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What are Architectural Styles

m An Architectural Style defines a family
of systems in terms of a pattern of
structural organization. It determines:

—the vocabulary of components and
connectors that can be used In instances
of that style

—a set of constraints on how they can be
combined.
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Why Architectural Styles

m Makes for an easy way to communicate
among stakeholders

m Documentation of early design decisions

m Allow for the reuse and transfer of qualities
to similar systems



Describing an Architectural Style

 The architecture of a specific system is a
collection of:

— computational components

— description of the interactions between these
components (connectors)
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Describing an
Architectural Style (Cont’d)

 Software architectures are represented as

graphs where nodes represent components:

* procedures
» modules
* processes

 tools
 databases

 and edges represent connectors:

e procedure calls
* event broadcasts

» database queries
* pIpes
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Repository Style

 Suitable for applications in which the
central issue Is establishing, augmenting,

and maintaining a complex central body of
Information.

 Typically the information must be
manipulated In a variety of ways. Often
long-term persistence Is required.
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Repository Style (Cont 'd)

« Components:

— A central data structure representing the current
state of the system.

— A collection of independent components that
operate on the central data structure.

e Connectors:

— Typically procedure calls or direct memory
aCCesses.
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Repository Style (Cont 'd)
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Repository Style Specializations

 Changes to the data structure trigger
computations.

e Data structure in memory (persistent
option).

» Data structure on disk.
 Concurrent computations and data accesses.
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Repository Style Examples

 Information Systems

* Programming Environments
 Graphical Editors

« Al Knowledge Bases

* Reverse Engineering Systems
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Repository Style Advantages

 Efficient way to store large amounts of
data.

 Sharing model is published as the
repository schema.

 Centralized management:
— backup

— security
— concurrency control
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Repository Style Disadvantages

» Must agree on a data model a priori.
» Difficult to distribute data.
 Data evolution Is expensive.
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Pipe and Filter
Architectural Style

» Suitable for applications that require a
defined series of independent computations
to be performed on data.

« A component reads streams of data as input
and produces streams of data as output.
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Pipe and Filter
Architectural Style (Cont’d)

« Components: called filters, apply local
transformations to their input streams and
often do their computing incrementally so
that output begins before all input Is
consumed.

» Connectors: called pipes, serve as conduits
for the streams, transmitting outputs of one
filter to inputs of another filter.
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Pipe and Filter
Architectural Style (Cont’d)
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Pipe and Filter Invariants

e Filters do not share state with other filters.

* Filters do not know the identity of their
upstream or downstream filters.
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Pipe and Filter Specializations

 Pipelines: Restricts topologies to linear
sequences of filters.

« Batch Sequential: A degenerate case of a
pipeline architecture where each filter
processes all of its input data before
producing any output.
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Pipe and Filter Examples

« Unix Shell Scripts: Provides a notation for
connecting Unix processes Vvia pipes.

- cat file | grep Erroll | wc -/

 Traditional Compilers: Compilation
phases are pipelined, though the phases are
not always incremental. The phases in the
pipeline include:

— lexical analysis + parsing + semantic analysis
+ code generation
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Pipe and Filter Advantages

 Easy to understand the overall
Input/output behavior of a system as a
simple composition of the behaviors of the

individual filters.

» They support reuse, since any two filters
can be hooked together, provided they agree
on the data that iIs being transmitted
between them.
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Pipe and Filter
Advantages (Cont’d)

 Systems can be easily maintained and
enhanced, since new filters can be added to
existing systems and old filters can be
replaced by improved ones.

* They permit certain kinds of specialized
analysis, such as throughput and deadlock
analysis.

* The naturally support concurrent
execution.,
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Pipe and Filter Disadvantages

« Not good choice for interactive systems,
because of their transformational character.

 EXcessive parsing and unparsing leads to
loss of performance and increased
complexity in writing the filters
themselves.
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Case Study:
Architecture of a Compiler

 The architecture of a system can change In
response to improvements in technology.

 This can be seen In the way we think about
compilers.

Software Design (Software Architecture) © SERG



Early Compiler Architectures

e In the 1970s, compilation was regarded as a
sequential (batch sequential or pipeline)
process:
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Early Compiler Architectures

» Most compilers create a separate symbol
table during lexical analysis and used or
updated It during subsequent passes.

Symbol Table
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Modern Compiler Architectures

» Later, in the mid 1980s, increasing attention
turned to the intermediate representation of
the program during compilation.

Symbol Table

Attributed
Parse Tree
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Hybrid Compiler Architectures

* The new view accommodates various tools
(e.g., syntax-directed editors) that operate
on the internal representation rather than the
textual form of a program.

 Architectural shift to a repository style,
with elements of the pipeline style, since
the order of execution of the processes Is
still predetermined.
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Hybrid Compiler Architectures

Attributed
Parse Tree

Symbol Table
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