Supplementary material for "Bidirectional polymorphism through greed and unions"

Jana Dunfield
McGill University

November 3, 2020

Appendix: Supplementary Material

This appendix contains definitions, proofs, and example derivations that didn't fit in the paper. In line-by-line proofs, I put a Z next to the final result.
Lemma 9. If Ω completes Γ then $\operatorname{dom}([\Omega] \Gamma) \subseteq \operatorname{dom}(\Gamma)$.
Proof. By induction on Ω. Since Ω completes Γ, the contexts are the same modulo hints and existential variables that are declared in both but only solved in Ω. In the case when $\Omega=\Omega^{\prime}, \widehat{\alpha}=\mathcal{A}$ and $\Gamma=\Gamma^{\prime}, \widehat{\alpha}$: from the definition, $[\Omega] \Gamma=\left[\Omega^{\prime}\right]\left([\mathcal{A} / \widehat{\alpha}] \Gamma^{\prime}\right)$. By IH, $\operatorname{dom}\left(\left[\Omega^{\prime}\right]\left([A / \widehat{\alpha}] \Gamma^{\prime}\right) \subseteq \operatorname{dom}\left([A / \widehat{\alpha}] \Gamma^{\prime}\right)\right.$, and substituting for $\widehat{\alpha}$ in Γ^{\prime} does not change its domain at all.

Lemma 11. Given a context Ω that completes Γ, if $[\Omega] \Gamma \vdash[\Omega] A$ wf then $\Gamma \vdash A$ wf.
Proof. To show $\Gamma \vdash A$ wf, we show $F V(A) \subseteq \operatorname{dom}(\Gamma)$.
For all $\hat{\alpha}$ in $F V(A)$: Suppose $\hat{\alpha} \notin \operatorname{dom}(\Gamma)$. By definition of completion, $\operatorname{dom}(\Gamma)=\operatorname{dom}(\Omega)$ so $\hat{\alpha} \notin$ $\operatorname{dom}(\Omega)$. Thus, applying Ω to A cannot substitute for $\widehat{\alpha}$, and $\widehat{\alpha} \in F V([\Omega] A)$. By definition of well-formedness, $F V([\Omega] A) \subseteq \operatorname{dom}([\Omega] \Gamma)$, which by Lemma Ω is $\subseteq \operatorname{dom}(\Gamma)$. Therefore $\widehat{\alpha} \in \operatorname{dom}(\Gamma)$, a contradiction.

Lemma 12 (Well-Formedness). If $\mathcal{D}:: \Gamma \vdash \ldots \dashv \Gamma^{\prime}$ then for any solved $\widehat{\alpha} \in \operatorname{dom}(\Gamma)$, it is the case that $\Gamma=\Gamma_{1}, \widehat{\alpha}=A, \Gamma_{2}$ and $\Gamma_{1} \vdash A$ wf, and likewise for any solved $\widehat{\alpha} \in \operatorname{dom}\left(\Gamma^{\prime}\right)$.

Proof. By induction on \mathcal{D}. In the 6 rules that introduce existential solutions, the well-formedness of the solution is either explicit ($\widehat{\alpha}^{=} \mathrm{L} \leqq, \widehat{\alpha}^{=} \mathrm{R} \leqq$) or is evident from the context ($\rightarrow \mathrm{I} \widehat{\alpha}, \rightarrow \mathrm{E} \widehat{\alpha}, \rightarrow \widehat{\alpha} \mathrm{L} \leqq, \rightarrow \widehat{\alpha} \mathrm{R} \leqq$).

Definition 14 (Ordering of subtyping judgments). Given $\mathcal{J}_{1}=\Gamma_{1} \vdash A_{1} \leqq B_{1} \dashv \ldots$ and $\mathcal{J}_{2}=\Gamma_{2} \vdash A_{2} \leqq$ $\mathrm{B}_{2} \dashv \ldots$, the order \prec is defined lexicographically by
(1) the numbers of hints in Γ_{1} and in Γ_{2}, under $<$;
(2) if $B_{1}=B_{2}$ and $\Gamma_{1}=\Gamma_{2}$, the angst of A_{1} versus A_{2}; or, if $A_{1}=A_{2}$ and $\Gamma_{1}=\Gamma_{2}$, the angst of B_{1} versus B_{2};
(3) $\left\{A_{1}, B_{1}\right\} \prec\left\{A_{2}, B_{2}\right\}$;
(4) $A_{1}=A_{2}$ and $B_{1}=B_{2}$ where all existential variables in $A_{1}\left(=A_{2}\right)$ are solved in Γ_{1} but not in Γ_{2}; or, the same, swapping B_{1} and B_{2} for A_{1} and A_{2}.

Definition 15 (Ordering of typing judgments). Given $\mathcal{J}_{1}=\Gamma_{1} \vdash e_{1} \Uparrow / \Downarrow \mathrm{C}_{1} \dashv \Gamma_{1}^{\prime}$ and $\mathcal{J}_{2}=\Gamma_{2} \vdash e_{2} \Uparrow / \Downarrow$ $\mathrm{C}_{2} \dashv \Gamma_{2}^{\prime}$, we define $\mathcal{J}_{1} \preceq \mathcal{J}_{2}$ by the lexicographic ordering of:
(1) e_{1} and e_{2} (subterm ordering);
(2) the directions, considering \Uparrow smaller than \Downarrow;
(3a) If both are checking judgments:
(i) $\mathrm{C}_{1} \preceq \mathrm{C}_{2}$;
(ii) $\Gamma_{1}=\Gamma_{2}$ and C_{1} has less angst then C_{2}; or
(iii) all existential variables in $\mathrm{C}_{1}\left(=\mathrm{C}_{2}\right)$ are solved in Γ_{1} but not in Γ_{2}
(3b) If both are synthesis judgments:
(i) the number of hints in Γ_{1}^{\prime} versus Γ_{2}^{\prime}; if equal,
(ii) $\mathrm{C}_{2} \preceq \mathrm{C}_{1}$;
(iii) C_{2} has less angst with respect to Γ_{2}^{\prime} than C_{1} with respect to Γ_{1}^{\prime}.

Theorem 16 (Decidability of Subtyping and Contextual Matching). Given Γ, A, and B, the existence of Γ^{\prime} such that $\Gamma \vdash \mathrm{A} \leqq \mathrm{B} \dashv \Gamma^{\prime}$ in System $B i^{\widehat{\alpha}}$ is decidable.

Moreover, given Γ_{0}, A_{0} and Γ, the existence of A such that $\left(\Gamma \vdash A_{0}\right) \lesssim(\Gamma \vdash A)$ is decidable.
Proof. We show that the premises of each rule are smaller, under the defined partial order, than the conclusion. We also note that in each rule, we have enough information to apply the induction hypothesis for each premise.
\forall L-hint \leqq 's premise is smaller by part (1) of Definition 14 .
In ExSubstL \leqq and $\operatorname{ExSubstR} \leqq$, use part (2).
In $\forall \mathrm{L} \widehat{\alpha} \leqq$ (converting $\widehat{\alpha}$ to α), $\rightarrow \leqq$ and $\forall \mathrm{R} \leqq$, use part (3).
In $\rightarrow \widehat{\alpha} \mathrm{L} \leqq$ and $\rightarrow \widehat{\alpha} R \leqq$, use part (4).
The rules $\mathbf{1} \leqq, \alpha \operatorname{Refl} \leqq, \widehat{\alpha} \operatorname{Refl} \leqq, \widehat{\alpha}=\mathrm{L} \leqq, \widehat{\alpha}=\mathrm{R} \leqq$ have no interesting premises.
For contextual matching, the rule empty- σ has no premises, while the length of Γ_{0} is reduced by every other rule in Figure 6 ,

Theorem 17 (Decidability of Typing).
(i) Given Γ, e, and C, it is decidable whether there exists Γ^{\prime} such that $\Gamma \vdash e \Downarrow C \dashv \Gamma^{\prime}$.
(ii) Given Γ and e it is decidable whether there exist Γ^{\prime} and C such that $\Gamma \vdash e \Uparrow C \dashv \Gamma^{\prime}$.

Proof. We show that the premises of each rule are smaller, under the defined partial order, than the conclusion. We also note that in each rule, we have enough information to apply the induction hypothesis for each premise. For example, in \rightarrow E, we have $e=e_{1} e_{2}$, giving us an e_{1} for \rightarrow E's synthesizing premise; applying the i.h. there gives a type for the second, checking, premise.
var and 1 I have no premises.
By part (1), the premises of anno, $\rightarrow \mathrm{I}, \rightarrow \mathrm{E}$, hint, $\rightarrow \mathrm{E} \hat{\alpha}$ have a smaller term than the conclusion.
sub's first premise is smaller by part (2); the second premise is decidable by Theorem 16
\forall E-hint's premise is smaller by part (3b)(i). Contextual matching is decidable by Theorem 16
\forall I's premise is smaller by part (3a)(i); $\forall \mathrm{E} \widehat{\alpha}$'s premise is smaller by part (3b)(ii).
ExSubst \downarrow 's premise is smaller by part (3a)(ii); ExSubst \uparrow 's, by part (3b)(iii).
$\rightarrow I \hat{\alpha}$'s premise is smaller by part (3a)(iii).

Theorem 18 (Soundness of System $\mathrm{Bi}^{\widehat{\alpha}}$). If $\Gamma \vdash \mathcal{J} \dashv \Gamma^{\prime}$ and Ω completes Γ^{\prime} then $[\Omega] \Gamma^{\prime} \vdash[\Omega] \mathcal{J}^{\prime}$, where \mathcal{J}^{\prime} is \mathcal{J} with any hint ... in e subterms replaced by e and hints in annotations removed.

Proof. Since Ω completes Γ^{\prime}, we have $\Omega \supseteq \Gamma^{\prime}$: any variable $\widehat{\alpha}$ that is solved in Γ^{\prime} is also solved, and has the same solution, in Ω. Moreover, it follows from Lemma 13 that $\Gamma^{\prime} \supseteq \Gamma$. Since \supseteq is a transitive relation, any $\widehat{\alpha}$ solved in Γ is solved and has the same solution in Ω.

When applying the IH, we must ensure that the Ω and Γ^{\prime} we apply the IH with are in sync. For example, in the case for $\forall \mathrm{I}$ the output context in the subderivation is $\Gamma^{\prime}, \alpha, \Gamma_{\mathrm{Z}}$ while the output context for the derivation is Γ^{\prime}. The given Ω completes Γ^{\prime}, not $\Gamma^{\prime}, \alpha, \Gamma_{\mathrm{z}}$, so it must be extended as follows: Add solutions in Γ_{z} to Ω; for unsolved variables $\widehat{\beta}$, choose any well-formed type $B-\mathbf{1}$ is the easiest choice since it has no free type variables and is thus well-formed in every context-and add $\widehat{\beta}=\mathrm{B}$ to Ω. This works because $\forall \mathrm{I}$ strips out all the declarations in Γ_{Z}, so $\widehat{\beta}$ is about to leave this world unsolved, and therefore unconstrained.

In the $\forall \mathrm{E} \widehat{\alpha}$ case, the IH gives $[\Omega] \Gamma \vdash \mathrm{e} \Uparrow \forall \alpha$. $[\Omega] A$. Since Ω is solved, $\widehat{\alpha}=A^{\prime} \in \Omega$, and by Lemma 12 , $\Gamma \vdash A^{\prime}$ wf. By Corollary $10,[\Omega] \Gamma \vdash[\Omega] A^{\prime}$ wf. By $\forall E,[\Omega] \Gamma \vdash e \Uparrow\left[[\Omega] A^{\prime} / \alpha\right]([\Omega] A)$. By a property of substitutions, $\left[[\Omega] A^{\prime} / \alpha\right]([\Omega] A)=[\Omega]\left[A^{\prime} / \alpha\right] A$, giving the result.

In the ExSubst \Downarrow case, the IH yields $[\Omega] \Gamma \vdash e \Downarrow[\Omega] \Gamma(\widehat{\alpha})$; the variable $\widehat{\alpha}$ cannot be free in $\Gamma(\widehat{\alpha})$, and we earlier noted that $\Omega(\widehat{\alpha})=\Gamma(\widehat{\alpha})$, so in fact $[\Omega] \Gamma(\widehat{\alpha})=[\Omega] \Omega(\widehat{\alpha})=[\Omega] \widehat{\alpha}$, giving the result. ExSubst \Uparrow and ExSubst $\{\mathrm{L}, \mathrm{R}\} \leq$ are similar.

In the $\rightarrow \mathrm{I} \widehat{\alpha}$ case, the IH gives $[\Omega] \Gamma, \chi:\left([\Omega] \widehat{\alpha_{1}}\right) \vdash e_{0} \Downarrow[\Omega] \widehat{\alpha_{2}}$. By $\rightarrow \mathrm{I},[\Omega] \Gamma \vdash \lambda x . e_{0} \Downarrow\left([\Omega] \widehat{\alpha_{1}}\right) \rightarrow\left([\Omega] \widehat{\alpha_{2}}\right)$. The declaration $\widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}$ is in Γ, so by Lemma 13 it is also in Ω. Thus, we have $\ldots \Downarrow[\Omega] \widehat{\alpha}$, which was to be shown.

In the $\widehat{\alpha}=\mathrm{L} \leq$ case, we have $(\widehat{\alpha}=\mathrm{B}) \in \Gamma^{\prime}$. want $[\Omega] \Gamma \vdash[\Omega] \widehat{\alpha} \leqq[\Omega] \mathrm{B}$. By Lemma $13,(\widehat{\alpha}=\mathrm{B}) \in \Omega$, so $[\Omega] \widehat{\alpha}=[\Omega] B$. The result follows by reflexivity of \leqq. The $\widehat{\alpha}=\mathrm{R} \leq$ case is symmetric.

The $\rightarrow \widehat{\alpha} \mathrm{L} \leq, \rightarrow \widehat{\alpha} \mathrm{R} \leq$ cases use similar reasoning as the $\rightarrow \mathrm{I} \widehat{\alpha}$ case.
The remaining cases are straightforward.

$$
\begin{array}{ccc}
\Gamma \vdash \mathrm{e} \Uparrow \forall \alpha . \alpha \rightarrow \alpha \\
\Gamma \vdash \mathrm{e} \Uparrow[\mathbf{1} \rightarrow \text { int }](\alpha \rightarrow \alpha) \\
& \frac{\Gamma, x: \mathbf{1} \vdash \ldots \Downarrow \text { int }}{\Gamma \vdash \lambda x \ldots \Downarrow \mathbf{1} \rightarrow \text { int }} \rightarrow \mathrm{I} & \\
\vdots & \vdots & \mathbf{1} \rightarrow \text { int } \leqq \mathbf{1} \rightarrow \text { int } \\
\vdots
\end{array}
$$

Figure 14: Corresponding derivations in System Bi (above) and System $\mathrm{Bi}^{\hat{\alpha}}$ (below)
Stipulating that certain occurrences of $\mathbf{1} \rightarrow$ int in the middle and right of the derivation do in fact flow from the occurrence of $1 \rightarrow$ int on the left, the System $\mathrm{Bi}^{\widehat{\alpha}}$ derivation should look like the one at the bottom of Figure 14, where $\Gamma_{2}=\Gamma, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha_{1}}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}$. For the various judgments $\Gamma_{1}^{\prime} \vdash \ldots \dashv \Gamma_{2}^{\prime}$ in the System $\mathrm{Bi}^{\widehat{\alpha}}$ derivation, the contexts Γ_{1}^{\prime} and Γ_{2}^{\prime} don't disagree with Ω; they may say less-for example, just after we create $\widehat{\alpha}$ on the left there is no information about $\widehat{\alpha}$-but they don't contradict it.

Theorem 21 (Predicative Completeness). For any Ω and Γ_{1}^{\prime} and predicative derivation $\mathcal{D}:: \Gamma \vdash[\Omega] \mathcal{J}$ in System Bi, provided that
(1) Ω is predicative (for any $\widehat{\alpha}$, the type $\Omega(\widehat{\alpha})$ is monomorphic) and articulated
(2) Ω completes Γ_{1}^{\prime}, and $[\Omega] \Gamma_{1}^{\prime}=\Gamma$
then $[\Omega] \Gamma_{1}^{\prime} \vdash[\Omega] A^{\prime} \leq[\Omega] B^{\prime} \Longrightarrow \Gamma_{1}^{\prime} \vdash A^{\prime} \leqq B^{\prime} \dashv \Gamma_{2}^{\prime}$
$[\Omega] \Gamma_{1}^{\prime} \vdash e \Downarrow[\Omega] A^{\prime} \quad \Longrightarrow \quad \Gamma_{1}^{\prime} \vdash e \Downarrow A^{\prime} \dashv \Gamma_{2}^{\prime}$
$[\Omega] \Gamma_{1}^{\prime} \vdash e \Uparrow C$
$\Longrightarrow \quad \Gamma_{1}^{\prime} \vdash e \Uparrow C^{\prime} \dashv \Gamma_{2}^{\prime}$
for some C^{\prime} such that $\mathrm{C}=[\Omega] \mathrm{C}^{\prime}$

Proof. By induction on \mathcal{D}.
Assuming the given types $[\Omega] A^{\prime}$, etc. are well-formed, by Lemma 11 the types A^{\prime}, etc. are well-formed under Γ_{1}^{\prime}. But the type C in the synthesis judgment is well-formed under Γ, while the type C^{\prime} in the consequent of the theorem is well-formed under Γ_{2}^{\prime}-and not necessarily under Γ_{1}^{\prime}, as Γ_{2}^{\prime} may contain existential type variables that Γ_{1}^{\prime} does not.

- Case $\rightarrow \leqq: \mathcal{D}^{\prime}: \frac{\Gamma \vdash B_{1} \leqq A_{1} \quad \Gamma \vdash A_{2} \leqq B_{2}}{\Gamma \vdash \underbrace{A_{1} \rightarrow A_{2}}_{[\Omega] A^{\prime}} \leqq \underbrace{B_{1} \rightarrow B_{2}}_{[\Omega] B^{\prime}}}$

We know that $[\Omega] A^{\prime}=A_{1} \rightarrow A_{2}$. Either $\left\{\rightarrow A^{\prime}\right.$ case $\} A^{\prime}=A_{1}^{\prime} \rightarrow A_{2}^{\prime}$ (so $[\Omega] A^{\prime}=[\Omega] A_{1}^{\prime} \rightarrow[\Omega] A_{2}^{\prime}=$ $A_{1} \rightarrow A_{2}$) or $\left\{\widehat{\alpha} A^{\prime}\right.$ case $\} A^{\prime}=\widehat{\alpha}$ (so $[\Omega] A^{\prime}=[\Omega] \widehat{\alpha}$). Similarly, we distinguish $\left\{\rightarrow B^{\prime}\right.$ case $\}$ and $\left\{\widehat{\beta} B^{\prime}\right.$ case $\}$ depending on whether B^{\prime} is $B_{1}^{\prime} \rightarrow B_{2}^{\prime}$ or $\widehat{\beta}$. (Note that possibly $\widehat{\beta}=\widehat{\alpha}$.)

- $\left\{\rightarrow \mathrm{A}^{\prime}\right.$ and $\rightarrow \mathrm{B}^{\prime}$ case $\}$:
$\Gamma_{1}^{\prime} \vdash \mathrm{B}_{1}^{\prime} \leqq \mathrm{A}_{1}^{\prime} \dashv \Gamma_{2}^{\prime} \quad$ By IH
$\Gamma_{2}^{\prime} \vdash A_{2}^{\prime} \leqq B_{2}^{\prime} \dashv \Gamma_{3}^{\prime} \quad$ By IH
$\Gamma_{1}^{\prime} \vdash A_{1}^{\prime} \rightarrow A_{2}^{\prime} \leqq B_{1}^{\prime} \rightarrow B_{2}^{\prime} \dashv \Gamma_{3}^{\prime} \quad B y \rightarrow \leqq$
- $\left\{\widehat{\alpha} A^{\prime}\right.$ and $\rightarrow B^{\prime}$ case $\}$:
$\Gamma_{1}^{\prime} \vdash A_{1}^{\prime} \rightarrow A_{2}^{\prime} \leqq B_{1}^{\prime} \rightarrow B_{2}^{\prime} \dashv \Gamma_{3}^{\prime} \quad$ As preceding case
If Γ_{1}^{\prime} includes a solution for $\widehat{\alpha}$, then:
- $\Gamma_{1}^{\prime} \vdash \widehat{\alpha} \leqq B_{1}^{\prime} \rightarrow B_{2}^{\prime} \dashv \Gamma_{3}^{\prime} \quad$ By ExSubstL \leqq

Otherwise, Γ_{1}^{\prime} does not include a solution for $\widehat{\alpha}$.
$* \Omega(\widehat{\alpha})=[\Omega] A^{\prime}=A_{1} \rightarrow A_{2}$ must have the form $\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}$, because Ω is predicative and articulated. We assumed that Γ_{1}^{\prime} does not include a solution for $\widehat{\alpha}$, so $\Gamma_{1}^{\prime}=\Gamma_{\mathrm{L}}, \widehat{\alpha}, \Gamma_{\mathrm{R}}$. Let $\Gamma_{+}=\Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha_{1}}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{\mathrm{R}}$.

$$
\Gamma_{+} \vdash \mathrm{B}_{1}^{\prime} \leqq \widehat{\alpha_{1}} \dashv \Gamma_{M} \quad \text { By IH on } \Gamma \vdash \mathrm{B}_{1} \leqq A_{1},
$$

$$
\text { taking } \Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha_{1}}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}} \text { as } \Gamma_{1}^{\prime}
$$

$\Gamma_{\mathrm{M}} \vdash \widehat{\alpha_{2}} \leqq \mathrm{~B}_{2}^{\prime} \dashv \Gamma_{2}^{\prime} \quad$ By IH
$\Gamma_{+} \vdash \widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}} \leqq \mathrm{~B}_{1}^{\prime} \rightarrow \mathrm{B}_{2}^{\prime} \dashv \Gamma_{2}^{\prime} \quad B y \rightarrow \leqq$
$\Gamma_{+} \vdash \hat{\alpha} \leqq B_{1}^{\prime} \rightarrow B_{2}^{\prime} \dashv \Gamma_{2}^{\prime} \quad$ By ExSubstL \leqq

* $\Gamma_{1}^{\prime} \vdash \hat{\alpha} \leqq B_{1}^{\prime} \rightarrow \mathrm{B}_{2}^{\prime} \dashv \Gamma_{2}^{\prime} \quad \mathrm{By} \rightarrow \widehat{\alpha} \mathrm{L} \leqq$
$-\left\{\rightarrow A^{\prime}\right.$ and $\widehat{\beta} B^{\prime}$ case $\}$: Symmetric to the $\left\{\widehat{\alpha} A^{\prime}\right.$ and $\rightarrow B^{\prime}$ case $\}$.
- $\left\{\widehat{\alpha} A^{\prime}\right.$ and $\widehat{\beta} B^{\prime}$ case $\}$: If either $\widehat{\alpha}$ or $\widehat{\beta}$ is solved in Γ_{1}^{\prime}, then the solution in Γ_{1}^{\prime} has an \rightarrow at its head (since the solution in Ω does). Using suitably articulated contexts, use the IH, then use ExSubst and $\rightarrow \hat{\alpha} \mathrm{L} \leqq$ or $\rightarrow \widehat{\alpha} \mathrm{R} \leqq$ as needed.
If neither is solved and $\widehat{\alpha}=\widehat{\beta}$, then the result follows by $\widehat{\alpha}$ Refl \leqq.

Otherwise, neither is solved and $\widehat{\alpha} \neq \widehat{\beta}$. So add a solution for whichever of $\widehat{\alpha}$ and $\widehat{\beta}$ is declared last in Γ_{1}^{\prime}. Suppose without loss of generality that $\Gamma_{1}^{\prime}=\Gamma_{\mathrm{L}}, \widehat{\alpha}, \Gamma_{\mathrm{C}}, \widehat{\beta}, \Gamma_{\mathrm{R}}$.

$$
\Gamma_{1}^{\prime} \vdash \widehat{\alpha} \leqq \widehat{\beta} \dashv \Gamma_{\mathrm{L}}, \widehat{\alpha}, \Gamma_{\mathrm{C}}, \widehat{\beta}=\widehat{\alpha} \quad \text { By } \widehat{\alpha}=\mathrm{R} \leqq
$$

- Case $\alpha \operatorname{Refl} \leqq: \mathcal{D}:: \quad \overline{\Gamma \vdash \alpha \leqq \alpha}$

We have $\alpha=[\Omega] A^{\prime}=[\Omega] B^{\prime}$. The types A^{\prime} and B^{\prime} can each be α or various existential variables.
If $A^{\prime}=B^{\prime}=\alpha$, the result follows by $\alpha \operatorname{Refl} \leqq$, giving $\Gamma_{1}^{\prime} \vdash \alpha \leqq \alpha \dashv \Gamma_{1}^{\prime}$.
If $A^{\prime}=\alpha$ and B^{\prime} is some solved $\widehat{\beta}$, the result follows by $\alpha \operatorname{Refl} \leqq$, yielding $\Gamma_{1}^{\prime} \vdash \alpha \leqq \alpha \vdash \Gamma_{1}^{\prime}$ then ExSubstR \leqq for $\Gamma_{1}^{\prime} \vdash \alpha \leqq \widehat{\beta} \dashv \Gamma_{1}^{\prime}$.
If $\widehat{\beta}$ is unsolved: $\widehat{\beta}$ is well-formed in Γ_{1}^{\prime}, so $\Gamma_{1}^{\prime}=\Gamma_{\mathrm{L}}, \widehat{\beta}, \Gamma_{\mathrm{R}}$. Applying $\widehat{\alpha}=\mathrm{R} \leqq$ gives $\Gamma_{\mathrm{L}}, \widehat{\beta}, \Gamma_{\mathrm{R}} \vdash \alpha \leqq \widehat{\beta} \dashv$ $\Gamma_{\mathrm{L}}, \widehat{\beta}=\alpha, \Gamma_{\mathrm{R}}$. Let $\Gamma_{2}^{\prime}=\Gamma_{\mathrm{L}}, \widehat{\beta}=\alpha, \Gamma_{\mathrm{R}}$. Substituting gives $\Gamma_{1}^{\prime} \vdash \alpha \leqq \widehat{\beta} \dashv \Gamma_{2}^{\prime}$, which was to be shown.
The subcases where $B^{\prime}=\alpha$ and A^{\prime} is some solved $\widehat{\beta}$ are symmetric to the last two.
If $A^{\prime}=\widehat{\gamma}$ and $B^{\prime}=\widehat{\beta}$, first apply $\alpha \operatorname{Refl} \leqq$, then:

- If both are solved in Γ_{1}^{\prime}, apply ExSubstL \leqq then ExSubstR \leqq.
- If only $\widehat{\gamma}$ is solved, apply ExSubstL \leqq then $\widehat{\alpha}=\mathrm{R} \leqq$.
- If only $\widehat{\beta}$ is solved, apply ExSubstR \leqq then $\widehat{\alpha}=\mathrm{L} \leqq$ (symmetric to the last).
- If neither is solved: Both $\widehat{\gamma}$ and $\widehat{\beta}$ are well-formed under Γ_{1}^{\prime}. Either $\widehat{\gamma}$ comes first or $\widehat{\beta}$ comes first. Suppose $\widehat{\beta}$ comes first. Then $\widehat{\alpha}=\mathrm{L} \leqq$ gives $\Gamma_{1}^{\prime} \vdash \widehat{\gamma} \leqq \widehat{\beta} \dashv \ldots, \widehat{\alpha}=\widehat{\beta}, \ldots$..
- Case $\mathbf{1} \leqq$: \quad Similar to the previous case, using $\mathbf{1} \leqq$ in place of α Refl \leqq.
- Case $\forall \mathrm{L} \leqq: \quad \mathcal{D}:: \frac{\Gamma \vdash[\mathrm{C} / \alpha] A_{0} \leqq \mathrm{~B}}{\Gamma \vdash \underbrace{\forall \alpha . A_{0}}_{[\Omega] \mathrm{A}^{\prime}} \leqq \underbrace{\mathrm{B}}_{[\Omega] \mathrm{B}^{\prime}}}$

We know that $[\Omega] A^{\prime}=\forall \alpha$. A_{0}. Either $\left\{\forall A^{\prime}\right.$ case $\} A^{\prime}=\forall \alpha$. A_{0}^{\prime}, so $[\Omega] A^{\prime}=\forall \alpha$. $[\Omega] A_{0}^{\prime}$, or $\{\widehat{\gamma} A$ case $\}$ $A^{\prime}=\widehat{\gamma}$ so $[\Omega] \widehat{\gamma}=\forall \alpha . \ldots$, which is impossible by the assumption that Ω is predicative.

- $\left\{\forall A^{\prime}\right.$ case $\}$:

Choose a fresh $\widehat{\alpha}$. Let $\Omega^{\prime}=\Omega, \operatorname{Artic}(\widehat{\alpha}=\mathrm{C})$.

$$
\begin{aligned}
A_{0} & =[\Omega] A_{0}^{\prime} & & \text { Above } \\
{[C / \alpha] A_{0} } & =[C / \alpha][\Omega] A_{0}^{\prime} & & \text { Applying }[C / \alpha] \text { to both sides } \\
& =[\Omega]\left([C / \alpha] A_{0}^{\prime}\right) & & \text { Permutation (no ex. vars. in } C) \\
& =[\Omega]\left([C / \widehat{\alpha}][\widehat{\alpha} / \alpha] A_{0}^{\prime}\right) & & \widehat{\alpha} \text { fresh } \\
& =[\Omega, \operatorname{Artic}(\widehat{\alpha}=C)][\widehat{\alpha} / \alpha] A_{0}^{\prime} & & \text { Definitions of articulation and substitution } \\
& =\left[\Omega^{\prime}\right][\widehat{\alpha} / \alpha] A_{0}^{\prime} & & \text { Definition of } \Omega^{\prime} \text { above }
\end{aligned}
$$

Therefore $[\mathrm{C} / \alpha] A_{0}=\left[\Omega^{\prime}\right]\left([\widehat{\alpha} / \alpha] A_{0}^{\prime}\right)$, and we can apply the IH:

$$
\begin{array}{ll}
\Gamma_{1}^{\prime}, \widehat{\alpha} \vdash[\widehat{\alpha} / \alpha] A_{0}^{\prime} \leqq \mathrm{B}^{\prime} \dashv \Gamma_{\mathrm{R}} & \text { By IH with } \Omega^{\prime} \\
\Gamma_{\mathrm{R}}=\Gamma_{2}^{\prime}, \widehat{\alpha}[\ldots], \Gamma_{\mathrm{Z}} & {[\widehat{\alpha} / \alpha] A_{0}^{\prime} \text { well-formed under } \Gamma_{\mathrm{R}} \text {, so } \widehat{\alpha} \in \operatorname{dom}\left(\Gamma_{\mathrm{R}}\right)} \\
\Gamma_{1}^{\prime} \vdash \forall \alpha . A^{\prime} \leqq \mathrm{B}^{\prime} \dashv \Gamma_{2}^{\prime} & \text { By } \forall \mathrm{L} \widehat{\alpha} \leqq
\end{array}
$$

- Case $\forall R \leqq: \mathcal{D}:: \frac{\Gamma, \beta \vdash A \leqq B_{0}}{\Gamma \vdash \underbrace{A}_{[\Omega] A^{\prime}} \leqq \underbrace{\forall \beta . B_{0}}_{[\Omega] B^{\prime}}}$

We know that $[\Omega] \mathrm{B}^{\prime}=\forall \beta$. B_{0}. Either $\left\{\forall \mathrm{B}^{\prime}\right.$ case $\} \mathrm{B}^{\prime}=\forall \beta$. B_{0}^{\prime} (so $[\Omega] \mathrm{B}^{\prime}=\forall \beta$. $[\Omega] \mathrm{B}_{0}^{\prime}$) or $\{\widehat{\gamma} \mathrm{B}$ case $\}$ $B^{\prime}=\widehat{\gamma}$.

- $\left\{\forall B^{\prime}\right.$ case $\}$:

$$
\begin{array}{ll}
\Gamma_{1}^{\prime}, \beta \vdash A^{\prime} \leqq \mathrm{B}^{\prime} \dashv \Gamma_{2}^{\prime \prime} & \mathrm{By} \mathrm{IH} \\
\Gamma_{2}^{\prime \prime}=\Gamma_{2}^{\prime}, \beta, \Gamma_{\mathrm{Z}} & \text { By } \overline{\Gamma_{2}^{\prime \prime}=\Gamma \text { (follows from Lemma 13) }} \begin{aligned}
\Gamma_{1}^{\prime} \vdash A^{\prime} \leqq \forall \beta . \mathrm{B}_{1}^{\prime} \dashv \Gamma_{2}^{\prime} & \text { By } \forall \mathrm{R} \leqq
\end{aligned}
\end{array}
$$

- $\left\{\hat{\gamma}^{\prime} B^{\prime}\right.$ case $\}$:

Applying Ω to $\mathrm{B}^{\prime}=\widehat{\gamma}$ gives $[\Omega] \mathrm{B}^{\prime}=[\Omega] \widehat{\gamma}$, which is equal to $\Omega(\widehat{\gamma})$. But since $[\Omega] \mathrm{B}^{\prime}=\forall \beta$. B_{0}, we have $\Omega(\hat{\gamma})=\forall \beta$. B_{0}, which contradicts our assumption that Ω is predicative: this case is impossible.

- Case var: $\mathcal{D}:: \frac{\Gamma(x)=A}{\Gamma \vdash x \Uparrow A}$
$\Gamma=[\Omega] \Gamma_{1}^{\prime}$. Therefore $\Gamma(x)=[\Omega]\left(\Gamma_{1}^{\prime}(x)\right)$. So $\Gamma_{1}^{\prime}(x)=A^{\prime}$ where $[\Omega] A^{\prime}=A$. The result, $\Gamma_{1}^{\prime} \vdash x \Uparrow A^{\prime} \dashv$ Γ_{1}^{\prime}, follows by var.
- Case sub: $\mathcal{D}:: \frac{\Gamma \vdash e \Uparrow B \quad \Gamma \vdash B \leqq A}{\Gamma \vdash e \Downarrow A}$

By IH, $\Gamma_{1}^{\prime} \vdash \mathrm{e} \Uparrow \mathrm{B}^{\prime} \dashv \Gamma_{M}$ where $[\Omega] \mathrm{B}^{\prime}=\mathrm{B}$. We have $[\Omega] \mathrm{A}^{\prime}=A$. By IH, $\Gamma_{M} \vdash \mathrm{~B}^{\prime} \leqq A^{\prime} \dashv \Gamma_{2}^{\prime}$. The result follows by sub.

- Case anno: $\mathcal{D}:: \frac{N \lesssim(\Gamma \vdash A) \quad \Gamma \vdash e \Downarrow A}{\Gamma \vdash(e: N) \Uparrow A}$

The result follows by the IH and anno. (The \lesssim premise of anno in System $\mathrm{Bi}^{\widehat{\alpha}}$ does not involve existential contexts; see Section 3.2.1.)

- Case $\rightarrow \mathrm{I}: \quad \mathcal{D}:: \frac{\Gamma, x: A_{1} \vdash \mathrm{e} \Downarrow A_{2}}{\Gamma \vdash \lambda x . e \Downarrow \underbrace{A_{1} \rightarrow A_{2}}_{[\Omega] A^{\prime}}}$

If $A^{\prime}=A_{1}^{\prime} \rightarrow A_{2}^{\prime}$ (with $[\Omega] A_{1}^{\prime}=A_{1}$ and $[\Omega] A_{2}^{\prime}=A_{2}$): The IH gives $\Gamma_{1}^{\prime}, x: A_{1}^{\prime} \vdash e \Downarrow A_{2}^{\prime} \dashv \Gamma_{M}$. By Lemma 5 , $\overline{\Gamma_{M}}=\overline{\Gamma_{1}^{\prime}}$; then, by Lemma6, $\Gamma_{M}=\Gamma_{2}^{\prime}, x: A_{1}^{\prime}, \Gamma_{R}$. Applying \rightarrow I gives $\Gamma_{1}^{\prime} \vdash \lambda x . e \Downarrow A_{1}^{\prime} \rightarrow A_{2}^{\prime} \dashv$ Γ_{2}^{\prime}, which was to be shown.
Otherwise, $A^{\prime}=\widehat{\alpha}$ and $\Omega(\widehat{\alpha})=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}$, where $A_{1}=[\Omega] \widehat{\alpha_{1}}$ and $A_{2}=[\Omega] \widehat{\alpha_{2}}$.

- $\{$ solved case $\}: \widehat{\alpha}$ solved in Γ_{1}^{\prime}; since Γ_{1}^{\prime} is articulated, $\widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}} \in \Gamma_{1}^{\prime}$.

$$
\begin{array}{rll}
\Gamma_{1}^{\prime}, x: \widehat{\alpha_{1}} \vdash e \Downarrow \widehat{\alpha_{2}} \dashv \Gamma_{2}^{\prime}, x: \widehat{\alpha_{1}}, \Gamma_{\mathrm{R}} & & \text { By IH } \\
\Gamma_{1}^{\prime} \vdash \lambda x . e \Downarrow \widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}} \dashv \Gamma_{2}^{\prime} & & \text { By } \rightarrow \mathrm{I} \\
\Gamma_{1}^{\prime} \vdash \lambda x . e \Downarrow \widehat{\alpha} \dashv \Gamma_{2}^{\prime} & & \text { By ExSubst } \Downarrow
\end{array}
$$

- \{not-solved case $\}: \widehat{\alpha}$ not solved in $\Gamma_{1}^{\prime}:$ decompose Γ_{1}^{\prime} into $\Gamma_{11}, \widehat{\alpha}, \Gamma_{12}$.

$$
\begin{aligned}
& \Gamma_{11}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{12}, x: \widehat{\alpha_{1}} \vdash e \Downarrow \widehat{\alpha_{2}} \dashv \Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{12}, x: \widehat{\alpha_{1}}, \Gamma_{\mathrm{R}} \quad \text { By IH } \\
& \Gamma_{11}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{12} \vdash \lambda x . e \Downarrow \widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}} \dashv \Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha_{1}}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{12} \quad \text { By } \rightarrow \mathrm{I} \\
& \Gamma_{11}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{12} \vdash \lambda x . e \Downarrow \widehat{\alpha} \dashv \Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{12} \quad \text { By ExSubst } \Downarrow \\
& \text { * } \\
& \Gamma_{11}, \widehat{\alpha}, \Gamma_{12} \vdash \lambda x . e \Downarrow \widehat{\alpha} \dashv \Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}} \quad \text { By } \rightarrow \mathrm{I} \widehat{\alpha}
\end{aligned}
$$

- Case $\rightarrow \mathrm{E}: \quad \mathcal{D}:: \frac{\Gamma \vdash e_{1} \Uparrow B \rightarrow A \quad \mathrm{C}^{\prime} \stackrel{\Gamma}{ } \mathrm{e}_{2} \Downarrow B}{\Gamma \vdash e_{1} e_{2} \Uparrow \underbrace{A}_{[\Omega] A^{\prime}}}$

By IH, $\Gamma_{1}^{\prime} \vdash e_{1} \Uparrow C^{\prime} \dashv \Gamma_{M}$ where $[\Omega] C^{\prime}=B \rightarrow A$.
If $C^{\prime}=B^{\prime} \rightarrow A^{\prime}$ then $[\Omega] B^{\prime}=B$ and $[\Omega] A^{\prime}=A$. By IH, $\Gamma_{M} \vdash e_{2} \Downarrow B^{\prime} \dashv \Gamma_{2}^{\prime}$. The result is by $\rightarrow E$.
Otherwise, $C^{\prime}=\widehat{\alpha}$ and $\Omega(\widehat{\alpha})=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}$. Since $[\Omega] C^{\prime}=B \rightarrow A$, we have $[\Omega] \widehat{\alpha_{1}}=B$ and $[\Omega] \widehat{\alpha_{2}}=A$. The type C^{\prime} must be well-formed under Γ_{1}^{\prime} and under Γ_{M}, so $\widehat{\alpha}$ must be defined within those contexts:

$$
\Gamma_{1}^{\prime}=\Gamma_{11}, \widehat{\alpha}, \Gamma_{12} \quad \text { and } \quad \Gamma_{M}=\Gamma_{\mathrm{L}}, \widehat{\alpha}, \Gamma_{\mathrm{R}}
$$

Therefore the IH really gave us $\Gamma_{11}, \widehat{\alpha}, \Gamma_{12} \vdash e_{1} \Uparrow \widehat{\alpha} \dashv \Gamma_{\mathrm{L}}, \widehat{\alpha}, \Gamma_{\mathrm{R}}$. Applying the IH to $\Gamma \vdash e_{2} \Downarrow \mathrm{~B}$, with input context $\Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{\mathrm{R}}$ yields

$$
\Gamma_{\mathrm{L}}, \widehat{\alpha_{1}}, \widehat{\alpha_{2}}, \widehat{\alpha_{1}}=\widehat{\alpha_{1}} \rightarrow \widehat{\alpha_{2}}, \Gamma_{\mathrm{R}} \vdash e_{2} \Downarrow \widehat{\alpha_{1}} \dashv \Gamma_{2}^{\prime}
$$

$\rightarrow \mathrm{E} \widehat{\alpha}$ gives $\Gamma_{11}, \widehat{\alpha}, \Gamma_{12} \vdash e_{1} e_{2} \Uparrow \widehat{\alpha_{2}} \dashv \Gamma_{2}^{\prime}$, which is the same as $\Gamma_{1}^{\prime} \vdash e_{1} e_{2} \Uparrow \widehat{\alpha_{2}} \dashv \Gamma_{2}^{\prime}$, which was to be shown.

- Case 1I: Since $A=1$, either $A^{\prime}=1$ and we just apply 1 I, or $A^{\prime}=\widehat{\alpha}$ where $[\Omega] \widehat{\alpha}=1$, in which case the result follows by 1I and ExSubst \Downarrow.
- Case $\forall \mathrm{I}$:

$$
\mathcal{D}:: \frac{\Gamma, \alpha \vdash e \Downarrow A_{0}}{\Gamma \vdash e \Downarrow \underbrace{\forall \alpha . A_{0}}_{[\Omega] A^{\prime}}}
$$

A^{\prime} is either $\forall \alpha$. A_{0}^{\prime} or $\widehat{\beta}$. But if $A^{\prime}=\widehat{\beta}$ then $[\Omega] \widehat{\beta}=\forall \alpha$. A_{0}, violating the assumption that Ω is predicative. Therefore $A^{\prime}=\forall \alpha . A_{0}^{\prime}$, and $[\Omega] A_{0}^{\prime}=A_{0}$.

$$
\begin{array}{cc}
\Gamma_{1}^{\prime}, \alpha \vdash e \Downarrow A_{0}^{\prime} \dashv \Gamma_{2}^{\prime}, \alpha, \Gamma_{\mathrm{z}} & \text { By IH } \\
\Gamma_{1}^{\prime} \vdash e \Downarrow \forall \alpha . A_{0}^{\prime} \dashv \Gamma_{2}^{\prime} & \text { By } \forall \mathrm{I}
\end{array}
$$

- Case $\forall \mathrm{E}$:

$$
\mathcal{D}:: \frac{\Gamma \vdash \mathrm{e} \Uparrow \forall \alpha \cdot A_{0} \quad \Gamma \vdash \mathrm{~B} w f}{\Gamma \vdash e \Uparrow[B / \alpha] A_{0}}
$$

Extend Ω with the articulation of $\widehat{\alpha}=\mathrm{B}$, yielding Ω^{\prime}. By IH, $\Gamma_{1}^{\prime} \vdash e \Uparrow A^{\prime} \dashv \Gamma_{2}^{\prime}$ where $\left[\Omega^{\prime}\right] A^{\prime}=\forall \alpha$. A_{0}. Since Ω is predicative, A^{\prime} must have the form $\forall \alpha$. A_{0}^{\prime} where $[\Omega] A_{0}^{\prime}=A_{0}$. By $\forall \mathrm{E} \widehat{\alpha}$,

$$
\Gamma_{1}^{\prime} \vdash e \Uparrow[\widehat{\alpha} / \alpha] A_{0}^{\prime} \dashv \Gamma_{2}^{\prime}, \widehat{\alpha}
$$

The context Ω^{\prime} includes the articulation of $\widehat{\alpha}=B$, so $[\Omega] \widehat{\alpha}=B$. Then $[\Omega][\widehat{\alpha} / \alpha] A_{0}^{\prime}=[B / \alpha] A_{0}$.

