
CISC 322
Software Architecture

Lecture 13:

Midterm Review

Emad Shihab

Course Content

■ Requirements

■ Architectural Styles

■ Architecture Recovery

■ Design Patterns

■ Project Scheduling

■ Software Estimation

Requirements

Software Requirements

■ “Requirements are…a specification of
what should be implemented. They are
descriptions of how the system should
behave, or of a system property or
attribute. They may be a constraint on the
development process of the system.”
(Sommerville and Sawyer 1997, Karl E. Wiegers 1999)

Where Do Requirements

Come From?

■ Requirements come from users and
stakeholders who have demands/needs

■ An analyst/requirement engineer:

1. Elicits these demands/needs (raw requirements)

2. Analyzes them for consistency, feasibility, and
completeness

3. Formulates them as requirements and write down a
specification

4. Validates that the gathered requirements reflect the
needs/demands of stakeholders

Types of Requirements

■ Functional Requirements
– Specify the function of the system

– F(input, system state) (output, new state)

■ Non-Functional Requirements (Constraints)
– Quality Requirements

• Specify how well the system performs its intended functions

• Reliable, Portable, etc…

– Managerial Requirements
• Legal responsibilities

– Context / Environment Requirements
• Conditions in which the system should operate

Quality Attributes

Quality Attributes

■ Architects are often told:

– “My application must be fast/secure/scale”

■We want precise/measurable goals

Quality attributes

What are Quality Attributes

■ Often know as –ilities

– Performance

– Scalability

– Modifiability

– Availability

– …

Performance

■ Different ways to measure performance:

– Throughput

• Transaction per min, Messages PM)

– Average? (Video streaming)

– Peak? (Bidding)

– Response Time

• Delay or Latency
– Guaranteed? (VOIP)

– Average? (Search)

– Deadlines

• Payroll task must complete by 2 AM

Scalability

■ „How well a solution to some problem will

work when the size of the problem

increases‟

– Request Load (# of simultaneous requests)

– Connections (# of simultaneous connections)

– Data size (text vs. video messages)

– Deployment (installation of new users)

Modifiability

■Modifiability measures how easy it MAY

be to change an application

■ Architect asserts likely change scenarios

■ Some general rules

– Minimizing dependencies

– Avoid ripple effects!

Availability

■ The proportion of the required time the

system is useable

– E.g.,100% available during business hours

■ Some general rules:

– Eliminate single points of failure

– Replication and failover

Security Approaches

■ Authentication
– Verify the identity of users

■ Authorization
– Access rights

■ Encryption
– Messages sent to/from application are encrypted

■ Integrity
– Contents are not altered in transit

■Many others…

Architectural Styles

Repository Style

Shared Data

Memory

Memory Access

Computation

Repository Style Advantages

■ Efficient way to store large amounts of

data

■ Can easily share data

■ Centralized management:

– Backup, security, etc…

■ Solutions to complex problem do not have

to be preplanned

Repository Style Disadvantages

■Must agree on a data model a priori

■ Difficult to distribute data

■ Changing data schema is expensive

Pipe and Filter

Architectural Style
filter

pipes

Pipe and Filter Advantages

■ Easy to understand the overall

input/output behavior of a system

■ Support reuse since any two filters can be

hooked together, provided they agree on

the data that is being transmitted between

them

■ Systems can be easily maintained and

enhanced - new filters can be added or old

filters can be replaced

Pipe and Filter Disadvantages

■ Not good choice for interactive systems,

because of their transformational

character

■ Excessive parsing and unparsing leads to

loss of performance and increased

complexity in writing the filters themselves

Object-Oriented Style

obj

obj

obj

obj

obj

obj

obj

obj

object

Object-Oriented Advantages

■ Object can change the implementation

without affecting its clients

■ Can design systems as collections of

autonomous interacting agents

Object-Oriented Disadvantages

■ Objects need to identify other objects
they want to interact with

– Contrast with Pipe and Filter Style

– What if identity of an object changes?

■ Objects cause side effect problems:

– E.g., A and B both use object C, then B’s
effects on C look like unexpected side
effects to A.

Implicit Invocation Style

Publish-Subscribe Event Based

Taylor et al. 2010

Implicit Invocation Advantages

■ (PS) Efficient dissemination of one-way

information

■ Provides strong support for reuse

– Any component can be added, by

registering/subscribing for events

■ Eases system evolution

– components may be replaced without

affecting other components in the system

Implicit Invocation

Disadvantages
■ (PS) Need special protocols when number

of subscribers is very large

■When a component announces an event:

– it has no idea what other components will

respond to it,

– it cannot rely on the order in which the

responses are invoked

– it cannot know when responses are finished

Layered Style

Adapted from

Taylor et al. 2010

Network

C1 C2 C3

Server

Clients

Virtual Machine Client-Server

Layered Style Advantages

■ VM

– Clear dependence structure

– Upper levels immune to changes at lower

levels

– Lower levels are independent of upper levels

■ CS

– Centralization of computation and data at

server

– Single powerful server can serve many clients

Layered Style Disadvantages

■ VM

– Having too many layers can be inefficient

(may need to cross layers)

– Not easy to divide software systems into

layers

■ CS

– Heavy dependence on communication

network

Architecture Recovery

Conceptual vs. Concrete vs.

Reference

■ Conceptual architecture:

– shows how developers think about a system

■ Concrete architecture:

– shows the actual relationships in the system

■ Reference architecture:

– General architecture for a specific domain

Linux Architecture

Concrete Architecture Conceptual Architecture

Why the Extra Dependencies?

■ Developers avoid existing interfaces to

achieve better efficiency

■ Expediency

Reference Architecture

Derivation Process

 AOLServer

Concrete

Architecture

Conceptual

Architecture

Reference Architecture for Web Servers

Apache

Concrete

Architecture

Conceptual

Architecture

Jigsaw

Concrete

Architecture

Conceptual

Architecture

Architecture Views

■ Various parts of the architecture have to

be modeled using different approaches

■ View: is a set of design decisions related

to a common concern (or set of concerns)

■ Concern: is an aspect of the system that

a stakeholder cares about

Architectural Views

Stakeholder:

Concern:

Midterm

■ Friday, Oct 14, BIOSCI 1120

■ 50 minutes

■ 2 questions:

– 1 short answers with 5 sub-questions

– 1 architecture design

■ 70 marks in total

Midterm

■ Topics covered

– Requirements (~15%)

– Architectural styles (~55%)

– Conceptual, Concrete and Reference

architecture (~20%)

– Architectural views (~10%)

■ Review notes, readings, EOC questions,

and class activities

■ Email or come and see me if you have any

questions

