
CISC 322
Software Architecture

Lecture 15:

Design Patterns 2

Emad Shihab
Material drawn from [Gamma95, Coplien95]

Slides adapted from Spiros Mancoridis and Ahmed E. Hassan

Façade Pattern Motivation

■ Structuring a system into subsystems

helps reduce complexity

■ A common design goal is to minimize the

communication and dependencies

between subsystems

■ Use a facade object to provide a single,

simplified interface to the more general

facilities of a subsystem

Façade Pattern Intent

■ Provide a unified interface to a set of

interfaces in a subsystem.

■ Facade defines a higher-level interface

that makes the subsystem easier to use

Façade Example –

Programming Environment

Software Design (OOD Patterns)

Compiler

Scanner

Parser

Token

ProgNode

ProgNodeBuilder

RISCCG

StackMachineCG

Statement Node

Expression Node

Variable Node Compiler Subsystem Classes

Compile()

CodeGenerator

■ Programming

environment that

provides access to its

compiler

■ Contains many classes

(e.g. scanner, parser)

■ Most clients don’t care

about details like

parsing and code

generation…just

compile my code!

■ Low-level interfaces just

complicate their task

Façade Example –

Programming Environment

Software Design (OOD Patterns)

Compiler

Scanner

Parser

Token

ProgNode

ProgNodeBuilder

RISCCG

StackMachineCG

Statement Node

Expression Node

Variable Node Compiler Subsystem Classes

Compile()

CodeGenerator

■ Higher-level interface

(i.e., Compiler class)

shields clients from low

level classes

■ Compiler class defines

a unified interface to

the compiler’s

functionality

■ Compiler class acts as

a Façade. It offers

clients a simple

interface to the

compiler subsystem

Façade Pattern Structure

Software Design (OOD Patterns) Subsystem Classes

Facade

Client Classes

Participants of Façade Pattern

■ Façade (compiler)

– Knows which subsystem classes are responsible

for a request

– Delegates client requests to appropriate

subsystem objects

■ Subsystem classes (Scanner, Parser,etc..)

– Implements subsystem functionality

– Handles work assigned by the façade object

Façade Pattern Applicability

■ Use a façade when

– To provide a simple interface to a complex

subsystem

– To decouple clients and implementation

classes

– To define an entry point to a layered

subsystem

Façade Pattern Collaborations

■ Clients communicate with the subsystem

by sending requests to façade, which then

forwards requests to the appropriate

subsystems

■ Clients that use the façade don’t have

access to its subsystem objects directly.

However, clients can access subsystem

classes if they need to

Composite Pattern Motivation

■ Assume you have client code that needs

to deal with individual objects and

compositions of these objects

■ You would have to treat primitives and

container classes differently, making the

application more complex than necessary

Composite Pattern Intent

■ Lets clients treat individual objects and

compositions of objects uniformly

Composite Pattern Example

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Line Text Rect.

Draw() Draw() Draw()

Picture

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

forall g in graphics

g.Draw()

graphics

■ Graphic

applications allow

users to build

complex diagrams

out of simple

components

■ Users group

components to form

larger components

Primitive graphical objects

Aggregate of Graphic objects

Composite Pattern Example

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Line Text Rect.

Draw() Draw() Draw()

Picture

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

forall g in graphics

g.Draw()

graphics

■ A simple

implementation

defines classes for

graphical primitives

(e.g. Text and lines)

plus other classes

that act as

containers for these

primitives

■ The problem is user

must treat primitive

and container

objects differently,

making the

applications more

complex

Composite Pattern Example

Graphic

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

Line Text Rect.

Draw() Draw() Draw()

Picture

Draw()

Add(Graphic)

Remove(Graphic)

GetChild(int)

forall g in graphics

g.Draw()

graphics

■ Key is an

abstract class

that represents

both primitives

and their

containers

■ Graphic declares

operations such

as draw that are

specific to

graphical objects

■ Also operations

for accessing

and managing

children

Structure of Composite Pattern

Client

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Leaf Composite

Operation()
Operation()

Add(Component)

Remove(Component)

GetChild(int)

forall g in children

g.Operation()

children

Declares interface for

objects and child

components

Defines behavior for

primitive objects. Leafs

have no children

Defines behavior for

components having

children. Implements

child-related operations

Manipulates objects in

the composition through

Component interface

Iterator Pattern Motivation

■ Aggregate objects (e.g. list) should give

you a way to access its elements without

exposing its internal structure

■ You might want to traverse an aggregate

object in different ways

■ Sometimes cannot decide on all ways to

traverse the aggregate object apriori

■ Should not bloat the interface of aggregate

objects with different traversals

Iterator Pattern Intent

■ Provide a way to access the elements of

an aggregate object sequentially without

exposing its underlying representation

Iterator Pattern Example

List

Count()

Append(Element)

Remove(Element)

…

ListIterator

First()

Next()

IsDone()

CurrentItem()

index

list

Access and traversal

responsibilities are taken

out of List object into an

iterator object (ListIterator)

Can define different traversal policies without enumerating

them in the List interface

Structure of Iterator Pattern

Aggregate

CreateIterator()

ConcreteAggregate

CreateIterator()

Iterator

First()

Next()

IsDone()

CurrentItem()

ConcreteIterator

return new ConcreteIterator(this)

Provides a common

interface for creating

Iterator object

Interface for accessing and

traversing elements

Implements the Iterator

interface

Implements the Iterator

creation interface to return

instance of ConcreteIterator

