
Bidirectional polymorphism through greed and unions

Jana Dunfield

McGill University, Montréal, Canada

Abstract

Bidirectional typechecking has become popular in advanced type
systems because it works in many situations where inference is un-
decidable. In this paper, I show how to cleanly handle parametric
polymorphism in a bidirectional setting, even in the presence of
subtyping. The first contribution is a bidirectional type system that
supports first-class (higher-rank and impredicative) polymorphism
but is complete for predicative polymorphism (including ML-style
polymorphism and higher-rank polymorphism). This power comes
from bidirectionality combined with a “greedy” method of finding
polymorphic instances inspired by Cardelli’s early work on System
F<:. The second contribution adds subtyping; combining bidirec-
tional typechecking with intersection and union types fortuitously
yields a simple but rather powerful system. Finally, I present a
more powerful algorithm that forms intersections and unions auto-
matically. This paper demonstrates that bidirectionality is a strong
foundation for traditionally vexing features like first-class polymor-
phism and subtyping.

1. Introduction

To check programs in advanced type systems, it is often useful to
split the traditional typing judgment e : A into two forms, e ⇑ A
read “e synthesizes type A” and e ⇓ A read “e checks against
type A”. This technique has been used for dependent types (Co-
quand 1996; Norell 2007; Abel et al. 2008; Löh et al. 2008); sub-
typing (Pierce and Turner 2000; Odersky et al. 2001); intersec-
tion, union, indexed and refinement types (Xi 1998; Davies and
Pfenning 2000; Dunfield and Pfenning 2004); termination check-
ing (Abel 2004); higher-rank polymorphism (Peyton Jones et al.
2007); refinement types for LF (Lovas and Pfenning 2007); con-
textual modal types (Pientka 2008; Pientka and Dunfield 2008);
and compiler intermediate representations (Chlipala et al. 2005).

Bidirectional typechecking is necessary because annotation-
free type inference, which works well for the lambda calculus with
prenex polymorphism, becomes difficult (if not undecidable) when
we add first-class polymorphism, subtyping, intersection types, and
so forth. Bidirectional typechecking is nice because reports of type
errors are better localized, which is useful even when type inference
is feasible.

In earlier work, we gave a concise recipe for bidirectional type-
checking (Dunfield and Pfenning 2004). But we left out a vital
feature: parametric polymorphism. So what are the proper bidirec-

A version of this paper was submitted to ICFP 2009.

Version of 2009–04–07 plus bug fixes; recompiled

2020–11.

tional introduction and elimination rules for parametric polymor-
phism? It turns out that the introduction rule is easy, but the elimi-
nation rule is hard. For example, if we have a polymorphic function
f : ∀α.α → α → α, to find the right instantiation of α in the appli-
cation f x y we must look at x’s type (and, for certain mixes of type
system features, y’s type as well). Clearly, we do not know how to
instantiate α from the term f alone.

How can we find polymorphic instances in a bidirectional type
system that is simple to formulate, implement, and use—without a
heavy type annotation burden? I adapt an idea of Cardelli (1993),
greed: the first constraint on a type variable determines the instan-
tiation. For f x y, this means α is determined by the type of x.

In this paper, I show how to use a “greedy method” to find
polymorphic instances in System F (Girard 1986; Reynolds 1974),
where polymorphism is first-class (higher-rank and impredicative).
This yields a remarkably simple algorithm that is complete for
predicative polymorphism (including ML-style prenex polymor-
phism). That is, if a typing derivation exists that instantiates type
variables at monomorphic types, the user gives no more informa-
tion than the annotations already present if there were no polymor-
phism. The algorithm handles some uses of impredicative poly-
morphism (where type variables are instantiated with polymorphic
types) without extra help; for the rest, I provide a versatile “hint”
mechanism.

I then show how to use intersection and union types to extend
the method to systems with subtyping. Cardelli devised his greedy
method for such systems, but without intersections and unions the
method is weak: to find the instance of α for f x y under subtyping,
considering x alone may not suffice. Suppose x : A and y : B where
A is a proper subtype of B. The first term visited (after f) is x, so we
greedily take A as the instance of α. But y does not check against
A, and typechecking fails. However, with union types the user can
split α into two type variables, rewriting the type as

f : ∀α1, α2. α1 → α2 → (α1 ∨ α2)

Now, in f x y where x : A and y : B, the variables α1 and α2 will
be instantiated separately to A and B respectively, and the union of
A and B is synthesized as the type of f x y. Alternatively, we can
automatically “unionize” α, reducing the user’s burden.

Taken together, these systems demonstrate that first-class poly-
morphism and subtyping, while tricky with type inference, are man-
ageable in a bidirectional typechecking approach. Rather than start-
ing with Damas-Milner inference, perhaps eventually trying to glue
on some bidirectionality for the season’s latest type features, we
get simplicity and power by making things bidirectional from the
ground up.

I will begin by giving a point of reference: a bidirectional type
system that assumes polymorphic instances are found magically
(Section 2). Next, I explain in Section 3 a decidable version of
that system (inspired by Cardelli’s greedy algorithm), and show
that it is complete, with respect to the Section 2 system, for typ-
ing derivations that use only predicative polymorphism. Section 4

1 2020/11/3

Type variables α, β

Atomic types Aatomic ::= 1 | α | ∀α. A
Types A,B,C ::= Aatomic | A → B

Contexts Γ ::= · | Γ, x:A | Γ, α
Matches ms ::= · | c(x) ⇒ e ||ms

Annotations N ::= (Γ ⊢ A)
Terms e ::= x | () | λx. e | e1 e2

| c(e) | case e of ms | (e : N)

Values v ::= x | () | λx. e | c(v) | (v : N)

Evaluation contexts E ::= [] | E e | v E | c(E) | case E of ms

e ′ 7→R e ′′

E [e ′] 7→ E [e ′′]

(λx. e) v 7→R [v/x]e
case c(v) of . . . c(x) ⇒ e . . . 7→R [v/x]e

Figure 1: Grammar and operational semantics for System Bi

adds “real” subtyping, intersection types, and union types to the
“magical” system, which Section 5 makes decidable. Section 6 de-
scribes its implementation. Finally, Section 7 presents an extension
that automatically constructs intersections and unions within poly-
morphic instances where necessary, which is very helpful in certain
situations.

2. System Bi

System Bi is a very simple bidirectional type system with first-
class polymorphism. System Bi does not touch the problem of

finding polymorphic instances; that is left to System Biα̂ (“bi ex”),
described in the next section. But it is a good reference point for

proving things about System Biα̂.
Figure 1 gives the syntax of terms, types, etc. For simplicity, we

omit some constructs such as fixed point recursion fix u.e, which is
easy to handle as in previous work (Dunfield and Pfenning 2004).

We also gloss over datatypes ~A δ where δ is the name of an n-

argument inductive datatype and ~A is a sequence of n types. For
example, given a base type int and the one-argument datatype list,
we can write int list. Term-level data constructors have constructor
type Acon = B → ~α δ—no GADTs here. Datatypes are not
particularly interesting in System Bi; while we give the syntax of
case arms (matches ms) and constructors c(e), we omit details
such as the typing rules for case expressions.

The operational semantics (defined under type erasure) is
straightforward, making use of evaluation contexts; E [e ′] is a term
with e ′ in evaluation position.

Figure 2 has the rules for well-formedness of types and contexts.
In general, we assume every context we write is well-formed, but
tend to explicitly say when individual types are well-formed.

The bidirectional typing judgments are Γ ⊢ e ⇑ A, read
“e synthesizes A”, and Γ ⊢ e ⇓ B, read “e checks against
B”. (The arrows correspond to the flow of type information in
an abstract syntax tree representation of e.) Figure 3 gives the
typing rules. Introduction and elimination rules follow the pattern
we introduced (Dunfield and Pfenning 2004): the conclusion of an
introduction rule is checked against a given type, and the premise
of an elimination rule—where the type being eliminated appears—
synthesizes a type. This yields the smallest sensible set of rules,
and means that annotations are needed only on redexes (including
declarations of recursive functions).

The rule sub expresses a subsumption principle: if e synthesizes
a type A that is at least as polymorphic as B—the known type that
e is being checked against—then an A can be used where a B is
expected. For example, a function of type ∀α.α → α can be passed
to a function expecting int → int. We write this limited form of
subtyping as Γ ⊢ A ≦ B.

Γ ⊢ A wf

FV(A) ⊆ dom(Γ)

Γ ⊢ A wf

Γ wf

· wf

Γ wf x /∈ dom(Γ) Γ ⊢ A wf

Γ, x:A wf

Figure 2: Well-formedness of types and contexts

The rule anno is read as “if N = (Γ ′ ⊢ A ′) matches the
typing (Γ ⊢ A) and e checks against A, then (e : (Γ ′ ⊢ A ′))
checks against A”. The matching relation . handles the renam-
ing between Γ and Γ ′, and between A and A ′. These contextual
annotations are discussed below.

∀I introduces a universal quantifier—with a value restriction,
since my primary goal is a foundation for call-by-value languages
with side effects. ∀E is an “oracular” elimination rule; it assumes
someone has revealed to us the instance A ′. Of course this is not
practical—indeed, it begs the question that we want to answer—

and we will address this in System Biα̂.
Figure 3 gives the rules for the limited subtyping used by the

rule sub. We continue to omit the rules for datatypes, and further
assume that all polymorphic datatypes are covariant. In the rule
∀L≦, we write [A ′/α]A to mean the substitution of A ′ for α in
the type A. Following Dunfield and Pfenning (2003), reflexivity
and transitivity are admissible and so need no explicit rules. For
example, Γ ⊢ ∀α. A ≦ ∀β. [β/α]A—which is the same as Γ ⊢
∀α. A ≦ ∀α. A—is derivable by (1) deriving Γ, β ⊢ [β/α]A ≦
[β/α]A; (2) applying ∀L≦, giving Γ, β ⊢ ∀α. A ≦ [β/α]A; (3)
applying ∀R≦. (To prove transitivity, measure the derivations by
the lexicographic ordering of (1) the number of ∀L≦ applications
in the second derivation, with (2) the height of both derivations.
This measure makes the ∀R≦/∀L≦ case work.)

2.1 Contextual annotations

Annotations are contextual (Dunfield and Pfenning 2004): when
checking (e : (Γ ′ ⊢ A ′)) under the context Γ , the context Γ ′

establishes the relationship between type variables declared in Γ
and type variables used in A ′, the annotated type of e. For example,
the following fragment uses the type of x to establish that the α in
the inner annotation (on λy.Cons(y,Nil)) is the same as the α used
in the outer annotation. The type variable α is bound by Γ ′, and its
scope is x:α ⊢ . . . , but the program variable x in x:α is free (and
in the scope of λx).

(
λx. λn. . . .

((λy.Cons(y,Nil)) : (α, x:α ⊢ α → α list)) . . .
)

: ∀α. α → int → α list

This avoids the need for a term-level binder for type variables. The
tactic of writing

(λx. λn. . . . (e : α) . . .) : ∀α. α → int → α list

does not sit well: the underlined α is not within the most natural
scope of α, which is just α → int → α list. Simply saying that
α is in scope within the body of the annotated term breaks down
when we add intersection types (Dunfield and Pfenning 2004).

In practice, Γ can be omitted where empty; the type variable
declarations in Γ could be omitted (writing (x:α ⊢ α → α list)
instead of (α, x:α ⊢ α → α list); and (at least in a system without
intersection types) one could even say that α is within the scope of
its annotation. For this paper, contextual annotations’ key virtue is
robustness: they work well with or without intersection types, index
refinements, and other features.

Contextual annotations also set the stage for System Biα̂ when
we add hint declarations hint (ΓA ⊢A) in e. These are suggestions
from the user to the typechecker: under a context Γ , when exam-

2 2020/11/3

Γ ⊢ e ⇓ A e checks against type A

Γ ⊢ e ⇑ A e synthesizes type A

Γ(x) = A

Γ ⊢ x ⇑ A
var

Γ ⊢ e ⇑ A Γ ⊢ A ≦ B

Γ ⊢ e ⇓ B
sub

N . (Γ ⊢ A) Γ ⊢ e ⇓ A

Γ ⊢ (e : N) ⇑ A
anno

Γ ⊢ () ⇓ 1
1I

Γ, x:A ⊢ e ⇓ B

Γ ⊢ λx. e ⇓ A→B
→I

Γ ⊢ e1 ⇑ A→B Γ ⊢ e2 ⇓ A

Γ ⊢ e1 e2 ⇑ B
→E

Γ, α ⊢ v ⇓ A

Γ ⊢ v ⇓ ∀α. A
∀I

Γ ⊢ e ⇑ ∀α. A Γ ⊢ A ′ wf

Γ ⊢ e ⇑ [A ′/α]A
∀E

Γ ⊢ A ≦ B A is at least as polymorphic as B

Γ ⊢ 1 ≦ 1
1≦

Γ ⊢ B1 ≦ A1 Γ ⊢ A2 ≦ B2

Γ ⊢ A1 → A2 ≦ B1 → B2

→≦

Γ ⊢ α ≦ α
αRefl≦

Γ ⊢ [A ′/α]A ≦ B Γ ⊢ A ′ wf

Γ ⊢ ∀α. A ≦ B
∀L≦

Γ, β ⊢ A ≦ B

Γ ⊢ A ≦ ∀β. B
∀R≦

Figure 3: Typing and subtyping in System Bi

ining e, the typechecker can try A when instantiating a quantifier
∀β. B—with the typing annotation’s context ΓA establishing the
mapping between free type variables in A and type variables in Γ .

2.2 The metatheory of System Bi

Type safety can be proved in a three-step process:

1. Define a type assignment version of System Bi.

2. Show that every derivation in System Bi has a corresponding
derivation in the type assignment system.

3. Prove a type safety theorem for the type assignment system.

For Step 1, drop anno and change all “⇑” and “⇓” symbols to “:”.
Step 2 consists of erasing annotations and removing applications of
anno, following Dunfield and Pfenning (2004).

We defer discussion of Step 3 until we discuss System Bi≤,
which has richer subtyping, intersections, and unions. That exami-
nation will also apply to System Bi.

3. System Biα̂: Explicit Existential Variables

In this section, we will add to System Bi existential variables that

represent unsolved polymorphic instances, yielding System Biα̂

(“bi ex”). After extending the syntax, we explain the typing and
subtyping rules, discuss the hint construct, and then prove (with
respect to System Bi) soundness and a limited form of complete-
ness.

Types A ::= . . . | α̂
Contexts Γ,Ω ::= . . . | Γ, α̂ | Γ, α̂=A | Γ, hint(Γ ′ ⊢ A ′)

Terms e ::= . . . | hint (Γ ′ ⊢ A ′) in e

We write α̂, β̂, and so on for existential type variables, created in
situations corresponding to the ∀E and ∀L≦ rules of System Bi.
We create α̂ by adding α̂ to the context Γ . When the system finds a
solution (e.g. when trying to derive α̂ ≦ A) the declaration α̂ is re-

FV(A) ⊆ dom(Γ)

Γ ⊢ A wf

α̂ /∈ dom(Γ1) Γ1, α̂ ⊢ Γ2 wf

Γ1 ⊢ α̂, Γ2 wf

Γ ⊢ · wf

α̂ /∈ dom(Γ1) Γ1 ⊢ A wf Γ1, α̂=A ⊢ Γ2 wf

Γ1 ⊢ α̂=A, Γ2 wf

Figure 4: Well-formedness of existential contexts and types

placed by α̂=A, indicating that the solution of α̂ is A. Contexts are
ordered: the position of the declaration α̂ determines which vari-
ables can appear in a solution: in the context Γ1, α̂=A, Γ2 the solu-
tion type A must be well-formed under Γ1, without using anything
declared in Γ2. This prevents circularity, and allows rules like ∀I
that add non-existential declarations to remove them without mak-
ing dangling references. Similarly, α̂, x:α̂ is well-formed because
α̂ is declared before x:α̂.

Since the rules need to add and replace things in Γ , we modify
judgment forms like Γ ⊢ e ⇓ C:

Γ ⊢ e ⇓ C becomes Γ ⊢ e ⇓ C ⊣ Γ ′

Γ ⊢ e ⇑ C becomes Γ ⊢ e ⇑ C ⊣ Γ ′

Γ ⊢ A ≦ B becomes Γ ⊢ A ≦ B ⊣ Γ ′

The output context Γ ′ is like Γ but may have more information,

containing new α̂ and α̂=A elements, and various β̂ elements

replaced by β̂=B elements. (I chose ⊢ and ⊣ to suggest the fact
that Γ and Γ ′ are equivalent in a declarative sense: if all the α̂, α̂=A,
hint(. . .) declarations are dropped from Γ and Γ ′, those contexts
are equal.)

A context Γ is well-formed, · ⊢ Γ wf, if each variable occurs
once in its domain (defined below) and each type in Γ is well-
formed under the declarations to its left.

Definition 1 (Domain of Γ). The domain dom(Γ) of a context Γ is:
dom(·) = ∅
dom(Γ, x:A) = dom(Γ) ∪ {x}
dom(Γ, α) = dom(Γ) ∪ {α}
dom(Γ, α̂) = dom(Γ) ∪ {α̂}
dom(Γ, α̂=A) = dom(Γ) ∪ {α̂}
dom(Γ, hint(Γ ′ ⊢ A ′)) = dom(Γ)

To prove properties of System Biα̂ it will be useful to view
existential contexts as iterated substitutions, so that

[α̂=A, β̂=α̂](α̂ → β̂) = A → A

The context is applied from the right, so first α̂ replaces β̂, giving
α̂ → α̂, and then A replaces α̂, yielding A → A.

We only apply contexts that complete the context in which the

type lives, so all existential variables disappear: given α̂ → β̂, well-

formed in the context (β̂=α̂, α̂), applying [β̂=α̂, α̂=1] α̂ → β̂
yields 1 → 1. To apply a context Ω to another context Γ , the
contexts must be the same except for Γ having more unsolved
variables (and ignoring hints in both):

[·]· = ·
[Ω, x:A](Γ, x:A) = [Ω]Γ, x:[Ω]A

[Ω,α](Γ, α) = [Ω]Γ, α
[Ω, α̂=A](Γ, α̂) = [Ω] ([A/α̂]Γ)
[Ω, α̂=A](Γ, α̂=A) = [Ω] ([A/α̂]Γ)

[Ω](Γ, hint(Γ ′ ⊢ A ′)) = [Ω]Γ
[Ω, hint(Γ ′ ⊢ A ′)]Γ = [Ω]Γ

Definition 2 (Solved contexts). A context Γ ′ is solved if it contains
no unsolved existentials α̂.

3 2020/11/3

Γ ⊢ filter ⇑ ∀α.

(α→bool)
→ α list
→ α list Γ ⊢ int wf

Γ ⊢ filter ⇑

(int→bool)
→ int list
→ int list

∀E

Γ ⊢ f ⇑ int → bool

Γ ⊢ int ≦ int Γ ⊢ bool ≦ bool

Γ ⊢ int→bool
≦ int→bool

→≦

Γ ⊢ f ⇓ int→bool
sub

Γ ⊢ filter f ⇑ int list → int list
→E

Γ ⊢ xs ⇓ int list

Γ ⊢ filter f xs ⇑ int list
→E

Γ ⊢ filter ⇑ ∀α.

(α→bool)
→ α list
→ α list ⊣ Γ

Γ ⊢ filter ⇑

(α̂→bool)
→ α̂ list
→ α̂ list ⊣ Γ, α̂

∀Eα̂

Γ, α̂ ⊢ f ⇑ int→bool ⊣ Γ, α̂

Γ ⊢ int wf

Γ, α̂ ⊢ α̂ ≦ int ⊣ Γ, α̂=int
α̂=L≦

Γ, α̂=int ⊢ bool ≦ bool ⊣ Γ, α̂=int

Γ, α̂ ⊢
int→bool
≦ α̂→bool ⊣ Γ, α̂=int

→≦

Γ, α̂ ⊢ f ⇓ α̂ → bool ⊣ Γ, α̂=int
sub

Γ ⊢ filter f ⇑ α̂ list → α̂ list ⊣ Γ, α̂=int
→E

Γ, α̂=int ⊢ xs ⇓ α̂ list ⊣ Γ, α̂=int

Γ ⊢ filter f xs ⇑ α̂ list ⊣ Γ, α̂=int
→E

Figure 5: Typing derivations for filter f xs in System Bi, above, and System Biα̂, below

Definition 3. We write Γ ⊆ Ω if (1) each declaration in Γ is either
in Ω or its solution is (e.g. α̂ is in Γ while α̂=A is in Ω), and (2) if
two declarations appear in Γ they appear in the same order in Ω.

Definition 4 (Completion of contexts). A context Ω completes a
context Γ iff dom(Ω) = dom(Γ) and Γ ⊆ Ω and Ω is solved.

How these existential contexts behave is best shown with an
example. Suppose that Γ(f) = int → bool. At the top of Figure 5
is a derivation in System Bi, which “guesses” α = int.

At the bottom of the figure is a derivation in System Biα̂. It
has three interesting parts; the names of the involved rules are
shaded, along with changes in the existential context. Towards the
left we apply ∀Eα̂, adding an unsolved existential α̂ to the output
context. Along the upper right is a use of α̂=L≦, which expresses
the essence of the greedy method: if we need to satisfy α̂ ≦ B, take
B as the solution. In this example, B is int. The premise of α̂=L≦
checks that the solution is well-formed in the context to the left of
α̂ in Γ, α̂.

Existential contexts flow “in-order”, starting in the conclusion
on the left of the ⊢ , up to the first premise (left of the ⊢), into
the first premise’s derivation, then back into the first premise itself
(right of the ⊣), over to the second premise (left of the ⊢), etc.,
and finally back to the conclusion on the right of the ⊣ .

Finally, while omitted from the figure, within the subderivation
of Γ, α̂=int ⊢ xs ⇓ α̂ list ⊣ Γ, α̂=int we would apply a rule to
replace α̂ with int; this is not done implicitly.

3.1 Hints

We could have an explicit instantiation construct e[A ′
], such that

if e ⇑ ∀α. A, then e[A ′
] ⇑ [A ′/α]A. In effect, this gives

an explicit version of ∀E. But we also have the subtyping rule
∀L≦, which can be used on a deeply nested quantifier—and then
where would we put the [A ′

]? We might write a type annotation
(e : [A ′/α]A), but this is verbose when the type A is long.

So, instead of a construct that only works with ∀E, we add one
that lets the user suggest an instance for ∀E or ∀L≦. The syntax is

hint (Γ
′ ⊢ A

′
) in e

When encountered, the typing (Γ ′ ⊢ A ′) is put in Γ :

(· ⊢ A) . (Γ ⊢ A)
.-empty

Γ ⊢ Γ(x) ≦ B0 (Γ0 ⊢ A0) . (Γ ⊢ A)

(x:B0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-pvar

Γ ⊢ α ′ wf ([α ′/α]Γ0 ⊢ [α ′/α]A0) . (Γ ⊢ A)

(α, Γ0 ⊢ A0) . (Γ ⊢ A)
.-tyvar

(Γ0 ⊢ A0) . (Γ ⊢ A)

(hint(Γ ′ ⊢ A ′), Γ0 ⊢ A0) . (Γ ⊢ A)
.-hint

Figure 6: Contextual matching, used in the hint mechanism and in type
annotations

Γ, hint(Γ ′ ⊢ A ′) ⊢ e ⇓ C

Γ ⊢ hint (Γ ′ ⊢ A ′) in e ⇓ C
hint

The type is then available to the rules ∀E-hint and ∀L-hint≦. As
with contextual annotations, the context Γ ′ guides the interpretation
of A ′. For example, hint (α, x:α ⊢ ∀β. α → β) in e constrains
α to be the type variable that is the type of x. On the other hand,
hint (α ⊢ ∀β. α → β) in e is unconstrained; α could be replaced
by any type variable. This is managed through the contextual sub-
typing rules in Figure 6.

To ensure decidability, each hint can be used at most once in the

derivation.1

3.2 Typing and subtyping rules

Many of the typing and subtyping rules of System Biα̂ (Figure 7)
are the same as System Bi, overlaid with existential contexts. We
discuss typing first.

From the top, var, sub, anno, →I, →E and ∀I clearly corre-
spond to the rules in Figure 3. Note that →I and ∀I add declarations
x:A and α, respectively, and in their conclusions drop some exis-
tential declarations ΓZ. Those declarations are out of scope, and
since they appear on the right, nothing else refers to them. ∀Eα̂

1 Otherwise, writing hint (· ⊢ ∀β.β) in f x where f has type ∀α.α is fatal.
Using the hint, we replace α with ∀β. β, resulting in ∀β. β, on which we
can use the hint again, and again. . .

4 2020/11/3

adds a fresh α̂ to the existential context and synthesizes [α̂/α]A.
The rules ExSubst⇓ and ExSubst⇑ apply the solution to α̂ in the
checking and synthesizing direction, respectively. ExSubst⇓ does
not apply [A/α̂] to Γ , because if we have, say, y:α̂ in Γ , we can ap-
ply ExSubst⇑ after applying var. The rule →Iα̂ is syntax-directed:
if checking a λ against α̂, then α̂ = α̂1 → α̂2 for some new vari-
ables α̂1, α̂2. Rule →Eα̂ is dual.

In the subtyping rules, we change ∀L≦ as we changed ∀E, to
add an α̂. As in →I and ∀I, the declarations following the added
α̂ declaration are dropped; the notation α̂[. . .] represents either an
unsolved α̂ or a solved α̂=A. The subtyping rules ExSubst{L,R}≦
correspond to the typing rule ExSubst⇑. When there is an arrow on
one side and an existential variable on the other, →α̂L≦/ →α̂R≦
split the existential (similar to →Iα̂). Eventually an “atomic” type
is reached, and α̂=L≦/ α̂=R≦ can be applied. These rules greed-
ily instantiate the existential to the atomic type on the other side
of ≦. “Atomic” is a misnomer here: it could be a polytype ∀α. A;
the point is to keep it from being an arrow, which would compli-
cate the proof of predicative completeness. The premises of α̂=L≦
and α̂=R≦ check that the solution is well-formed under the decla-
rations that precede the variable.

3.2.1 Greed and contextual matching .

The rules for . do not change from System Bi to System Biα̂,
despite the ≦ premise in .-pvar.

When we add richer subtyping in later systems, we will need
several typings in a single annotation. For example, in the term(
e : ((x:pos ⊢ A), (x:neg ⊢ B))

)
we check e against A when

x:pos is in the context, and against B when x:neg is in the context.
But what if x:α̂ is in the context? Greedily mapping α̂ to pos
would defer to a perhaps arbitrary ordering (x:pos ⊢ A)-before-
(x:neg ⊢ B). It seems best to refuse such curiosities, so that when
you write a contextual annotation that depends on the type of x,
you must make the type of x explicit, by writing an annotation
elsewhere.

This leads to an embedding of System Bi’s subtyping system

within System Biα̂, and questions arise about how we instantiate
polymorphic types within that premise of .-pvar. Our simple so-
lution is to weaken that embedded subtyping system by depriving
it of ∀L≦ and ∀R≦, and replacing those two rules with

Γ, β ⊢ [β/α]A ≦ B

Γ ⊢ ∀α. A ≦ ∀β. B

This applies only for the ≦ premise in .-pvar; the ≦ premise of
sub uses the rules in Figure 7.

3.3 Preliminaries

For the metatheory, we will use a function Γ that drops existential
variable information and hints from Γ , yielding an “ordinary” Γ
consisting only of variable declarations x:A and type variables α.

· = · Γ, α̂ = Γ

Γ, x:A = Γ , x:A Γ, α̂=A = Γ

Γ, α = Γ , α Γ, hint(Γ ′ ⊢ A ′) = Γ

The next three lemmas are by induction on the given derivation;
Γ2; and Γ2, respectively. Subsequently omitted proofs are in the
appendix.

Lemma 5. If Γ1 ⊢ J ⊣ Γ2 then Γ1 = Γ2.

Lemma 6. If Γ1, ΓZ = Γ2 where ΓZ has the form x:A or α then
Γ2 = Γ21, ΓZ, Γ22 where Γ22 = ·.

Lemma 7. (Γ2 ⊢ A) . (Γ1, Γ2 ⊢ A).

Corollary 8 (Reflexivity). (Γ ⊢ A) . (Γ ⊢ A).

Lemma 9. If Ω completes Γ then dom([Ω]Γ) ⊆ dom(Γ).

Corollary 10. Given a context Ω that completes Γ , if Γ ⊢ A wf
then [Ω]Γ ⊢ [Ω]A wf.

Lemma 11. Given a context Ω that completes Γ , if [Ω]Γ ⊢
[Ω]A wf then Γ ⊢ A wf.

Lemma 12 (Well-Formedness). If D :: Γ ⊢ . . . ⊣ Γ ′ then for
any solved α̂ ∈ dom(Γ), it is the case that Γ = Γ1, α̂=A, Γ2 and
Γ1 ⊢ A wf, and likewise for any solved α̂ ∈ dom(Γ ′).

Lemma 13 (Monotonicity). If D :: Γ ⊢ . . . ⊣ Γ ′ then for any
α̂ ∈ dom(Γ ′), one of the following holds:

(1) α̂ is unsolved in both Γ and Γ ′; or

(2) there exists A ′ such that α̂ is unsolved in Γ and
Γ ′ = Γ ′

1 , α̂=A ′, Γ ′
2 ; or

(3) there exists A ′ such that Γ = Γ1, α̂=A ′, Γ2 and
Γ ′ = Γ ′

1 , α̂=A ′, Γ ′
2 .

3.4 Decidability

We prove that System Biα̂ is decidable. To concisely define an
ordering on judgments such that the premises of each rule are
smaller than its conclusion, we need several definitions:

(i) A1 ≺ A2 iff A1 is a proper subexpression of A2, or if, by
replacing one or more α̂s with αs in A1, we get a proper
subexpression of A2.

(ii) {C1, C2} ≺ {D1, D2} iff Ck 6≻ Dℓ for all k, ℓ ∈ {1, 2}, and
there exist k, ℓ such that Ck ≺ Dℓ.

(iii) The weight of an existential variable α̂ in Γ is the number
of existential variables in ΓL where Γ = ΓL, α̂[. . .], · · · , plus

itself. For example, the weight of β̂ in α̂, β̂=1 is 2. Solved
and unsolved variables are counted alike. Weights are natural
numbers, ordered by <.

(iv) The angst that a type has with respect to Γ is the weight of its
heaviest existential variable, again ordered by <.

The last two criteria are motivated by ExSubst⇓, ExSubst⇑, and
ExSubst{L,R}≦. For example, the type in ExSubst⇓’s premise is
Γ(α̂) while its conclusion has α̂. In the sense of part (i), Γ(α̂) could
be much larger than α̂. Counting the number of free existentials in
the type doesn’t work, because α̂’s solution could be α̂1 → α̂2,
which has two existential variables. But α̂1 → α̂2 does have less
angst than α̂, because α̂1 and α̂2 must be declared before α̂ in Γ—
otherwise they could not appear in α̂’s solution.

In each rule, a term gets smaller, a type gets smaller (in the
ordinary sense, e.g. A smaller than A → B, or in the sense of
becoming less angstful), the set of available hints gets smaller, or
we introduce a solution for an existential variable. When comparing
two synthesis judgments we flip the ordering of types because the
types are output rather than input.

The appendix has a full definition of the ordering of judgments
and a proof.

3.5 Soundness of System Biα̂

Each System Biα̂ derivation corresponds to a Bi one. In combina-
tion with type safety for a type assignment version of System Bi,

this means that a well-typed-in-System Biα̂ program won’t go
wrong.

Theorem 14 (Soundness of System Biα̂). If Γ ⊢ J ⊣ Γ ′ and
Ω completes Γ ′ then [Ω]Γ ′ ⊢ [Ω]J ′, where J ′ is J with
any hint . . . in e subterms replaced by e and hints in annotations
removed.

5 2020/11/3

Γ ⊢ e ⇓ A ⊣ Γ ′ Γ ⊢ e ⇑ A ⊣ Γ ′

Γ(x) = A

Γ ⊢ x ⇑ A ⊣ Γ
var

Γ1 ⊢ e ⇑ A ⊣ Γ2 Γ2 ⊢ A ≦ B ⊣ Γ3

Γ1 ⊢ e ⇓ B ⊣ Γ3
sub

N . (Γ ⊢ A) Γ ⊢ e ⇓ A ⊣ Γ ′

Γ ⊢ (e : N) ⇑ A ⊣ Γ ′
anno

Γ ⊢ () ⇓ 1 ⊣ Γ
1I

Γ, x:A ⊢ e ⇓ B ⊣ Γ ′, x:A, ΓZ

Γ ⊢ λx. e ⇓ A → B ⊣ Γ ′
→I

Γ1 ⊢ e1 ⇑ A → B ⊣ Γ2 Γ2 ⊢ e2 ⇓ A ⊣ Γ3

Γ1 ⊢ e1 e2 ⇑ B ⊣ Γ3
→E

Γ, α ⊢ v ⇓ A ⊣ Γ ′, α, ΓZ

Γ ⊢ v ⇓ ∀α. A ⊣ Γ ′
∀I

Γ ⊢ e ⇑ ∀α. A ⊣ Γ ′

Γ ⊢ e ⇑ [α̂/α]A ⊣ Γ ′, α̂
∀Eα̂

Γ, hint(Γ ′ ⊢ A ′) ⊢ e ⇓ C ⊣ Γ ′

Γ ⊢ hint (Γ ′ ⊢ A ′) in e ⇓ C ⊣ Γ ′
hint

Γ1 ⊢ e ⇑ ∀α. A ⊣ Γ2

Γ2 = ΓL, hint(Γ0 ⊢ A0), ΓR
(Γ0 ⊢ A0) . (ΓL, ΓR ⊢ A ′)

Γ1 ⊢ e ⇑ [A ′/α]A ⊣ ΓL, ΓR
∀E-hint

Γ ⊢ e ⇓ Γ(α̂) ⊣ Γ ′

Γ ⊢ e ⇓ α̂ ⊣ Γ ′
ExSubst⇓

Γ ⊢ e ⇑ α̂ ⊣ Γ ′

Γ ⊢ e ⇑ Γ ′(α̂) ⊣ Γ ′
ExSubst⇑

Γ1, α̂1, α̂2, α̂=α̂1→α̂2, Γ2 ⊢ λx. e ⇓ α̂ ⊣ Γ ′

Γ1, α̂, Γ2 ⊢ λx. e ⇓ α̂ ⊣ Γ ′
→Iα̂

Γ1, α̂, Γ2 ⊢ e1 ⇑ α̂ ⊣ Γ ′
1 , α̂, Γ

′
2 Γ ′

1 , α̂1, α̂2, α̂=α̂1→α̂2, Γ
′
2 ⊢ e2 ⇓ α̂1 ⊣ Γ ′

Γ1, α̂, Γ2 ⊢ e1 e2 ⇑ α̂2 ⊣ Γ ′
→Eα̂

Γ ⊢ A ≦ B ⊣ Γ ′

Γ ⊢ 1 ≦ 1 ⊣ Γ
1≦

Γ1 ⊢ B1 ≦ A1 ⊣ Γ2 Γ2 ⊢ A2 ≦ B2 ⊣ Γ3

Γ1 ⊢ A1 → A2 ≦ B1 → B2 ⊣ Γ3
→≦

Γ ⊢ α ≦ α ⊣ Γ
αRefl≦

Γ, α̂ ⊢ [α̂/α]A ≦ B ⊣ Γ ′, α̂[. . .], ΓZ

Γ ⊢ ∀α. A ≦ B ⊣ Γ ′
∀Lα̂≦

Γ, β ⊢ A ≦ B ⊣ Γ ′, β, ΓZ

Γ ⊢ A ≦ ∀β. B ⊣ Γ ′
∀R≦

Γ1 = ΓL, hint(Γ0 ⊢ A0), ΓR
(Γ0 ⊢ A0) . (ΓL, ΓR ⊢ A ′) ΓL, ΓR ⊢ [A ′/α]A ≦ B ⊣ Γ2

Γ1 ⊢ ∀α. A ≦ B ⊣ Γ2
∀L-hint≦

Γ ⊢ α̂ ≦ α̂ ⊣ Γ
α̂Refl≦

Γ ⊢ Γ(α̂) ≦ B ⊣ Γ ′

Γ ⊢ α̂ ≦ B ⊣ Γ ′
ExSubstL≦

Γ ⊢ A ≦ Γ(β̂) ⊣ Γ ′

Γ ⊢ A ≦ β̂ ⊣ Γ ′
ExSubstR≦

Γ1, α̂1, α̂2, α̂=α̂1→α̂2, Γ2 ⊢ α̂ ≦ B1 → B2 ⊣ Γ ′

Γ1, α̂, Γ2 ⊢ α̂ ≦ B1 → B2 ⊣ Γ ′
→α̂L≦

Γ, β̂1, β̂2, β̂=β̂1→β̂2 ⊢ A1 → A2 ≦ β̂ ⊣ Γ ′

Γ, β̂ ⊢ A1 → A2 ≦ β̂ ⊣ Γ ′
→α̂R≦

prevents cycles
︷ ︸︸ ︷

Γ1 ⊢ B
atomic

wf

Γ1, α̂, Γ2 ⊢ α̂ ≦ Batomic ⊣ Γ1, α̂=Batomic, Γ2
α̂=L≦

Γ1 ⊢ Aatomic wf

Γ1, β̂, Γ2 ⊢ Aatomic ≦ β̂ ⊣ Γ1, β̂=Aatomic, Γ2
α̂=R≦

Figure 7: Typing and subtyping rules of System Biα̂

6 2020/11/3

Note that Ω is an input to the theorem. Consider the System Biα̂

derivation of · ⊢ (λx. x : (∀α. (α→α) → α → α)λy. y ⊣ α̂. To
create the corresponding System Bi derivation, one must create an
Ω that instantiates α̂. Fortunately, one can instantiate it to anything,
including 1.

3.6 Completeness of System Biα̂

We will show that, with respect to System Bi, System Biα̂ is in-
complete for impredicative polymorphism, complete when hints
are added to the term, and complete for predicative polymorphism.

3.6.1 Impredicative incompleteness

A small example shows that System Biα̂ is incomplete for im-
predicative polymorphism. We abbreviate ∀β. β → β as ID. Let
Γ = f:∀α. α → α → 1, x:(int→int) → 1, y:ID → 1. The
derivation in System Bi, shown at the top of Figure 8, has no hint-

free analogue in System Biα̂. Below it, the failed derivation in

System Biα̂ makes the problem clear: the first constraint on α̂ is
that it be a supertype of x’s type, (int → int) → 1, so that type is
used, greedily, as the solution of α̂. (For clarity, we substitute for
α̂ in the rest of the derivation.) But the second constraint (shaded)
requires that int → int be a subtype of ID, which is false. All the
choices of rules are fully determined, so no derivation exists.

3.6.2 Hinted completeness

The weakest completeness result says that for every System Bi

derivation involving e, there exists a System Biα̂ derivation involv-
ing e+, where e+ is e enclosed in hint declarations.

Theorem 15. If Γ ⊢ J in System Bi and ΓH consists of hints,

then ΓH, Γ
′
H, Γ ⊢ J ⊣ ΓH, Γ in System Biα̂ where Γ ′

H consists of
hints.

Proof. By induction on the given derivation.
We show the ∀E case. Let ΓHH = (ΓH, hint(Γ ⊢ A ′)). By IH,

ΓHH, Γ
′
H, Γ ⊢ e ⇑ ∀α.A ⊣ ΓHH, Γ . By Corollary 8, (Γ ⊢ A ′) .

(ΓH, Γ ⊢ A ′). Finally, by ∀E-hint, ΓHH, Γ
′
H, Γ ⊢ e ⇑ [A ′/α]A ⊣

ΓH, Γ , which is ΓH, hint(Γ ⊢ A ′), Γ ′
H, Γ ⊢ e ⇑ [A ′/α]A ⊣ ΓH, Γ ,

which was to be shown.

Corollary 16 (Hinted Completeness). If · ⊢ e ⇓ A in System Bi

then · ⊢ e+ ⇓ A ⊣ · in System Biα̂, where e+ = hint (Γ1 ⊢
A1) in . . . hint (Γn ⊢ An) in e.

Proof. By Theorem 15, ΓH ⊢ e ⇓ A ⊣ · where ΓH consists of n
hints. The result follows by applying the hint rule n times.

3.6.3 Predicative completeness

In this section, we show that System Biα̂ is predicatively com-
plete: given a derivation in System Bi in which all polymorphic
instances A ′ used in ∀E and ∀L≦ are monomorphic (contain no

∀), we can derive the same judgment in System Biα̂. Consequently,

System Biα̂ is complete for prenex or ML-style polymorphism, in
which instances are monomorphic and ∀s appear only on the out-
side of types.

We show completeness by building a System Biα̂ derivation
from any System Bi one. Where we have a derivation in System Bi
of Γ ⊢ J ′, we create a derivation of Γ ′

1 ⊢ J ⊣ Γ ′
2 , where J

is like J ′ but may have more existential variables. Specifically,
J ′ = [Ω]J for some Ω representing solutions embedded in the
System Bi derivation.

Moreover, Γ ′
1 and Γ ′

2 must correspond to Ω. The example
derivations from Figure 5 give some intuition for this correspon-
dence. Another example appears in the appendix.

When every arrow appearing in Ω has the form α̂1 → α̂2, we

say that Ω is articulated. System Biα̂ keeps contexts articulated
by restricting α̂=L≦ and α̂=R≦, which instantiate existential vari-
ables, to non-arrows.

We define the articulation of α̂=A ′ as follows:

Artic(α̂=1) = α̂=1

Artic(α̂=β) = α̂=β

Artic(α̂=B1→B2) = α̂=β̂1→β̂2,Artic(β̂1=B1),Artic(β̂2=B2)

Since we require the System Biα̂ derivation to be predicative, there
is no need to define the articulation of ∀α.A. The proof of the next
theorem is in the appendix.

Theorem 17 (Predicative Completeness). For any Ω and Γ ′
1 and

predicative derivation D :: Γ ⊢ [Ω]J in System Bi, provided that

(1) Ω is predicative (for any α̂, the type Ω(α̂) is monomorphic)
and articulated

(2) Ω completes Γ ′
1 , and [Ω]Γ ′

1 = Γ

then [Ω]Γ ′
1 ⊢ [Ω]A ′ ≤ [Ω]B ′ =⇒ Γ ′

1 ⊢ A ′ ≦ B ′ ⊣ Γ ′
2

[Ω]Γ ′
1 ⊢ e ⇓ [Ω]A ′ =⇒ Γ ′

1 ⊢ e ⇓ A ′ ⊣ Γ ′
2

[Ω]Γ ′
1 ⊢ e ⇑ C =⇒ Γ ′

1 ⊢ e ⇑ C ′ ⊣ Γ ′
2

for some C ′ such that
C = [Ω]C ′

4. System Bi≤ with subtyping, intersection types,

and union types

In this section, we extend System Bi with intersection and union
types, replacing the weak ≦ relation with a richer subtyping re-
lation ≤. The atomic subtyping relation on datatypes is defined
using a datasort relation δ1 � δ2. For example, we can de-
fine nonempty lists as a subsort of all lists: nonempty � list.
Then int nonempty ≤ int list. (In this paper, we assume that all
datatypes are covariant, so A δ is a subtype of B δ iff A is a sub-
type of B; extension to co-, contra-, and bivariant type arguments
is straightforward.)

A value has intersection type A ∧ B if it has type A and
type B. Intersection types can express combinations of properties
of functions and data constructors (Reynolds 1996; Davies 2005;
Dunfield and Pfenning 2004); here, their central role is to express
combinations of constraints on existential type variables. Where
we need both α̂ ≤ B1 and α̂ ≤ B2, we can replace α with the
intersection of new type variables α1 ∧ α2. Then we must satisfy
α̂1 ∧ α̂2 ≤ B1 and α̂1 ∧ α̂2 ≤ B2; greedy instantiation yields
α̂1 = B1 and α̂2 = B2. (In Section 7, we formulate a system that
instantiates α̂ to B1 ∧ B2 automatically.)

Union types (Pierce 1991; Dunfield and Pfenning 2004; Dun-
field 2007b) are dual to intersection types; a value has type A ∨ B
if it has type A or type B (or possibly both). Here, they serve a

symmetric purpose: where we need A1 ≤ β̂ and A2 ≤ β̂, we

can instead replace β̂ with β̂1 ∨ β̂2, leading to the obligations

A1 ≤ β̂1 ∨ β̂2 and A2 ≤ β̂1 ∨ β̂2, satisfied by instantiating β̂1

to A1 and β̂2 to A2.
The typing rules for intersection and union types are the same

as in Dunfield and Pfenning (2004). As before, introduction rules
check and elimination rules synthesize. The rule ∨E reasons by
cases: if e ′ ⇑ A ∨ B, then E [e ′] ⇓ C if, assuming x:A, the term
E [x]—E [e ′] with x in place of e—checks against C and also, as-
suming y:B, the term E [y] checks against C. The “tridirectional
rule” direct, a unary version of ∨E, is needed for technical rea-
sons (Dunfield 2007b, p. 60) not especially pertinent here.

7 2020/11/3

f ⇑ ∀α. α → α → 1

f ⇑ [(ID→1)/α](α→α→1)
∀E

x ⇑ . . .

ID ≦ int→int 1 ≦ 1

(int→int) → 1 ≦ ID→1
→≦

x ⇓ ID→1
sub

f x ⇑ (ID→1) → 1
→E

y ⇑ ID→1 ID→1 ≦ ID→1

y ⇓ ID→1
sub

f x y ⇑ 1
→E

f ⇑ ∀α. α→α→1

f ⇑ α̂→α̂→1
∀Eα̂

x ⇑ . . . (int→int) → 1 ≦ α̂

x ⇓ α̂
sub

f x ⇑ ((int→int)→1) → 1
→E + ExSubst⇑

y ⇑ ID→1

int→int 6≦ ID 1 ≦ 1

ID→1 6≦ ((int→int)→1
→≦

y 6⇓ ((int→int)→1)
sub

f x y 6⇑
→E

Figure 8: Derivation in System Bi using impredicative polymorphism (above), and a failed derivation in System Biα̂ (below)

5. System Bi≤α̂: System Bi≤ with existential

contexts

Just as we added existential contexts to System Bi to get System Biα̂,

we add existential contexts to System Bi≤ to obtain System Bi≤α̂.
The rules are given in Figure 11. This step is easy; however, while
there are various new rules for intersections and unions, there are no
new rules corresponding to →Iα̂/→Eα̂. The reason is that intersec-
tion and union introduction are type-directed, not syntax-directed.
We can have →Iα̂ concluding λx. e ⇓ α̂ because the λ is a marker
saying that α̂ should be an arrow, but our language has no syntax
to mark where intersections and unions should be introduced.

5.1 Type safety

To prove type safety, we:

1. Define “System F≤” , a type assignment version of System Bi≤.

2. Show that System Bi≤ is sound with respect to System F≤.

3. Prove type safety (and several lemmas) for System F≤ with
respect to the operational semantics.

The first task is very easy: remove the rule anno and replace
all “⇑” and “⇓” in the typing judgments with “:”. For example,
Γ ⊢ e1 e2 ⇑ B becomes Γ ⊢ e1 e2 : B.

For the second task, soundness, we must show that given a
derivation of Γ ⊢ e ⇓ A (or of Γ ⊢ e ⇑ A) in System Bi, we

can construct a derivation of Γ ⊢ e ′ : A in System F≤, where e ′

is e with annotations erased. This is an easy proof by induction on
the derivation, and I proved it in my dissertation Dunfield (2007b,

Ch. 2) for a system similar to System F≤ and System Bi. The
only novelty here is parametric polymorphism. But that presents no
difficulties—in fact, the cases for ∀I and ∀E almost exactly follow
the cases for ΠI and ΠE (those are the rules for universal index
quantification, a feature I omit here to avoid distraction).

The third task is not easy to undertake from scratch, but it is an
easy extension of the proof in my dissertation (Dunfield 2007b, Ch.
2). Again the reasoning for ∀I and ∀E follows the reasoning for ΠI
and ΠE. In particular, there is no need to extend derivation rank
and value definiteness (Dunfield 2007b, pp. 36–38), nor the other
concepts used in the type safety proof; all of those are tied in with
so-called indefinite types (⊥, ∨), and ∀ is not among those.

5.2 Decidability

Decidability of subtyping in System Bi≤α̂ can be proved as before

in System Biα̂. Decidability of typing can also be proved as before,
with one exception: in direct, if e ′ is itself some variable y, the
second premise is not smaller than the conclusion. It should be
straightforward to obtain a proof of decidability by designing a “left

tridirectional” system following Dunfield and Pfenning (2004) (and

proving such a system equivalent to System Bi≤α̂). Informally,
it suffices to observe that if we never apply direct when e ′ is

a variable, System Bi≤α̂ is decidable by the same reasoning as

System Biα̂.

6. Implementation

I implemented a version of System Bi≤α̂ as an extension of Star-
dust (Dunfield 2007a), a typechecker for a subset of Standard ML
with intersection types, union types, datasort refinements, and in-
dex refinements.

The example in Figure 12 begins with a simple application of
higher-rank predicative polymorphism, used in short-cut deforesta-
tion (Gill et al. 1993). Types are quantified explicitly in the function
type annotations (*[. . .]*). foldr uses only prenex polymor-
phism and can of course be written in SML, but build uses rank-
2 polymorphism. The rest of the example is adapted from Leijen
(2009), showing impredicative polymorphism.

6.1 Complexity of typechecking

If hints are used, typechecking a function can be exponential in
the number of hints: at each opportunity to apply ∀Eα̂ or ∀E-hint,
there is a choice between applying ∀Eα̂, applying ∀E-hint with
the first available hint, with the second, etc. However, we can
show the complexity is exponential even if ∀Eα̂ is never used: As
formulated, ∀E-hint drops a hint after use. First there are n hints
and n choices; at the next opportunity to apply ∀E-hint there are
n − 1 hints and n − 1 choices; and so on. If the last sequence of
hints chosen is the only one to yield a valid derivation, we have
done work proportional to n · (n − 1) · . . . · 2, or roughly nn.

I have not analyzed the complexity of typechecking, but con-
sider the function fun nonlinear2 a b a ′ b ′ = () with type an-
notation ∀α, β. α → β → α → β → 1. Given the context
id : ∀δ. δ→δ, uf : 1 → 1, synthesizing a type for the application
nonlinear2 uf uf id id involves several nondeterministic choices of
when to instantiate each of the id types. Still, this can be checked
with only a few calls to the function that attempts to derive a sub-
typing judgment, and this continues to hold as we add arguments
according to the same pattern. But if we introduce a type error, even
an obvious one like an extra argument nonlinear2 uf uf id id id, then
by the time we reach the 14-argument function nonlinear7 it takes
87,000 subtyping calls and 49 seconds to reject the program. This
is a contrived example, and I have not yet tried a real example that
makes typechecking unacceptably slow.

Note that intersection types make these systems PSPACE-hard
(Reynolds 1996), even if parametric polymorphism is never used,

8 2020/11/3

Type variable sequences ~α, ~β ::= · | α | (α1, . . . , αn)
Datatype names δ

Types A,B,C ::= A → B | α | ∀α. A | ~α δ | A ∧ B | A ∨ B
Constructor types Acon ::= A → δ | Acon

1 ∧ Acon
2

Γ ⊢ e ⇓ A e checks against type A Γ ⊢ e ⇑ A e synthesizes type A

Γ(x) = A

Γ ⊢ x ⇑ A
var

Γ ⊢ e ⇑ A Γ ⊢ A ≤ B

Γ ⊢ e ⇓ B
sub

N . (Γ ⊢ A) Γ ⊢ e ⇓ A

Γ ⊢ (e : N) ⇑ A
anno

Γ, x:A ⊢ e ⇓ B

Γ ⊢ λx. e ⇓ A → B
→I

Γ ⊢ e1 ⇑ A → B Γ ⊢ e2 ⇓ A

Γ ⊢ e1 e2 ⇑ B
→E

Γ ⊢ c : A → ~B δ Γ ⊢ e ⇓ A

Γ ⊢ c(e) ⇓ ~B δ
δI

Γ ⊢ e ⇑ ~B δ Γ ⊢ ms ⇓~B δ
C

Γ ⊢ case e of ms ⇓ C
δE

Γ ⊢ v ⇓ A1 Γ ⊢ v ⇓ A2

Γ ⊢ v ⇓ A1 ∧ A2

∧I
Γ ⊢ e ⇑ A1 ∧ A2

Γ ⊢ e ⇑ A1

∧E1

Γ ⊢ e ⇑ A1 ∧ A2

Γ ⊢ e ⇑ A2

∧E2

Γ ⊢ e ⇓ A

Γ ⊢ e ⇓ A ∨ B
∨I1

Γ ⊢ e ⇓ B

Γ ⊢ e ⇓ A ∨ B
∨I2

Γ ⊢ e ′ ⇑ A ∨ B
Γ, x:A ⊢ E [x] ⇓ C
Γ, y:B ⊢ E [y] ⇓ C

Γ ⊢ E [e ′] ⇓ C
∨E

Γ ⊢ e ′ ⇑ A Γ, x:A ⊢ E [x] ⇓ C

Γ ⊢ E [e ′] ⇓ C
direct

Γ, α ⊢ v ⇓ A

Γ ⊢ v ⇓ ∀α. A
∀I

Γ ⊢ e ⇑ ∀α. A Γ ⊢ A ′ wf

Γ ⊢ e ⇑ [A ′/α]A
∀E

Figure 9: Typing rules in System Bi≤

Γ ⊢ A ≤ B A is a subtype of B

Γ ⊢ B1 ≤ A1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 → A2 ≤ B1 → B2

→≤
Γ ⊢ A1 ≤ B1 · · · Γ ⊢ An ≤ Bn δ1 � δ2

Γ ⊢ (A1, . . . , An) δ1 ≤ (B1, . . . , Bn) δ2
δα

Γ ⊢ A ≤ B1 Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∧ B2

∧R≤
Γ ⊢ A1 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
∧L1≤

Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
∧L2≤

Γ ⊢ A1 ≤ B Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∨ A2 ≤ B
∨L≤

Γ ⊢ A ≤ B1

Γ ⊢ A ≤ B1 ∨ B2

∨R1≤
Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∨ B2

∨R2≤

Γ ⊢ α ≤ α ⊣ Γ
αRefl

Γ ⊢ [A ′/α]A ≤ B Γ ⊢ A ′ wf

Γ ⊢ ∀α. A ≤ B
∀L≤

Γ, β ⊢ A ≤ B

Γ ⊢ A ≤ ∀β. B
∀R≤

Figure 10: Subtyping rules in System Bi≤

and typechecking can be very slow when intersections and unions
are used extensively (Dunfield 2007a).

7. A More Automatic System

A shortcoming of System Bi≤α̂ is that the user must often rewrite
types, adding unions and intersections, as in our introductory ex-
ample: choose : ∀α. α → α → α must be changed to

choose : ∀α1, α2. α1 → α2 → α1 ∨ α2

There is some compensation: the rewritten type seems more infor-
mative (to the user) than the original. Moreover, the system enjoys
a subformula property (Gentzen 1969, p. 87) because it does not
fabricate intersections and unions.

But while in first-order functions such as choose the user can
rewrite the type once and for all, higher-order functions are less
cooperative. Say we want to compose g : (B1 → C1) ∧ (B2 →
C2) and f : A → B1 ∨ B2. These types do not fit the usual type of

compose:

compose : ∀α, β, γ. (β → γ) → (α → β) → α → γ

In fact, System Bi≤ would instantiate β to B1 and γ to C1, not
matching the B2 → C2 part of g’s type, and typechecking would
fail.

Now, one can rewrite the type of compose to handle the above
situation:

compose : ∀α, β1, β2, γ1, γ2.
(β1 → γ1 ∧ β2 → γ2)

→ (α → β1 ∨ β2) → α → (γ1 ∨ γ2)

But this is only a (verbose) stopgap: it breaks down for g ′ : (B1 →
C1) ∧ (B2 → C2) ∧ (B3 → C3). Thus, manually rewriting types
is not sustainable.

We can address this by automatically conjoining unions and

intersections to solutions. This yields System Bi≤α̂Auto (Figure 13).

9 2020/11/3

Γ ⊢ e ⇓ A ⊣ Γ ′ Γ ⊢ e ⇑ A ⊣ Γ ′ All System Biα̂ typing rules (Figure 7), with ≤ instead of ≦ in sub, plus:

Γ1 ⊢ c : A → ~B δ ⊣ Γ2 Γ2 ⊢ e ⇓ A ⊣ Γ3

Γ1 ⊢ c(e) ⇓ ~B δ ⊣ Γ3
δI

Γ1 ⊢ e ⇑ ~B δ ⊣ Γ2 Γ2 ⊢ ms ⇓~B δ
C ⊣ Γ3

Γ1 ⊢ case e of ms ⇓ C ⊣ Γ3
δE

Γ1 ⊢ v ⇓ A1 ⊣ Γ2 Γ2 ⊢ v ⇓ A2 ⊣ Γ3

Γ1 ⊢ v ⇓ A1 ∧ A2 ⊣ Γ3
∧I

Γ ⊢ e ⇑ A1 ∧ A2 ⊣ Γ ′

Γ ⊢ e ⇑ A1 ⊣ Γ ′
∧E1

Γ ⊢ e ⇑ A1 ∧ A2 ⊣ Γ ′

Γ ⊢ e ⇑ A2 ⊣ Γ ′
∧E2

Γ ⊢ e ⇓ A ⊣ Γ ′

Γ ⊢ e ⇓ A ∨ B ⊣ Γ ′
∨I1

Γ ⊢ e ⇓ B ⊣ Γ ′

Γ ⊢ e ⇓ A ∨ B ⊣ Γ ′
∨I2

Γ1 ⊢ e ′ ⇑ A ∨ B ⊣ Γ2

Γ2, x:A ⊢ E [x] ⇓ C ⊣ Γ3
Γ3, y:B ⊢ E [y] ⇓ C ⊣ Γ4

Γ1 ⊢ E [e ′] ⇓ C ⊣ Γ4
∨E

Γ1 ⊢ e ′ ⇑ A ⊣ Γ2 Γ2, x:A ⊢ E [x] ⇓ C ⊣ Γ3, x:A, ΓZ

Γ1 ⊢ E [e ′] ⇓ C ⊣ Γ3
direct

Γ ⊢ A ≤ B A is a subtype of B All System Biα̂ ≦ rules (Figure 7), with ≤ instead of ≦, plus:

Γ1 ⊢ A1 ≤ B1 ⊣ Γ2 · · · Γn ⊢ An ≤ Bn ⊣ Γn+1 δ1 � δ2

Γ1 ⊢ (A1, . . . , An) δ1 ≤ (B1, . . . , Bn) δ2 ⊣ Γn+1

δα

Γ1 ⊢ A ≤ B1 ⊣ Γ2 Γ2 ⊢ A ≤ B2 ⊣ Γ3

Γ1 ⊢ A ≤ B1 ∧ B2 ⊣ Γ3
∧R≤

Γ ⊢ A1 ≤ B ⊣ Γ ′

Γ ⊢ A1 ∧ A2 ≤ B ⊣ Γ ′
∧L1≤

Γ ⊢ A2 ≤ B ⊣ Γ ′

Γ ⊢ A1 ∧ A2 ≤ B ⊣ Γ ′
∧L2≤

Γ1 ⊢ A1 ≤ B ⊣ Γ2 Γ2 ⊢ A2 ≤ B ⊣ Γ3

Γ1 ⊢ A1 ∨ A2 ≤ B ⊣ Γ3
∨L≤

Γ ⊢ A ≤ B1 ⊣ Γ ′

Γ ⊢ A ≤ B1 ∨ B2 ⊣ Γ ′
∨R1≤

Γ ⊢ A ≤ B2 ⊣ Γ ′

Γ ⊢ A ≤ B1 ∨ B2 ⊣ Γ ′
∨R2≤

Figure 11: System Bi≤α̂

datatype ’a list = Nil | Cons of ’a * ’a list ;

(*[val foldr : -all ’a,’b- (’a*’b → ’b)
→ ’b → ’a list → ’b]*)

fun foldr f u xs = case xs of
Nil ⇒ u | Cons(x, xs) ⇒ f (x, foldr f u xs)

(*[val build : -all ’a- (-all ’b- (’a*’b→’b)→’b→’b)
→ ’a list]*)

fun build f = f Cons Nil

(*[val map : -all ’a,’b- (’a→’b)→’a list→’b list]*)
fun map f xs = build (fn c ⇒ fn n ⇒ foldr

(fn (x,ys) ⇒ c (f x, ys)) n xs)

(*[val id : -all ’a- ’a → ’a]*) fun id x = x
(*[val inc : int → int]*) fun inc x = x + 1

(*[val poly : (-all ’a- ’a→’a) → int * bool]*)
fun poly f = (f 1, f true)

(*[val single : -all ’a- ’a → ’a list]*)
fun single x = Cons(x, Nil)

(*[val append : -all ’a- ’a list→’a list→’a list]*)
fun append xs ys = ...

val _ = poly id
val _ = poly (fn x ⇒ x)
val ids = single id
val _ = map poly ids
val _ = append (single inc) ids

Figure 12: Example of first-class polymorphism

I have not yet proved any soundness or completeness properties for
this system.

The basic idea is to provisionally set type variables to solutions.
Instead of only having unsolved variables α̂ and solved variables
α̂=B, we have four classes of elements in existential contexts:

• (completely) unsolved variables α̂, as before;

• open intersection solutions α̂
∧
=(B1 ∧ . . . ∧ Bn);

• open union solutions α̂
∨
=(B1 ∧ . . . ∧ Bn);

• closed solutions α̂=B, as before.

Traversing derivations in-order, the “transition relation” for the
existential context element for some α̂ is no longer simply from α̂
to α̂=B as it was in the earlier systems, but is now

α̂
α̂
∧
=. . .

α̂ ≤

α̂∨=. . .

α̂=. . .

≤ α̂

α̂ ≤

≤ α̂

≤ α̂

α̂ ≤

where the loops indicate additional types being intersected or
unioned with an open solution, and the two rightmost arrows rep-
resent what happens when we hit a subtyping obligation that goes
against the grain of the previous obligations. For example, α̂ ≤ A1

followed by α̂ ≤ A2 results in α̂∧
=A1 ∧ A2; these are upper

bounds on the instantiation. If we then need to satisfy a lower
bound like B ≤ α̂, we “close” the solution and end up in the right-
most node. This is necessary in the following situation. Suppose
we encounter α̂ ≤ A1, then α̂ ≤ A2, then A1 ∧ A2 ≤ α̂, and

10 2020/11/3

Γ1 ⊢ B wf

Γ1, α̂, Γ2 ⊢ α̂ ≤ B ⊣ Γ1, α̂
∧
=B, Γ2

α̂=L Auto

Γ1 ⊢ A wf

Γ1, β̂, Γ2 ⊢ A ≤ β̂ ⊣ Γ1, β̂
∨

=A, Γ2

α̂=R Auto

Γ1 ⊢ B wf

Γ1, α̂
∧
=A, Γ2 ⊢ α̂ ≤ B ⊣ Γ1, α̂

∧
=A ∧ B, Γ2

α̂∧L Auto

Γ1 ⊢ A wf

Γ1, β̂
∨

=A, Γ2 ⊢ A ≤ β̂ ⊣ Γ1, β̂
∨

=A ∨ B, Γ2

α̂∨R Auto

Γ1, α̂=A, Γ2 ⊢ e ⇓ A ⊣ Γ ′

Γ1, α̂
∧∨

=A, Γ2 ⊢ e ⇓ α̂ ⊣ Γ ′
ExSubst⇓ Close

Γ1, α̂
∧∨

=A, Γ2 ⊢ e ⇑ α̂ ⊣ Γ ′

Γ1, α̂=A, Γ2 ⊢ e ⇑ A ⊣ Γ ′
ExSubst⇑ Close

Γ1, α̂=A, Γ2 ⊢ A ≤ B ⊣ Γ ′

Γ1, α̂
∧∨

=A, Γ2 ⊢ α̂ ≤ B ⊣ Γ ′
ExSubstL≤ Close

Γ1, β̂=B, Γ2 ⊢ A ≤ B ⊣ Γ ′

Γ1, β̂
∧∨

=B, Γ2 ⊢ A ≤ β̂ ⊣ Γ ′
ExSubstR≤ Close

Figure 13: Rules of the “more automatic” System Bi≤α̂Auto

finally α̂ ≤ A3. If we left the solution α̂∧
=A1 ∧ A2 open, the

A1 ∧ A2 ≤ α̂ obligation could be “satisfied” despite the later
constraint α̂ ≤ A3. Closing the solution cuts off this source of
unsoundness.

The rules ExSubst⇓, ExSubst⇑, ExSubst{L,R}≤ remain, with
the understanding that Γ(α̂) is defined only for Γ = Γ1, α̂=A. The

new rules ExSubst⇓ Close, etc. handle the Γ = Γ1, α̂
∧
=A, Γ2 and

Γ = Γ1, α̂
∨
=A, Γ2 cases.

This mechanism has a slight resemblance to expansion in pure
type inference in intersection type systems (Ronchi Della Rocca
and Venneri (1984); Carlier and Wells (2004), for instance), which
creates intersections with fresh type variables, e.g. α → α becomes
(α1 → α1) ∧ (α2 → α2).

8. Related Work

8.1 Systems without subtyping and intersections

For impredicative System F without annotations, type inference is
undecidable (Wells 1999); it becomes decidable if quantifiers are
restricted to rank 2 or less (Kfoury and Wells 1994).

Peyton Jones et al. (2007) developed a bidirectional system that
supports arbitrary-rank, but predicative, polymorphism (quantifiers
can appear anywhere in types, but polymorphic instances must be
monotypes). Their system does not support subtyping, except for
“at least as polymorphic as” subtyping (which we write as ≦).

MLF (Le Botlan and Rémy 2003), a type inference system in
the Damas-Milner tradition, supports impredicative polymorphism,
with annotations needed only for impredicative instantiations (sim-

ilar to the predicative completeness of our system). MLF is more
powerful than our systems, in the sense that our bidirectional ap-
proach requires annotations on more terms (including all function
declarations), but appears substantially more complicated, even in
its revised form (Rémy and Yakobowski 2008).

HML (Leijen 2009) extends Damas-Milner and has similar

goals to MLF. HML infers flexible types, polymorphic types that
are bounded below, as ∀(β ≥ ∀α. α→α). β → β. HML requires
annotations only on polymorphic arguments, and is a good deal

simpler than MLF. It is robust under many simple transformations,
such as revapp e2 e1 in place of e1 e2 (where revapp has type

∀α, β. α → (α→β) → β). In contrast, System Biα̂ is sensitive to
the ordering of terms when impredicative polymorphism is used;
in the failed derivation in Figure 8, switching the arguments x and
y would result in success.

8.2 Polymorphic instantiation under subtyping

In systems with subtyping, several approaches to inferring poly-
morphic instances have been presented. The most important differ-
ence from the subtyping systems in this paper is the lack of inter-
section and union types (Davies’ work has intersections, but not

unions, and both are essential to System Bi≤α̂). We discuss some
of these approaches here.

• In local type inference (Pierce and Turner 2000), instances are
found by computing upper and lower bounds on types, using
information propagated locally within the program.

• Colored local type inference (Odersky et al. 2001) is broadly
similar to Pierce and Turner’s approach, but also allows dif-
ferent parts of type expressions to be propagated in different
directions. My approach gets a similar effect by manipulating
type expressions with α̂-variables, which allows us to fix part
of the type expression (the part that is not α̂) while α̂ remains
flexible.

• Davies’ Refinement ML (Davies 2005), an extension of Stan-
dard ML with intersection types (but not union types) and data-
sort refinements (but not index refinements), has a refinement
restriction: A ∧ B can be formed only if A and B are refine-
ments of the same simple type. It is thus possible in his setting
to do ordinary SML type inference to find simple-type instances
of polymorphic variables. There are only finitely many datasort
refinements of a given simple type, and therefore finitely many
subtypes of it, so the instance that will make typechecking suc-
ceed can be found, in theory, by exhaustive search. (In practice,
there can be too many refinements for an exhaustive search, so
in some cases an explicit annotation is needed.)

Davies also sketches a proposal for modes, in which types can
be marked with the desired direction of typechecking, synthe-
sis or checking. This would lead to somewhat verbose types;

writing ↑→ for functions in which the argument is to be syn-

thesized, the type of choose would be ∀α. (α ↑→ α → α) ∧

(α → α ↑→ α). In the second part, α → α ↑→ α, we must
somehow skip the first argument so we can get to the second,
but Davies does not propose creating an existential variable. In-
stead, it seems necessary to use a two-step process, in which the
first step is simple Damas-Milner inference, giving an approxi-
mation of the first argument’s type.

9. Conclusion

I have presented a new approach to inferring polymorphic instances
in bidirectional type systems. The simplest application of this ap-
proach is to first-class polymorphism, without subtyping. When in-
tersection and union types are available, the approach can be readily
extended to systems with subtyping.

The type systems in this paper might seem odd at first. System Biα̂,
which is not inherently exotic—it lacks intersections and unions—
looks quite different from previous approaches to first-class poly-
morphism. Even those that use bidirectionality, such as Peyton
Jones et al. (2007), are rooted in the Damas-Milner inference tra-
dition. My work here is rooted elsewhere (Dunfield and Pfenning
2004). I would attribute the virtues of my work to the essential
simplicity of bidirectional typechecking, plus dumb luck: I had no

11 2020/11/3

inkling that intersections and unions (together) would help with the
problem of finding polymorphic instances.

The systems in this paper, like those in its immediate ances-
tors (my dissertation and the works of Xi, Davies, Pfenning), are
meant for typechecking, not elaboration/compilation. They do not
insert explicit polymorphic abstractions and applications. It seems

easy to change System Biα̂ into an elaboration system, but for

System Bi≤α̂ we would need to elaborate intersections and unions.
In addition to investigating elaboration and compilation, I plan

to extend this work to GADTs. With bidirectionality and existential
type variables, I expect this to be relatively straightforward.

At first, my goal was simply to add parametric polymorphism
to the type systems described in my dissertation. For simplicity,
I have omitted from this paper many interesting features of those
“full” type systems. I have proved type safety for the full system,
but I have not proved most of the other properties, e.g. those in
respect of let-normal form (Dunfield 2007b, Ch. 5).

To designers of languages and type systems, consider bidirec-
tional typechecking; as your type system becomes more powerful,
you will likely outgrow Damas-Milner inference, and making it
bidirectional from the beginning should lead to a cleaner and more
logical system than what you get after retrofitting bidirectionality.
If you don’t need subtyping, polymorphism is nearly free with your
purchase of bidirectionality; if you do need subtyping, polymor-
phism is nearly free with your purchase of intersections and unions.

References

Andreas Abel. Termination checking with types. RAIRO—Theoretical In-

formatics and Applications, 38(4):277–319, 2004. Special Issue: Fixed
Points in Computer Science (FICS’03).

Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a seman-
tic βη-conversion test for Martin-Löf type theory. In Mathematics of

Program Construction (MPC’08), volume 5133 of LNCS, pages 29–56,
2008.

Luca Cardelli. An implementation of F<:. Research report 97, DEC/Com-
paq Systems Research Center, February 1993.

Sébastien Carlier and J. B. Wells. Expansion: the crucial mechanism for
type inference with intersection types: A survey and explanation. In
Workshop on Intersection Types and Related Systems (ITRS ’04), pages
173–202, 2004.

Adam Chlipala, Leaf Petersen, and Robert Harper. Strict bidirectional type
checking. In Workshop on Types in Language Design and Impl. (TLDI

’05), pages 71–78, 2005.

Thierry Coquand. An algorithm for type-checking dependent types. Science

of Computer Programming, 26(1–3):167–177, 1996.

Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie
Mellon University, 2005. CMU-CS-05-110.

Rowan Davies and Frank Pfenning. Intersection types and computational
effects. In ICFP, pages 198–208, 2000.

Jana Dunfield. Refined typechecking with Stardust. In Programming

Languages meets Programming Verification (PLPV ’07), 2007a.

Jana Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie
Mellon University, 2007b. CMU-CS-07-129.

Jana Dunfield and Frank Pfenning. Type assignment for intersections and
unions in call-by-value languages. In Found. Software Science and

Computation Structures (FOSSACS ’03), pages 250–266, 2003.

Jana Dunfield and Frank Pfenning. Tridirectional typechecking. In POPL,
pages 281–292, January 2004.

Gerhard Gentzen. Investigations into logical deduction. In M. Szabo, editor,
Collected papers of Gerhard Gentzen, pages 68–131. North-Holland,
1969.

Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to
deforestation. In ACM Conf. Functional Programming and Computer

Architecture, pages 223–232. ACM Press, 1993.

Jean-Yves Girard. The system F of variable types, fifteen years later.
Theoretical Computer Science, 45(2):159–192, 1986.

A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the
rank-2 fragment of the second-order λ-calculus. In LISP and Functional

Programming, pages 196–207, 1994.

Didier Le Botlan and Didier Rémy. MLF: raising ML to the power of
System F. In ICFP, pages 27–38, 2003.

Daan Leijen. Flexible types: robust type inference for first-class polymor-
phism. In POPL, pages 66–77, January 2009.

Andres Löh, Conor McBride, and Wouter Swierstra. A tutorial imple-
mentation of a dependently typed lambda calculus. Unpublished draft,
http://people.cs.uu.nl/andres/LambdaPi/index.html, 2008.

William Lovas and Frank Pfenning. A bidirectional refinement type system
for LF. In Int’l Workshop on Logical Frameworks and Meta-languages,
Electronic Notes in Theoretical Computer Science, pages 113–128. El-
sevier, July 2007.

Ulf Norell. Towards a Practical Programming Language Based on Depen-

dent Type Theory. PhD thesis, Dept. of Computer Science and Engineer-
ing, Chalmers University of Technology, 2007.

Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type
inference. In POPL, pages 41–53, 2001.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark
Shields. Practical type inference for arbitrary-rank types. J. Functional

Programming, 17(1):1–82, 2007.

Brigitte Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In POPL, pages 371–
382, 2008.

Brigitte Pientka and Jana Dunfield. Programming with proofs and ex-
plicit contexts. In Principles and Practice of Declarative Programming

(PPDP’08), pages 163–173, July 2008.

Benjamin C. Pierce. Programming with intersection types, union types, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon
University, 1991.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans.

Programming Languages and Systems, 22:1–44, 2000.

Didier Rémy and Boris Yakobowski. From ML to MLF: graphic type con-
straints with efficient type inference. In ICFP, pages 63–74, September
2008.

John C. Reynolds. Towards a theory of type structure. In Col-

loque sur la Programmation, volume 19 of LNCS, pages 408–425.
Springer, 1974. http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/
theotypestr.pdf.

John C. Reynolds. Design of the programming language Forsythe. Techni-
cal Report CMU-CS-96-146, Carnegie Mellon University, 1996.

Simona Ronchi Della Rocca and Betti Venneri. Principal type schemes for
an extended type theory. Theoretical Computer Science, 28:151–169,
1984.

J. B. Wells. Typability and type checking in System F are equivalent and
undecidable. Annals of Pure and Applied Logic, 98:111–156, 1999.

Hongwei Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, 1998.

Abbrev.:
ICFP = Int’l Conf. Functional Programming;
POPL = Principles of Programming Languages.

12 2020/11/3

http://people.cs.uu.nl/andres/LambdaPi/index.html
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/theotypestr.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/theotypestr.pdf

	Introduction
	System Bi
	Contextual annotations
	The metatheory of System Bi

	System Bi"0362: Explicit Existential Variables
	Hints
	Typing and subtyping rules
	Greed and contextual matching

	Preliminaries
	Decidability
	Soundness of System Bi"0362
	Completeness of System Bi"0362
	Impredicative incompleteness
	Hinted completeness
	Predicative completeness

	System Bi with subtyping, intersection types, and union types
	System Bi"0362: System Bi with existential contexts
	Type safety
	Decidability

	Implementation
	Complexity of typechecking

	A More Automatic System
	Related Work
	Systems without subtyping and intersections
	Polymorphic instantiation under subtyping

	Conclusion

