
CISC 322
Software Architecture

Lecture 19:

Software Cost Estimation

Emad Shihab
Slides adapted from Ian Sommerville

Last Class

■ Program Evaluation and Review

Technique (PERT)

– Determine critical path

– Calculate prob. that a project finishes within X

weeks

■ Project crashing

Cost Estimation

1
12

2

8

4
12

3

4 5

4

6

4

7

4

Why Cost Estimation?

Why Cost Estimation?

■ Need to establish a budget

■ Need to set a price

■ Need to make a profit

Cost Estimation

■ Cost estimation and scheduling are

usually done together

■ Cost is driven by three main activities:

– HW and SW costs, including maintenance

– Travel and training (can be reduced using

technology)

– Effort costs (paying personnel)

■ For most projects effort costs is the

dominant cost

Effort Costs

■ Effort costs are more than just salaries

– E.g., heat, lighting, support staff, networking,

recreational facilities, security, etc…

■ Effort cost is calculated by taking the total

cost of running the organization and

dividing by number of productive staff

■ How much does overhead cost?

Cost Estimation Topics

■ Productivity

■ Estimation Techniques

■ Algorithmic Cost Estimation

■ Project Duration Staffing

Software Productivity

■ Generally, productivity is measured as:

– Number of units/ person hours

■ Not the case in software…why?

■ Can have many solutions

– Solution 1: executes more efficiently

– Solution 2: easier to read and maintain

Software Productivity

■ Based on measuring attributes of the

software divided by total development

effort

■ Size related: LOC delivered

■ Function related: Function points and

object points

Size related metrics

■ LOC per programmer-month (LOC/pm)

■ This time includes requirements, design,

coding, testing, documentation

■ Advantage: Easy to calculate

■ Disadvantage: different languages

– E.g., 5000 assembly ~ 1500 C

Function Related Metrics

■ Productivity = FP/pm

■ FP is related to:

– External and internal inputs

– User interactions

– External interfaces

– Files used by the system

■ Functionality is independent of

implementation language

Function Points

■ Some input and output interactions, etc.

are more complex than others

■ You can give a weight to the FP,

considering:

– Amount of reuse, performance, etc…

■ FP count is highly subjective and depends

on the estimator!

■ FPs are biased towards data-processing

systems

Object Points

■ Are an alternative to FPs

■ The number of object points is a weighted

estimate of:

– No. of separate screens displayed (1,2,3)

– No. of reports produced (2,5,8)

– No. of modules that must be developed to

support 4th generation language code

FP and OP

■ OP are easier to estimate. They only

consider screens, reports and modules

■ OP can be estimated early in the

development process

■ Can approximate LOC from FP or OP:

– LOC = AVC x No. of FP

■ AVC is 200-300 LOC/FP in assembly

language and 2-40 LOC in 4GL

Productivity Estimates

■Many factors impact productivity

– Some programmers are 10 times more

productive

– Application domain:

• Embedded systems: ~30 LOC/pm

• Application systems: ~900 LOC/pm

• 4-50 OP/pm, depending on application, tools,

developers

– Process, project size, technology support,

working environment

LOC don’t impress me much!

■ Counting LOC does not take into account:

– Reused code

– Generated code

– Quality

– Performance

– Maintainability

■ Not clear how productivity and quality

metrics are related!

Estimation Techniques

■ There is no simple way to make accurate

estimates of the effort required

– Initially, not much detail is given

– Technologies and people may be unknown

■ Project cost estimates may be self-fulfilling

– Estimate defines budget, project adjusted to

meet budget

Many Estimation Techniques

■ Algorithmic cost modeling

■ Expert judgment

■ Estimation by analogy

■ Parkinson’s Law

■ Pricing to win

Algorithmic code modelling

■Model is built based on historical cost

information

■ Generally based on the size of the

software

Expert judgement

■ Several experts in software development

and the application domain are consulted

■ Process iterates until some consensus is

reached

■ Advantages: Relatively cheap estimation

method. Can be accurate if experts have

direct experience of similar systems

■ Disadvantages: Very inaccurate if there

are no experts!

Estimation by analogy

■ The project is compared to a similar

project in the same application domain

■ Advantages: Accurate if project data

available

■ Disadvantages: Impossible if no

comparable project has been tackled

Parkinson's Law

■ “Work expands to fill the time available”

i.e., the project costs whatever resources

are available

■ Advantages: No overspending

■ Disadvantages: System is usually

unfinished

Pricing to win

■ The project costs whatever the customer

has to spend on it

■ Advantages: You get the contract

■ Disadvantages: The probability that the

customer gets the system he or she wants

is small. Often, costs do not accurately

reflect the work required

Cost Estimation Approaches

■ The aforementioned techniques may be

used top-down or bottom-up

■ Top-down: Starts at the system level and

assess system functionality and its

delivery through subsystems

■ Bottom-up: Start at component level and

aggregate to obtain system effort

Top-down vs. Bottom-up

■ Top-down:

– Usable without much knowledge

– Factors in integration, configuration and

documentation costs

– Can underestimate low-level problems

■ Bottom-up:

– Usable when architecture of the system is

known

– May underestimate system-level activities

such as integration

Algorithmic Cost Modeling

■ A cost model can be built by analyzing the

cost and attributes of similar projects

■ Effort = A x SizeB x M

■ A – depends on organization

■ B – ~1-1.5 reflects disproportionate effort for

large projects (comm. and conf. management)

■ M – reflects product, process and people

attributes

Estimation Accuracy

■ Difficult to estimate size early on. B and M

are subjective

■ Several factors influence the final size

– Use of COTS and components

– Programming language

■ Estimations become more accurate as

development progresses

Estimate uncertainty

[Sommerville 2000]

