
Supplementary material for “Bidirectional polymorphism

through greed and unions”

Jana Dunfield
McGill University

November 3, 2020

Appendix: Supplementary Material

This appendix contains definitions, proofs, and example derivations that didn’t fit in the paper. In line-by-line
proofs, I put a Z next to the final result.

Lemma 9. If Ω completes Γ then dom([Ω]Γ) ⊆ dom(Γ).

Proof. By induction on Ω. Since Ω completes Γ , the contexts are the same modulo hints and existential
variables that are declared in both but only solved in Ω. In the case when Ω = Ω ′, α̂=A and Γ = Γ ′, α̂: from
the definition, [Ω]Γ = [Ω ′]([A/α̂]Γ ′). By IH, dom([Ω ′]([A/α̂]Γ ′) ⊆ dom([A/α̂]Γ ′), and substituting for α̂ in Γ ′

does not change its domain at all.

Lemma 11. Given a context Ω that completes Γ , if [Ω]Γ ⊢ [Ω]A wf then Γ ⊢ A wf.

Proof. To show Γ ⊢ A wf, we show FV(A) ⊆ dom(Γ).
For all α̂ in FV(A): Suppose α̂ /∈ dom(Γ). By definition of completion, dom(Γ) = dom(Ω) so α̂ /∈

dom(Ω). Thus, applying Ω to A cannot substitute for α̂, and α̂ ∈ FV([Ω]A). By definition of well-formedness,
FV([Ω]A) ⊆ dom([Ω]Γ), which by Lemma 9 is ⊆ dom(Γ). Therefore α̂ ∈ dom(Γ), a contradiction.

Lemma 12 (Well-Formedness). If D :: Γ ⊢ . . . ⊣ Γ ′ then for any solved α̂ ∈ dom(Γ), it is the case that
Γ = Γ1, α̂=A, Γ2 and Γ1 ⊢ A wf, and likewise for any solved α̂ ∈ dom(Γ ′).

Proof. By induction on D. In the 6 rules that introduce existential solutions, the well-formedness of the
solution is either explicit (α̂=L≦, α̂=R≦) or is evident from the context (→Iα̂, →Eα̂, →α̂L≦, →α̂R≦).

Definition 14 (Ordering of subtyping judgments). Given J1 = Γ1 ⊢ A1 ≦ B1 ⊣ . . . and J2 = Γ2 ⊢ A2 ≦
B2 ⊣ . . . , the order ≺ is defined lexicographically by

(1) the numbers of hints in Γ1 and in Γ2, under <;

(2) if B1 = B2 and Γ1 = Γ2, the angst of A1 versus A2; or, if A1 = A2 and Γ1 = Γ2, the angst of B1 versus B2;

(3) {A1, B1} ≺ {A2, B2};

(4) A1 = A2 and B1 = B2 where all existential variables in A1(= A2) are solved in Γ1 but not in Γ2; or, the
same, swapping B1 and B2 for A1 and A2.

i

ii

Definition 15 (Ordering of typing judgments). Given J1 = Γ1 ⊢ e1 ⇑/⇓ C1 ⊣ Γ ′

1
and J2 = Γ2 ⊢ e2 ⇑/⇓

C2 ⊣ Γ ′

2
, we define J1 � J2 by the lexicographic ordering of:

(1) e1 and e2 (subterm ordering);

(2) the directions, considering ⇑ smaller than ⇓;

(3a) If both are checking judgments:

(i) C1 � C2;

(ii) Γ1 = Γ2 and C1 has less angst then C2; or

(iii) all existential variables in C1(= C2) are solved in Γ1 but not in Γ2

(3b) If both are synthesis judgments:

(i) the number of hints in Γ ′

1
versus Γ ′

2
; if equal,

(ii) C2 � C1;

(iii) C2 has less angst with respect to Γ ′

2
than C1 with respect to Γ ′

1
.

Theorem 16 (Decidability of Subtyping and Contextual Matching). Given Γ , A, and B, the existence of Γ ′

such that Γ ⊢ A ≦ B ⊣ Γ ′ in System Biα̂ is decidable.
Moreover, given Γ0, A0 and Γ , the existence of A such that (Γ ⊢ A0) . (Γ ⊢ A) is decidable.

Proof. We show that the premises of each rule are smaller, under the defined partial order, than the conclu-
sion. We also note that in each rule, we have enough information to apply the induction hypothesis for each
premise.

∀L-hint≦’s premise is smaller by part (1) of Definition 14.
In ExSubstL≦ and ExSubstR≦, use part (2).
In ∀Lα̂≦ (converting α̂ to α), →≦ and ∀R≦, use part (3).
In →α̂L≦ and →α̂R≦, use part (4).
The rules 1≦, αRefl≦, α̂Refl≦, α̂=L≦, α̂=R≦ have no interesting premises.
For contextual matching, the rule empty-σ has no premises, while the length of Γ0 is reduced by every

other rule in Figure 6.

Theorem 17 (Decidability of Typing).

(i) Given Γ , e, and C, it is decidable whether there exists Γ ′ such that Γ ⊢ e ⇓ C ⊣ Γ ′.

(ii) Given Γ and e it is decidable whether there exist Γ ′ and C such that Γ ⊢ e ⇑ C ⊣ Γ ′.

Proof. We show that the premises of each rule are smaller, under the defined partial order, than the conclu-
sion. We also note that in each rule, we have enough information to apply the induction hypothesis for each
premise. For example, in →E, we have e = e1e2, giving us an e1 for →E’s synthesizing premise; applying the
i.h. there gives a type for the second, checking, premise.

var and 1I have no premises.
By part (1), the premises of anno, →I, →E, hint, →Eα̂ have a smaller term than the conclusion.
sub’s first premise is smaller by part (2); the second premise is decidable by Theorem 16.
∀E-hint’s premise is smaller by part (3b)(i). Contextual matching is decidable by Theorem 16.
∀I’s premise is smaller by part (3a)(i); ∀Eα̂’s premise is smaller by part (3b)(ii).
ExSubst⇓’s premise is smaller by part (3a)(ii); ExSubst⇑’s, by part (3b)(iii).
→Iα̂’s premise is smaller by part (3a)(iii).

iii

Theorem 18 (Soundness of System Biα̂). If Γ ⊢ J ⊣ Γ ′ and Ω completes Γ ′ then [Ω]Γ ′ ⊢ [Ω]J ′, where
J ′ is J with any hint . . . in e subterms replaced by e and hints in annotations removed.

Proof. Since Ω completes Γ ′, we have Ω ⊇ Γ ′: any variable α̂ that is solved in Γ ′ is also solved, and has the

same solution, in Ω. Moreover, it follows from Lemma 13 that Γ ′ ⊇ Γ . Since ⊇ is a transitive relation, any α̂

solved in Γ is solved and has the same solution in Ω.
When applying the IH, we must ensure that the Ω and Γ ′ we apply the IH with are in sync. For example, in

the case for ∀I the output context in the subderivation is Γ ′, α, ΓZ while the output context for the derivation
is Γ ′. The given Ω completes Γ ′, not Γ ′, α, ΓZ, so it must be extended as follows: Add solutions in ΓZ to Ω;

for unsolved variables β̂, choose any well-formed type B—1 is the easiest choice since it has no free type

variables and is thus well-formed in every context—and add β̂=B to Ω. This works because ∀I strips out all

the declarations in ΓZ, so β̂ is about to leave this world unsolved, and therefore unconstrained.
In the ∀Eα̂ case, the IH gives [Ω]Γ ⊢ e ⇑ ∀α. [Ω]A. Since Ω is solved, α̂=A ′ ∈ Ω, and by Lemma 12,

Γ ⊢ A ′
wf. By Corollary 10, [Ω]Γ ⊢ [Ω]A ′

wf. By ∀E, [Ω]Γ ⊢ e ⇑ [[Ω]A ′/α]([Ω]A). By a property of
substitutions, [[Ω]A ′/α]([Ω]A) = [Ω][A ′/α]A, giving the result.

In the ExSubst⇓ case, the IH yields [Ω]Γ ⊢ e ⇓ [Ω]Γ(α̂); the variable α̂ cannot be free in Γ(α̂), and we
earlier noted that Ω(α̂) = Γ(α̂), so in fact [Ω]Γ(α̂) = [Ω]Ω(α̂) = [Ω]α̂, giving the result. ExSubst⇑ and
ExSubst{L,R}≤ are similar.

In the →Iα̂ case, the IH gives [Ω]Γ, x:([Ω]α̂1) ⊢ e0 ⇓ [Ω]α̂2. By →I, [Ω]Γ ⊢ λx. e0 ⇓ ([Ω]α̂1) → ([Ω]α̂2).
The declaration α̂=α̂1 → α̂2 is in Γ , so by Lemma 13 it is also in Ω. Thus, we have . . . ⇓ [Ω]α̂, which was to
be shown.

In the α̂=L≤ case, we have (α̂=B) ∈ Γ ′. want [Ω]Γ ⊢ [Ω]α̂ ≦ [Ω]B. By Lemma 13, (α̂=B) ∈ Ω, so
[Ω]α̂ = [Ω]B. The result follows by reflexivity of ≦. The α̂=R≤ case is symmetric.

The →α̂L≤, →α̂R≤ cases use similar reasoning as the →Iα̂ case.
The remaining cases are straightforward.

Γ ⊢ e ⇑ ∀α. α → α

Γ ⊢ e ⇑ [1 → int] (α → α)
∀E

...

Γ, x:1 ⊢ . . . ⇓ int

Γ ⊢ λx. . . . ⇓ 1 → int
→I

...

1 → int ≦ 1 → int
...

. . .

Γ ⊢ e ⇑ ∀α. α → α ⊣ Γ

Γ ⊢ e ⇑ [α̂/α] (α → α) ⊣ Γ, α̂
∀Eα̂

...

Γ2, x:α̂1 ⊢ . . . ⇓ α̂2 ⊣ Γ2, x:α̂1

Γ, α̂ ⊢ λx. . . . ⇓ α̂ ⊣ Γ2
→Iα̂

......

Γ2 ⊢ α̂ ≦ 1 → int ⊣

Ω
︷ ︸︸ ︷
Γ, α̂1=1, α̂2=int, α̂=α̂1→α̂2

...
. . .

Figure 14: Corresponding derivations in System Bi (above) and System Biα̂ (below)

Stipulating that certain occurrences of 1 → int in the middle and right of the derivation do in fact flow

from the occurrence of 1 → int on the left, the System Biα̂ derivation should look like the one at the bottom

of Figure 14, where Γ2 = Γ, α̂1, α̂2, α̂=α̂1→α̂2. For the various judgments Γ ′

1
⊢ . . . ⊣ Γ ′

2
in the System Biα̂

derivation, the contexts Γ ′

1
and Γ ′

2
don’t disagree with Ω; they may say less—for example, just after we create

α̂ on the left there is no information about α̂—but they don’t contradict it.

Theorem 21 (Predicative Completeness). For any Ω and Γ ′

1
and predicative derivation D :: Γ ⊢ [Ω]J in

System Bi, provided that

iv

(1) Ω is predicative (for any α̂, the type Ω(α̂) is monomorphic) and articulated

(2) Ω completes Γ ′

1
, and [Ω]Γ ′

1
= Γ

then [Ω]Γ ′

1
⊢ [Ω]A ′ ≤ [Ω]B ′ =⇒ Γ ′

1
⊢ A ′ ≦ B ′ ⊣ Γ ′

2

[Ω]Γ ′

1
⊢ e ⇓ [Ω]A ′ =⇒ Γ ′

1
⊢ e ⇓ A ′ ⊣ Γ ′

2

[Ω]Γ ′

1
⊢ e ⇑ C =⇒ Γ ′

1
⊢ e ⇑ C ′ ⊣ Γ ′

2

for some C ′ such that
C = [Ω]C ′

Proof. By induction on D.
Assuming the given types [Ω]A ′, etc. are well-formed, by Lemma 11 the types A ′, etc. are well-formed

under Γ ′

1
. But the type C in the synthesis judgment is well-formed under Γ , while the type C ′ in the conse-

quent of the theorem is well-formed under Γ ′

2
—and not necessarily under Γ ′

1
, as Γ ′

2
may contain existential

type variables that Γ ′

1
does not.

• Case →≦: D ::

Γ ⊢ B1 ≦ A1 Γ ⊢ A2 ≦ B2

Γ ⊢ A1 → A2︸ ︷︷ ︸
[Ω]A ′

≦ B1 → B2︸ ︷︷ ︸
[Ω]B ′

We know that [Ω]A ′ = A1 → A2. Either {→A ′ case} A ′ = A ′

1
→ A ′

2
(so [Ω]A ′ = [Ω]A ′

1
→ [Ω]A ′

2
=

A1 → A2) or {α̂A ′ case} A ′ = α̂ (so [Ω]A ′ = [Ω]α̂). Similarly, we distinguish {→B ′ case} and

{β̂B ′ case} depending on whether B ′ is B ′

1
→ B ′

2
or β̂. (Note that possibly β̂ = α̂.)

– {→A ′ and →B ′ case}:

Γ ′

1
⊢ B ′

1
≦ A ′

1
⊣ Γ ′

2
By IH

Γ ′

2
⊢ A ′

2
≦ B ′

2
⊣ Γ ′

3
By IH

Γ ′

1
⊢ A ′

1
→ A ′

2
≦ B ′

1
→ B ′

2
⊣ Γ ′

3
By →≦

– {α̂A ′ and →B ′ case}:

Γ ′

1
⊢ A ′

1
→ A ′

2
≦ B ′

1
→ B ′

2
⊣ Γ ′

3
As preceding case

If Γ ′

1
includes a solution for α̂, then:

Z Γ ′

1
⊢ α̂ ≦ B ′

1
→ B ′

2
⊣ Γ ′

3
By ExSubstL≦

Otherwise, Γ ′

1
does not include a solution for α̂.

∗ Ω(α̂) = [Ω]A ′ = A1 → A2 must have the form α̂1 → α̂2, because Ω is predicative and
articulated. We assumed that Γ ′

1
does not include a solution for α̂, so Γ ′

1
= ΓL, α̂, ΓR. Let

Γ+ = ΓL, α̂1, α̂2, α̂=α̂1→α̂2, ΓR.

Γ+ ⊢ B ′

1
≦ α̂1 ⊣ ΓM By IH on Γ ⊢ B1 ≦ A1,

taking ΓL, α̂1, α̂2, α̂=α̂1→α̂2 as Γ ′

1

ΓM ⊢ α̂2 ≦ B ′

2
⊣ Γ ′

2
By IH

Γ+ ⊢ α̂1 → α̂2 ≦ B ′

1
→ B ′

2
⊣ Γ ′

2
By →≦

Γ+ ⊢ α̂ ≦ B ′

1
→ B ′

2
⊣ Γ ′

2
By ExSubstL≦

Z Γ ′

1
⊢ α̂ ≦ B ′

1
→ B ′

2
⊣ Γ ′

2
By →α̂L≦

– {→A ′ and β̂B ′ case}: Symmetric to the {α̂A ′ and →B ′ case}.

– {α̂A ′ and β̂B ′ case}: If either α̂ or β̂ is solved in Γ ′

1
, then the solution in Γ ′

1
has an → at its head

(since the solution in Ω does). Using suitably articulated contexts, use the IH, then use ExSubst
and →α̂L≦ or →α̂R≦ as needed.

If neither is solved and α̂ = β̂, then the result follows by α̂Refl≦.

v

Otherwise, neither is solved and α̂ 6= β̂. So add a solution for whichever of α̂ and β̂ is declared
last in Γ ′

1
. Suppose without loss of generality that Γ ′

1
= ΓL, α̂, ΓC, β̂, ΓR.

Γ ′

1
⊢ α̂ ≦ β̂ ⊣ ΓL, α̂, ΓC, β̂=α̂ By α̂=R≦

• Case αRefl≦: D :: Γ ⊢ α ≦ α

We have α = [Ω]A ′ = [Ω]B ′. The types A ′ and B ′ can each be α or various existential variables.

If A ′ = B ′ = α, the result follows by αRefl≦, giving Γ ′

1
⊢ α ≦ α ⊣ Γ ′

1
.

If A ′ = α and B ′ is some solved β̂, the result follows by αRefl≦, yielding Γ ′

1
⊢ α ≦ α ⊢ Γ ′

1
then

ExSubstR≦ for Γ ′

1
⊢ α ≦ β̂ ⊣ Γ ′

1
.

If β̂ is unsolved: β̂ is well-formed in Γ ′

1
, so Γ ′

1
= ΓL, β̂, ΓR. Applying α̂=R≦ gives ΓL, β̂, ΓR ⊢ α ≦ β̂ ⊣

ΓL, β̂=α, ΓR. Let Γ ′

2
= ΓL, β̂=α, ΓR. Substituting gives Γ ′

1
⊢ α ≦ β̂ ⊣ Γ ′

2
, which was to be shown.

The subcases where B ′ = α and A ′ is some solved β̂ are symmetric to the last two.

If A ′ = γ̂ and B ′ = β̂, first apply αRefl≦, then:

– If both are solved in Γ ′

1
, apply ExSubstL≦ then ExSubstR≦.

– If only γ̂ is solved, apply ExSubstL≦ then α̂=R≦.

– If only β̂ is solved, apply ExSubstR≦ then α̂=L≦ (symmetric to the last).

– If neither is solved: Both γ̂ and β̂ are well-formed under Γ ′

1
. Either γ̂ comes first or β̂ comes first.

Suppose β̂ comes first. Then α̂=L≦ gives Γ ′

1
⊢ γ̂ ≦ β̂ ⊣ . . . , α̂=β̂,

• Case 1≦: Similar to the previous case, using 1≦ in place of αRefl≦.

• Case ∀L≦: D ::

Γ ⊢ [C/α]A0 ≦ B Γ ⊢ C wf

Γ ⊢ ∀α. A0︸ ︷︷ ︸
[Ω]A ′

≦ B︸︷︷︸
[Ω]B ′

We know that [Ω]A ′ = ∀α. A0. Either {∀A ′ case} A ′ = ∀α. A ′

0
, so [Ω]A ′ = ∀α. [Ω]A ′

0
, or {γ̂A case}

A ′ = γ̂ so [Ω]γ̂ = ∀α. . . . , which is impossible by the assumption that Ω is predicative.

– {∀A ′ case}:

Choose a fresh α̂. Let Ω ′ = Ω,Artic(α̂=C).

A0 = [Ω]A ′

0
Above

[C/α]A0 = [C/α][Ω]A ′

0
Applying [C/α] to both sides

= [Ω]([C/α]A ′

0
) Permutation (no ex. vars. in C)

= [Ω]([C/α̂][α̂/α]A ′

0
) α̂ fresh

= [Ω,Artic(α̂=C)][α̂/α]A ′

0
Definitions of articulation and substitution

= [Ω ′][α̂/α]A ′

0
Definition of Ω ′ above

Therefore [C/α]A0 = [Ω ′]([α̂/α]A ′

0
), and we can apply the IH:

Γ ′

1
, α̂ ⊢ [α̂/α]A ′

0
≦ B ′ ⊣ ΓR By IH with Ω ′

ΓR = Γ ′

2
, α̂[. . .], ΓZ [α̂/α]A ′

0
well-formed under ΓR, so α̂ ∈ dom(ΓR)

Z Γ ′

1
⊢ ∀α. A ′ ≦ B ′ ⊣ Γ ′

2
By ∀Lα̂≦

vi

• Case ∀R≦: D ::

Γ, β ⊢ A ≦ B0

Γ ⊢ A︸︷︷︸
[Ω]A ′

≦ ∀β. B0︸ ︷︷ ︸
[Ω]B ′

We know that [Ω]B ′ = ∀β. B0. Either {∀B ′ case} B ′ = ∀β. B ′

0
(so [Ω]B ′ = ∀β. [Ω]B ′

0
) or {γ̂B case}

B ′ = γ̂.

– {∀B ′ case}:

Γ ′

1
, β ⊢ A ′ ≦ B ′ ⊣ Γ ′′

2
By IH

Γ ′′

2
= Γ ′

2
, β, ΓZ By Γ ′′

2
= Γ (follows from Lemma 13)

Z Γ ′

1
⊢ A ′ ≦ ∀β. B ′

1
⊣ Γ ′

2
By ∀R≦

– {γ̂B ′ case}:

Applying Ω to B ′ = γ̂ gives [Ω]B ′ = [Ω]γ̂, which is equal to Ω(γ̂). But since [Ω]B ′ = ∀β. B0,
we have Ω(γ̂) = ∀β. B0, which contradicts our assumption that Ω is predicative: this case is
impossible.

• Case var: D ::

Γ(x) = A

Γ ⊢ x ⇑ A

Γ = [Ω]Γ ′

1
. Therefore Γ(x) = [Ω](Γ ′

1
(x)). So Γ ′

1
(x) = A ′ where [Ω]A ′ = A. The result, Γ ′

1
⊢ x ⇑ A ′ ⊣

Γ ′

1
, follows by var.

• Case sub: D ::

Γ ⊢ e ⇑ B Γ ⊢ B ≦ A

Γ ⊢ e ⇓ A

By IH, Γ ′

1
⊢ e ⇑ B ′ ⊣ ΓM where [Ω]B ′ = B. We have [Ω]A ′ = A. By IH, ΓM ⊢ B ′ ≦ A ′ ⊣ Γ ′

2
. The

result follows by sub.

• Case anno: D ::

N . (Γ ⊢ A) Γ ⊢ e ⇓ A

Γ ⊢ (e : N) ⇑ A

The result follows by the IH and anno. (The . premise of anno in System Biα̂ does not involve exis-
tential contexts; see Section 3.2.1.)

• Case →I: D ::

Γ, x:A1 ⊢ e ⇓ A2

Γ ⊢ λx. e ⇓ A1 → A2︸ ︷︷ ︸
[Ω]A ′

If A ′ = A ′

1
→ A ′

2
(with [Ω]A ′

1
= A1 and [Ω]A ′

2
= A2): The IH gives Γ ′

1
, x:A ′

1
⊢ e ⇓ A ′

2
⊣ ΓM. By

Lemma 5, ΓM = Γ ′

1
; then, by Lemma 6, ΓM = Γ ′

2
, x:A ′

1
, ΓR. Applying →I gives Γ ′

1
⊢ λx. e ⇓ A ′

1
→ A ′

2
⊣

Γ ′

2
, which was to be shown.

Otherwise, A ′ = α̂ and Ω(α̂) = α̂1 → α̂2, where A1 = [Ω]α̂1 and A2 = [Ω]α̂2.

– {solved case}: α̂ solved in Γ ′

1
; since Γ ′

1
is articulated, α̂=α̂1 → α̂2 ∈ Γ ′

1
.

Γ ′

1
, x:α̂1 ⊢ e ⇓ α̂2 ⊣ Γ ′

2
, x:α̂1, ΓR By IH

Γ ′

1
⊢ λx. e ⇓ α̂1 → α̂2 ⊣ Γ ′

2
By →I

Z Γ ′

1
⊢ λx. e ⇓ α̂ ⊣ Γ ′

2
By ExSubst⇓

vii

– {not-solved case}: α̂ not solved in Γ ′

1
: decompose Γ ′

1
into Γ11, α̂, Γ12.

Γ11, α̂1, α̂2, α̂=α̂1→α̂2, Γ12, x:α̂1 ⊢ e ⇓ α̂2 ⊣ ΓL, α̂1, α̂2, α̂=α̂1→α̂2, Γ12, x:α̂1, ΓR By IH

Γ11, α̂1, α̂2, α̂=α̂1→α̂2, Γ12 ⊢ λx. e ⇓ α̂1 → α̂2 ⊣ ΓL, α̂1, α̂2, α̂=α̂1→α̂2, Γ12 By →I

Γ11, α̂1, α̂2, α̂=α̂1→α̂2, Γ12 ⊢ λx. e ⇓ α̂ ⊣ ΓL, α̂1, α̂2, α̂=α̂1→α̂2, Γ12 By ExSubst⇓

Z Γ11, α̂, Γ12 ⊢ λx. e ⇓ α̂ ⊣ ΓL, α̂1, α̂2, α̂=α̂1→α̂2 By →Iα̂

• Case →E: D ::

Γ ⊢ e1 ⇑ B → A Γ ⊢ e2 ⇓ B

Γ ⊢ e1 e2 ⇑ A︸︷︷︸
[Ω]A ′

By IH, Γ ′

1
⊢ e1 ⇑ C ′ ⊣ ΓM where [Ω]C ′ = B → A.

If C ′ = B ′ → A ′ then [Ω]B ′ = B and [Ω]A ′ = A. By IH, ΓM ⊢ e2 ⇓ B ′ ⊣ Γ ′

2
. The result is by →E.

Otherwise, C ′ = α̂ and Ω(α̂) = α̂1 → α̂2. Since [Ω]C ′ = B → A, we have [Ω]α̂1 = B and [Ω]α̂2 = A.
The type C ′ must be well-formed under Γ ′

1
and under ΓM, so α̂ must be defined within those contexts:

Γ ′

1 = Γ11, α̂, Γ12 and ΓM = ΓL, α̂, ΓR

Therefore the IH really gave us Γ11, α̂, Γ12 ⊢ e1 ⇑ α̂ ⊣ ΓL, α̂, ΓR. Applying the IH to Γ ⊢ e2 ⇓ B, with
input context ΓL, α̂1, α̂2, α̂=α̂1→α̂2, ΓR yields

ΓL, α̂1, α̂2, α̂=α̂1→α̂2, ΓR ⊢ e2 ⇓ α̂1 ⊣ Γ ′

2

→Eα̂ gives Γ11, α̂, Γ12 ⊢ e1e2 ⇑ α̂2 ⊣ Γ ′

2
, which is the same as Γ ′

1
⊢ e1e2 ⇑ α̂2 ⊣ Γ ′

2
, which was to be

shown.

• Case 1I: Since A = 1, either A ′ = 1 and we just apply 1I, or A ′ = α̂ where [Ω]α̂ = 1, in which case
the result follows by 1I and ExSubst⇓.

• Case ∀I: D ::

Γ, α ⊢ e ⇓ A0

Γ ⊢ e ⇓ ∀α. A0︸ ︷︷ ︸
[Ω]A ′

A ′ is either ∀α. A ′

0
or β̂. But if A ′ = β̂ then [Ω]β̂ = ∀α. A0, violating the assumption that Ω is

predicative. Therefore A ′ = ∀α. A ′

0
, and [Ω]A ′

0
= A0.

Γ ′

1
, α ⊢ e ⇓ A ′

0
⊣ Γ ′

2
, α, ΓZ By IH

Z Γ ′

1
⊢ e ⇓ ∀α. A ′

0
⊣ Γ ′

2
By ∀I

• Case ∀E: D ::

Γ ⊢ e ⇑ ∀α. A0 Γ ⊢ B wf

Γ ⊢ e ⇑ [B/α]A0

Extend Ω with the articulation of α̂=B, yielding Ω ′. By IH, Γ ′

1
⊢ e ⇑ A ′ ⊣ Γ ′

2
where [Ω ′]A ′ = ∀α. A0.

Since Ω is predicative, A ′ must have the form ∀α. A ′

0
where [Ω]A ′

0
= A0. By ∀Eα̂,

Γ ′

1 ⊢ e ⇑ [α̂/α]A ′

0 ⊣ Γ ′

2, α̂

The context Ω ′ includes the articulation of α̂=B, so [Ω]α̂ = B. Then [Ω][α̂/α]A ′

0
= [B/α]A0.

