
CISC 322
Software Architecture

Lecture 06:

Architecture Styles

Emad Shihab
Adapted from Ahmed E. Hassan and Spiros Mancoridis

Software Design (Software Architecture)

What are Architectural Styles

■ An Architectural Style defines a family

of systems in terms of a pattern of

structural organization. It determines:

– the vocabulary of components and

connectors that can be used in instances

of that style

– a set of constraints on how they can be

combined.

© SERG

Why Architectural Styles

■ Makes for an easy way to communicate

among stakeholders

■ Documentation of early design decisions

■ Allow for the reuse and transfer of qualities

to similar systems

© SERG Software Design (Software Architecture)

Describing an Architectural Style

• The architecture of a specific system is a

collection of:

– computational components

– description of the interactions between these

components (connectors)

© SERG Software Design (Software Architecture)

Describing an

Architectural Style (Cont’d)

• Software architectures are represented as
graphs where nodes represent components:

• procedures
• modules
• processes
• tools
• databases

• and edges represent connectors:
• procedure calls
• event broadcasts
• database queries
• pipes

© SERG Software Design (Software Architecture)

Repository Style

• Suitable for applications in which the

central issue is establishing, augmenting,

and maintaining a complex central body of

information.

• Typically the information must be

manipulated in a variety of ways. Often

long-term persistence is required.

© SERG Software Design (Software Architecture)

Repository Style (Cont’d)

• Components:

– A central data structure representing the current

state of the system.

– A collection of independent components that

operate on the central data structure.

• Connectors:

– Typically procedure calls or direct memory

accesses.

© SERG Software Design (Software Architecture)

Repository Style (Cont’d)

Shared Data

Memory

Memory Access

Computation

© SERG Software Design (Software Architecture)

Repository Style Specializations

• Changes to the data structure trigger

computations.

• Data structure in memory (persistent

option).

• Data structure on disk.

• Concurrent computations and data accesses.

© SERG Software Design (Software Architecture)

Repository Style Examples

• Information Systems

• Programming Environments

• Graphical Editors

• AI Knowledge Bases

• Reverse Engineering Systems

© SERG Software Design (Software Architecture)

Repository Style Advantages

• Efficient way to store large amounts of

data.

• Sharing model is published as the

repository schema.

• Centralized management:

– backup

– security

– concurrency control

© SERG Software Design (Software Architecture)

Repository Style Disadvantages

• Must agree on a data model a priori.

• Difficult to distribute data.

• Data evolution is expensive.

© SERG Software Design (Software Architecture)

Pipe and Filter

Architectural Style

• Suitable for applications that require a

defined series of independent computations

to be performed on data.

• A component reads streams of data as input

and produces streams of data as output.

© SERG Software Design (Software Architecture)

Pipe and Filter

Architectural Style (Cont’d)

• Components: called filters, apply local

transformations to their input streams and

often do their computing incrementally so

that output begins before all input is

consumed.

• Connectors: called pipes, serve as conduits

for the streams, transmitting outputs of one

filter to inputs of another filter.

© SERG Software Design (Software Architecture)

Pipe and Filter

Architectural Style (Cont’d)

filter

pipes

© SERG Software Design (Software Architecture)

Pipe and Filter Invariants

• Filters do not share state with other filters.

• Filters do not know the identity of their

upstream or downstream filters.

© SERG Software Design (Software Architecture)

Pipe and Filter Specializations

• Pipelines: Restricts topologies to linear

sequences of filters.

• Batch Sequential: A degenerate case of a

pipeline architecture where each filter

processes all of its input data before

producing any output.

© SERG Software Design (Software Architecture)

Pipe and Filter Examples

• Unix Shell Scripts: Provides a notation for

connecting Unix processes via pipes.

– cat file | grep Erroll | wc -l

• Traditional Compilers: Compilation

phases are pipelined, though the phases are

not always incremental. The phases in the

pipeline include:

– lexical analysis + parsing + semantic analysis

+ code generation

© SERG Software Design (Software Architecture)

Pipe and Filter Advantages

• Easy to understand the overall

input/output behavior of a system as a

simple composition of the behaviors of the

individual filters.

• They support reuse, since any two filters

can be hooked together, provided they agree

on the data that is being transmitted

between them.

© SERG Software Design (Software Architecture)

Pipe and Filter

 Advantages (Cont’d)

• Systems can be easily maintained and

enhanced, since new filters can be added to

existing systems and old filters can be

replaced by improved ones.

• They permit certain kinds of specialized

analysis, such as throughput and deadlock

analysis.

• The naturally support concurrent

execution.

© SERG Software Design (Software Architecture)

Pipe and Filter Disadvantages

• Not good choice for interactive systems,

because of their transformational character.

• Excessive parsing and unparsing leads to

loss of performance and increased

complexity in writing the filters

themselves.

© SERG Software Design (Software Architecture)

Case Study:

Architecture of a Compiler

• The architecture of a system can change in

response to improvements in technology.

• This can be seen in the way we think about

compilers.

© SERG Software Design (Software Architecture)

Early Compiler Architectures

• In the 1970s, compilation was regarded as a

sequential (batch sequential or pipeline)

process:

Lex Syn Sem Opt CGen
text code

© SERG Software Design (Software Architecture)

Early Compiler Architectures

• Most compilers create a separate symbol

table during lexical analysis and used or

updated it during subsequent passes.

Symbol Table

Lex Syn Sem Opt CGen
text code

© SERG Software Design (Software Architecture)

Modern Compiler Architectures

• Later, in the mid 1980s, increasing attention

turned to the intermediate representation of

the program during compilation.

 Symbol Table

Lex Sem CGen
code text

Attributed

Parse Tree

Opt Syn

© SERG Software Design (Software Architecture)

Hybrid Compiler Architectures

• The new view accommodates various tools

(e.g., syntax-directed editors) that operate

on the internal representation rather than the

textual form of a program.

• Architectural shift to a repository style,

with elements of the pipeline style, since

the order of execution of the processes is

still predetermined.

© SERG Software Design (Software Architecture)

Hybrid Compiler Architectures

Lex Syn Sem Opt Cgen

Edit Flow

Attributed

Parse Tree

Symbol Table

© SERG Software Design (Software Architecture)

References

• [Bass et al 98] Bass, L., Clements, P., Kazman R., Software Architecture in
Practice. SEI Series in Software Engineering, Addison-Wesley, 1998

• [CORBA98] CORBA. 1998. OMG’s CORBA Web Page. In:
http://www.corba.org

• [Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Inc., Reading, Massachusetts.

• [IBM98] MQSeries Whitepaper. In:
http://www.software.ibm.com/ts/mqseries/library/whitepapers/mqover

• [JavaIDL98] Lewis, G., Barber, S., Seigel, E. 1998. Programming with Java
IDL: Developing Web Applications with Java and CORBA. Wiley Computer
Publishing, New York.

• [CORBA96] Seigel, J. 1996. CORBA Fundamentals and Programming.
John Wiley and Sons Publishing, New York.

• [Shaw96] Shaw, M., Garlan, D. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall.

http://www.corba.org/

