
CISC 322
Software Architecture

Lecture 16:

Design Patterns 3

Emad Shihab
Material drawn from [Gamma95, Coplien95]

Slides adapted from Spiros Mancoridis and Ahmed E. Hassan

Template Pattern Intent

■ Define the skeleton of an algorithm in an

operation, deferring some steps to

subclasses.

■ The Template Method lets subclasses

redefine certain steps of an algorithm

without changing the algorithm’s structure.

Template Pattern Motivation

■ Consider an application that provides

Application and Document classes

– Application: opens existing document

– Document: represents the information in a

doc

■ By defining some of the steps of an

algorithm, using abstract operations, the

template method fixes their ordering.

Template Pattern Motivation

■ Specific applications can subclass

Application and Document to suit their

specific needs

– Drawing application: defines DrawApplication

and DrawDocument sublclasees

– Spreadsheet application: defines

SpreadsheetApplication and

SpreadsheetDocument sublclasees

Template Pattern Example

Document

Save()

Open()

Close()

DoRead()

Application

AddDoc()

OpenDoc()

DoCreateDoc()

CanOpenDoc()

AboutToOpenDoc()

MyDocument

DoRead()

Application

DoCreateDoc()

CanOpenDoc()

AboutToOpenDoc()

doc

return new MyDoc

OpenDoc is a template

method that defines each

step for opening a

document

• CanOpenDoc() –

check if doc can be

opened

• DoCreateDoc() –

create doc

• AboutToOpenDoc()

– lets application

know when a doc is

about to be opened

Template Pattern Structure

TemplateMethod()

PrimitiveOp1()

PrimitiveOp2()

AbstractClass

ConcreteClass

PrimitiveOp1()

PrimitiveOp2()

...
PrimitiveOp1()

PrimitiveOp2()

...

AbstractClass – defines

abstract primitive operations

that concrete subclass

implement

Implements a template method

defining the skeleton. The

template method calls primitive

ops and operations defined in

the Abstract class

Concrete class –

implements primitive ops to

carry out subclasss-specific

steps of an algorithm

Observer Pattern Motivation

■ A common side-effect of partitioning a

system into a collection of cooperating

classes is the need to maintain

consistency between related objects.

■ How can you achieve consistency?

Observer Intent

■ Define a one-to-many dependency

between objects so that when one object

changes state, all its dependents are

notified and updated automatically.

Observer Pattern Example

a b c
60

y
x

50 30
30

20
10

z 80 10 10 a b c

a

b

c

a = 50%

b = 30%

c = 20%

change notification requests, modifications

Subject

Observer

Observer Pattern Structure

Subject

Attach(Observer)

Detach(Observer)

Notify()

ConcreteSubject

subjectState

GetState()

SetState()

for all o in

 observers {

 o -> Update()}

Observer

Update()

observers

ConcreteObserver

observerState =

subject->GetState()
Update()

observerState

return subjectState

subject

Defines interface for objects

that should be notified of

changes in a subject

Provides an interface for

attaching and detaching

Observer objects

Implements the Observer

interface to keep its state

consistent with the subject

Sends a notification to

observers when its state

changes

Master-Slave Pattern Motivation

■ Fault tolerance is a critical factor in many

systems.

■ Replication of services and delegation of

the same task to several independent

suppliers is a common strategy to handle

such cases.

Master-Slave Pattern Intent

■ Independent components providing the

same service (slaves) are separated from a

component (master) responsible for

invoking them and for selecting a particular

result from the results returned by the

slaves.

■ (Master) Handles the computation of

replicated services within a software system

to achieve fault tolerance and robustness.

Master-Slave Pattern Example

NuclearPP

acceptableRL()

Voter

RadLevel()

return max(

slave1->RadLevel(),

slave2->RadLevel(),

slave3->RadLevel())

Slave2

RadLevel()

Slave1

RadLevel()

Slave3

RadLevel()

Master-Slave Pattern Structure

Slave1

ServiceImp1()

Slave2

ServiceImp1()

Slave3

ServiceImp1()

Master

service()

Client

Compute()

request

service

forward

request

forward

request

forward

request
Requests a service to solve

its task

Organizes the invocation of

replicated services and

decides which of the

results to pass to clients

Implements a

service

Singleton Intent

■ Ensure a class only has one instance, and

provide a global point of access to it

Singelton Pattern Motivation

■ It is important that some classes have only

one instance

– E.g., one printer spooler, one window

manager

■ How to ensure that a class only has one

instance?

Singelton Pattern Motivation

■ Make the class itself responsible for

keeping track of its sole instance

■ The class can ensure that no other

instance can be created and provides a

way to access the instance

Singleton Pattern Structure

Singleton

return instance Static Instance()

Singleton getInstance()

Operations

Defines an instance

operation that lets clients

access its unique instance

Singleton example

public class SimpleSingleton {

 private SimpleSingleton singleInstance = null;

 //Marking default constructor private

 //to avoid direct instantiation.

 private SimpleSingleton() {

 }

 //Get instance for class SimpleSingleton

 public static SimpleSingleton getInstance() {

 if(null == singleInstance) {

 singleInstance = new SimpleSingleton();

 }

 return singleInstance;

 }

}

http://viralpatel.net/blogs/2009/01/java-singleton-design-pattern-tutorial-example-singleton-j2ee-design-pattern.html

Schedule

Group

meeting

Group

meeting

Group

meeting

Group

meeting
Presentations Presentations Presentations

Reports

Due

