CISC 322

Software Architecture

N I e s

Lecture 06:
Architecture Styles
Emad Shihab

Adapted from Ahmed E. Hassan and Spiros Mancoridis

Drexel

What are Architectural Styles

m An Architectural Style defines a family
of systems in terms of a pattern of
structural organization. It determines:

—the vocabulary of components and
connectors that can be used In instances
of that style

—a set of constraints on how they can be
combined.

Software Design (Software Architecture) © SERG

Why Architectural Styles

m Makes for an easy way to communicate
among stakeholders

m Documentation of early design decisions

m Allow for the reuse and transfer of qualities
to similar systems

Describing an Architectural Style

 The architecture of a specific system is a
collection of:

— computational components

— description of the interactions between these
components (connectors)

Software Design (Software Architecture) © SERG

Describing an
Architectural Style (Cont’d)

 Software architectures are represented as

graphs where nodes represent components:

* procedures
» modules
* processes

 tools
 databases

 and edges represent connectors:

e procedure calls
* event broadcasts

» database queries
* pIpes

Software Design (Software Architecture) © SERG

Repository Style

 Suitable for applications in which the
central issue Is establishing, augmenting,

and maintaining a complex central body of
Information.

 Typically the information must be
manipulated In a variety of ways. Often
long-term persistence Is required.

Software Design (Software Architecture) © SERG

Repository Style (Cont 'd)

« Components:

— A central data structure representing the current
state of the system.

— A collection of independent components that
operate on the central data structure.

e Connectors:

— Typically procedure calls or direct memory
aCCesses.

Software Design (Software Architecture) © SERG

Repository Style (Cont 'd)

Memory Access T .‘\

Computation

N

Shared Data

Memory ‘

Software Design (Software Architecture) © SERG

Repository Style Specializations

 Changes to the data structure trigger
computations.

e Data structure in memory (persistent
option).

» Data structure on disk.
 Concurrent computations and data accesses.

Software Design (Software Architecture) © SERG

Repository Style Examples

 Information Systems

* Programming Environments
 Graphical Editors

« Al Knowledge Bases

* Reverse Engineering Systems

Software Design (Software Architecture) © SERG

Repository Style Advantages

 Efficient way to store large amounts of
data.

 Sharing model is published as the
repository schema.

 Centralized management:
— backup

— security
— concurrency control

Software Design (Software Architecture) © SERG

Repository Style Disadvantages

» Must agree on a data model a priori.
» Difficult to distribute data.
 Data evolution Is expensive.

Software Design (Software Architecture) © SERG

Pipe and Filter
Architectural Style

» Suitable for applications that require a
defined series of independent computations
to be performed on data.

« A component reads streams of data as input
and produces streams of data as output.

Software Design (Software Architecture) © SERG

Pipe and Filter
Architectural Style (Cont’d)

« Components: called filters, apply local
transformations to their input streams and
often do their computing incrementally so
that output begins before all input Is
consumed.

» Connectors: called pipes, serve as conduits
for the streams, transmitting outputs of one
filter to inputs of another filter.

Software Design (Software Architecture) © SERG

Pipe and Filter
Architectural Style (Cont’d)

filter

/\

N

pipes

Software Design (Software Architecture) © SERG

Pipe and Filter Invariants

e Filters do not share state with other filters.

* Filters do not know the identity of their
upstream or downstream filters.

Software Design (Software Architecture) © SERG

Pipe and Filter Specializations

 Pipelines: Restricts topologies to linear
sequences of filters.

« Batch Sequential: A degenerate case of a
pipeline architecture where each filter
processes all of its input data before
producing any output.

Software Design (Software Architecture) © SERG

Pipe and Filter Examples

« Unix Shell Scripts: Provides a notation for
connecting Unix processes Vvia pipes.

- cat file | grep Erroll | wc -/

 Traditional Compilers: Compilation
phases are pipelined, though the phases are
not always incremental. The phases in the
pipeline include:

— lexical analysis + parsing + semantic analysis
+ code generation

Software Design (Software Architecture) © SERG

Pipe and Filter Advantages

 Easy to understand the overall
Input/output behavior of a system as a
simple composition of the behaviors of the

individual filters.

» They support reuse, since any two filters
can be hooked together, provided they agree
on the data that iIs being transmitted
between them.

Software Design (Software Architecture) © SERG

Pipe and Filter
Advantages (Cont’d)

 Systems can be easily maintained and
enhanced, since new filters can be added to
existing systems and old filters can be
replaced by improved ones.

* They permit certain kinds of specialized
analysis, such as throughput and deadlock
analysis.

* The naturally support concurrent
execution.,

Software Design (Software Architecture) © SERG

Pipe and Filter Disadvantages

« Not good choice for interactive systems,
because of their transformational character.

 EXcessive parsing and unparsing leads to
loss of performance and increased
complexity in writing the filters
themselves.

Software Design (Software Architecture) © SERG

Case Study:
Architecture of a Compiler

 The architecture of a system can change In
response to improvements in technology.

 This can be seen In the way we think about
compilers.

Software Design (Software Architecture) © SERG

Early Compiler Architectures

e In the 1970s, compilation was regarded as a
sequential (batch sequential or pipeline)
process:

Software Design (Software Architecture) © SERG

Early Compiler Architectures

» Most compilers create a separate symbol
table during lexical analysis and used or
updated It during subsequent passes.

Symbol Table

Software Design (Software Architecture) © SERG

Modern Compiler Architectures

» Later, in the mid 1980s, increasing attention
turned to the intermediate representation of
the program during compilation.

Symbol Table

Attributed
Parse Tree

Software Design (Software Architecture) © SERG

Hybrid Compiler Architectures

* The new view accommodates various tools
(e.g., syntax-directed editors) that operate
on the internal representation rather than the
textual form of a program.

 Architectural shift to a repository style,
with elements of the pipeline style, since
the order of execution of the processes Is
still predetermined.

Software Design (Software Architecture) © SERG

Hybrid Compiler Architectures

Attributed
Parse Tree

Symbol Table

Software Design (Software Architecture) © SERG

References

« [Bass et al 98] Bass, L., Clements, P., Kazman R., Software Architecture in
Practice. SEI Series in Software Engineering, Addison-Wesley, 1998

« [CORBA98] CORBA. 1998. OMG’s CORBA Web Page. In:
http://www.corba.orqg

« [Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Inc., Reading, Massachusetts.

« [IBM98] MQSeries Whitepaper. In:
http://www.software.ibm.com/ts/maqseries/library/whitepapers/mgover

« [JavalDL98] Lewis, G., Barber, S., Seigel, E. 1998. Programming with Java
IDL: Developing Web Applications with Java and CORBA. Wiley Computer
Publishing, New York.

« [CORBA96] Seigel, J. 1996. CORBA Fundamentals and Programming.
John Wiley and Sons Publishing, New York.

« [Shaw96] Shaw, M., Garlan, D. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall.

Software Design (Software Architecture) © SERG

http://www.corba.org/

