Recap of Last Class

Reference Architecture

- Webservers
 - Apache
 - AOLServer
Motivation for Architecture Views

- Many stakeholders (e.g. customers, developers, project managers, etc.), who care about different aspects of the system
- Cannot provide one representation that will satisfy all stakeholders without becoming too complex
- Stakeholders generally want to interact with parts of the system that are most important to them
Architecture Views

- Various parts of the architecture have to be modeled using different approaches

- A *view* is a set of design decisions related to a common concern (or set of concerns)

- A *concern* is an aspect of the system that a stakeholder is concerned about
The Different Views

- **Logical**: captures the logical (often software) entities in a system and their interconnections

- **Process**: captures the concurrency and synchronization aspects of a design
The Different Views

- **Development**: describes the static organization of the software in its development environment

- **Physical**: captures the physical (often HW) entities in a system and their interconnections

- **+1**: Use cases and scenarios to illustrate these views
Architectural Views

Stakeholder: End-user
Concern: Functionality

Programmers
Software management

Integrators
Performance
Scalability

System engineers
Topology
Communications

Logical View → Scenarios → Development View

Process View → Scenarios → Physical View
Logical View

■ Components: Classes
■ Connectors: Associations, containment, inheritance
■ Stakeholders: End-users
■ Concerns: Functionality (i.e. functional requirements)
Why Logical View?

- Decomposition used for
 - functional analysis and,
 - to identify common elements in the system
Logical View Example

Represents terminal in conversation
Uses translation (directory, logical to physical mapping) and connection services to establish voice paths

Maintain state
Use numbering to interpret dialing

Decode and inject signals on line interface card (start, stop, digit)
Process View

- Components: Tasks/threads, processes
- Connectors: Messages, RPC
- Stakeholders: Integrator
- Concerns: Performance, availability, fault tolerance
Process View - definitions

- **Process**: a grouping of tasks that form an executable unit
- **Task**: a separate thread of control that can be scheduled individually

- Can be replicated for load distribution or improved availability
Process View

- **Major tasks** – architectural elements that can be uniquely addressed
- **Minor tasks** – introduced for implementation reasons (e.g. buffering)

Flow of messages and process loads can be estimated and used to gauge performance
Process View

Interpret and communicate changes.

Terminal handled by terminal process.

Bidirectional msg.

Terminal process.

Main controller task.

Controller task High rate.

Controller task Low rate.

msg.

periodic.

process.

Scan inactive 200ms.

Scan active 10ms.

Controller

Connection Services

Terminal Services

Conversation
Development View

■ Components: Module/Subsystem
■ Connectors: Dependency (e.g. include)
■ Stakeholders: Developers
■ Concerns: Organization, reuse
Why Development View?

- Takes into account internal requirements related to ease of development, software management, reuse

- Serves as basis for work allocation
Development View

72 subsystems

- **CAATS, MAATS, etc...**
 - 5. Man-Machine Interface
 - 5. External systems
 - 5. Off-line tools
 - 5. Test harnesses

- **HATS Components**
 - 4. ATC Functional areas: Flight management, Sector Management, etc.

- **ATC Framework**
 - 3. Aeronautical classes
 - 3. ATC classes

- **Distributed Virtual Machine**
 - 2. Support Mechanisms:
 - Communication, Time, Storage,
 - Resource management, etc.

- **Basic elements**
 - 1. Common utilities
 - 1. Bindings
 - 1. Low-level services

- **Domain independent**
- **Domain specific**
- **Customer specific**
Physical View

- Components: Node
- Connectors: Network (LAN, WAN)
- Stakeholders: System designer
- Concerns: Nonfunctional requirements (e.g. Scalability, performance, availability)
Physical View

C, F, and K are different types of computers
Scenarios “+1” view

- Shows how the four views work together seamlessly
- Redundant with other views, hence “+1”
 - Drives the discovery of architectural elements during architecture design
 - Validates and illustrates role after architecture design in complete
- Representation
 - Similar to logical view
Scenarios “+1” View Example

1. Off-Hook
2. Dial tone
3. Digit
4. Digit
5. Open conversation
Summary

- Different views address different concerns

- Not all views are necessary

- Lots of efforts needed to maintain these concurrent views, especially as the software system evolves
 - inconsistency, inaccurate