
Submitted to:

2010 Workshop on Intersection Types and Related Systems (ITRS ’10)
This work is dedicated to the public domain.

Untangling Typechecking of Intersections and Unions

Jana Dunfield

School of Computer Science, McGill University
Montréal, Canada

jd169@queensu.ca

Intersection and union types denote conjunctions and disjunctions of properties. Using bidirectional

typechecking, intersection types are relatively straightforward, but union types present challenges.

For union types, we can case-analyze a subterm of union type when it appears in evaluation position

(replacing the subterm with a variable, and checking that term twice under appropriate assumptions).

This technique preserves soundness in a call-by-value semantics. Sadly, there are so many choices

of subterms that a direct implementation is not practical. But carefully transforming programs into

let-normal form drastically reduces the number of choices. The key results are soundness and com-

pleteness: a typing derivation (in the system with too many subterm choices) exists for a program if

and only if a derivation exists for the let-normalized program.

1 Introduction

To check programs in advanced type systems, it can be useful to split the traditional typing judgment e : A

into two forms, e ⇑ A read “e synthesizes type A” and e ⇓ A read “e checks against type A”, and requiring

that the user write annotations on redexes. This bidirectional typechecking (Pierce and Turner 1998) is

decidable for many interesting features, including intersection and union types without syntactic markers.

Tridirectional typechecking (Dunfield and Pfenning 2004; Dunfield 2007b) is essentially bidirectional,

but union types are eliminated with the aid of a tridirectional rule that uses an evaluation context E :

Γ;∆1 ⊢ e′ ⇑ A Γ;∆2,x:A ⊢ E [x] ⇓C

Γ;∆1,∆2 ⊢ E [e′] ⇓C
directL

In this rule, Γ is an ordinary variable context and ∆1,∆2 is the concatenation of linear contexts; linear

variables x in ∆s essentially stand for subterms (occurrences) in the subject. directL gives e′ a (linear)

name x, so that a left rule, which decomposes types in the context ∆, can eliminate union types appearing

in A. Instead of a direct union elimination rule like ∨E, we use directL together with a left rule ∨L.

Γ ⊢ e′ ⇑ A ∨ B Γ,x:A ⊢ E [x] ⇓C Γ,y:B ⊢ E [y] ⇓C

Γ ⊢ E [e′] ⇓C
[∨E]

Γ;∆,x:A ⊢ e ⇓C Γ;∆,x:B ⊢ e ⇓C

Γ;∆,x:A ∨ B ⊢ e ⇓C
∨L

While evaluation contexts are defined syntactically, this rule is not syntax-directed in the usual sense:

many terms have more than one decomposition into some E [e′] where the subterm e′ can synthesize a

type. Under a left-to-right (functions first, arguments second) call-by-value semantics, even f x has three

decompositions E = [], E = [] x, E = f [], so a straightforward implementation of a system with directL

would require far too much backtracking. Compounded with backtracking due to intersection and union

types (e.g., if f : (A1 → A2) ∧ (B1 → B2) we may have to try both f : A1 → A2 and f : B1 → B2), such an

implementation would be hopelessly impractical.

This paper reformulates tridirectional typechecking (summarized in Section 2) to work on terms in a

particular let-normal form, in which steps of computation are sequenced and intermediate computations

http://creativecommons.org/licenses/publicdomain/

2 Untangling Typechecking of Intersections and Unions

are named. The let-normal transformation (Section 3) drastically constrains the decomposition by se-

quencing terms, forcing typechecking to proceed left to right (with an interesting exception). The results

stated in Section 4 guarantee that the let-normal version of a program e is well typed under the let-normal

version of the type system if and only if e is well typed under the tridirectional system.

The let-normal transformation itself is not complicated, though the motivation for my particular

formulation is somewhat involved. The details of the transformation may be of interest to designers of

advanced type systems, whether their need for a sequential form arises from typechecking itself (as in

this case) or from issues related to compilation.

Unfortunately, the proofs (especially the proof of completeness) are very involved; I couldn’t even fit

all the statements of lemmas in this paper, much less sketch their proofs. I hope only to convey a shadow

of the argument’s structure.

This paper distills part of my dissertation (Dunfield 2007b, chapter 5). To simplify presentation,

I omit tuples, datasort refinements, indexed types (along with universal and existential quantification,

guarded types, and asserting types), and a greatest type ⊤.

2 Tridirectional Typechecking

We have functions, products, intersections, unions, and an empty type ⊥. We’ll use a unit type and other

base types like int in examples. In the terms e, we have variables x (which are values) bound by λx.e,

variables u (not values) bound by fix u. e, and call-by-value application e1 e2. Note the lack of syntactic

markers for intersections or unions. As usual, E [e′] is the evaluation context E with its hole replaced by

e′. To replace x with e1, we write [e1/x]e2: “e1 for x in e2”.

Types A,B,C,D ::= A → B | A ∧ B | A ∨ B | ⊥
Terms e ::= x | u | λx.e | e1 e2 | fix u. e

Values v ::= x | λx.e
Evaluation contexts E ::= [] | E e | v E

Small-step reduction rules

E [(λx.e)v] 7→ E [[v/x]e]
E [fix u. e] 7→ E [[(fix u. e)/u]e]

We’ll start by looking at the “left tridirectional” (in this paper, called just “tridirectional”) system.

This system was presented in Dunfield and Pfenning (2004) and Dunfield (2007b, chapter 4); space

allows only a cursory description.

The subtyping judgment (Figure 1) is A ≤ B. Transitivity is admissible. ∧ does not distribute across

→, for reasons explained by Davies and Pfenning (2000).

Figure 2 gives the typing rules. The judgment Γ;∆ ⊢ e ⇑ A is read “e synthesizes type A”, and

Γ;∆ ⊢ e ⇓ A is read “e checks against A”. When synthesizing, A is output; when checking, A is input.

Contexts Γ ::= · | Γ,x:A

Linear contexts ∆ ::= · | ∆,x:A

Contexts Γ have regular variable declarations. Linear contexts ∆ ::= · | ∆,x:A have linear variables.

If Γ;∆ ⊢ e . . . is derivable, then “∆ e ok”, read “e OK under ∆”: each x declared in ∆ appears exactly

once in e, and e contains no other linear variables. Rules that decompose the subject, such as →E

decomposing e1 e2 into e1 and e2, likewise decompose ∆.

Most rules follow a formula devised in Dunfield and Pfenning (2004): introduction rules, such as

→I, check; elimination rules, such as →E, synthesize. Introduction forms like λx.e thus construct

synthesizing terms, while elimination forms like e1 e2 are checked terms. Some rules fall outside this

classification. The assumption rules var, var and fixvar synthesize (an assumption x:A can be read x⇑A).

The subsumption rule sub allows a term that synthesizes A to check against a type B, provided A is

J. Dunfield 3

a subtype of B. The rule ctx-anno permits contextual typing annotations; for example, in (succ x :

(x:odd ⊢ even,x:even ⊢ odd)), the annotated term succ x is checked against even if x:odd ∈ Γ, and

against odd if x:even ∈ Γ. The premise (Γ0 ⊢ A) . (Γ ⊢ A) is derivable if the assumptions in Γ support

the assumptions in Γ0. For details, see Dunfield and Pfenning (2004).

Finally, we have left rules ∧L1, ∧L2, ∨L, ⊥L which act on linear assumptions x:A where A is

of intersection, union, or empty type. These act as elimination rules—for ∨ and ⊥, they are the only

elimination rules. ∧L1 and ∧L2 are not useful alone (the ordinary eliminations ∧E1 and ∧E2 would do)

but are needed to expose a nested ∨ for ∨L, or a ⊥ for ⊥L.

The backtracking required to choose between ∧E1 and ∧E2, or between ∨I1 and ∨I2, or between the

related subtyping rules, as well as the need to check a single term more than once (∧I, ∨L) suggests that

typechecking is exponential. In fact, Reynolds (1996, pp. 67–68) proved that for a closely related system,

typechecking is PSPACE-hard. We can’t make typechecking polynomial, but “untangling” directL will

remove one additional source of complexity.

A ≤ B B1 ≤ A1 A2 ≤ B2

A1→A2 ≤ B1→B2

→≤
A1 ≤ B

A1∧A2 ≤ B
∧L1≤

A2 ≤ B

A1∧A2 ≤ B
∧L2≤

A ≤ B1 A ≤ B2

A ≤ B1∧B2

∧R≤

⊥≤ A
⊥L≤

A1 ≤ B A2 ≤ B

A1∨A2 ≤ B
∨L≤

A ≤ B1

A ≤ B1∨B2

∨R1≤
A ≤ B2

A ≤ B1∨B2

∨R2≤

Figure 1: Subtyping

Γ(x) = A

Γ; · ⊢ x ⇑ A
var

Γ;x:A ⊢ x ⇑ A
var

Γ,x:A; · ⊢ e ⇓ B

Γ; · ⊢ λx.e ⇓ A→B
→I

Γ;∆1 ⊢ e1 ⇑ A→B Γ;∆2 ⊢ e2 ⇓ A

Γ;∆1,∆2 ⊢ e1e2 ⇑ B
→E

Γ;∆ ⊢ e ⇑ A A ≤ B

Γ;∆ ⊢ e ⇓ B
sub

Γ(u) = A

Γ; · ⊢ u ⇑ A
fixvar

Γ,u:A; · ⊢ e ⇓ A

Γ; · ⊢ fix u. e ⇓ A
fix

Γ ⊢ e ok ∆,x:⊥ e ok

Γ;∆,x:⊥ ⊢ e ⇓C
⊥L

(Γ0 ⊢ A) . (Γ ⊢ A) Γ;∆ ⊢ e ⇓ A

Γ;∆ ⊢ (e : . . . ,(Γ0 ⊢ A), . . .) ⇑ A
ctx-anno

Γ;∆,x:A ⊢ e ⇓C

Γ;∆,x:A∧B ⊢ e ⇓C
∧L1

Γ;∆,x:B ⊢ e ⇓C

Γ;∆,x:A∧B ⊢ e ⇓C
∧L2

Γ;∆ ⊢ v ⇓ A Γ;∆ ⊢ v ⇓ B

Γ;∆ ⊢ v ⇓ A ∧ B
∧I

Γ;∆ ⊢ e ⇑ A ∧ B

Γ;∆ ⊢ e ⇑ A
∧E1

Γ;∆ ⊢ e ⇑ A ∧ B

Γ;∆ ⊢ e ⇑ B
∧E2

Γ;∆,x:A ⊢ e ⇓C Γ;∆,x:B ⊢ e ⇓C

Γ;∆,x:A ∨ B ⊢ e ⇓C
∨L

Γ;∆ ⊢ e ⇓ A

Γ;∆ ⊢ e ⇓ A ∨ B
∨I1

Γ;∆ ⊢ e ⇓ B

Γ;∆ ⊢ e ⇓ A ∨ B
∨I2

Γ;∆1 ⊢ e′ ⇑ A Γ;∆2,x:A ⊢ E [x] ⇓C

Γ;∆1,∆2 ⊢ E [e′] ⇓C
directL

where e′ is not a linear variable

Figure 2: The left tridirectional system

2.1 Tridirectional typechecking and evaluation contexts

Rule directL’s use of an evaluation context might give the impression that typechecking simply proceeds

in the order in which terms are actually evaluated. However, this is not the case. The subject of directL

is E [e′] where e′ synthesizes a type, so certainly e′ must be in an evaluation position, but there may be

4 Untangling Typechecking of Intersections and Unions

several such positions. Even a term as simple as f (x y) has 5 subterms in evaluation position, each

corresponding to a different evaluation context E :

E = [] (x y) and e′ = f

E = f ([] y) and e′ = x

E = f (x []) and e′ = y E = f [] and e′ = (x y)
E = [] and e′ = f (x y)

In fact, we may need to repeatedly apply directL to the same subject term with different choices of E !

For example, we might use E = [] (x y) to name an f of union type, introducing f:A∨B into the context;

then, case-analyze A∨B with ∨E; finally, choose E = f ([] y) to name x (also of union type). Thus we

are faced not with a choice over decompositions, but over many sequences of decompositions.

Typechecking cannot go strictly left to right. Given an ML-like int option type, containing None

and some integer Some(n), assume None : none and Some(n) : some. Then, if map f (Some(n)) returns

Some(f n) and map f None is none, then map : (int → int) → ((some → some) ∧ (none → none)).
Similarly, a function filtering out negative integers could have type filter : int→ (some ∨ none).

Consider the term (map f) (filter n). The term (map f) synthesizes (some → some)∧(none →
none). This is an intersection type—we’ll abbreviate it as (s→s)∧(n→n)—and the intersection must be

eliminated so that rule →E can be applied to (map f) (filter x). However, we cannot commit to one part

of the intersection yet, because we must first case-analyze the union type of the subterm (filter x). We

need to “jump over” (map f) to type (filter x), so apply directL with evaluation context E = [] (filter x),
giving (map f) the name x; second, apply directL with context E = x [], synthesizing some ∨ none for

(filter x). Rule ∨L splits on y:some∨none; in its left subderivation Dsome, we have y:some, so ∧E1 on

x ⇑ (some→ some) ∧ (none→ none) gives x ⇑ some→ some, while its right subderivation Dnone has

y:none, so ∧E2 gives x ⇑ none→ none. Writing ∆ for x:((s→s)∧(n→n)), the derivation is

⊢ map f ⇑ (s→s)∧(n→n)

∆ ⊢ filter x ⇑ some ∨ none

Dsome Dnone

∆,y:(some∨none) ⊢ x y ⇓C
∨L

∆ ⊢ x (filter x) ⇓C
directL

⊢ (map f) (filter x) ⇓C
directL

where C is some ∨ none, and the derivations Dsome and Dnone are

. . . ⊢ x ⇑ (some→some)∧(none→none)

. . . ⊢ x ⇑ some→ some
∧E1

...
∆,y:some ⊢ x y ⇓C

and

. . . ⊢ x ⇑ (some→some)∧(none→none)

. . . ⊢ x ⇑ none→ none
∧E2

...
∆,y:none ⊢ x y ⇓C

On a purely theoretical level, the tridirectional system is acceptable, but the nondeterminism is exces-

sive. Xi approached (very nearly) the same problem by transforming the program so the term of ∨
type appears before the term of ∧ type. (Actually, Xi had index-level quantifiers Σ and Π instead

of ∨ and ∧, but these are analogous.) A standard let-normal translation |e| (Xi 1998, p. 86), where

|e1 e2| = let x1= |e1| in let x2= |e2| in x1x2 suffices for the examples above. (In Xi’s system, existential

variables are unpacked where a term of existential type is let-bound: an existential variable b′ is un-

packed at the binding of x2, which appears before the application x1x2 at which the universal variable a

must be instantiated.) Unfortunately, the translation interacts unpleasantly with bidirectionality: terms

such as map (λx.e), in which (λx.e) must be checked, no longer typecheck because the λ becomes the

right hand side of a let, in let x1=map in let x2=λx.e in x1x2 and let-bound expressions must synthesize a

type, but λx.e does not. Typechecking becomes incomplete in the sense that some programs that were

well typed are not well typed after translation.

Xi ameliorated this incompleteness by treating e1 v2 as a special case (Xi 1998, p. 139): |e1 v2| =
let x1= |e1| in x1 v2. Now v2 (which is λx.e in the above example) is in a checking position. This is

J. Dunfield 5

Γ;∆1 ⊢ e′ ⇑ A Γ;∆2,x:A ⊢ Q[x] ⇓C

Γ;∆1,∆2 ⊢ letx=e′ inQ[x] ⇓C
let

Γ;∆,∼x=v ⊢ Q[x] ⇓C

Γ;∆ ⊢ let∼x=v inQ[x] ⇓C
let∼

Γ;∆1 ⊢ v ⇑ A Γ;∆2,x:A ⊢ e ⇓C

Γ;∆1,∆2,∼x=v ⊢ e ⇓C
∼var

. . . plus all rules in Figure 2, except directL

Figure 3: The let-normal type system for terms containing let x bindings

adequate for non-synthesizing values, but terms such as map (case z of . . .), where a non-synthesizing

non-value is in checking position, remain untypable. It is not clear why Xi did not also have special cases

for case and other non-synthesizing non-values, e.g. |e1 (case e of ms)| = let x1= |e1| in x1 |case e of ms|.
Xi’s translation is also incomplete for terms like f (case x of ms). Suppose x synthesizes a union that

must be analyzed to select the appropriate part of an intersection in the type of f . Since x’s scope—and

thus the scope of its union—is entirely within the let created for the case, typechecking fails.

| f (case x of ms)| = let f1= f in let x0= |case x of ms| in f1 x0

= let f1= f in let x0=
(
let x1=x in case x1 of |ms|

)
in f1 x0

It could be argued that the cases in which Xi’s translation fails are rare in practice. However, that

may only increase confusion when such a case is encountered. I follow Xi’s general approach of sequen-

tializing the program before typechecking, but no programs are lost in my translation.

Do we need all the freedom that directL provides? No. At the very least, if we do not need to

name a subterm, naming it anyway does no harm. But naming all the subterms only slightly reduces the

nondeterminism. Clearly, a strategy of in-order traversal is sound (we can choose to apply directL from

left to right if we like). It is tempting to think it is complete. In fact, it holds for many programs, but

fails for a certain class of annotated terms. We will explain why as we present the general mechanism

for enforcing a strategy of left-to-right traversal except for certain annotated terms.

3 Let-Normal Typechecking

We’ll briefly mention previous work on let-normal form, then explain the ideas behind the variant here,

including why we need a principal synthesis of values property. Because the most universal form of

principality does not hold for a few terms, we introduce slack bindings.

Traditional let-normal or A-normal transformations (Moggi 1988; Flanagan et al. 1993) (1) explicitly

sequence the computation, and (2) name the result of each intermediate computation. (Continuation-

passing style (CPS) (Reynolds 1993) also (3) introduces named continuations. Thus let-normal form is

also known as two-thirds CPS.) Many compilers for functional languages use some kind of let-normal

form to facilitate optimizations; see, for instance, Tarditi et al. (1996), Reppy (2001), Chlipala et al.

(2005), and Peyton Jones et al. (2006).

Our let-normal form will sequentialize the computation, but it does not only name intermediate

computations, but values as well. In our let-normal type system, directL is replaced by a rule let that can

only be applied to let; see Figure 3. Q is a special evaluation context, discussed below.

This let is a syntactic marker with no computational character. In contrast to let-normal translations

for compilation purposes, there is no evaluation step (reduction) corresponding to a let. I won’t even

give a dynamic semantics for terms with lets. It would be easy; it’s simply not useful here. If we insist

on knowing what a let-normal term e means, we can use a standard call-by-value operational semantics

over the term’s reverse translation.

Instead of making explicit the order of computation, our let-normal form makes explicit the order of

typechecking—or rather, the order in which directL names subterms in evaluation position. Thus, to be

6 Untangling Typechecking of Intersections and Unions

complete with respect to the tridirectional system, the transformation must create a let for every subterm

in synthesizing form: if an (untranslated) program contains a subterm e′ in synthesizing form, it might

be possible to name e′ with directL, so the let-normal translation must bind e′. Otherwise, a chance to

apply ∨L is lost. Even variables x must be named, since they synthesize a type and so can be named in

directL. This models an “aggressive” strategy of applying directL. On the other hand, checked terms

like λx.e can’t synthesize, so we won’t name them.

Another consequence of the let-normal form following typing, not evaluation, is that letx=v1 in v2 is

considered a value—after all, the original term [v1/x]v2 was a value, and we transformed a value into a

non-value we could not apply value-restricted typing rules such as ∧I, leading to incompleteness.

We define the translation by a judgment e →֒ L+ e′, read “e translates to a sequence of let-bindings

L with body e′”. For example, the translation of f (x y), which names every synthesizing subterm, is

let f= f in letx=x in lety=y in let z=x y in leta= f z ina

This is expressed by the judgment f (x y) →֒ f= f ,x=x,y=y,z=x y,a= f z + a. Figure 4 has the defi-

nition. Note that L+ e′ is not a term; + is punctuation. We write L in e′ as shorthand: read e →֒ L+ e′

as “e →֒ L in e′”. The divergent notations come from the multiple decompositions of a term into a

pair of bindings and a “body”. For example, letx1=e1 in letx2=e2 in e3 can be written three ways: (1)

· in letx1=e1 in letx2=e2 in e3, (2) (x1=e1) in letx2=e2 in e3, or (3) (x1=e1,x2=e2) in e3. The last de-

composition is maximal: it has the maximum number of bindings (and the smallest ‘body’), which is the

case when the body isn’t a let. If e →֒ L+ e′ then L in e′ is maximal.

Again, to model a complete strategy of directL-application, in e →֒ L+ e′ we need L to bind all the

synthesizing subterms that could be in evaluation position (after applying directL zero or more times).

We syntactically partition terms into pre- and anti-values. A pre-value ě is a value, such as x, or a

term that can “become” a value via directL, such as x y which “becomes” the value z in the derivation.

(The háček ˇ above the e is shaped like a ‘v’ for ‘value’.) An anti-value ê, such as fix u.e (or case e of ms)

is not a value and cannot become a value.

directL can replace any synthesizing subterm with a linear variable, so the pre-values must include

both the values and the synthesizing forms. This leads to the following grammar for pre-values, with

values x, x, and λx.e and synthesizing forms (e : As), e1e2, u. (In the full system, the prevalues also

include checking forms that can become values if all their subterms can, such as (e1,e2).)

Pre-values ě ::= x | x | (e : As) | λx.e | e1e2 | u

Anti-values ê ::= fix u. e

The distinction matters for terms with sequences of immediate subterms such that at least two subterms

in the sequence may be in evaluation position. Only application e1e2 has this property (and in the full

system, pairs (e1,e2)). λx.e and fix u. e have no subterms in evaluation position at all.

A telling example is (fix u. e) (ω x) where ω : . . .→⊥. In the tridirectional system, this term has no

synthesizing subterms in evaluation position. In particular, ω x is not in evaluation position, so however

we translate the term, we must not bind ω x outside the outer application; if we did, we would add z:⊥
to the context and could apply rule ⊥L to declare the outer application well typed while ignoring e! If

e is ill-typed, this is actually unsound. On the other hand, in the term (f g) (ω x) the left tridirectional

system can bind ω x before checking the pair, by applying directL with E = [] (ω x) (synthesizing a

type for f g, ensuring soundness) to yield a subject x (ω x) in which ω x is in evaluation position.

The difference is that fix u.e is an anti-value, while f g is a pre-value. Therefore, given an application

e1 e2, if e1 is some anti-value ê1, the translation places the bindings for subterms of e2 (e.g. z=ω x above)

inside the argument part. On the other hand, if e1 is a pre-value ě1, the translation puts the bindings for

subterms of e2 outside the application. See the shaded rules in Figure 4.

J. Dunfield 7

e →֒ L+ e′ read “e translates to bindings L with result e′”

x →֒ (x=x)+x

e →֒ L+ e′

λx.e →֒ ·+λx.(L in e′) u →֒ (x=u)+x

e →֒ L+ e′

fix u. e →֒ ·+fix u. (L in e′)

ê1 →֒ L1 + e′1 e2 →֒ L2 + e′2

ê1e2 →֒ L1,x=e′1(L2 in e′2)+x

ě1 →֒ L1 + e′1 e2 →֒ L2 + e′2

ě1e2 →֒ L1,L2,x=e′1e′2 +x

e →֒ L+ e′ e not a value

(e : As) →֒ L,x=(e′ : As)+x

x →֒ ·+x

v →֒ L+ e′

(v : As) →֒ L,∼x=(e′ : As)+x

Figure 4: The let-normal transformation

Elongated evaluation contexts Q, unlike ordinary evaluation contexts E , can skip over pre-values.

Q is a sort of transitive closure of E : if, by repeatedly replacing pre-values in evaluation position with

values, some subterm is then in evaluation position, that subterm is in elongated evaluation position. In

a sequence of directL-applications, subterms in evaluation position are replaced with linear variables,

which are values. For example, z is not in evaluation position in (x y) z, but applying directL with

E = [] z yields a subderivation with subject x z, in which z is in evaluation position. A Q is thus a

path that can skip pre-values: if every intervening subterm is a pre-value (equivalently, if there is no

intervening anti-value), the hole is in elongated evaluation position. The grammar for let-normal terms

ensures that the body e2 of letx=e1 in e2 must have the form Q[x].

Elongated Q ::= [] | Qe | ěQ | (Q : As)
evaluation contexts | letx=Q in e | letx= ě inQ | let∼x=Q in e | let∼x=v inQ

Terms e ::= . . . | letx=e1 inQ[x] | let∼x=v1 inQ[x]

Values v ::= x | λx.e | x | letx=v1 in v2 | let∼x=v1 in v2

Eval. contexts E ::= . . . | letx=E in e | letx=v inE | let∼x=E in e | let∼x=v inE

Sequences of bindings L ::= · | L,(x=e) | L,(∼x=v)

3.1 Principal synthesis of values

A key step in completeness is the movement of let-bindings outward. To prove this preserves typing,

we show that principal types (Hindley 1969) exist in certain cases. Consider the judgment x : (A1→B) ∧
(A2→B),y : A1 ∨ A2; · ⊢ x y ⇓ B. To derive this in the left tridirectional system, we need directL with

E = x [] to name y as a new linear variable y:A1 ∨ A2. Then we use ∨L; we must now derive

x : (A1→B) ∧ (A2→B), . . . ;y:A1 ⊢ x y ⇓ B and x : (A1→B) ∧ (A2→B), . . . ;y:A2 ⊢ x y ⇓ B

Here, the scope of y is x y, and we synthesize a type for x twice, once in each branch:

. . . ,y : A1 ∨ A2; · ⊢ y ⇑ A1 ∨ A2

. . . ; · ⊢ x ⇑ A1→B
...

. . . ;y:A1 ⊢ x y ⇓ B
→E

. . . ; · ⊢ x ⇑ A2→B
...

. . . ;y:A2 ⊢ x y ⇓ B
→E

. . . ;y : A1 ∨ A2 ⊢ x y ⇓ B
∨L

x : (A1→B) ∧ (A2→B),y : A1 ∨ A2; · ⊢ x y ⇓ B
directL

However, when checking the translated term letx=x in lety=y in let z=x y in z against B, we need to first

name x as x, then y as y, then use ∨L to decompose the union y:A1 ∨ A2 with subject let z=x y in z.

. . . ; · ⊢ x ⇑ (A1→B) ∧ (A2→B) . . . ;x:(A1→B) ∧ (A2→B) ⊢ lety=y in let z=x y in z ⇓ B

x : (A1→B) ∧ (A2→B),y : A1 ∨ A2; · ⊢ letx=x in lety=y in let z=x y in z ⇓ B
let

8 Untangling Typechecking of Intersections and Unions

But we only get one chance (highlighted above) to synthesize a type for x, so we must take care when

using let to name x; if we choose to synthesize x ⇑ A1→B in let, we can’t derive x:A1→B,y:A2 ⊢
let z=x y in z⇓B but if we choose to synthesize x⇑A2→B we can’t get x:A2→B,y:A1 ⊢ let z=x y in z⇓B.

The only choice that works is Γ(x) = (A1→B) ∧ (A2→B), since given x ⇑ (A1→B) ∧ (A2→B) we can

synthesize x ⇑ A1 → B and x ⇑ A2 → B using ∧E1 and ∧E2, respectively.

In the above situation, e′ = x is a variable, so there is a best type C—namely Γ(x)—such that if x ⇑C1

and x ⇑C2 then x ⇑C, from which follows (by rules ∧E1,2 in the example above) x ⇑C1 and x ⇑C2. We’ll

say that x has the property of principal synthesis. Which terms have this property? Variables do: the best

type for some x is Γ(x). On the other hand, it does not hold for many non-values: f x ⇑ A1 and f x ⇑ A2

do not imply f x ⇑ A1 ∧ A2, since the intersection introduction rule ∧I is (1) restricted to values and (2) in

the checking direction. Fortunately, we don’t need it for non-values: Consider (e1 e2) y. Since (e1 e2) is

not a value, y is not in evaluation position in (e1 e2) y, so even in the tridirectional system, to name y we

must first name (e1 e2). Here, the let-normal system is no more restrictive. Moreover, some values, such

as pairs, are checking forms and never synthesize, so they do not have the principal synthesis property.

But neither system binds values in checking form to linear variables.

Now, do all values in synthesizing form have the principal synthesis property? The only values in

synthesizing form are ordinary variables x, linear variables x, and annotated values (v : As). For x or x

the principal type is simply Γ(x) or ∆(x). Unfortunately, principal types do not always exist for terms of

the form (v : As). For example, ((λx.x) : (⊢ unit→ unit),(⊢ bool→ bool)) can synthesize unit→ unit,

and it can synthesize bool→ bool, but it can’t synthesize their intersection, so it has no principal type.

3.2 Slack bindings

Rather than restrict the form of annotations, we use a different kind of binding for (v : As)—a slack

binding ∼x=v where v’s type is synthesized not at its binding site, but at any point up to its use (rules

∼var and let∼ in Figure 3). Wherever x is in scope, we can try rule ∼var to synthesize a type A for v

and replace ∼x=v with an ordinary linear variable typing x:A. For example,
(
(λx.e) : (⊢ int→int)

)
y

is translated to let∼x=
(
(λx.e′) : (⊢ int→int)

)
in lety=y inx yNow, we have several chances to use

∼var to synthesize the type of x: just before checking lety=y inx y, or when checking x y. This is

just like choosing when to apply directL in the tridirectional system. If all our bindings were slack we

would have put ourselves in motion to no purpose, but we’ll use slack bindings for (v : As) only. My

experiments suggest that slack bindings are rare in practice (Dunfield 2007b, p. 187), and are certainly

less problematic than the backtracking from intersections and unions themselves (∧E1,2, etc.).

4 Results

The two major results are soundness: if the let-normal translation of a program is well typed in the

let-normal type system, the original program is well typed in the left tridirectional system—and com-

pleteness: if a program is well typed in the left tridirectional type system, its translation is well typed

in the let-normal type system. Once these are shown, it follows from Dunfield and Pfenning (2004) that

the let-normal system is sound and complete with respect to a system (Dunfield and Pfenning 2003) for

which preservation and progress hold under a call-by-value semantics.

At its heart, the let-normal system merely enforces a particular pattern of linear variable introductions

(via let, instead of directL). So it is no surprise that soundness holds. The proof is syntactic, but not too

involved; see Dunfield (2007b, pp. 132–134).

J. Dunfield 9

Corollary (Let-Normal Soundness).

If e →֒ L+ e′ and ·; · ⊢ L in e′ ⇓C (let-normal system) then ·; · ⊢ e ⇓C (tridirectional system).

However, completeness—that the let-normal system is not strictly weaker than the tridirectional

system—is involved. I give only the roughest sketch of the proof found in Dunfield (2007b, pp. 135–165).

We want to show that given a well-typed term e, the let-normal translation L in e′ where e →֒ L+ e′ is

well-typed. To be precise, given a derivation D deriving Γ;∆ ⊢ e ⇓C in the left tridirectional system, we

must construct a derivation Γ;∆ ⊢ L in e′ ⇓C in the let-normal system, where e →֒ L+ e′. My attempts

to prove this by straightforward induction on the derivation failed: thanks to directL, the relationship

between e and D is complex. Nor is L+e′ compositional in e: for a given subterm of e there may not be

a corresponding subterm of L+ e′, because translation can insert bindings inside the translated subterm.

Instead, the completeness proof proceeds as follows:

1. Mark e with lets wherever directL is used in D . However, if ∧I or another subject-duplicating

rule is used, the subderivations need not apply directL in the same way, resulting in distinct terms

to which ∧I cannot be applied. So we use step 2 inductively to obtain typing derivations for the

canonical version of the subterm (the L+ e′ from e →֒ L+ e′), to which ∧I can be applied.

This step centres on a lemma which produces a term with a let-system typing derivation. This term

might not be canonical. For example, if the original tridirectional derivation for λx.x didn’t use

directL at all, no let bindings are created, unlike the canonical let-normal term λx. letx=x inx.

2. Transform the marked term into the canonical L+ e′ in small steps, adding or moving one let at a

time. Each small step preserves typing. We define a syntactic measure (a tuple of natural numbers)

that quantifies how different a term is from L+e′; each let-manipulating step reduces the measure,

bringing the term closer to L+ e′. Lastly, when the measure is all zeroes, the term is L+ e′.

Theorem (Let-Normal Completeness).

If ·; · ⊢ e ⇓C (tridirectional system) and e →֒ L+ e∗ then ·; · ⊢ L in e∗ ⇓C (let-normal system).

5 Related Work

The effects of transformation to continuation passing style on the precision of program analyses such as

0-CFA have been studied for some time (Sabry and Felleisen 1994). The effect depends on the specific

details of the CPS transform and the analysis done (Damian and Danvy 2001; Palsberg and Wand 2003).

The “analysis” in this work is the process of bidirectional checking/synthesis. My soundness and com-

pleteness results show that my let-normal transformation does not affect the analysis. It is not clear if

this means anything for more traditional let-normal transformations and compiler analyses.

6 Conclusion

Transforming programs into a let-normal form removes a major impediment to implementing tridirec-

tional typechecking. The system is sound and complete with respect to a type assignment system for

intersections and unions (Dunfield and Pfenning 2003), in contrast to systems (Xi 1998) in which com-

pleteness is lost. The tridirectional rule can be turned into something practical. A chain of soundness

results (Dunfield 2007b, p. 165) guarantees that if we run a program e whose let-normal translation

typechecks in the system in this paper, it will not go wrong.

10 Untangling Typechecking of Intersections and Unions

Despite “untangling” directL, typechecking is still very time-consuming in the worst cases, thanks

to checking terms several times in ∧I and backtracking in ∧E1,2, etc. As implementing (an extended

version of) this system shows (Dunfield 2007a), bad cases do occur in practice!

Parametric polymorphism is absent, but I have extended the tridirectional system and the let-normal

implementation (Dunfield 2009), and the soundness and completeness results should still hold.

The major flaw of this work is its completeness proof, which uses purely syntactic methods, is com-

plicated, and has not been mechanized. Ideally, it would be mechanized and/or proved more simply.

Acknowledgments Many thanks to Frank Pfenning for countless discussions about this research.

Thanks also to the ITRS reviewers. Most of the work was done at Carnegie Mellon University with the

support of the US National Science Foundation.

References

Adam Chlipala, Leaf Petersen, and Robert Harper. Strict bidirectional type checking. In Workshop on Types in
Language Design and Implementation (TLDI ’05), pages 71–78, 2005.

Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: on the impact of the CPS transforma-
tion. Technical Report BRICS-RS-01-54, University of Aarhus, 2001.

Rowan Davies and Frank Pfenning. Intersection types and computational effects. In ICFP, pages 198–208, 2000.

Jana Dunfield. Refined typechecking with Stardust. In Programming Languages meets Programming Verification
(PLPV ’07), 2007a.

Jana Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon University, 2007b. CMU-CS-
07-129.

Jana Dunfield. Greedy bidirectional polymorphism. In ML Workshop (ML ’09), 2009.

Jana Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-by-value languages. In
Found. Software Science and Computation Structures, pages 250–266, 2003.

Jana Dunfield and Frank Pfenning. Tridirectional typechecking. In POPL, pages 281–292, 2004.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling with continua-
tions. In Programming Language Design and Implementation, pages 237–247, 1993.

R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. Am. Math. Soc., 146:29–60, 1969.

Eugenio Moggi. Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66, University of
Edinburgh, 1988.

Jens Palsberg and Mitchell Wand. CPS transformation of flow information. J. Functional Programming, 13(5):
905–923, 2003.

Simon Peyton Jones and the GHC developers. Glasgow Haskell Compiler Commentary. http://hackage.
haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe, 2006.

Benjamin C. Pierce and David N. Turner. Local type inference. In POPL, pages 252–265, 1998. Full version in
ACM Trans. Programming Languages and Systems, 22(1):1–44, 2000.

John Reppy. Local CPS conversion in a direct-style compiler. In ACM Workshop on Continuations (CW ’01),
pages 13–22, 2001.

John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation, 6(3–4):233–247, 1993.

John C. Reynolds. Design of the programming language Forsythe. Technical Report CMU-CS-96-146, Carnegie
Mellon University, 1996.

Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data flow analysis? In Programming
Language Design and Implementation, pages 1–12, 1994.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing compiler for
ML. In Programming Language Design and Implementation, pages 181–192, 1996.

Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon University, 1998.

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscPipe

	Introduction
	Tridirectional Typechecking
	Tridirectional typechecking and evaluation contexts

	Let-Normal Typechecking
	Principal synthesis of values
	Slack bindings

	Results
	Related Work
	Conclusion

