upgrade, backup and maintenance

Include mechanisms for component replication and failover

Integration

 Ease with which an application can be incorporated into a broader application context

- Typically achieved by:
 - Programmatic APIs
 - Data integration

Integration Strategies

- Data expose application data for access by other components
- API offers services to read/write application data through an abstracted interface

ICDE Integration Needs

Revolve around the need to support third party analysis tools

 Well-defined and understood mechanism for third party tools to access data in the ICDE data store

Misc. Quality Attributes

- Portability
 - Move to new HW/SW platform
- Testability
 - How easy/difficult to test?
 - Consider program complexity
- Supportability
 - How easy to support once deployed?
 - Consider modularity

Design Trade-offs

QAs are rarely orthogonal

- highly secure system, difficult to integrate in open environment
- highly availability, may lead to lower performance
- high performance, may require being tied to a given platform

NFR - Final Remarks

Importance of NFR

- Functional reqs must be met (ie. mandatory)
- NFRs could be:
 - Mandatory: eg. response time a valve to close
 - The system is unusable
 - Not mandatory: eg. response time for a UI
 - The system is usable but provides a non-optimal experience
- NFRs are very important: 20% of the requirements, hardest to elicit and specify
- NFR: importance increases as market matures

Expressing NFRs

- Functional are usually expressed in Use-Case form
- NFR cannot be expressed in Use-Case form
 - usually do not exhibit externally visible functional behaviour
- Not enough to list NFRs,
 - should be clear, concise, and measurable
- Defining good NFRs requires not only the involvement of the customer but the developers too
 - Ease of maintenance (lower cost) vs. ease of adaptability

The effects of NFRs on high level design and code

Their implementation does not map usually to a particular subsystem

- Very hard to modify a NFR once you pass the architecture phase:
 - Consider making an already implemented system more secure, more reliable, etc.

Next Class

- Tuesday, Sep. 20
- Architectural Styles

Selected Further Reading

- L. Chung, B. Nixon, E. Yu, J. Mylopoulos, (Editors). Non-Functional Requirements in Software Engineering Series: The Kluwer International Series in Software Engineering. Vol. 5, Kluwer Academic Publishers. 1999.
- J. Ramachandran. Designing Security Architecture Solutions. Wiley & Sons, 2002.
- I.Gorton, L. Zhu. Tool Support for Just-in-Time Architecture Reconstruction and Evaluation: An Experience Report. International Conference on Software Engineering (ICSE) 2005, St Loius, USA, ACM Press