
A Unified System of Type Refinements

Jana Clara Dunfield

August 6, 2007
CMU-CS-07-129

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Frank Pfenning, chair
Jonathan Aldrich

Robert Harper
Benjamin Pierce, University of Pennsylvania

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

c© 2007, 2022 Jana Clara Dunfield

This research was sponsored by the Air Force Research Laboratory (AFRL) under contract no. F1962895C0050,
the National Science Foundation (NSF) under grant nos. CCR-0121633, CCR-0204248 and subgrant no. Y040009, and
through a generous student fellowship from the NSF. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Keywords: type refinements, intersection types, union types, datasort refinements, index re-
finements, dimension types

Abstract

Types express properties of programs; typechecking is specification checking. However, the speci-
fications expressed by types in conventional type systems are imprecise. Type refinements address
this by allowing programmers to express more precise properties, while keeping typechecking de-
cidable and practical.

We present a system of type refinements that unifies and extends past work on datasort and
index refinements. We provide unified mechanisms of definite types, such as intersections, and
indefinite types, such as unions. Through our development of contextual typing annotations, the
tridirectional rule, and let-normal typechecking, we achieve a type system that is expressive and
practical, requiring no user input besides type annotations. We show that our implementation of
the type system can check several data structure invariants, as well as dimension types (an instance
of invaluable refinements), in a subset of Standard ML.

To the ones who had a notion, a notion deep inside

Acknowledgments

I thank:

• Margaret DeLap: 11/16/01 31267;

• Frank Pfenning, one of the great all-weather advisors;

• My other committee members, particularly Benjamin Pierce, for his detailed comments;

• Håkan Younes, Mukesh Agrawal, Urs Hengartner, Aleksey Kliger, Neel R. Krishnaswami,
Kate Larson, Jonathan Moody, Suman Nath, Sungwoo Park, Brigitte Pientka, Jeff Polakow,
Maverick Woo, Noam Zeilberger, and other lurkers in the Wean bunker;

• Andrew Tolmach, Olivier Danvy, Rowan Davies, Tim Chevalier, and other colleagues outside
the Wean bunker;

• My parents, my brother, and other relations by blood and by marriage;

• CMU Student Health Services;

• Amtrak, PAT, SEPTA, and my bicycles;

• Schenley Park in the dead of winter;

• Canada.

vii

viii ACKNOWLEDGMENTS

August 6, 2007

Contents

1 Introduction 1

1.1 Datasort refinements and intersection types . 2
1.2 Index refinements and union types . 3
1.3 The role of type annotations . 5
1.4 Bidirectional, tridirectional, and let-normal typechecking 6
1.5 Statement of thesis . 7
1.6 Related work . 7

1.6.1 Intersection types and datasort refinements 7
1.6.2 Union types . 10
1.6.3 Index refinements . 10

1.7 Other approaches . 12
1.7.1 Assertions . 12
1.7.2 ESC and related systems . 12

1.8 Contributions . 13
1.9 Reader’s guide . 13

1.9.1 Reading online . 14
1.9.2 Notation . 14

2 A type assignment system 17

2.1 Introduction . 17
2.2 The base language . 18
2.3 Definite property types . 19

2.3.1 Refined datatypes . 20
2.3.2 Intersections . 21
2.3.3 Greatest type: ⊤ . 21
2.3.4 Index refinements and universal dependent types Π 22
2.3.5 Guarded types . 26

2.4 Indefinite property types . 27
2.4.1 Unions . 28
2.4.2 The empty type . 29
2.4.3 Existential dependent types: Σ . 30
2.4.4 Asserting types . 30
2.4.5 Typechecking in evaluation order . 31

ix

x CONTENTS

2.5 Properties of subtyping . 34
2.6 Properties of values . 34

2.6.1 Substitutions . 35
2.6.2 Definiteness . 36
2.6.3 Value inversion on→, ∗, δ(i) . 41
2.6.4 Lemmas for case . 43

2.7 Type preservation and progress . 44
2.8 Related work . 48
2.9 Conclusion . 49

3 A tridirectional type system 51

3.1 Introduction . 51
3.2 The core language . 52
3.3 Property types . 56

3.3.1 Intersections . 56
3.3.2 Greatest type: ⊤ . 57
3.3.3 Refined datatypes . 57
3.3.4 Indefinite property types . 58
3.3.5 Subtyping . 60
3.3.6 The tridirectional rule . 60

3.4 Contextual typing annotations . 61
3.4.1 Checking against intersections . 61
3.4.2 Index variable scoping . 62
3.4.3 Contextual subtyping . 62
3.4.4 Soundness . 65
3.4.5 Completeness . 65

3.5 The left tridirectional system . 76
3.5.1 Soundness . 81
3.5.2 Completeness . 83
3.5.3 Decidability of typing . 87
3.5.4 Type Safety . 88

3.6 Related work . 88
3.6.1 Refinements, intersections, unions . 88
3.6.2 Partial inference systems . 88
3.6.3 Principal typings . 89

3.7 Conclusion . 89

4 Pattern matching 91

4.1 Introduction . 91
4.2 Foundations of pattern checking . 92

4.2.1 Pattern language . 92
4.2.2 Free variables and well-formedness . 92
4.2.3 Pattern matching . 93
4.2.4 Subtraction and intersection . 94

August 6, 2007

CONTENTS xi

4.3 Overview . 95
4.3.1 Case, match, and constructor typing . 100

4.4 Type assignment version of the system . 101
4.4.1 Substitution . 103

4.5 Lemmas for soundness . 104
4.6 Soundness . 105
4.7 Limitations . 110
4.8 Implementation . 112
4.9 Related work . 112

4.9.1 Pattern checking in unrefined type systems . 112
4.9.2 Davies’ datasort refinement system . 112

5 A let-normal type system 115

5.1 Introduction . 115
5.2 Tridirectional typechecking . 116

5.2.1 Evaluation contexts do not strictly determine order 116
5.2.2 Approaching the problem . 117

5.3 Let-normal typechecking . 118
5.3.1 Principal synthesis of values . 121

5.4 Introduction to the proofs . 126
5.5 Preliminaries . 127
5.6 Soundness . 132
5.7 Completeness . 135

5.7.1 Let-free paths and the ‘precedes’ relation . 135
5.7.2 Properties of →֒ . 136
5.7.3 Position and ordering of let-bindings . 137
5.7.4 Type preservation lemmas . 138
5.7.5 Results . 158

5.8 Extension to full pattern matching . 166
5.9 Related work . 166
5.10 Conclusion . 166

6 Implementation 169

6.1 The implemented language . 169
6.1.1 Type expressions . 170
6.1.2 Basis . 173
6.1.3 Declaring refinements . 175
6.1.4 Annotating declarations . 177
6.1.5 Annotating expressions . 177
6.1.6 Expression syntax . 178

6.2 Design . 178
6.3 Initial phases . 179

6.3.1 Index sort checking . 179
6.3.2 Injection . 179

August 6, 2007

xii CONTENTS

6.3.3 Product sort flattening . 180

6.3.4 Subset sort elimination . 180

6.3.5 Let-normal translation . 181

6.4 Interface to an ideal constraint solver . 181

6.5 Constraint-based typechecking . 182

6.5.1 Interface to ICS . 184

6.5.2 Interface to CVC Lite . 184

6.6 Internal index domains . 185

6.7 Optimizations . 186

6.7.1 Improvement of the synthesis judgment . 186

6.7.2 Memoization . 187

6.7.3 Left rule optimizations . 188

6.7.4 Slack variables . 188

6.8 Pattern checking . 189

6.9 Disjunctions . 189

6.10 The refinement restriction . 191

6.11 Performance . 193

6.11.1 Impact of solver interfaces . 194

6.11.2 Conservation of speed . 194

6.11.3 Scaling up . 195

6.12 Error reporting . 195

6.13 Parametric polymorphism . 196

7 Index domains 197

7.1 Introduction . 197

7.2 Integers . 197

7.2.1 Natural numbers . 198

7.2.2 Implementation . 198

7.2.3 Example: Inductive bitstrings . 198

7.2.4 Example: Red-black tree insertion . 204

7.2.5 Example: Red-black tree deletion . 209

7.3 Booleans . 219

7.4 Dimensions: an invaluable refinement . 220

7.4.1 Consistency and casting . 221

7.4.2 Definition of the index domain . 222

7.4.3 Soundness . 223

7.4.4 Implementation . 223

7.4.5 Related work on dimension types in ML . 224

7.4.6 Units of the same dimension . 226

7.4.7 Related work on invaluable refinements . 228

7.5 Conclusion . 230

August 6, 2007

CONTENTS xiii

8 Conclusion 233

8.1 Future work . 234
8.1.1 Parametric polymorphism . 234
8.1.2 Refinement-based compilation . 238
8.1.3 Index domains . 239
8.1.4 Mutable references . 242
8.1.5 Call-by-name languages . 242
8.1.6 Evidence of things unseen . 244
8.1.7 Derivation generation . 245
8.1.8 Counterexample generation . 245
8.1.9 Suggestion tools for refinements . 246

A Guide to Notation 247

Sources of Quotations 251

Bibliography 251

Index 265

August 6, 2007

xiv CONTENTS

August 6, 2007

List of Figures

2.1 Syntax of types and terms in the initial language . 19

2.2 Subtyping and typing in the initial language . 19

2.3 A small-step call-by-value semantics . 20

2.4 Extending the language with datatypes . 20

2.5 Propositions P, contexts Γ , and the restriction function Γ 22

2.6 Well-formedness of types, propositions, and contexts 22

2.7 Assumed properties of the |= and ⊢ index relations. 23

2.8 Constructor typing . 25

2.9 Typing rules . 32

2.10 Case typing rules . 33

2.11 Subtyping rules . 33

2.12 Substitution typing . 35

2.13 Illustration of derivation rank . 37

3.1 Syntax and semantics of the core language . 55

3.2 Subtyping and typing in the core language . 55

3.3 Case typing rules in the simple tridirectional system 58

3.4 Language additions for contextual typing annotations 64

3.5 Contextual subtyping . 64

3.6 Examples of contextual annotations . 66

3.7 Judgment forms appearing in this chapter . 76

3.8 Left tridirectional system . 77

3.9 Left tridirectional system, cont. 78

3.10 Case typing rules . 79

3.11 Connections between our type systems . 79

4.1 Definition of pattern matching . 94

4.2 Operational semantics . 94

4.3 Grammar . 100

4.4 Typing rules for left-constructor judgments, matches, and case 101

4.5 Pattern typing rules . 102

5.1 Syntax of terms and contexts in the let-normal type system 121

xv

xvi LIST OF FIGURES

5.2 Let-normal translation . 122
5.3 Rules common to the left tridirectional and let-normal type systems 128
5.4 Typing rules new in the let-normal system . 129
5.5 Relation between different versions of the same direct-style term 129
5.6 Unwinding . 129
5.7 Part of the new definition of the linearity judgment ∆ e ok 130
5.8 The nearest checking position function 〈↓〉(−) . 139
5.9 Definition of the ‘joins’ judgment . 145
5.10 The menagerie: our type systems and the key results relating them 167

6.1 Concrete syntax of the implementation language, I 170
6.2 Concrete syntax of the implementation language, II 172
6.3 Existential elimination rules for integer equations . 183
6.4 Ordered binary search trees . 189
6.5 Time required for typechecking . 193

7.1 Examples of zippers . 210
7.2 Datasort relation for zippers . 211
7.3 Units of the same dimension in Stardust . 227

August 6, 2007

Chapter 1

Introduction

One goal of type systems is to express program properties through types. Compile-time type-
checking in statically typed languages such as ML, Haskell, and Java can catch many programmer
mistakes: “well typed programs cannot ‘go wrong’” [Mil78]. But there are many programs that do
not behave as intended, yet do not “go wrong” in the sense of being unable to make a transition
in the operational semantics. For example, in ML the type of a ‘member’ function on binary search
trees could be written tree∗key→ bool. However, since this type expresses only that ‘member’ takes
a tree and a key and a returns a Boolean, even the constant function (λt. λk.True) has the above
type and will pass the typechecker—to say nothing of less obviously wrong functions, such as one
that descends to the left when it should descend to the right.

Hence, type safety with respect to a standard operational semantics is a necessary starting point
for a static type system; it is something to know that a well-typed function will safely produce an
answer of the right type (or safely diverge), but we would like to know that the answer produced
is correct. That is a tall order, which we do not endeavor to satisfy—at least, not for every function
in every program. We instead aim to show that the answer is not obviously wrong, and only occa-
sionally that it is exactly right. Thus we extend conventional static typing with property types that
encode more exact properties. Because pure type inference is, variously, undesirable or impossible
in systems of this kind, the programmer must write a few more type annotations than they would
in ML. We draw the line just past that additional burden: typechecking must remain automatic—
ruling out interactive theorem proving—and fast enough to be done at every re-compilation.

This work unifies and extends datasort and index refinement systems, which have distinct mech-
anisms for combining properties: intersection types for the datasort refinements, universal and
existential quantification and subset sorts for the index refinements. We provide unified mecha-
nisms: definite types (including intersections and universal quantification) for the conjunction of
properties, and indefinite types (including unions and existential quantification) for the disjunction
of properties. It makes indefinite types, including union types, “first-class” by removing the need for
the user to explicitly indicate when to eliminate unions. As Xi found [Xi98], the proper scope of the
elimination rules for such indefinite types is not trivial; we handle this through careful formulations
of both our type system and our variant of let-normal form. We show type safety in a call-by-value
setting. Preliminary experiments with our implemented typechecker suggest that typechecking is
practical.

1

2 CHAPTER 1. INTRODUCTION

In this chapter, we introduce the key concepts of datasort refinements, index refinements, and
intersection and union types. Next, we state our thesis and outline the broad contours of the
approach. After examining some related work (closer examinations are generally deferred to the
appropriate chapters), we provide a guide to reading the rest of the dissertation.

We will view types as describing program properties that can be checked at compile time. This
dissertation presents an expressive yet feasible type system with several important features: data-
sort refinements, intersection types, index refinements and union types, which we introduce below.
We then discuss the role of type annotations in our system.

1.1 Datasort refinements and intersection types

Traditionally, datasort refinements serve to check properties that can be defined by regular tree

grammars, a generalization of regular grammars [HU79] from strings to trees [CDG+97]. Regular
tree grammars are recognized by regular tree automata; automata recognizing ordinary regular
languages on strings can be seen as a special case of regular tree automata in which the trees all
have the shape of a line. A very simple example is the property of a list (of integers) being of even
length or odd length:

• The empty list Nil is of even length;

• If t is of even length then Cons(h, t) is of odd length;

• If t is of odd length then Cons(h, t) is of even length;

• If t is of unknown length then Cons(h, t) is of unknown length.

Notice that we can express the property, or refinement, of Cons inductively using only the property
of its argument t. This corresponds to a production in a regular grammar on strings, where the
right hand side has the form bB for some terminal b and nonterminal B.

Choosing to write even and odd to denote the properties of having even or odd length and list to
denote the property of having unknown length, we can write the types of the constructors Nil and
Cons as

Nil : even

Cons : int ∗ even→ odd

Cons : int ∗ odd→ even

Cons : int ∗ list→ list

We intend that Cons should have all three types listed. The type-theoretic expression of this is
intersection types: A ∧ B denotes the intersection of the types A and B, that is, the conjunction of
the properties expressed by A and B. Just as x ∈ S1 ∩S2 implies x ∈ S1 and x ∈ S2, e : A ∧ B implies

August 6, 2007

1.2. INDEX REFINEMENTS AND UNION TYPES 3

e : A and e : B.

Nil : even

Cons : (int ∗ even→ odd)

∧ (int ∗ odd→ even)

∧ (int ∗ list→ list)

A simple function of intersection type is tail:

tail = λx. case x of

Nil⇒ raise Error

||Cons(h, t)⇒ t

It is easy to see that tail should have the type

tail : (even→ odd) ∧ (odd→ even) ∧ (list→ list)

Implicit in this discussion is that every value of type even (resp. odd) is known to be a value of type
list. Formally, we assume the existence of a subsort relation � defining a partial order on datasorts.
In this case, the subsort relation is the reflexive closure of {(even, list), (odd, list)}, represented by
the diagram

even

✣

odd

❪

list

Prior work on datasort refinements [Fre94, Dav05a] used sort declarations:

datasort even = Nil | Cons of int ∗ odd

and odd = Cons of int ∗ even

which correspond to a regular grammar. In our system, the programmer gives the subsort relation
and constructor types directly:

datasort list : even < list, odd < list

datacon Nil : even

datacon Cons : (int ∗ even→ odd) ∧ (int ∗ odd→ even) ∧ (int ∗ list→ list)

Originally intended as an implementation shortcut, this design decision turns out to allow our
system to express invaluable datasort refinements, which are not based on values.

1.2 Index refinements and union types

Index refinements refine types by indices drawn from a decidable constraint domain. Type systems
supporting index refinements, both ours and Xi’s [Xi98], are parametric in the constraint domain,

August 6, 2007

4 CHAPTER 1. INTRODUCTION

but (by far) the most explored domain is that of integers with linear inequalities, which can express
a variety of useful properties, such as those involving the size of data structures. Continuing with
the list example, with index refinements we can give Nil and Cons these types:

Nil : list(0)

Cons : Πa:N . int ∗ list(a)→ list(a+ 1)

Here Πa:N . universally quantifies over an index a having index sort N (the natural numbers), so
the type of Cons should be read “for any natural number a, Cons takes an integer and a list of length
a and returns a list of length a+1”. The index-refined type of the function tail (defined previously)
is

tail : Πa:N . (a > 0) ⊃ (list(a)→ list(a− 1))

Here we use a guarded type (a > 0) ⊃ · · · , which “guards” the rest of the type by the proposition
a > 0. The typing claims that for all natural numbers a, if a > 0 holds, then tail takes lists of length
a to lists of length a − 1. Thus, applications of tail are well typed only if a > 0 holds: tail cannot
be applied to an empty list. We can now rewrite tail, eliminating the possibility that it raises an
exception:

λx. case x of

Nil⇒ raise Error

||Cons(h, t)⇒ t

−→ λx. case x of

Cons(h, t)⇒ t

In ordinary SML the new version of tail would give a “nonexhaustive match” warning, but with
refinements the typechecker knows that x cannot be Nil, and concludes that the case expression is
exhaustive.

To express the type of a function such as filter, where filter f l returns the elements of l for which
f returns True, we need existential quantification Σb:γ. B.1 Index refinements are not powerful
enough to encode the precise length returned.

filter : Πa:N . (int→bool)→ list(a)→ Σb:N . list(b)

The binary union A ∨ B expresses the disjunction of the properties specified by A and B. Types
of the form Σb:γ. B can be thought of as infinitary (for infinite index domains) union types; for
example, Σb:N . list(b) corresponds informally to

list(0) ∨ list(1) ∨ list(2) ∨ · · ·

We call existential quantification and union types indefinite types. Note that while unions in function
domains can be turned into intersections, e.g. (A ∨ B) → C can be written (A → C) ∧ (B → C),
a union in the range of a function cannot be trivially removed. Moreover, the inclusion of union
types is justified by intrinsic theoretical interest, by their symmetry with intersections, and by the
similarity of the technical realizations of union types and Σ types.

1∀ and ∃ instead of Π and Σ would be less obscure to many, but we follow established notation. The ASCII renderings
in our implementation are all and exists.

August 6, 2007

1.3. THE ROLE OF TYPE ANNOTATIONS 5

In addition to the integer domain, we develop (in Section 7.4) an index domain of dimensions,
allowing the type system to catch errors such as comparing or adding quantities of different di-
mensions (such as meters and meters squared) or different units of the same dimension (such as
meters and feet). The type real of floating-point numbers is refined by the dimension index sort
dim. Naturally, dimension polymorphism is supported, and both integer and dimension refinements
can be used in the same program, as in the following exponentiation function

fun power n x =

if n = 0 then

1.0

else if n < 0 then

1.0 / power (~n) x

else

x * power (n-1) x

which checks against the type Πd:dim. Πn:Z. int(n)→ real(d)→ real(d ^ n).

1.3 The role of type annotations

Type annotations are the only thing that keeps me sane.

—Mukesh Agrawal

Type inference for programs without any user-provided annotations is decidable for unrefined
Hindley-Milner type systems, such as core Standard ML. It is also decidable for Hindley-Milner
systems extended with datasort refinements; in fact, the original work on datasorts by Freeman
and Pfenning [FP91] used inference (the user must declare the arrangement of datasorts and their
relationship to datatype constructors, like we did in the examples above, but need not annotate
code that manipulates values of those types). For index refinements the decidability picture is
less clear, though we strongly suspect that with reasonably complex domains such as the integers,
inference is undecidable. But the question is moot: even if inference is possible, it is undesirable
for the following reasons.

• Type annotations provide useful documentation, especially in a refined type system such as
ours, since the properties are more interesting.

• Type annotations constrain components (such as functions and modules), so that these com-
ponents cannot be used in ways that are well-defined but unintended. For example, one never
wants to apply tail to an empty list, but its behavior is well-defined (it raises an exception and
‘raise’ expressions are always well typed) and a perfectly valid type can be inferred.

This issue becomes especially important in large programs, and was a key factor in Davies and
Pfenning’s decision to not use inference techniques in their work on datasort refinements.2

2Inference may be desirable in cases such as nested functions, which cannot necessarily be considered “components”.
However, we have not tried to distinguish such cases.

August 6, 2007

6 CHAPTER 1. INTRODUCTION

• Type annotations are already required at the module level of Standard ML (where, somewhat
analogously to the situation with datasort refinements, the annotations constrain how the
module can be used).

• Past work on datasort refinement and index refinement systems suggests that the amount of
annotation needed is modest [XP99, Dav05a], and certainly not as clumsy as in explicitly
typed languages such as Java and C++.

1.4 Bidirectional, tridirectional, and let-normal typechecking

We use a form of bidirectional typechecking [PT98] to check annotated programs. In this scheme
there are two primary “directions” of typing judgments: checking, e ↓ A, in which it is known
before e is examined that it must conform to type A, and synthesis, e ↑ A, in which the type A is
not yet known. In our formulation, the appropriate direction is closely related to the outermost
syntactic form of e (for instance, abstractions λx. e never synthesize), which helps keep the typing
rules simple.

Tridirectional typechecking arises in the elimination rules for unions, existentials, and the empty
type. While these rules are bidirectional—their premises and conclusions consist of synthesis and
checking judgments—they decompose their subject term e into E [e ′], in which e ′ is in an evaluation
position. When such a rule is applied the typechecker’s “direction” as it traverses the program is
not exactly up towards the root of the syntax tree (synthesis), nor exactly down towards the leaves
(propagating down a known type A to check e against, e ↓ A), but moves from the subterm e ′ to
the rest of the term based on the fact that e ′ is in evaluation position. We prove that if a program
is well typed in our undecidable type assignment system (Chapter 2), there exists an annotated
program that is type-checkable in the tridirectional system; conversely, if a program typechecks in
the tridirectional system, we can erase the annotations and get something well typed in the type
assignment system (for which we prove type safety, in Chapter 2). With intersections, unions,
and index quantification, the simple form of annotation (e : A) is not expressive enough, so we
introduce contextual typing annotations. The tridirectional system is explained in Chapter 3.

Unfortunately, this “third direction” is tricky to implement—the rules of Chapter 3 allow many
different decompositions of a given term. A straight implementation of the rules would, therefore,
induce far too much backtracking as different decompositions are tried. Instead, our implementa-
tion performs let-normal typechecking. It sequentializes the program, making the order of evaluation
explicit in the term syntax. The program so transformed is in let-normal form. Instead of rules that
guess E such that e = E [e ′], in let-normal typechecking we replace E [e ′] with let x = e ′ in E [x]. (Our
actual transformation is more complicated than the preceding sentence might suggest.) Chapter 5
describes the transformation and the type system for terms in let-normal form, and proves that a
program is well typed in the tridirectional system if and only if the program’s let-normal version is
well typed in the let-normal system. There is thus a chain of soundness and completeness results
from the let-normal system to the tridirectional system (actually, between two variants of it) to
the type assignment system. Therefore, the let-normal type system is an algorithmic version of the
type assignment system, modulo type annotations. The curious reader may sneak a glance at the
“menagerie” on page 167.

August 6, 2007

1.5. STATEMENT OF THESIS 7

1.5 Statement of thesis

With the above background, we can state our thesis:

A rich type system with datasort and index refinement properties, where such properties are

combined through intersection and union types, is a practical means of statically checking

interesting properties of functional programs that are difficult or impossible to check in

conventional static type systems.

The dissertation supports this statement as follows. Chapter 2 presents the “rich type system”,
while Chapters 3, 4, and 5 go a long way toward making it “practical”. Chapter 6 discusses our
implementation, Stardust, furnishing evidence of practicality. Chapter 7 gives examples in two
major index domains, integers and dimensions, in which interesting properties are checked.

1.6 Related work

This dissertation draws on past developments in the theory and practice of intersection types, union
types, datasort refinements, and index refinements. We survey some of the work in these areas,
though we postpone discussing union types until the next chapter, after we have explored the
relevant technical details.

1.6.1 Intersection types and datasort refinements

Intersection types [CDCV81] characterize strong normalization [AC98]3, so type inference (for
programs without type annotations) is undecidable.

Intersection types were first incorporated into a practical language by Reynolds [Rey88, Rey96],
who used them to encode features such as operator overloading, and proved that typechecking
programs containing intersection types is PSPACE-hard (in the worst case; we recall that ML type
inference is doubly exponential in pathological cases [KMM91, KTU94], yet polynomial for the pro-
grams people actually write). Pierce [Pie91a] continued in this vein, exploring intersection types in
combination with bounded polymorphism. The notion of datasort refinement combined with inter-
section types was introduced by Freeman and Pfenning [FP91], who showed that full type inference
was decidable under the refinement restriction (A ∧ B permitted only if A and B are refinements of
the same type) and developed an inference algorithm based on techniques from abstract interpre-
tation [CC77]. Interaction with effects in a call-by-value language was first addressed conclusively
by Davies and Pfenning [DP00], who introduced a value restriction on intersection introduction,
pointed out the unsoundness of distributivity, and proposed a practical bidirectional checking algo-
rithm. Davies’ datasort refinement checker, SML-CIDRE [Dav97, Dav05a, Dav05b] is built on top
of the ML Kit’s front end [Els05] and supports all of Standard ML.

3According to Kfoury [Kfo00, footnote 8], who cites a personal communication of Mariangiola Dezani, the cited work
of Amadio and Curien includes the first correct published proof of this well-known result, which was apparently first
correctly proved (but not published) by Venneri.

August 6, 2007

8 CHAPTER 1. INTRODUCTION

Intersection types for program analysis

Some work on program analysis in compilation uses forms of intersection and union types to in-
fer control flow properties [WDMT02, PP01]. Because of the goals of these systems for program
analysis and control flow information, the specific forms of intersection and union types are quite
different from the ones considered here. As (not necessarily representative) examples, we briefly
discuss System I and its intended successor System E.

A major goal of Kfoury and Wells’ System I [KW04] is to allow compositional analysis through
intersection types. Type inference is replaced by typing inference: even the context is inferred. This
is intended to make the analysis truly compositional. System I’s intersection types have a linear
character: if the first occurrence of x needs to have type A and the second occurrence needs to have
type B, one needs x : A∧B in the context. Møller Neergaard and Mairson [MM04b] point out an
unfortunate feature of System I: the process of type inference corresponds exactly to normalization,
so program analysis based on System I is precisely as useful as running the program—so why
not just run the program? In contrast, our approach abandons full type inference, and appears
to have a key property whose absence in System I is problematic: idempotency (A ∧ A = A,
in the sense that A ∧ A and A are subtypes of each other).4 (Hence, we look askance at the
authors’ statement [MM04b, p. 139] that System I is a “representative example” of intersection
type systems.)

The System E of Carlier, Wells, and others [CW04, BCKW05], intended to succeed System I,
has similar goals but a simpler technical realization. The analysis resulting from type inference in
System E can correspond exactly to either call-by-value or call-by-name evaluation. A version of
System E in which intersections can be variously linear or nonlinear has been formulated [CW04].
With nonlinear intersections, idempotency is gained and type inference is potentially less expen-
sive than running the program; however, a practical type inference algorithm has not yet been
presented.

Intersection types for program extraction

Through the Curry-Howard isomorphism, one can extract a program from a proof in a type theory,
but the extracted programs contain logical information irrelevant to the (computational) result,
making them long and inefficient. Hayashi [Hay94] developed an impredicative type theory with
refinements, intersection types, and union types. His theory is designed to facilitate the exclusion
of computationally irrelevant information from extracted programs.

Soft typing

Traditionally, dynamically typed languages require many so-called runtime type checks (more prop-
erly called tag checks). By analyzing the program, without reliance on explicit annotations, one
can obtain constraints on data values that allow some of the runtime checks to be safely omitted.
The basic idea is found in Reynolds [Rey67]; the name soft typing and a full development are due
to Cartwright and Fagan [CF91]. The constraints generated involve intersection, union, and even

4However, it is not clear what idempotency really means for a bidirectional type system; in our system, e ↑ A ∧ A

implies e ↑ A but not the converse, and there is a value restriction on intersection introduction.

August 6, 2007

1.6. RELATED WORK 9

conditional types [AWL94]. However, Davies [Dav05a, pp. 14–15] gives examples suggesting that
datasort refinements can capture more precise invariants, due to a lack of polymorphic recursion
in the soft typing system he examined (Aiken et al. [AWL94]).

To begin to compare soft typing to our approach, we should find something analogous to soft
typing in a statically typed framework. As is well known, one can define a datatype dynamic:

datatype dynamic = Cons of dynamic ∗ dynamic

| Int of int

| Func of dynamic→ dynamic
...

Such a type can be useful in interfaces to dynamically typed software, for instance.
Soft typing, then, would seem to correspond to refinements of dynamic. Since dynamic is a

perfectly ordinary datatype, it can be refined as any other in our system, and we can annotate
functions on dynamic values with datasort refinements. For example, we could distinguish “dynam-
icized” functions from integers to integers:

datasort dynamic : dyn_int < dynamic, dyn_int_int_func < dynamic

datacon Int : int→ dyn_int

datacon Func : (dynamic→ dynamic)→ dynamic

∧ (dyn_int→ dyn_int)→ dyn_int_int_func

Despite being tragically crippled by the current lack of parametric polymorphism in our system,
this technique allows—and demands of—the programmer complete control over rather precise
specifications, in contrast to soft typing. Note that datasorts in negative positions in constructor
types, as in ((dyn_int → dyn_int) → · · · , present no difficulties for us: in contrast to earlier work
on datasort refinements, we do not try to generate a subsort relation and constructor types from
regular tree grammar-style declarations, and so avoid troublesome aspects of the semantics of
subtyping [Dav05a, pp. 123–126].

Philosophical notes

Only a moron would state A ∨ B if he has obtained A...

—Jean-Yves Girard

This thesis largely steers clear of philosophical issues, but we briefly discuss a few here. Appro-
priately, we make no claim of completeness—on any level.

Product types A ∗ B can be interpreted through the Curry-Howard isomorphism as ordinary
logical conjunctionA & B. However, the status of intersection types is less clear. We begin by noting
that ∧ is in a sense more primitive than ∗: given a few singleton types5, say S1, S2, . . . , we can define
A ∗ B in terms of intersection: A ∗ B = (S1 → A) ∧ (S2 → B). (Inspired by Reynolds [Rey96], we

5These could be singleton types restricted to integers (as in our work), or constants analogous to the ‘symbols’ of Lisp
and Scheme.

August 6, 2007

10 CHAPTER 1. INTRODUCTION

can also define record types in a similar style, with singletons as field labels.) However, the most
general implementation of intersection types seems to be as products. For example, an intersection
(A1 → A2) ∧ (B1 → B2) can be implemented as a pair of functions (fA, fB). Thus, even if one
omitted products as a primitive type constructor in (some of) a compiler’s intermediate languages,
they would return, possibly supplanting intersection types in the generated code.

In one of his expositions of ludics, Girard [Gir03, pp. 157–8] explains intersection types in the
following way: ordinary conjunction A & B is “delocated” intersection, that is, intersection without
regard for “location” (very roughly: syntax); A & B = ϕ(A)∩ψ(B) where ∩ is a kind of intersection,
one of Girard’s primitive conjunctive operators, and ϕ, ψ are “delocators”. Thus, intersection is a
more primitive notion than conjunction. Girard points out that, computationally, intersection—
unlike conjunction (computationally: product)—enjoys properties such as commutativity: A ∧ B

is essentially the same as B ∧ A. On the other hand, A ∗ B and B ∗A are related only by canonical
isomorphisms: one can readily convert values of the first to or from the second, but they are
essentially different types (just as (S1 → A) ∧ (S2 → B) is essentially different from (S1 → B) ∧

(S2 → A), even with ∧ commutative). We also observe that intersection types (as we formulate
them) enjoy idempotency [MM04b], whereas A and A ∗ A are not even related by a canonical
isomorphism: (1, 1) might correspond to 1 but (1, 2) has no corresponding value of type A.

Another subject is the semantics of refinements. Nowhere do we analyze what any particular
refinement means. In some cases we can prove adequacy, e.g. that even corresponds to lists of even
length, but the meaning of dimensions and other refinements that are not value-based is less clear.
We leave all such questions to future work.

1.6.2 Union types

We discuss related work on union types in the next chapter, in Section 2.8.

1.6.3 Index refinements

DML

Xi formulated Dependent ML, a bidirectional type system [Xi98] with index refinements for a vari-
ant of ML and implemented it as an extension to Caml Light [Cam]. He showed a number of
applications (using the integer constraint domain), including array bounds check elimination.

To cope with some issues around existential index quantification, Xi’s approach transformed pro-
grams into a let-normal form before typechecking them; however, typechecking is then incomplete—
there exist programs that typecheck in their original form but not their let-normal form. We attack
similar issues with existentials in our work in a broadly similar way, through translation to our own
peculiar variant of let-normal form (the subject of Chapter 5). However, our let-normal typecheck-
ing is complete (as well as sound, of course).

In subsequent work, Xi [Xi01, Xi02] showed that a relatively modest extension of the DML ma-
chinery suffices to statically check termination. The idea is that given a recursive function, one
formulates a well-founded metric of its arguments such that the metric strictly decreases across re-
cursive calls; it follows that those recursive calls do not cause nontermination. Reasoning involving
the metric is similar to reasoning in integer-index DML.

August 6, 2007

1.6. RELATED WORK 11

Dependent type systems

The ancestor of index refinement is the notion of dependent type [AH05] developed by Martin-Löf
and used in theorem proving systems such as AUTOMATH [NGd94], NuPRL [CAB+86], the Calculus
of Constructions [CH88] and the Edinburgh Logical Framework [HHP93]. There, dependent types
Πx:A.B and Σx:A.B roughly correspond to the universal and existential quantifiers over indices;
however, instead of drawing x from a restricted index domain, dependent types draw x from terms
of type A. This is extremely powerful but (in any language in which some programs do not termi-
nate) undecidable: determining if two types are equal is as hard as determining if two terms are
equivalent, which cannot be done in general without evaluating them.

A number of systems have tried to tame dependent types:

• Augustsson’s Cayenne language [Aug98] is an extension of Haskell with dependent types.
The Cayenne typechecker “times out” if typechecking takes more than a given number of
steps. The user cannot tell if the typechecker will give an answer (well-typed or not) without
running it and seeing what happens.

• The Epigram system [MM04a] avoids the undecidability problem by a radical language re-
striction: all well-typed programs terminate, so type equivalence is decidable. The dependent
indices are elements of inductive families of constructors; the example of natural numbers
with zero and succ constructors is probably the canonical one.

• In the dependent type system of Chen and Xi [CX05], as in Epigram, users can write explicit
proofs of type equivalences, with inductive families of constructors as the means of construct-
ing indices. However, unlike Epigram, the language itself is not restricted—decidability comes
by restricting the terms that can inhabit indices.

• Licata and Harper [LH05] present a system that, like Chen and Xi’s, allows explicit proofs of
type equivalence with inductive families. In contrast to Chen and Xi, their system supports
functions on indices as well as index propositions; instead of a relation mul(i, j, k) that holds
if i times j equals k, one can simply write mul(i, j) in Licata and Harper’s system. These
functions on indices can operate not only during typechecking but at runtime, to “retype”
terms with new indices, in contrast to Chen and Xi where indices are exclusively a compile-
time construct.

Other similar type systems are found in the evolving “Ωmega” language of Sheard et al. [She04,
SP04] and Westbrook et al.’s RSP1 [WSW05]. For a detailed comparison of these systems, see
Licata and Harper [LH05]; for an exposition of dependent types with historical notes, see Aspinall
and Hofmann [AH05].

We believe our approach has two major advantages over these systems. The first is that our
system needs no guidance beyond type annotations. The second is the legibility and clarity of the
types themselves. We believe that all the types in our system are easy to understand—significantly
more so than in the dependent type systems. (We do not claim, at least not here, that our type
system per se is easy to understand, merely that the types written and read by users are.) This is a
subjective issue, but these systems strike us as too clever by half. It could be argued that both flavors
of system add to the number of ‘levels’ a user must think about—ours adds index refinements (and

August 6, 2007

12 CHAPTER 1. INTRODUCTION

datasorts, but let us not muddy the comparison), while theirs add dependent typing and kind-
level programming.6 However, the level we add seems to be conceptually inferior to the types in
conventional type systems, rather than equal or superior, and this may play a role in the usability
gap we allege.

1.7 Other approaches

In this section, we briefly examine a few other approaches to the problem of verifying software
properties, and compare them to type refinements.

1.7.1 Assertions

Assertion mechanisms allow any Boolean expression to be tested at runtime. Such assertions serve
as documentation and also encourage “early failure”. Of course, the lack of restrictions on the form
of the asserted expression makes compile-time assertion checking undecidable.

We can view a function type A→ B as an implicit pair of assertions: a precondition of the form
“the argument is of type A” and a postcondition of the form “the result is of type B”. With type
refinements, pre- and postconditions of this form are more expressive than in a conventional static
type system. Thus, type refinements reduce but do not eliminate the utility of generic assertion
facilities such as Findler and Felleisen’s [FF02].

Note that under certain circumstances, a compiler might optimize away the assertion check: if
dataflow analysis shows that x = 1 when assert(x > 0) is reached, the assertion is equivalent to
assert(true) which is a no-op. However, most compilers provide little feedback as to which checks
are actually removed, so this is still a very poor substitute for static checking.

1.7.2 ESC and related systems

ESC, the Extended Static Checker [DLNS98, Lei01] is intended to help find bugs in Modula-3 and
Java programs. Annotations can be written expressing bounds on integers and synchronization
properties, among others. ESC then attempts to check the program against the annotations. ESC is
unsound: it may incorrectly report that there are no problems. In practice, though, the system has
been good at finding bugs.

Type refinements are less expressive than the property language of ESC. However, even if
we restrict our attention to a subset of the ESC properties that can be expressed through type
refinements—for example, a pointer being non-null corresponds to a value of option type having
a particular datasort refinement—ESC can get away with having less information (annotations),
since it uses several tricks to (unsoundly) finesse undecidable problems such as generating loop
invariants. The designers of ESC argue that much can be gained by giving up the “shackles of
soundness” [DLNS98, p. 33]; we believe that the present work, and the past work on type refine-
ments, have only begun to show how far one can go without giving up soundness. It is interesting

6If we had to characterize the ‘level’ of intersections and unions, we would place them alongside types, or if a
refinement restriction is enforced, at an inferior level (a distinction consistent with Davies’ “intersection sorts”).

August 6, 2007

1.8. CONTRIBUTIONS 13

to note that Leino [Lei01], in his discussion of “future challenges”, suggests exploring “more-than-
types systems”—by which he means roughly what we mean by type refinements, though he focuses
on imperative languages rather than functional languages.

In a similar vein, the Spec# system [BLS04] can check object invariants in C# programs; unlike
ESC, it is based on a sound methodology [BDF+04].

1.8 Contributions

The major contributions of this dissertation are:

• An elegant formulation of union types and existential index quantification, without clumsy
syntactic markers for elimination.

• A systematic formulation of bidirectional typechecking, with a new kind of type annotation
suited to our rich type language.

• A new variant of the let-normal transform, by which we make it practical to check unions and
existentials.

• A formulation of dimension types as an index domain.

• A typechecker for a subset of SML, including all the features above.

1.9 Reader’s guide

This chapter ends with a description of some of the notation used subsequently (Section 1.9.2).
The rest of the thesis is organized as follows:

Chapter 2 describes a type assignment system for property types, including
datasort and index refinements, intersections, and unions;

Chapter 3 describes a decidable “tridirectional” formulation of the type
assignment system;

Chapter 4 describes a type system for a richer language of patterns than that
considered in Chapters 2, 3 and 5;

Chapter 5 describes a more tractable “let-normal” formulation of the
tridirectional system;

Chapter 6 describes an implementation of a version of the let-normal system
(including the richer patterns of Chapter 4);

Chapter 7 discusses the constraint domains for index refinements that we
have implemented, including dimensions as an illustrative example
of invaluable refinements (refinements not based on values);

August 6, 2007

14 CHAPTER 1. INTRODUCTION

Chapter 8 concludes, considering future work;

Appendix A provides a glossary of notation.

Completists can simply read the chapters in sequence. Those interested only in the theory of
intersection and union types may read just Chapter 2. Implementors might skim Chapter 2 but
read the rest of the work closely, except for the proofs. Finally, functional programmers with less
interest in theory should focus on Chapters 6 and 7.

The chapters on pattern matching and index domains (4 and 7, respectively) can be skipped
without substantially impeding understanding of other chapters; however, without the examples in
Chapter 7 some of our work’s motivation will be missed.

The reader should have a solid grasp of type theory as applied to programming languages [Pie02];
some familiarity with natural deduction and the sequent calculus [Pra65] is helpful but not manda-
tory.

1.9.1 Reading online

The PDF of this dissertation includes the usual hyperlinks (section references, citations, and URLs)
as well as reverse links from bibliography entries to the citing section. Moreover, the names of
implementation examples are links to files on www.type-refinements.info (which the author expects
to maintain indefinitely).

1.9.2 Notation

We mention some of our notational conventions here; a more complete guide can be found in
Appendix A.

Capital letters A, B, C, D stand for types; P stands for propositions. e is used for expressions
(or terms; we use the two words interchangeably). Script letters stand for terms with holes: for
example, E is used for evaluation contexts and C for a term containing a hole in any position. Two
exceptions are script D, which stands for derivations, and script R, which stands for the name of a
rule of inference; we write D :: Γ ⊢ e : A for “D derives the judgment Γ ⊢ e : A”, and can speak of
“the rule R that concludes D”.

Bold letters x, y, etc. are used for linear variables.

Lowercase letters a, b (and others) stand for index variables; c stands for constructors of induc-
tive datatypes; i, j, k stand for index expressions (but also for mathematical indices: “for all k in
1..n”).

Proof notation

Many of our proofs are presented in line-by-line format (without numbering). The proposition or
judgment appears on the left with its justification (if not obvious) on the right.

August 6, 2007

http://type-refinements.info

1.9. READER’S GUIDE 15

• In proofs by induction, “IH” refers to the induction hypothesis. If the result to be proved is in
several parts, numbered say (1), (2), (3), then “IH (2)” refers to the second part (not to all
parts of the induction hypothesis, applied twice, which would be “IH (twice)”).

• Most steps use results from one of the preceding few lines, or in any line concluding a “block”.
A schematic example:

A1 Given

A2 Given

A1 and A2

B1

B2 By Thm. Such-and-such (which says that B1 implies B2)

(A1 and A2) and B2

Here, “A1 and A2” and “B2” conclude nontrivial blocks, while “(A1 and A2) and B2”
concludes a block containing only itself.

This convention is not followed strictly, but when looking for the antecedents to a result one
should look first directly above the result, then at lines concluding blocks.

• In proofs where the desired result has several parts (such as the proof of Lemma 5.60), each
part of the result, when obtained, is marked “Z”. This is useful since in many cases, part of
the result is obtained soon (e.g. upon application of the induction hypothesis) while the rest
of the result requires several more steps; this convention allows us to avoid restating the parts
previously shown.

When reasoning equationally over several lines, “Z” may appear on the last line with the left
side of the equation elided. For example, if part of the result to be proved is that E = E ′, we
might write this proof, in which “Z” highlights that part of the result.

E0 = [] Given

E = E ′[E0] Given

= E ′[[]] By E0 = []

Z = E ′ By defn. of evaluation contexts

...

Z the rest of the result to be proved

August 6, 2007

16 CHAPTER 1. INTRODUCTION

August 6, 2007

Chapter 2

A type assignment system1

In this chapter, we develop a system of type assignment with intersection types, union types, in-
dexed types, and universal and existential dependent types that is sound in a call-by-value func-
tional language. The combination of logical and computational principles underlying our formula-
tion naturally leads to the central idea of typechecking subterms in evaluation order. We thereby
provide a uniform generalization and explanation of several earlier isolated systems. While un-
decidable, this system is the basis for the decidable system in Chapter 3, the practical system in
Chapter 5, and ultimately the typechecker described in Chapter 6.

The system in this chapter is a Curry-style type assignment system. Our goal is to typecheck
code, not to compile it. Elaborating the source language into a form suitable for use as a typed
intermediate language—one with explicit polymorphic instantiation, for example—would have few,
if any, advantages in this typechecking-focused setting. In this respect, we follow Davies’ datasort
refinement system [Dav05a], which is also focused on typechecking rather than compilation. Thus,
we see no compelling arguments against type assignment in this setting, and prior work suggests
that it is a solid foundation for type refinement systems.

2.1 Introduction

Conventional static type systems are tied directly to the expression constructs available in a lan-
guage. For example, functions are classified by function types A → B, pairs are classified by
product types A ∗ B, and so forth. In more advanced type systems we find type constructs that
are independent of any particular expression construct. The best-known examples are parametric
polymorphism ∀α. A and intersection polymorphism A ∧ B. Such types can be seen as expressing
more complex properties of programs. For example, if we read the judgment e : A as e satisfies

property A, then e : A ∧ B expresses that e satisfies both property A and property B. We call such
types property types. The aim is to integrate a rich system of property types into practical languages
such as Standard ML [MTHM97], in order to express and verify detailed invariants of programs as
part of typechecking.

In this chapter we design a system of property types specifically for call-by-value languages.

1This chapter is based on joint work with Frank Pfenning [DP03].

17

18 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

We show that the resulting system is type-safe, that is, satisfies the type preservation and progress
theorems. We include indexed types δ(i), intersection types A ∧ B, a greatest type ⊤, universal
dependent types Πa:γ.A, union types A ∨ B, an empty type ⊥, and existential dependent types
Σa:γ.A. We thereby combine, unify, and extend prior work on intersection types [DP00], union
types [Pie91b, BDCd95] and index refinements [Xi98, XP99].

Several ideas emerge from our investigation. Perhaps most important is that type assignment
may visit subterms in evaluation order, rather than just relying on immediate subterms. We also
confirm the critical importance of a logically motivated design for subtyping and type assignment.
The resulting orthogonality of various property type constructs greatly simplifies the theory and
allows one to understand each concept in isolation. As a consequence, simple types, intersection
types [DP00], and indexed types [XP99] are extended conservatively. The type system is designed to
allow effects (in particular, mutable references), but in order to concentrate on more basic issues,
we do not include them explicitly (see [DP00] for the applicable techniques to handle mutable
references).

The system of pure type assignment presented in this chapter is undecidable. Chapter 3 presents
a decidable version based on bidirectional typechecking (in the style of [DP00, Dun02]) of pro-
grams containing some type annotations, where we variously check an expression against a type or
else synthesize the expression’s type.

The remainder of the chapter is organized as follows. We start by defining a small and con-
ventional functional language with subtyping, in a standard call-by-value semantics. We then add
several forms of property types: intersection types, indexed types, and universal dependent types.
As we do so, we motivate our typing and subtyping rules through examples, showing how our
particular formulation arises out of our demand that the theorems of type preservation and progress

hold. Then we add the indefinite property types: the empty type ⊥, the union type ∨, and the exis-
tential dependent type Σ. To be sound, these must visit subterms in evaluation order. After proving
some novel properties of judgments and substitutions, we prove preservation and progress. Finally,
we discuss related work and conclude.

2.2 The base language

We start by defining a standard call-by-value functional language (Figure 2.1) with functions, a unit
type (used in a few examples), products, and recursion, to which we will add various constructs
and types. Expressions do not contain types, because we are formulating a pure type assignment
system. We distinguish between variables x that stand for values and variables u that stand for
expressions, where the latter arise only from fixed points fix u. e. The form of the typing judgment
is

Γ ⊢ e : A

where Γ is a context typing variables x and u. The typing rules so far are standard (Figure 2.2); the
subsumption rule utilizes a subtyping judgment

Γ ⊢ A ≤ B

meaning that A is a subtype of B in context Γ . The interpretation is that the set of values of type A
is a subset of the set of values of type B. The context Γ is not used in the subtyping rules of Figure

August 6, 2007

2.3. DEFINITE PROPERTY TYPES 19

A,B,C,D ::= 1 | A→ B | A ∗ B

e ::= x | u | () | λx. e | e1 e2 | fix u. e | (e1, e2) | fst(e) | snd(e)

Figure 2.1: Syntax of types and terms in the initial language

Γ ⊢ B1 ≤ A1 Γ ⊢ A2 ≤ B2
Γ ⊢ A1 → A2 ≤ B1 → B2

→
Γ ⊢ 1 ≤ 1

1
Γ ⊢ A1 ≤ B1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 ∗A2 ≤ B1 ∗ B2
∗

Γ(x) = A

Γ ⊢ x : A
var

Γ(u) = A

Γ ⊢ u : A
fixvar

Γ, u:A ⊢ e : A

Γ ⊢ fix u. e : A
fix

Γ ⊢ e : A Γ ⊢ A ≤ B

Γ ⊢ e : B
sub

Γ, x:A ⊢ e : B

Γ ⊢ λx. e : A→ B
→I

Γ ⊢ e1 : A→ B Γ ⊢ e2 : A

Γ ⊢ e1(e2) : B
→E

Γ ⊢ () : 1
1I

Γ ⊢ e1 : A1 Γ ⊢ e2 : A2
Γ ⊢ (e1, e2) : A1 ∗A2

∗I
Γ ⊢ e : A ∗ B

Γ ⊢ fst(e) : A
∗E1

Γ ⊢ e : A ∗ B

Γ ⊢ snd(e) : B
∗E2

Figure 2.2: Subtyping and typing in the initial language

2.2, but we subsequently augment the subtyping system with rules that refer to Γ . The rule → is
the standard subtyping rule for function types, contravariant in the argument and covariant in the
result; rule 1 is obvious. It is easy to prove that subtyping is decidable, reflexive (Γ ⊢ A ≤ A), and
transitive (if Γ ⊢ A ≤ B and Γ ⊢ B ≤ C then Γ ⊢ A ≤ C); as we add rules to the subtyping system,
we maintain these properties.

The subtyping rules for our system are designed following the well-known principle that A ≤ B
only if any (closed) value of type A also has type B. Thus, whenever we must check if an expression
e has type Bwe are safe if we can synthesize a typeA andA ≤ B. The subtyping rules then naturally
decompose the structure of A and B by so-called left and right rules that closely mirror the rules of
a sequent calculus [Pra65, Appendix A].

A call-by-value operational semantics defining a relation e 7→ e ′ is given in Figure 2.3. We use
v for values, and write e value to mean that e is a value. We write E for an evaluation context—a
term containing a hole []; we write E [e ′] to denote E with its hole replaced by e ′.

2.3 Definite property types

Definite types accumulate positive information about expressions. For instance, the intersection
type A ∧ B expresses the conjunction of the properties A and B. We later introduce indefinite types

such as A ∨ B which encompass expressions that have either property A or property B, although it
is unknown which one.

August 6, 2007

20 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

Values v ::= x | () | λx. e | (v1, v2)

Evaluation contexts E ::= [] | E e | v E | (E , e) | (v, E) | fst(E) | snd(E)

e ′ 7→R e
′′

E [e ′] 7→ E [e ′′]
ev-context

(λx. e) v 7→R [v/x] e

fix u. e 7→R [(fix u. e) / u] e

fst(v1, v2) 7→R v1
snd(v1, v2) 7→R v2

Figure 2.3: A small-step call-by-value semantics

ms ::= · | c(x)⇒ e ||ms

e ::= . . . | c(e) | case e of ms

v ::= . . . | c(v)

E ::= . . . | c(E) | case E of ms

case c(v) of . . . c(x)⇒ e . . . 7→R [v/x] e

Figure 2.4: Extending the language with datatypes

2.3.1 Refined datatypes

We now add datatypes with refinements (Figure 2.4). c(e) denotes a datatype constructor c applied
to an argument e; the destructor case e of ms denotes analysis of ewith one layer of non-redundant
and exhaustive matches ms, each of the form ck(xk) ⇒ ek. For example, the only permitted case

expression on the list type is case e of Nil(x1)⇒ e1 ||Cons(x2)⇒ e2, in which x1 : 1 and x2 : int∗ list.
This restricted language of patterns will be enlarged in Chapter 4.

Each datatype is refined by an atomic subtyping relation � over datasorts δ. Each datasort
identifies a subset of values of the form c(v), yielding definite information about a value. For
example, datasorts true and false identify singleton subsets of values of the type bool.

A new subtyping rule defines subtyping for datasorts in terms of the atomic subtyping relation
�:

δ1 � δ2
Γ ⊢ δ1 ≤ δ2

δ

To maintain reflexivity and transitivity of subtyping, we require the same properties of atomic
subtyping: � must be reflexive and transitive.

Since we will subsequently further refine our datatypes by indices, we defer discussion of the
typing rules.

August 6, 2007

2.3. DEFINITE PROPERTY TYPES 21

2.3.2 Intersections

The typing e : A ∧ B expresses that e has type A and type B. The subtyping rules for ∧ capture
this:

Γ ⊢ A ≤ B1 Γ ⊢ A ≤ B2
Γ ⊢ A ≤ B1 ∧ B2

∧R
Γ ⊢ A1 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
∧L1

Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
∧L2

We omit the common distributivity rule

(A→ B) ∧ (A→ B ′) ≤ A→ (B ∧ B ′)

which Davies and Pfenning showed to be unsound in the presence of mutable references [DP00].
The present system does not have mutable references, but is intended to be compatible with such,
as well as with other forms of effectful computation; Davies [Dav05a, pp. 54–55] analyzes dis-
tributivity in the more general context of effects captured by the © modality [Mog88]. Another
reason to omit the distributivity rule is that without it, no subtyping rule contains more than one
type constructor: the rules are orthogonal. As we add type constructors and subtyping rules, we
maintain this orthogonality. In fact, the left and right subtyping rules for ∧ and the other property
types closely mirror the left and right rules of a sequent calculus [Pra65, Appendix A]. Ignoring Γ ,
we can think of subtyping as a single-antecedent, single-succedent form of the sequent calculus.

On the level of typing, we can introduce an intersection with the rule

Γ ⊢ v : A1 Γ ⊢ v : A2
Γ ⊢ v : A1 ∧ A2

∧I

and eliminate it with

Γ ⊢ e : A1 ∧ A2
Γ ⊢ e : A1

∧E1
Γ ⊢ e : A1 ∧ A2
Γ ⊢ e : A2

∧E2

Note that ∧I can only type values v, not arbitrary expressions, following Davies and Pfen-
ning [DP00] who showed that in the presence of mutable references, allowing non-values destroys
type preservation.

The ∧-elimination rules are derivable via rule sub with the ∧L1,2 subtyping rules. However, we
include them because they are not derivable in a bidirectional system such as that of Chapter 3.

2.3.3 Greatest type: ⊤

It is easy to incorporate a greatest type ⊤, which can be thought of as the 0-ary form of ∧. The
rules are simply

Γ ⊢ A ≤ ⊤
⊤R

Γ ⊢ v ok

Γ ⊢ v : ⊤
⊤I

There is no left subtyping rule. The typing rule is essentially the 0-ary version of ∧I, the rule for
binary intersection. The premise Γ ⊢ v ok says that the free variables of e are in dom(Γ). Without
this premise, we could derive · ⊢ y : ⊤, where y is an unknown identifier. Such anomalies would
be problematic in Chapter 5. Finally, note that if we allowed ⊤I to type non-values, the progress
theorem would fail: ⊢ ()() : ⊤, but ()() is neither a value nor a redex.

August 6, 2007

22 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

P ::= ⊥ | i
.
= j | . . .

Γ ::= · | Γ, x:A | Γ, u:A | Γ, a:γ | Γ, P

· = ·

Γ, x:A = Γ

Γ, a:γ = Γ , a:γ

Γ, P = Γ , P

Figure 2.5: Propositions P, contexts Γ , and the restriction function Γ

Γ ⊢ A wf

FV(A) ⊆ dom(Γ)

Γ ⊢ A wf

Γ ⊢ P wf

FV(P) ⊆ dom(Γ)

Γ ⊢ P wf

Γ wf

· wf

Γ wf x /∈ dom(Γ) Γ ⊢ A wf

Γ, x:A wf

Γ wf a /∈ dom(Γ)

Γ, a:γ wf

Γ wf Γ ⊢ P wf

Γ, P wf

Figure 2.6: Well-formedness of types, propositions, and contexts

2.3.4 Index refinements and universal dependent types Π

Now we add index refinements, which are dependent types over a restricted domain, closely follow-
ing Xi and Pfenning [XP99], Xi [Xi98, Xi00], and Dunfield [Dun02]. This refines datatypes not only
by datasorts, but by indices drawn from some constraint domain: the type δ(i) is the refinement by
δ and index i.

To accommodate index refinements, several changes must be made to the systems we have con-
structed so far. The most drastic is that Γ can include index variables a, b and propositions P as well
as program variables. Because the program variables are irrelevant to the index domain, we can
define a restriction function Γ that yields its argument Γ without program variable typings (Figure
2.5). No variable may appear twice in Γ , but ordering of the variables is now significant because
of dependencies. That is, in the context Γ1, x:list(a), Γ2, the index variable a must be declared (a:γ)
in Γ1—contexts such as x:list(a), a:N are ill-formed. These requirements are made explicit in rules
for the well-formedness of types, propositions, and contexts (Figure 2.6). However, we do not refer
to these rules except implicitly, as we assume throughout the thesis that all types, propositions,
and contexts are well formed. For instance, given the context Γ1, a:γ, Γ2, we know from the implicit
(Γ1, a:γ, Γ2) wf that a /∈ dom(Γ1) ∪ dom(Γ2) and a /∈ FV(Γ1).

Our formulation, like Xi’s, requires only a few properties of the constraint domain: There must
be a way to decide a consequence relation

Γ |= P

whose interpretation is that given the index variable typings and propositions in Γ , the proposition

August 6, 2007

2.3. DEFINITE PROPERTY TYPES 23

Property 2.2 (Substitution). Given Γ1 ⊢ i : γ:

(i) If Γ1, a:γ, Γ2 |= P then Γ1, [i/a]Γ2 |= [i/a]P.

(ii) If Γ1, a:γ, Γ2 ⊢ j : γ
′ then Γ1, [i/a]Γ2 ⊢ [i/a] j : γ ′.

Property 2.3 (Weakening). Given (Γ1, Γ , Γ2) wf:

(i) If Γ1, Γ2 ⊢ i : γ then Γ1, Γ , Γ2 ⊢ i : γ.

(ii) If Γ1, Γ2 |= P then Γ1, Γ , Γ2 |= P.

Property 2.4 (Equivalence). If Γ ⊢ i : γ and Γ ⊢ j : γ and Γ ⊢ k : γ then

(i) The relation Γ |= i
.
= i holds.

(ii) If Γ |= i
.
= j then Γ |= j

.
= i.

(iii) If Γ |= i
.
= j and Γ |= j

.
= k, then Γ |= i

.
= k.

Property 2.5. The relation · |= ⊥ does not hold.

Property 2.6. Γ , a:γ ⊢ a : γ.

Property 2.7 (Consequence). If Γ |= Pk for all Pk ∈ {P1, . . . , Pn}, and Γ , P1, . . . , Pn |= P ′ then Γ |= P ′.

Figure 2.7: Assumed properties of the |= and ⊢ index relations.

P must hold. Among the propositions must be i
.
= j, denoting equality. There must be a way to

decide a relation

Γ ⊢ i : γ

whose interpretation is that i has sort γ in Γ . Note the stratification: terms have types, indices have
sorts; terms and indices are distinct. Our proofs require that |= be a consequence relation (that
is, if some assumption in Γ is entailed by the rest of Γ , it can be removed without changing what
is entailed), that

.
= be an equivalence relation, that · 6|= ⊥, and that both |= and ⊢ have obvious

substitution and weakening properties (Figure 2.7).

Remark 2.1. The system in this chapter is undecidable, so there is no fundamental reason any of
these relations must be decidable; the requirement becomes necessary in Chapter 3.

Each datatype has an associated atomic subtyping relation on datasorts, and an associated sort
whose indices refine the datatype. In our examples, we work in a domain of integers N with

.
= and

some standard operations (+, −, ∗, <, and so on); each datatype is refined by indices of sort N .
Then Γ |= P is decidable provided the inequalities in P are linear.

We add an infinitary definite type Πa:γ.A, introducing an index variable a universally quanti-
fied over indices of sort γ. One can also view Π as a dependent product restricted to indices (instead
of arbitrary terms). We also add a guarded type P ⊃ A, read “P implies A”, discussed below.

August 6, 2007

24 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

Example. Assume we define a datatype of integer lists: a list is either Nil() or Cons(h, t) for some
integer h and list t. Refine this type by a datasort odd of odd-length lists, and by a datasort even of
even-length lists. We also refine the lists by their length, so Nil has type 1→ even(0), and Cons has
type (Πa:N . int ∗ even(a)→ odd(a+ 1)) ∧ (Πa:N . int ∗ odd(a)→ even(a+ 1)). Then the function

fix repeat. λx. case x of Nil()⇒ Nil() || Cons(h, t)⇒ Cons(h,Cons(h, repeat(t)))

will have type Πa:N . list(a)→ even(2 ∗ a).

To handle the indices, we modify the subtyping rule δ from Section 2.3.1 so that it checks
(separately) the datasorts δ1, δ2 and the indices i, j:

δ1 � δ2 Γ ⊢ i
.
= j

Γ ⊢ δ1(i) ≤ δ2(j)
δ

Datatype constructors c are typed by a judgment

Γ ⊢ c : Acon

where

Constructor types Acon ::= B→ δ(i) | Acon ∧ Acon | Πa:γ.Acon | P ⊃ Acon

That is, the type of a constructor is B → δ(i) where B is unrestricted, or an intersection, universal
quantification, or guard of such a type. The only rule deriving Γ ⊢ c : Acon is S-con, which uses a
synthesis subtyping judgment Γ ⊢ A ↑ B (see Figure 2.8). Synthesis subtyping is essentially a weaker
form of subtyping with A as input and B as output: if A ↑ B then A ≤ B, but not the converse. For
example, A ≤ ⊤ but A 6↑ ⊤.

We assume a constructor signature S that gives types to constructors. In the implementation,
this is given explicitly by the user; see Chapter 6.2

The rule for constructor application is

Γ ⊢ c : A→ δ(i) Γ ⊢ e : A

Γ ⊢ c(e) : δ(i)
δI

To type case e of ms where e : δ(i), rule δE checks that all the case arms in ms have the
same type C, expressed by the premise Γ ⊢ ms :δ(i) C, read “ms checks against C, assuming the
expression cased upon has type δ(i)”.

Γ ⊢ e : δ(i) Γ ⊢ ms :δ(i) C

Γ ⊢ case e of ms : C
δE

To check an arm c(x) ⇒ e, we analyze the type S(c) of the constructor, accounting for all the
ways c could have been applied to create a value of type δ(i). For example, if S(c) = (A1 →
δ1(i1)) ∧ (A2 → δ(i2)), we need to check e : C with two obligations: in the first we assume
x:A1, i1

.
= i, and in the second x:A2, i2

.
= i. We introduce a judgment form

Γ ; c : Acon; c(x) : B ⊢ e : C

2This approach differs materially from Davies’ system [Dav05a], which generates constructor types from a regular tree
grammar; see Section 7.4.7.

August 6, 2007

2.3. DEFINITE PROPERTY TYPES 25

Γ ⊢ A ↑ B

Γ ⊢ A ↑ A refl-↑
Γ ⊢ A ↑ A ′

Γ ⊢ A ∧ B ↑ A ′
∧↑1

Γ ⊢ B ↑ B ′

Γ ⊢ A ∧ B ↑ B ′
∧↑2

Γ ⊢ [i/a]A ↑ A ′ Γ ⊢ i : γ

Γ ⊢ Πa:γ.A ↑ A ′
Π↑

Γ ⊢ A ↑ A ′ Γ |= P

Γ ⊢ P ⊃ A ↑ A ′
⊃↑

Γ ⊢ c : Acon

Γ ⊢ S(c) ↑ A
Γ ⊢ c : A

S-con

Figure 2.8: Constructor typing

which is read “under Γ , assuming c has the constructor type Acon and c(x) (which is the value cased
upon) has type B, the case arm e has type C”.

Γ ⊢ · :B C
emptyms

Γ ; c : S(c); c(x) : B ⊢ e : C Γ ⊢ ms :B C

Γ ⊢ (c(x)⇒ e ||ms) :B C
casearm

Rules δS-ct and δF-ct cover the “base case” in which the type of c is simply A → δ(i). In each
rule, we have assumptions that a constructor c has type A→ δ(i) and a value c(x) has type δ ′(i ′).

δ � δ ′ Γ, x:A, i
.
= i ′ ⊢ e : C

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e : C
δS-ct

δ 6� δ ′ Γ, x:A ⊢ e ok

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e : C
δF-ct

If δ 6� δ ′ (rule δF-ct), those assumptions are inconsistent: either

• δ and δ ′ are incomparable (neither δ � δ ′ nor δ ′ � δ), so clearly c : A→ δ(i) cannot produce
a δ ′(i ′) when applied to x, or

• δ ′ � δ (but δ 6� δ ′); here, observe that c : A → δ(i) represents all the information we have
about the result of c—it cannot be the case that c(x) “really” has the smaller datasort δ ′—so
the assumption c(x) : δ ′(i) ′ is just as inconsistent as 1

.
= 2 is,

so in that case we need not examine e at all.

Remark 2.8. The second point may not be obvious. Suppose we have datasorts nonempty and
list such that nonempty � list, but of course list 6� nonempty, and S(Nil) = 1 → list. Given an
e ′ : nonempty, to derive case e ′ of Nil⇒ e : C we try to derive

Γ ;Nil : 1→ list;Nil(x) : nonempty ⊢ e : C.

Since list 6� nonempty, we can apply rule δF-ct. The judgment expresses the assumptions that
Nil has type 1 → list and a particular value Nil(x) has type nonempty. If these assumptions were
consistent, rule δF-ct would be wrong! But it cannot be the case that Nil(x) : nonempty. We assume
Nil : 1→ list, given to us by the user’s constructor signature S; we have no other information about

August 6, 2007

26 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

Nil. We cannot possibly show that a value of type list “really” also has type nonempty. Therefore the
assumptions are inconsistent.

However, if δ � δ ′ (rule δS-ct), either δ ′ � δ (morally, δ ′ = δ) which clearly makes the
subsorting assumptions consistent, or δ ′ 6� δ (morally, δ ≺ δ ′) in which case c(x) : δ ′(i ′) is
not very specific—some information about the value was lost between its construction and its
deconstruction-by-case—but is still consistent. Either way, we must check e : C assuming that x:A
and i

.
= i ′ hold. The latter can make the context inconsistent: if c : A → δ(0) and c(x) : δ(3), we

can obtain Γ, x:A, 0
.
= 3 ⊢ e : C through a rule contra:

Γ |= ⊥ Γ ⊢ e ok

Γ ⊢ e : A
contra

The bodies of impossible case arms are thus skipped: by δF-ct if the datasort is impossible,
by contra if the index is impossible. The remaining rules are for the types ∧, Π, and ⊃, and
recapitulate—as left rules—the structure of the corresponding introduction rules. For example, ∧-
ct moves from the assumption c : Acon

1 ∧ Acon
2 , in the conclusion, to c : Acon

1 in the first premise and
c : Acon

2 in the second, just as ∧I moves from · · · : A1 ∧ A2 in its conclusion to · · · : A1 and · · · : A2
in its premises.

Γ ; c : Acon
1 ; c(x) : B ⊢ e : C

Γ ; c : Acon
2 ; c(x) : B ⊢ e : C

Γ ; c : Acon
1 ∧ Acon

2 ; c(x) : B ⊢ e : C
∧-ct

Γ, a:γ; c : Acon; c(x) : B ⊢ e : C

Γ ; c : Πa:γ.Acon; c(x) : B ⊢ e : C
Π-ct

Γ, P; c : Acon; c(x) : B ⊢ e : C

Γ ; c : (P ⊃ Acon); c(x) : B ⊢ e : C
⊃-ct

The subtyping rules for Π are

Γ ⊢ [i/a]A ≤ B Γ ⊢ i : γ

Γ ⊢ Πa:γ.A ≤ B
ΠL

Γ, b:γ ⊢ A ≤ B

Γ ⊢ A ≤ Πb:γ. B
ΠR

The left rule allows one to instantiate a quantified index variable a to an index i of appropriate
sort. The right rule states that if A ≤ B regardless of an index variable b, A is also a subtype of
Πb:γ. B. Of course, b cannot occur free in A.

The typing rules for Π are

Γ, a:γ ⊢ v : A

Γ ⊢ v : Πa:γ.A
ΠI

Γ ⊢ e : Πa:γ.A Γ ⊢ i : γ

Γ ⊢ e : [i/a]A
ΠE

Like ∧I, and for similar reasons (to maintain type preservation), ΠI is restricted to values. Moreover,
if γ is an empty sort, progress would fail if the rule were not thus restricted.

2.3.5 Guarded types

The guarded type P ⊃ A, read “P implies A”, is equivalent to A if the proposition P holds, and is
useless otherwise (as ⊤ is useless). To illustrate, suppose our index domain is the integers (index
sort Z) with propositions P ::= i < j | i ≤ j | Then

Πa:Z. (a ≥ 0) ⊃ (int(a)→ list(a))

August 6, 2007

2.4. INDEFINITE PROPERTY TYPES 27

is the type of functions from natural numbers to lists of the corresponding length: a function of this
type can only be applied to arguments int(i) such that i ≥ 0.3

The introduction and elimination rules are quite natural. Note that to ensure progress the intro-
duction rule—like the introduction rules for other definite types—is restricted to values: otherwise,
we could use contra and ⊃I to show ⊢ ()() : (⊥ ⊃ A), which is not a value but does not take a
step.

Γ, P ⊢ v : A

Γ ⊢ v : P ⊃ A
⊃I

Γ ⊢ e : P ⊃ A Γ |= P

Γ ⊢ e : A
⊃E

The subtyping rules for ⊃ are straightforward: reading both ⊃ and ≤ as “implies”, the left rule ⊃L
says that if P holds, and A implies B, then (P implies A) implies B. Reading ⊢ as “implies” as well,
the right rule ⊃R says that if P implies (A implies B), then A implies (P implies B).

Γ |= P Γ ⊢ A ≤ B

Γ ⊢ (P ⊃ A) ≤ B
⊃L

Γ, P ⊢ A ≤ B

Γ ⊢ A ≤ (P ⊃ B)
⊃R

Xi’s early work [Xi00, Xi98] achieved the effect of P ⊃ A through a different mechanism, the subset

sort {a:γ | P}, which allows a constraint to be placed on the sort:

Πa:
︷ ︸︸ ︷
{a:Z | a ≥ 0}. int(a)→ list(a)

Recent work by Xi [Xi04] uses a form of guarded types (in a somewhat different setting). Our type
system does not include subset sorts; however, our implementation permits them through a prepro-
cessing phase described in Section 6.3.4. For example, the repeat function’s type, Πa:N . list(a) →
even(2 ∗ a), becomes Πa:Z. (a ≥ 0) ⊃ (list(a)→ even(2 ∗ a)).

2.4 Indefinite property types

We now have a system with definite types ∧, ⊤, Π, and ⊃. The typing and subtyping rules are
both orthogonal and internally regular: no rule mentions both ⊤ and ∧, ⊤I is a 0-ary version of ∧I,
and so on. However, one cannot express the types of functions with indeterminate result type. A
simple example is a filter f l function on lists of integers, which returns the elements of l for which
u returns true. It has the ordinary type

filter : (int→bool)→ list→ list

Indexing lists by their length, the refined type should look like4

filter : (int→bool)→ Πn:N . list(n)→ list(__)

3In this and other examples, we use a singleton type int(i): every literal integer n has type int(n).
4In the past, we (and others) have given the refined type of filter with the Π on the outside, i.e. Πn:N . (int→bool) →

. . . , which is quite unfortunate if filter is partially applied: n must be instantiated before filter is applied to its first
argument, so in let filter_f =filter f in . . ., the function filter_f can only be applied to lists known to all have the same
length!

August 6, 2007

28 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

But we cannot fill in the blank. Xi’s solution [XP99, Xi98] was to add dependent sums Σa:γ.A
quantifying existentially over index variables. Then we can express the fact that filter returns a list
of some indefinite length m as follows5:

filter : (int→bool)→ Πn:N . list(n)→ (Σm:N . list(m))

For similar reasons, we also occasionally need 0-ary and binary indefinite types—the empty type
and union types, respectively. We begin with the binary case.

2.4.1 Unions

On values, the binary indefinite type should simply be a union in the ordinary sense: if ⊢ v : A ∨ B

then either ⊢ v : A or ⊢ v : B. This leads to the following subtyping rules, which are dual to the
intersection rules.

Γ ⊢ A1 ≤ B Γ ⊢ A2 ≤ B

Γ ⊢ A1∨A2 ≤ B
∨L

Γ ⊢ A ≤ B1
Γ ⊢ A ≤ B1∨B2

∨R1
Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1∨B2
∨R2

The introduction rules directly express the simple logical interpretation:

Γ ⊢ e : A

Γ ⊢ e : A ∨ B
∨I1

Γ ⊢ e : B

Γ ⊢ e : A ∨ B
∨I2

The elimination rule is harder to formulate. It is clear that if e : A ∨ B and e evaluates to
a value v, then either v : A or v : B. So we should be able to reason by cases, similar to the
usual disjunction elimination rule in natural deduction [Pra65, p. 20]. However, there are several
complications. The first is that A ∨ B is a property type. That is, we cannot have a case construct
in the ordinary sense since the members of the union are not tagged.6

As a simple example, consider

f : (B→ D) ∧ (C→ D)

g : A→ (B ∨ C)

x : A

Then f(g(x)) should be type correct and have type D. At first this might seem doubtful, because
the type of f does not directly show how to treat an argument of type B ∨ C. However, whatever
g returns must be a closed value v, and must therefore either have type B or type C. In both cases
f(v) should be well-typed and return a result of type D.

Note that we can distinguish cases on the result of g(x) because it is evaluated before f is
called.7 In general, we allow case distinction on the type of the next expression to be evaluated.
This guarantees both progress and preservation. The rule is then

5The additional constraint m ≤ n can be expressed by an asserting type (Section 2.4.4).
6Pierce’s case [Pie91b] is a syntactic marker indicating where to apply the elimination rule. Clearly, a pure type

assignment system should avoid this. We can avoid it even in a bidirectional system; see the rest of the thesis.
7If arguments were passed by name instead of by value, this would be unsound in a language with effects: evaluation

of the same argument e : A ∨ B could sometimes return a value of type A and sometimes a value of type B. For example,
let e = e1 ⊕ e2 where ⊕ is a nondeterministic choice operator: both e1 ⊕ e2 7→ e1 and e1 ⊕ e2 7→ e2 are possible. Given
f(e) with f = λx. e ′, if x appears more than once in e ′, call by name evaluation would yield multiple copies of e1 ⊕ e2,

August 6, 2007

2.4. INDEFINITE PROPERTY TYPES 29

Γ ⊢ e ′ : A ∨ B

Γ, x:A ⊢ E [x] : C
Γ, y:B ⊢ E [y] : C

Γ ⊢ E [e ′] : C
∨E

The use of the evaluation context E guarantees that e ′ is the next expression to be evaluated
(or is some value), following our informal reasoning above. In the example, e ′ = g(x) and E = f [].

Several generalizations of this rule come to mind that are in fact unsound in our setting. For
example, allowing simultaneous parallel case distinction over several occurrences of e ′, as in a rule
proposed in [BDCd95],

Γ ⊢ e ′ : A ∨ B

Γ, x:A ⊢ e : C
Γ, x:B ⊢ e : C

Γ ⊢ [e ′/x] e : C
∨E ′

is unsound here: two occurrences of the identical e ′ could return different results (the first of type
A, the second of type B), while the rule above assumes consistency. Similarly, we cannot allow the
occurrence of e ′ to be in a position where it might not be evaluated. That is, in ∨E ′ it is not enough
to require that there be exactly one occurrence of x in e, because, for example, if we consider the
context

f : ((1→B)→ D) ∧ ((1→C)→ D),

g : A→ (B ∨ C),

x : A

and term f (λy. g(x)), then f may use its argument at multiple types, eventually evaluating g(x)
multiple times with different possible answers. Thus, treating it as if all occurrences must all
have type B or all have type C is unsound. If we restrict the rule so that e ′ must be a value, as
in [vBDCdM00], we obtain a sound but impractical rule—a typechecker would have to guess e ′

and, if it occurs more than once, a subset of its occurrences.
A final generalization suggests itself: we might allow the subterm e ′ to occur exactly once, and

in any position where it would definitely have to be evaluated exactly once for the whole expres-
sion to be evaluated. Besides the difficulty of characterizing such positions, even this apparently
innocuous generalization is unsound for the empty type ⊥, as discussed in the next section.

2.4.2 The empty type

The 0-ary indefinite type is the empty or void type ⊥; it has no values. For ⊤ we had one right
subtyping rule; for ⊥, following the principle of duality, we have one left rule:

Γ ⊢ ⊥ ≤ A
⊥L

For example, the term ω = (fix u. λx. u(x))() has type ⊥. For an elimination rule ⊥E, we can

which would not all have to reduce in the same way. Suppose e ′ = g x x where g : (A→ A→ C) ∧ (B→ B→ C); then
f(e) 7→∗ g (e1 ⊕ e2) (e1 ⊕ e2) 7→ g e2 (e1 ⊕ e2) 7→ g e2 e1, which is ill typed.

Mutable references also serve: suppose e = !r where r : (true ∨ false) ref. With the appropriate refinement of type
bool, we can give e the type true ∨ false. However, occurrences of e will variously reduce to values of either type true or
false, depending on intervening assignments to r.

August 6, 2007

30 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

proceed by analogy with ∨E:

Γ ⊢ e ′ : ⊥ Γ ⊢ E [e ′] ok

Γ ⊢ E [e ′] : C
⊥E

As before, the expression typed must be an evaluation context E with redex e ′. Viewing ⊥ as
a 0-ary union, we had two additional premises in ∨E, so we have none now. ⊥E is sound, but
the generalization mentioned at the end of the previous section would violate progress (Theorem
2.21). This is easy to see through the counterexample (()())ω.

2.4.3 Existential dependent types: Σ

Now we add an infinitary indefinite type Σ. Just as we have come to expect, the subtyping rules
are dual to the rules for the corresponding definite type (in this case Π):

Γ, a:γ ⊢ A ≤ B

Γ ⊢ Σa:γ.A ≤ B
ΣL

Γ ⊢ A ≤ [i/b]B Γ ⊢ i : γ

Γ ⊢ A ≤ Σb:γ. B
ΣR

The typing rule that introduces Σ is simply

Γ ⊢ e : [i/a]A Γ ⊢ i : γ

Γ ⊢ e : Σa:γ.A
ΣI

For the elimination rule, we again have the restriction to evaluation contexts:

Γ ⊢ e ′ : Σa:γ.A Γ, a:γ, x:A ⊢ E [x] : C

Γ ⊢ E [e ′] : C
ΣE

Not only is the restriction consistent with the elimination rules for ⊥ and ∨, but it is required.
The counterexample for ⊥ suffices: Suppose that the rule were unrestricted, so that it typed any e
containing some subterm e ′. Let e ′ = ω and e = (()())(ω). Since e ′ : ⊥, by subsumption e ′ has
type Σa:⊥. A for any A, and by the contra rule, a:⊥, x:A ⊢ (()())x : C (where ⊥ is the empty sort).
Now we can apply the unrestricted rule to conclude ⊢ (()())e ′ : C for any C, contrary to progress.

2.4.4 Asserting types

The asserting type P O A, read “P with A”, is as the type A, but also asserts that P holds. To
illustrate, suppose our index domain is the integers (index sort Z) with propositions P ::= i <

j | i ≤ j | Then

1→ Σa:Z. ((a > 0) O int(a))

is the type of functions from unit to strictly positive integers.

On a high level, following Curry-Howard, we can think of a term of type P O A as a proof of
both P and A, where only A has computational content. On an even higher level, we can think
of P O A as simply another kind of conjunction that conjoins a proposition and a type, rather
than two types as ∧ does. Following this intuition, the subtyping rules and introduction rule are
straightforward.

August 6, 2007

2.5. PROPERTIES OF SUBTYPING 31

Γ, P ⊢ A ≤ B

Γ ⊢ (P O A) ≤ B
OL

Γ |= P Γ ⊢ A ≤ B

Γ ⊢ A ≤ (P O B)
OR

Γ ⊢ e : A Γ |= P

Γ ⊢ e : P O A
OI

The elimination rule, however, follows the pattern of ΣE.

Γ ⊢ e ′ : P O A Γ, P, x:A ⊢ E [x] : C

Γ ⊢ E [e ′] : C
OE

The subset sort mechanism, discussed above in the context of asserting types, can achieve the effect
of P O A:

1→ Σa:
︷ ︸︸ ︷
{a:Z | a > 0}. int(a) (Not in our system!)

We consider O to be an indefinite type. It may seem strange to have a type that looks like a
conjunction in the same category as ∨ and Σ, which appear disjunctive. Consider that the definite

types are closely linked to the allowed constructor types Acon: a constructor type is built up from
intersections and guards of arrows B → δ(i). The indefinite types, on the other hand, cannot be
permitted in the codomain of a constructor type: if S(c) = B → ⊥, we could construct values
of the empty type! Likewise, if S(c) = B → ((2

.
= 3) O δ(i)), we can construct a value of type

(2
.
= 3) O δ(i), which asserts that 2

.
= 3. The fact that constructor types are as hostile to O as to ⊥

strongly suggests that O is indefinite.8

The structure of the type system also suggests that O belongs with ∨ and Σ. To take just one
example, OL adds to the context in its premise, as ΣL does—and as ΠL does not.

2.4.5 Typechecking in evaluation order

The following rule internalizes a kind of substitution principle for evaluation contexts and allows
us to check a term in evaluation order.

Γ ⊢ e ′ : A Γ, x:A ⊢ E [x] : C

Γ ⊢ E [e ′] : C
direct

Perhaps surprisingly, this rule is not only admissible but derivable in our system: from e ′ : A we
can conclude e ′ : A ∨ A and then apply ∨E. However, the corresponding bidirectional rule is not
admissible, and so must be primitive in a bidirectional system (Chapter 3).

Thus, in either the type assignment or bidirectional systems, we can choose to typecheck the
term in evaluation order. This has a clear parallel in Xi’s work [Xi98], which is bidirectional and
contains both Π and Σ. There, the order in which terms are typed is traditional, not guided by
evaluation order. However, Xi’s elaboration algorithm in the presence of Π and Σ transforms the
term into a let-normal form, which has a similar effect. We return to this point in Chapter 5.

August 6, 2007

32 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

Types A,B,C,D ::= 1 | A→ B | A ∗ B | δ(i) | A ∧ B | ⊤ | Πa:γ.A | P ⊃ A

| A ∨ B | ⊥ | Σa:γ.A | P O A

Γ ⊢ e : A

Γ(x) = A

Γ ⊢ x : A
var

Γ(u) = A

Γ ⊢ u : A
fixvar

Γ, u:A ⊢ e : A

Γ ⊢ fix u. e : A
fix

Γ ⊢ e : A Γ ⊢ A ≤ B

Γ ⊢ e : B
sub

Γ, x:A ⊢ e : B

Γ ⊢ λx. e : A→ B
→I

Γ ⊢ e1 : A→ B Γ ⊢ e2 : A

Γ ⊢ e1(e2) : B
→E

Γ ⊢ () : 1
1I

Γ ⊢ e1 : A1 Γ ⊢ e2 : A2
Γ ⊢ (e1, e2) : A1 ∗A2

∗I
Γ ⊢ e : A ∗ B

Γ ⊢ fst(e) : A
∗E1

Γ ⊢ e : A ∗ B

Γ ⊢ snd(e) : B
∗E2

Γ ⊢ c : A→ δ(i) Γ ⊢ e : A

Γ ⊢ c(e) : δ(i)
δI

Γ ⊢ e : δ(i) Γ ⊢ ms :δ(i) C

Γ ⊢ case e of ms : C
δE

Γ |= ⊥ Γ ⊢ e ok

Γ ⊢ e : A
contra

Γ ⊢ v : A1 Γ ⊢ v : A2
Γ ⊢ v : A1 ∧ A2

∧I
Γ ⊢ e : A1 ∧ A2
Γ ⊢ e : A1

∧E1
Γ ⊢ e : A1 ∧ A2
Γ ⊢ e : A2

∧E2

Γ ⊢ v ok

Γ ⊢ v : ⊤
⊤I

Γ, a:γ ⊢ v : A

Γ ⊢ v : Πa:γ.A
ΠI

Γ ⊢ e : Πa:γ.A Γ ⊢ i : γ

Γ ⊢ e : [i/a]A
ΠE

Γ, P ⊢ v : A

Γ ⊢ v : P ⊃ A
⊃I

Γ ⊢ e : P ⊃ A Γ |= P

Γ ⊢ e : A
⊃E

Γ ⊢ e : A

Γ ⊢ e : A ∨ B
∨I1

Γ ⊢ e : B

Γ ⊢ e : A ∨ B
∨I2

Γ ⊢ e ′ : A ∨ B

Γ, x:A ⊢ E [x] : C
Γ, y:B ⊢ E [y] : C

Γ ⊢ E [e ′] : C
∨E

Γ ⊢ e ′ : ⊥ Γ ⊢ E [e ′] ok

Γ ⊢ E [e ′] : C
⊥E

Γ ⊢ e : [i/a]A Γ ⊢ i : γ

Γ ⊢ e : Σa:γ.A
ΣI

Γ ⊢ e ′ : Σa:γ.A Γ, a:γ, x:A ⊢ E [x] : C

Γ ⊢ E [e ′] : C
ΣE

Γ ⊢ e : A Γ |= P

Γ ⊢ e : P O A
OI

Γ ⊢ e ′ : P O A Γ, P, x:A ⊢ E [x] : C

Γ ⊢ E [e ′] : C
OE

Γ ⊢ e ′ : A Γ, x:A ⊢ E [x] : C

Γ ⊢ E [e ′] : C
direct

Figure 2.9: Typing rules

August 6, 2007

2.5. PROPERTIES OF SUBTYPING 33

Γ ; c : Acon; c(x) : δ(i) ⊢ e : C

δ � δ ′ Γ, x:A, i
.
= i ′ ⊢ e : C

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e : C
δS-ct

δ 6� δ ′ Γ, x:A ⊢ e ok

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e : C
δF-ct

Γ ; c : Acon
1 ; c(x) : B ⊢ e : C

Γ ; c : Acon
2 ; c(x) : B ⊢ e : C

Γ ; c : Acon
1 ∧ Acon

2 ; c(x) : B ⊢ e : C
∧-ct

Γ, a:γ; c : Acon; c(x) : B ⊢ e : C

Γ ; c : Πa:γ.Acon; c(x) : B ⊢ e : C
Π-ct

Γ, P; c : Acon; c(x) : B ⊢ e : C

Γ ; c : (P ⊃ Acon); c(x) : B ⊢ e : C
⊃-ct

Γ ⊢ ms :B C

Γ ⊢ · :B C
emptyms

Γ ; c : S(c); c(x) : B ⊢ e : C Γ ⊢ ms :B C

Γ ⊢ (c(x)⇒ e ||ms) :B C
casearm

Figure 2.10: Case typing rules

Γ ⊢ A ≤ B

Γ ⊢ B1 ≤ A1 Γ ⊢ A2 ≤ B2
Γ ⊢ A1 → A2 ≤ B1 → B2

→
Γ ⊢ 1 ≤ 1

1
Γ ⊢ A1 ≤ B1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 ∗A2 ≤ B1 ∗ B2
∗

Γ ⊢ A ≤ B1 Γ ⊢ A ≤ B2
Γ ⊢ A ≤ B1 ∧ B2

∧R
Γ ⊢ A1 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
∧L1

Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
∧L2

δ1 � δ2 Γ ⊢ i
.
= j

Γ ⊢ δ1(i) ≤ δ2(j)
δ

Γ ⊢ [i/a]A ≤ B Γ ⊢ i : γ

Γ ⊢ Πa:γ.A ≤ B
ΠL

Γ, b:γ ⊢ A ≤ B

Γ ⊢ A ≤ Πb:γ. B
ΠR

Γ ⊢ A1 ≤ B Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∨ A2 ≤ B
∨L

Γ ⊢ A ≤ B1
Γ ⊢ A ≤ B1 ∨ B2

∨R1
Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∨ B2
∨R2

Γ, a:γ ⊢ A ≤ B

Γ ⊢ Σa:γ.A ≤ B
ΣL

Γ ⊢ A ≤ [i/b]B Γ ⊢ i : γ

Γ ⊢ A ≤ Σb:γ. B
ΣR

Γ ⊢ ⊥ ≤ A
⊥L

Γ ⊢ A ≤ ⊤
⊤R

Γ |= P Γ ⊢ A ≤ B

Γ ⊢ (P ⊃ A) ≤ B
⊃L

Γ, P ⊢ A ≤ B

Γ ⊢ A ≤ (P ⊃ B)
⊃R

Γ, P ⊢ A ≤ B

Γ ⊢ (P O A) ≤ B
OL

Γ |= P Γ ⊢ A ≤ B

Γ ⊢ A ≤ (P O B)
OR

Figure 2.11: Subtyping rules

August 6, 2007

34 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

2.5 Properties of subtyping

We assume that |= and ⊢ in the constraint domain are decidable. We also assume that we can
somehow guess the index i in rules ΠL and ΣR (in practice, this requires introducing an existential
variable and solving for it; see Chapter 6). Under these assumptions, we can show:

Theorem. Γ ⊢ A ≤ B is decidable.

Proof. Straightforward, since for each subtyping rule (Figure 2.11), every premise is smaller than
the conclusion.

We omitted rules for reflexivity and transitivity of subtyping without loss of expressive power,
because they are admissible:

Lemma 2.9 (Reflexivity and Transitivity of ≤). For any context Γ :

(i) Γ ⊢ A ≤ A;

(ii) if Γ ⊢ A ≤ B and Γ ⊢ B ≤ C then Γ ⊢ A ≤ C.

Proof. For (i), by induction on A. For (ii), by induction on the given subtyping derivations; in each
case at least one derivation becomes smaller. In the cases ΣR/ΣL and ΠR/ΠL we substitute an index
i for a parameter a in a derivation.

In addition we have a large set of inversion properties, which are purely syntactic in our system.
We elide the lengthy statement of these properties here.

Note that we do not pretend to any completeness of subtyping with respect to the value inter-
pretation (or anything else): the fact that the values of A are a subset of the values of B does not
guarantee A ≤ B. For example, both ⊥ ∗ ⊥ and ⊥ are uninhabited, but ⊥ ∗ ⊥ ≤ ⊥ cannot be
derived.

2.6 Properties of values

For the proof of type safety, we need a key property: values are always definite. That is, once we
obtain a value v, even though v might have type A ∨ B, it must be possible to assign a definite type
to v. In order to make this precise, we formulate substitutions σ that substitute values and indices,
respectively, for several program variables x and index variables a. First we prove a simple lemma
relating values and evaluation contexts.

Lemma 2.10. If E [e ′] value then: (1) e ′ value; (2) for any v value, E [v] value.

Proof. By structural induction on E .

August 6, 2007

2.6. PROPERTIES OF VALUES 35

Γ ′ ⊢ σ : Γ

Γ ′ ⊢ · : ·
empty-σ

Γ ′ ⊢ σ : Γ Γ ′ |= [σ]P

Γ ′ ⊢ σ : (Γ, P)
prop-σ

Γ ′ ⊢ σ : Γ Γ ′ ⊢ i : γ

Γ ′ ⊢ (σ, i/a) : (Γ, a:γ)
ivar-σ

Γ ′ ⊢ σ : Γ Γ ′ ⊢ v : [σ]A

Γ ′ ⊢ (σ, v/x) : (Γ, x:A)
pvar-σ

Γ ′ ⊢ σ : Γ Γ ′ ⊢ u : [σ]A

Γ ′ ⊢ σ : (Γ, u:A)
fixvar-σ

Figure 2.12: Substitution typing

2.6.1 Substitutions

Figure 2.12 defines a typing judgment for substitutions Γ ′ ⊢ σ : Γ . It could be more general; here we
are only interested in substitutions of values for program variables and indices for index variables
that verify the logical assumptions of the constraint domain. Note in particular that substitutions
σ do not substitute for fixed point variables, though rule fixvar-σ allows them to appear in the
contexts; for example, one can derive b:Z, u:list(b)→1 ⊢ b/a : (a:Z, u:list(b)→1). Application of a
substitution σ to a term e or type A is in the usual (capture-avoiding) manner.

Definition 2.11. The identity substitution Γ/Γ is defined thus:

·/· = ·

(Γ, x:A)/(Γ, x:A) = (Γ/Γ), x/x

(Γ, a:γ)/(Γ, a:γ) = (Γ/Γ), a/a

(Γ, P)/(Γ, P) = Γ/Γ

(Γ, u:A)/(Γ, u:A) = Γ/Γ

Proposition 2.12 (Identity Substitution Typing). For all Γ such that Γ/Γ is defined, Γ, Γ ′ ⊢ Γ/Γ : Γ .

Proof. By induction on Γ , using the easily proved identities [Γ/Γ]A = A, [Γ/Γ] i = i, [Γ/Γ]P = P.

Lemma 2.13 (Weakening).

(i) If Γ ⊢ B ≤ C then Γ, x:A ⊢ B ≤ C.

(ii) If Γ ⊢ e : C then Γ, x:A ⊢ e : C.

(iii) If Γ ′ ⊢ σ : Γ then Γ ′, x:A ⊢ σ : Γ .

(And similarly for Γ ⊢ ms :B C and Γ ; c : Bcon; c(x) : δ(i) ⊢ e : C.)

Proof. By induction on the given derivation. We show part (iii): For empty-σ the result is immedi-
ate; for ivar-σ and prop-σ, Γ ′, x:A = Γ ′. For pvar-σ and fixvar-σ, use the IH (ii).

Lemma 2.14 (Substitution). (i) If Γ ⊢ A ≤ B and Γ ′ ⊢ σ : Γ , then Γ ′ ⊢ [σ]A ≤ [σ]B.

August 6, 2007

36 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

(ii) If D :: Γ ⊢ e : A and Γ ′ ⊢ σ : Γ , then there exists D ′ :: Γ ′ ⊢ [σ]e : [σ]A. Moreover, if Γ = Γ (that “D ::” is read
“D derives”
(Sec. 1.9.2).

is, Γ contains only index variables and index constraints), there is such a D ′ not larger than D
(that is, there are no more typing rule applications in D ′ than in D).

(iii) If Γ ⊢ e ′ : B and Γ, u:B ⊢ e : A then Γ ⊢ [e ′/u] e : A.

(And similar properties hold for Γ ⊢ ms :C B and Γ ; c : Ccon; c(x) : δ(i) ⊢ e : A.)

Proof. By induction on the respective derivations.

2.6.2 Definiteness

A typing judgment is definite if, whenever it shows that a term has indefinite type, we can also show
that the term has a more particular type. For example, the judgment · ⊢ Cons(0,Nil) : list(0) ∨ list(1)

is definite because we can also show · ⊢ Cons(0,Nil) : list(1). In this section, we show that every
judgment typing a closed value is definite. More specifically, we show that

(i) ⊢ v : ⊥ is not derivable;

(ii) if ⊢ v : A ∨ B then ⊢ v : A or ⊢ v : B;

(iii) if ⊢ v : Σa:γ.A then ⊢ v : [i/a]A for some i;

(iv) if ⊢ v : P O A then ⊢ v : A and |= P.

For the proof of definiteness (and the later proofs of value inversion and type safety), we use a
nontrivial measure of derivation size. This measure is motivated by the premises of the indefinite
elimination rules such as ∨E, where we must substitute for a variable in the proof cases for the
indefinite elimination rules, such as ∨E. That rule includes a premise introducing a new variable x.
We will have a value e ′ to substitute for x, but if we use only a simple measure of derivation size,
we would be unable to apply the IH to the resulting derivation (which is required) because it could
become larger. We obtain a valid inductive proof by stratifying derivations into those of rank 0, 1,
etc., where the rank of D is (roughly) the number of applications of indefinite elimination rules in
D. We will ensure that the derivations D ′ produced by the theorem have rank 0. Thus, applying
the IH to the typing for the value e ′, and substituting e ′ for x, cannot increase rank because the
substituted derivations typing e ′ have rank 0—and the rank of a subderivation of any premise of
∨E is one less than the rank of the original derivation, because that original derivation ends in ∨E.

Of course, we also want to apply the IH to premises of other rules, say ∧I, where the rank
of the derivation of the premises is no smaller, so we use a lexicographical ordering of the rank
(notated Rank) and the usual measure of derivation size. We also define the rank of any derivation
concluding in certain rules to be 0, regardless of applications of ∨E, etc. in its subderivations. This
lets us handle cases like e ′ = λx. e1 where the typing of e1 itself uses ∨E. Substituting a typing
derivation of e ′ into another derivation D1 may increase the number of times ∨E is used in D1,

8Σ with an empty index sort ⊥ can also construct an abomination, if S(c) = B → Σa:⊥. δ(a). Allowing unions in
constructor codomains is not immediately catastrophic, but would break our key property of value definiteness (below).

August 6, 2007

2.6. PROPERTIES OF VALUES 37

for example, if D1 uses ∧I. But we can ignore those uses since they are “buried” inside the typing
derivation of e1, and the proof never penetrates the derivation concluding in→I.

An illustration of this notion is given in Figure 2.13. Rank depends only on the rules applied
and not the judgments, so we elide the judgments, showing ranks in their place. At the root of
the derivation, direct is applied to subderivations of ranks 0 and 1, resulting in a derivation of
rank 2. The right-hand subderivation concludes in an application of ∧I; its rank is just the sum
of its subderivations’ ranks (1 + 0 = 1). Moving up, we have a ∨E application to three rank 0
derivations, yielding a rank 1 derivation. However, the ΣE application at the upper right, which
yields a derivation of rank 1, does not add to the rank of the larger derivation because there is an
intervening→I, forcing the rank to be 0.

0

0 0 0

1
∨E

0 0

1
ΣE

0
→I

1
∧I

2
direct

Figure 2.13: Illustration of derivation rank

Definition 2.15 (Definiteness Derivation Measure). The measure µ of a derivation D is a lexico-
graphically ordered pair

µ(D) = 〈Rank(D), Size(D)〉

Let R be the rule concluding D, and let D1, . . . ,Dn be the n subderivations, one for each premise
of R deriving a typing judgment. Then Size(D) is just the simple derivation size, that is,

Size(D) = 1+ Size(D1) + · · ·+ Size(Dn)

and Rank(D) is defined as follows.

Rank(D) =

0 if R is fix or→I
1+ Rank(D1) + · · ·+ Rank(Dn) if R is ⊥E, ∨E, ΣE, OE or direct
Rank(D1) + · · ·+ Rank(Dn) otherwise

We also define Rank(σ) of a substitution Γ ′ ⊢ σ : Γ as the sum of the ranks of its constituent
typing derivations, slightly abusing terminology since it is really the derivation of the substitution
typing judgment that has rank. Thus, if σ = e ′/x has rank 0, the derivation of Γ ′ ⊢ e ′ : A must also
have rank 0.

We also need a “ranked” version of the substitution lemma (2.14) that says, roughly, that sub-
stituting rank 0 derivations for rank 0 derivations (specifically, applications of var) cannot increase
rank; therefore, applying a rank 0 substitution does not increase the rank of the resulting typing
derivation. For consistency with the earlier lemma, we designate the whole thing “(ii)”.

August 6, 2007

38 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

Lemma 2.16 (Ranked Substitution).

(ii) If D :: Γ ⊢ e : A and · ⊢ σ : Γ , where Rank(σ) = 0 then there exists D ′ :: · ⊢ [σ]e : [σ]A, where

Rank(D ′) = Rank(D).

Moreover, if Γ = Γ it is the case that Size(D ′) ≤ Size(D).

Proof. By induction on the derivation D.
In the fix and →I cases, we apply Lemma 2.14 on each premise, then apply the same rule,

yielding a derivation that is rank 0 (according to Definition 2.15). Since Rank(D) is also 0, we have
the result.

In the var case, e is some variable x. Within the derivation of · ⊢ σ : Γ there must lie a derivation
D ′ :: · ⊢ e ′ : A, where [σ]x = e ′ and Γ(x) = A. We have Rank(σ) = 0, so Rank(D ′) = 0, which was
to be shown.

In all other cases, we simply apply the IH to each premise and apply the same rule. (For the rules
that themselves add to the rank, such as ∨E, we have a derivation of rank n whose subderivations
have ranks summing to n − 1. Applying the IH to each yields a derivation of the same rank.
Therefore, applying ∨E to those derivations results in a derivation of rank (n − 1) + 1 = n.) For
rules in which some premises are not typing judgments, such as sub and δE, we use Lemma 2.14
on them.

The “moreover” part follows from the “moreover” part of Lemma 2.14.

Theorem 2.17 (Value Definiteness). If D :: · ⊢ v : A then:

(i) · ⊢ A ≤ ⊥ is not derivable;

(ii) if · ⊢ A ≤ B1 ∨ B2 then there exists D ′ :: · ⊢ v : Bk for some k ∈ {1, 2};

(iii) if · ⊢ A ≤ Σb:γ. B then there exists ⊢ i : γ such that D ′ :: · ⊢ A ′ ≤ [i/b]B;

(iv) if · ⊢ A ≤ P O B then |= P and D ′ :: · ⊢ v : B;

(v) D ′ :: · ⊢ v : A.9

Moreover, in parts (ii)–(v), Rank(D ′) = 0.
Section 1.9.2
explains some
of the notation
used in our
proofs.

Proof. By induction on µ(D), where D :: · ⊢ v : A.
The term v is a value, so we need not consider rules that cannot type values. Furthermore,

by Property 2.5 the contra case cannot arise. Most cases follow easily from the IH, reflexivity/-
transitivity of subtyping, and rule sub. For example, in the case for ΠI, part (ii), we are given
· ⊢ Πa:γ.A0 ≤ B1 ∨ B2. The only rules that can derive such a judgment are ΠL, ∨R1 and ∨R2.
If ΠL was used, use Lemma 2.16 to eliminate a in the premise of ΠI and apply the IH. If ∨R1 was
used, we have · ⊢ Πa:γ.A0 ≤ B1, whence we can apply the IH. The ∨R2 subcase is similar.

Rule var is impossible since the context is empty.
For sub, use transitivity of subtyping followed by the IH.
That leaves the contextual rules ⊥E, ∨E, ΣE, OE and direct; we show the first three cases (the

last two are similar to ∨E, but using IH(iv) and IH(v), respectively):

9The force of part (v) comes from the “Moreover, . . . ” statement about Rank(D ′).

August 6, 2007 — Proof of Theorem 2.17 (Value Definiteness)

2.6. PROPERTIES OF VALUES 39

• Case ⊥E: D ::

· ⊢ e ′ : ⊥ · ⊢ E [e ′] ok

· ⊢ E [e ′] : A

By assumption, E [e ′] is a value. By Lemma 2.10, e ′ is a value. · ⊢ ⊥ ≤ ⊥ (Lemma 2.9), so by
the IH (i), this case cannot arise.

• Case ∧I: D ::

· ⊢ v : A1 · ⊢ v : A2
· ⊢ v : A1 ∧ A2

Part (ii): It is given that ⊢ A1 ∧ A2 ≤ B1 ∨ B2. The only rules that can derive such a judgment
are ∨R1,2 and ∧L1,2.

If by ∨R1, we have ⊢ A1 ∧ A2 ≤ B1. Applying the IH (v) to each subderivation of D yields
rank-0 derivations of ⊢ v : A1 and ⊢ v : A2; applying ∧I to those yields a rank-0 derivation of
⊢ v : A1 ∧ A2. By sub, ⊢ v : B1, which was to be shown. The ∨R2 case is similar.

If by ∧L1,we have ⊢ A1 ≤ B1 ∨ B2; the result follows by IH on · ⊢ v : A1. The ∧L2 case is
similar.

The proofs of parts (i) and (iii)–(v) are similar.

• Case ΠI, ⊃I, ⊤I: Similar to ∧I.

• Case ∧E1: D ::

· ⊢ v : A ∧ A0
· ⊢ v : A

Part (ii): We have ⊢ A ≤ B1 ∨ B2. By ∧L1 and transitivity (Lemma 2.9), · ⊢ A ∧ A0 ≤ B1 ∨

B2. The result follows by IH on · ⊢ v : A ∧ A0.

The proofs of parts (i) and (iii)–(v) are similar.

• Case ∧E2, ΠE, ⊃E: Similar to ∧E1.

• Case ∨E: D ::

· ⊢ e ′ : C1 ∨ C2

D1
x:C1 ⊢ E [x] : A

D2
y:C2 ⊢ E [y] : A

· ⊢ E [e ′] : A

This case goes the same way for all parts, (i)–(v).

E [e ′] value is given. By Lemma 2.10, E [x] value and e ′ value.

By Lemma 2.9, ⊢ C1 ∨ C2 ≤ C1 ∨ C2. By IH (ii), D ′ :: · ⊢ e ′ : Ck for some k ∈ {1, 2}, where
Rank(D ′) = 0. Assume k = 1; the k = 2 case is similar. By empty-σ and pvar-σ, · ⊢ e ′/x : x:C1,
which, since Rank(D ′) = 0, is a rank-0 substitution. By Lemma 2.16 on D1 :: x:C1 ⊢ E [x] : A,
we have

D ′′ :: · ⊢ [e ′/x] E [x] : [e ′/x]A

where Rank(D ′′) = Rank(D1). Since x is new, it does not appear in E , so in fact we have
D ′′ :: · ⊢ E [e ′] : A. By Definition 2.15, Rank(D1) < Rank(D). Therefore Rank(D ′′) < Rank(D).

August 6, 2007 — Proof of Theorem 2.17 (Value Definiteness)

40 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

Under the lexicographic ordering, µ(D ′′) < µ(D), so we can apply the IH to D ′′ :: · ⊢ E [e ′] : A,
yielding the result.

• Case direct: D ::

· ⊢ e ′ : C
D1

x:C ⊢ E [x] : A

· ⊢ E [e ′] : AThis style of
line-by-line
proof is
explained in
Section 1.9.2.

· ⊢ e ′ : C Subderivation

D ′
0 :: · ⊢ e

′ : C and Rank(D ′
0) = 0 By IH (v)

· ⊢ e ′/x : x:C By empty-σ then pvar-σ

D1 :: x:C ⊢ E [x] : A Subderivation

D ′ :: ·
Rank(D ′)

⊢
=

[e ′/x] E [x] : A
Rank(D1)

}
By Lemma 2.16

Rank(D1) < Rank(D) By Definition 2.15

[e ′/x] E [x] satisfies (i)–(v) By IH

[e ′/x] E [x] = E [e ′] By defn. of substitution (x new)

Z E [e ′] satisfies (i)–(v) By previous equation

• Case OE: D ::

· ⊢ e ′ : P O C

D1
P, x:C ⊢ E [x] : A

· ⊢ E [e ′] : A

· ⊢ e ′ : P O C Subderivation

D ′
0 :: ·

|=

⊢
P

e ′ : C and Rank(D ′
0) = 0

}
By IH (iv)

⊢ e ′/x : x:C By empty-σ then pvar-σ

⊢ e ′/x : x:C, P By prop-σ

D1 :: x:C, P ⊢ E [x] : A Subderivation

D ′ :: ·
Rank(D ′)

⊢
=

[e ′/x] E [x] : A
Rank(D1)

}
By Lemma 2.16

Rank(D1) < Rank(D) By Definition 2.15

[e ′/x] E [x] satisfies (i)–(v) By IH

[e ′/x] E [x] = E [e ′] By defn. of substitution (x new)

Z E [e ′] satisfies (i)–(v) By previous equation

• Case ΣE: Similar to the OE case, using IH (iii) instead of IH (iv), and the substitution
i/a, e ′/x.

August 6, 2007

2.6. PROPERTIES OF VALUES 41

2.6.3 Value inversion on→, ∗, δ(i)

For ordinary types (not property types) we have a value inversion lemma (also known as genericity

or canonical forms) used in the respective elimination rule cases in the type safety proof (Thm.
2.21): for instance, that proof’s case for ∗E1 must invert v : A1 ∗ A2 to obtain v = (v1, v2) where
v1 : A1. (The unit type 1 has no elimination rule, so it does not need an inversion lemma.)10

To get through the value inversion proof cases for the indefinite type elimination rules, such as
∨E, we use the same derivation measure µ that we just used to prove value definiteness. However,
the statement of the proposition is simpler because, in those cases, we use value definiteness—not
the IH—on the subterm e ′. Thus we need not say the resulting derivation D ′ is smaller than D; we
do not even name the resulting derivation.

Lemma 2.18 (Value Inversion for→, ∗, δ(i)). If D :: · ⊢ v : A, then

(i) if · ⊢ A ≤ B1 → B2 then v = λx. e where · ⊢ [v ′/x] e : B2 for any ⊢ v ′ : B1;

(ii) if · ⊢ A ≤ B1 ∗ B2 then v = (v1, v2) where · ⊢ v1 : B1 and · ⊢ v2 : B2.

(iii) if · ⊢ A ≤ δ(i) then v = c(v ′) where · ⊢ S(c) ↑ B1→δ ′(i ′) and · ⊢ c(v ′) : δ ′(i ′) and · ⊢ v ′ : B1
and · ⊢ δ ′(i ′) ≤ δ(i).

Proof. By induction on the measure µ(D), where D :: · ⊢ v : A. We show part (i), inversion on→;
for part (ii), inversion on ∗, all cases except →I and ∗I are similar to the corresponding cases for
part (i), while the ∗I case for (ii) is a slight simplification of the→I case for (i). For part (iii), δ(i),
all cases are similar to part (i) except→I and δI; we show the δI case in full at the end.

Rules fixvar, fix, →E, ∗E1, ∗E2, and δE cannot type values. For 1I there is no way to derive
· ⊢ 1 ≤ B1 → B2, so the rule could not have been used; ∗I, δI, and ⊤I are similar.

Since the context is empty, the var case is impossible.

For sub, ∧E1,2, ΠE, ⊃E, ∨I1,2, ΣI, and OI, we show that the type in each rule’s premise is a
subtype of A (immediate in sub, otherwise by the appropriate subtyping rule), then use transitivity
of subtyping and apply the IH.

For ⊥E, ∨E, ΣE, OE and direct, in which the subject term is E [v ′], we use Theorem 2.17, yielding
D ′ :: · ⊢ v ′ : C (for appropriate C) where Rank(D ′) = 0. By an argument similar to that in
the ∨E case of the proof of Theorem 2.17, we obtain a derivation D ′

1 :: · ⊢ E [v ′] : A such that
Rank(D ′

1) < Rank(D), and therefore µ(D ′
1) < µ(D), so we can apply the IH to D ′

1. We show the ΣE
case below.

The contra case is excluded by Property 2.5.

The remaining cases are→I, ΠI, ∧I and ⊃I.

• Case→I: D ::

x:A1 ⊢ e : A2
· ⊢ λx. e : A1 → A2

10The combination of the inversion properties for →, ∗, and d(i) into one lemma (Lemma 2.18) is not required; there
is no interplay between these constructors in the type system, in particular, in the subtyping rules.

August 6, 2007 — Proof of Lemma 2.18 (Value Inversion)

42 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

The result that v = λx. e is immediate. We have · ⊢ A ≤ B1 → B2 and A = A1 → A2. By
inversion, · ⊢ B1 ≤ A1 and · ⊢ A2 ≤ B2. For all v ′ such that · ⊢ v ′ : B1:

· ⊢ B1 ≤ A1 Above

· ⊢ v ′ : B1 Assumption

· ⊢ v ′ : A1 By sub

· ⊢ v ′/x : x:A1 By empty-σ and pvar-σ

x:A1 ⊢ e : A2 Subd.

· ⊢ [v ′/x]e : [v ′/x]A2 By Lemma 2.14

· ⊢ [v ′/x]e : A2 x /∈ FV(A2)

· ⊢ A2 ≤ B2 Above

Z · ⊢ [v ′/x]e : B2 By sub

• Case ΠI: D ::

a:γ ⊢ v : A ′

· ⊢ v : Πa:γ.A ′

We have A = Πa:γ.A ′.

· ⊢ Πa:γ.A ′ ≤ B1 → B2 Given

· ⊢ [i/a]A ′ ≤ B1 → B2 and · ⊢ i : γ By inversion (only rule ΠL possible)

· ⊢ i/a : a:γ By empty-σ and ivar-σ

D ′ :: a:γ ⊢ v : A ′ Subd.

D ′′ :: ·
Rank(D ′′)

⊢
=

[i/a]v : [i/a]A ′

Rank(D ′) and Size(D ′′) ≤ Size(D ′)

}
By Lemma 2.16

µ(D ′′) ≤ µ(D ′) By Definition 2.15

D ′′ :: · ⊢ v : [i/a]A ′ a not free in v

Z v = λx. e and · ⊢ [v ′/x] e : B2

for any v ′ s.t. · ⊢ v ′ : B1 By IH

• Case ⊃I: Similar to the ΠI case.

• Case ∧I: D ::

· ⊢ v : A1 · ⊢ v : A2
· ⊢ v : A1 ∧ A2

We have A = A1 ∧ A2, and · ⊢ A ≤ B1 → B2. The only subtyping rules that could have
been used are ∧L1,2. These cases are symmetric; assume ∧L2. The premise of ∧L2 is · ⊢ A2 ≤
B1 → B2. Applying the IH to · ⊢ v : A2 yields v = λx. e where ⊢ [v ′/x] e : B2 for any v ′ such
that ⊢ v ′ : B1, which was to be shown.

August 6, 2007 — Proof of Lemma 2.18 (Value Inversion)

2.6. PROPERTIES OF VALUES 43

• Case ΣE: D ::

· ⊢ e ′ : Σa:γ.C a:γ, x:C ⊢ E [x] : A

· ⊢ E [e ′] : A

By Theorem 2.17, there exists ⊢ i : γ such that · ⊢ e ′ : [i/a]C by a rank-0 derivation. By
Lemma 2.16, ⊢ [i/a, e ′/x] E [e ′] : A by a derivation of the same rank as the subderivation
a:γ, x:C ⊢ E [x] : A. That rank is one less than the rank of D, so we can apply the IH, yielding
the result.

That concludes parts (i) and (ii). For part (iii), we show the δI case:

• Case δI: D ::

· ⊢ c : B1 → δ ′(i ′) · ⊢ v ′ : B1
· ⊢ c(v ′) : δ ′(i ′)

The only rule that can conclude · ⊢ c : B1 → δ ′(i ′) is S-con, which has premise

Z · ⊢ S(c) ↑ B1→δ ′(i ′)
A = δ ′(i ′) Given

Z · ⊢ c(v ′) : δ ′(i ′) Conclusion of derivation

Z v = c(v ′) Given

· ⊢ A ≤ δ(i) Given

Z · ⊢ v ′ : B1 Subderivation

Z · ⊢ δ ′(i ′) ≤ δ(i) By A = δ ′(i ′)

2.6.4 Lemmas for case

We prove two lemmas relating to constructors and matches:

• Lemma 2.19 (used in Lemma 2.20) allows inversion on judgments of the form ·; c : Acon; c(x) :

δ(i) ⊢ e : C, obtaining x:A1 ⊢ e : C where A1 is appropriately related to Acon;

• Lemma 2.20 shows that given a value c(v) : δ(i) and a typing of ms = . . . c(x)⇒ e . . . , there
is an A such that v : A and x:A ⊢ e : C, pursuant to showing that case c(v) of ms 7→R [v/x]e

preserves typing (in the δE case of Theorem 2.21).

Lemma 2.19. If ·; c : Acon; c(x) : δ(i) ⊢ e : C where · ⊢ Acon ↑ A1 → δ ′(i ′) and δ ′ � δ and · |= i ′
.
= i

then x:A1 ⊢ e : C.

Proof. By induction on the size of D :: ·; c : Acon; c(x) : δ(i) ⊢ e : C.

• Case δS-ct: D ::

δ ′′ � δ x:A ′, i ′′
.
= i ⊢ e : C

·; c : A ′ → δ ′′(i ′′); c(x) : δ(i) ⊢ e : C

Only rule refl-↑ could have derived · ⊢ A ′→δ ′′(i ′′) ↑ A1→δ ′(i ′), so we have A ′ = A1 and
δ ′′ = δ ′ and i ′′ = i ′. The second subderivation is therefore x:A1, i

′ .= i ⊢ e : C. It is given that
· |= i ′

.
= i. By Lemma 2.14 with substitution x/x we obtain x:A1 ⊢ e : C, which was to be

shown.

August 6, 2007

44 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

• Case δF-ct: D ::

δ ′′ 6� δ x:A ⊢ e ok

·; c : A ′ → δ ′′(i); c(x) : δ(i) ⊢ e : C

We have the premise δ ′′ 6� δ. By analogy with the preceding case, δ ′′ = δ ′, so δ ′ 6� δ. This
contradicts δ ′ � δ, which was given: the case is impossible.

• Case ∧-ct: D ::

·; c : Acon ′
1; c(x) : δ(i) ⊢ e : C ·; c : Acon ′

2; c(x) : δ(i) ⊢ e : C

·; c : Acon ′
1 ∧ A

con ′
2; c(x) : δ(i) ⊢ e : C

Inversion on · ⊢ Acon ′
1 ∧ Acon ′

2 ↑ A1 → δ ′(i ′) yields · ⊢ Acon ′
k ↑ A1 → δ ′(i ′) for some k ∈ 1..2.

The result follows by IH on the kth premise.

• Case Π-ct, ⊃-ct: Use inversion on · ⊢ Acon ↑ A1 → δ ′(i ′) to get · ⊢ i : γ or · |= P, and
construct a substitution i/a or ·. Use Lemma 2.14 on a subderivation. Since a:γ = a:γ (and
· = ·), the resulting derivation is no larger than the subderivation. The IH then gives the
result.

Lemma 2.20. If · ⊢ c(v) : δ(i) and · ⊢ ms :δ(i) C and ms = . . . c(x)⇒ e . . . then there exists A such

that x:A ⊢ e : C where · ⊢ v : A.

Proof. By induction on the derivation of · ⊢ ms :δ(i) C. Two rules can derive such judgments:

• Case emptyms: ms = ·, but it is given that ms includes c(x)⇒ e. This rule could not have
been used.

• Case casearm: D ::

·; c ′ : S(c ′); c ′(x ′) : δ(i) ⊢ e ′ : C · ⊢ ms ′ :δ(i) C

· ⊢ (c ′(x ′)⇒ e ′) ||ms ′ :δ(i) C

If c ′ 6= c: It is given that ms = (c ′(x ′)⇒ e ′) ||ms ′ includes c(x)⇒ e. Since c ′ 6= c, ms ′ must
include c(x)⇒ e. The result follows by IH on · ⊢ ms ′ :δ(i) C.

If c ′ = c: By the assumption that each constructor appears in exactly one case arm, c ′(x ′)⇒
e ′ = c(x)⇒ e. Therefore the first subderivation is

·; c : S(c); c(x) : δ(i) ⊢ e : C.

· ⊢ δ(i) ≤ δ(i) by Lemma 2.9. By Property 2.5, · 6|= ⊥. Thus we can use Lemma 2.18 on
· ⊢ c(v) : δ(i) to yield A and δ ′(i ′) such that · ⊢ S(c) ↑ A→δ ′(i ′) where · ⊢ v : A and
· ⊢ δ ′(i ′) ≤ δ(i). By inversion on the latter, δ ′ � δ and · |= i ′

.
= i.

We can now apply Lemma 2.19 to show x:A ⊢ e : C, which with · ⊢ v : A constitutes the
result.

2.7 Type preservation and progress

Having proved value definiteness, value inversion, and properties of case expressions, we are ready
to prove type safety. We prove the preservation and progress theorems simultaneously; we could

August 6, 2007

2.7. TYPE PRESERVATION AND PROGRESS 45

prove them separately, but the proofs would share so much structure as to be more cumbersome
than the simultaneous proof.11 Note that while we have elided any explicit effects from the present
system, the analysis in [DP00] applies in this setting. Again we use the derivation measure µ(D),
which allows application of the IH after substitution in a subderivation in the direct, ⊥E, ∨E, ΣE
and OE cases.

Theorem 2.21 (Type Preservation and Progress). If D :: · ⊢ e : C then either

(1) e value, or

(2) there exists e ′ such that e 7→ e ′ and ⊢ e ′ : C.

Proof. By induction on the measure µ(D) of the derivation D :: · ⊢ e : C. If e value, the result is
immediate. So suppose e is not a value.

Rules 1I, →I, ∧I, ⊤I, ΠI, and ⊃I can type only values, and are thus excluded. The context is
empty, so var and fixvar are excluded, and by Property 2.5 rule contra cannot have been used.

The case for fix uses Lemma 2.14. For sub, ∨I1,2, ΣI, OI, ∧E1,2, ⊃E and δI we simply use the IH
and apply the rule again.

• Case→E: D ::

· ⊢ e1 : A→ C · ⊢ e2 : A

· ⊢ e1e2 : C

If e1 is not a value, use the IH with · ⊢ e1 : A → C, yielding e ′1 such that e1 7→ e ′1 and
· ⊢ e ′1 : A → C. Given e1 7→ e ′1 we have e1 e2 7→ e ′1e2. We have a subderivation of · ⊢ e2 : A.
By→E, · ⊢ e ′1e2 : C.

The situation is symmetric if e1 is a value and e2 is not.

If both e1 and e2 are values: we have · ⊢ e1 : A → C and · ⊢ e2 : A. By Lemma 2.18,
e1 = λx. e0 where, for all v ′ such that · ⊢ v ′ : A, it is the case that · ⊢ [v ′/x] e0 : C. Let v ′ = e2.
Then we have · ⊢ [e2/x] e0 : C. Finally, e1 = λx. e0 and e2 is a value, so e1e2 7→ [e2/x] e0.

• Case ∗I: D ::

· ⊢ e1 : C1 · ⊢ e2 : C2
· ⊢ (e1, e2) : C1 ∗ C2

At least one of e1, e2 is not a value. Suppose e1 is not.

e1 7→ e ′1 and · ⊢ e ′1 : C1 By IH

Z (e1, e2) 7→ (e ′1, e2) By ev-context

· ⊢ e2 : C2 Subd.

Z · ⊢ (e ′1, e2) : C1 ∗ C2 By ∗I

The case where e1 is a value and e2 is not is similar.

11Our semantics is deterministic, so the combined form is useful. In a nondeterministic semantics, the guarantee of
the combined form would be too weak: saying that there exists a well-typed term to which the present term steps does
not preclude stepping to some other ill-typed term.

August 6, 2007 — Proof of Theorem 2.21 (Type Preservation and Progress)

46 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

• Case δE: D ::

· ⊢ e0 : δ(i) · ⊢ ms :δ(i) C

· ⊢ case e0 of ms : C

If e0 is not a value the case is straightforward. If e0 is a value: We have subderivations

· ⊢ e0 : δ(i) and · ⊢ ms :δ(i) C

By Lemma 2.18, e0 = c(v) for some v. We assume there is exactly one case arm for each
constructor, so ms = . . . c(x) ⇒ ec . . . for some x, ec. By Lemma 2.20, x:A ⊢ ec : C where
· ⊢ v : A.

We have case e0 of ms = case c(v) of . . . c(x)⇒ ec By the reduction rule in Figure 2.4,
case c(v) of . . . c(x)⇒ ec . . . 7→R [v/x]ec. By Lemma 2.14, · ⊢ [v/x] ec : C. Let e ′ = [v/x] ec
and we have the result.

• Case ∗E1: D ::

· ⊢ e0 : C ∗ C2
· ⊢ fst(e0) : C

If e0 is not a value, the case is straightforward. If e0 is a value:

· ⊢ e0 : C ∗ C2 Subderivation

· ⊢ C ∗ C2 ≤ C ∗ C2 By Lemma 2.9

e0
Z ·

=

⊢
(v1, v2)

v1 : C

}
By Lemma 2.18

Z fst((v1, v2)) 7→ v1

The ∗E2 case is similar.

• Case ⊃E: D ::

· ⊢ e : P ⊃ C · |= P

· ⊢ e : C

By IH, e 7→ e ′ and · ⊢ e ′ : P ⊃ C. Applying ⊃E yields · ⊢ e ′ : C, which was to be shown.

• Case OI: D ::

· ⊢ e : C ′ · |= P

· ⊢ e : P O C ′

Similar to the previous case.

For direct, ⊥E, ∨E, ΣE and OE, which type an evaluation context E [e ′], we proceed thus:

• If the whole term E [e ′] is a value, we have the result.

• If e ′ is not a value:

(1) Apply the IH to · ⊢ e ′ : D to obtain e ′ 7→ e ′′ with ⊢ e ′′ : D.

(2) From e ′ 7→ e ′′, use ev-context to show E [e ′] 7→ E [e ′′].

(3) Reapply the rule, with premise ⊢ e ′′ : D, to yield ⊢ E [e ′′] : C.

August 6, 2007 — Proof of Theorem 2.21 (Type Preservation and Progress)

2.7. TYPE PRESERVATION AND PROGRESS 47

• If e ′ is a value (but E [e ′] is not), use value definiteness (Theorem 2.17), yielding a contra-
diction (the ⊥E case), or a new derivation (the direct, ∨E, ΣE, and OE cases) which can be
substituted in another premise.

The last subcase, where e ′ is a value and E [e ′] is not, is the most interesting; we show it for ⊥E,
∨E, ΣE and OE. The direct case is similar; it uses part (v) of Theorem 2.17.

• Case ⊥E: D ::

· ⊢ e ′ : ⊥ · ⊢ E [e ′] ok

· ⊢ E [e ′] : C

We have · ⊢ e ′ : ⊥ as a subderivation. By Lemma 2.9, · ⊢ ⊥ ≤ ⊥, but by Theorem 2.17 (i),
· 6⊢ ⊥ ≤ ⊥, a contradiction. Therefore ⊥E could not have derived D.

• Case ∨E: D ::

D0
· ⊢ e ′ : A ∨ B

D1
x:A ⊢ E [x] : C

D2
y:B ⊢ E [y] : C

· ⊢ E [e ′] : C

e ′ value is given. We have D0 :: · ⊢ e ′ : A ∨ B as a subderivation. By Theorem 2.17 (ii),
either · ⊢ e ′ : A or · ⊢ e ′ : B by a derivation D ′ of rank 0. Assume ⊢ e ′ : A (the other case is
symmetric). D1 :: x:A ⊢ E [x] : C is a subderivation of rank Rank(D1) < Rank(D). By empty-σ
and pvar-σ, · ⊢ e ′/x : x:A. By Lemma 2.16, D ′

1 :: · ⊢ E [e ′] : C where Rank(D ′
1) = Rank(D1),

which is less than Rank(D), so we can apply the IH to D ′
1, obtaining E [e ′] 7→ e ′′ and · ⊢ e ′′ : C.

• Case ΣE: D ::

D0
· ⊢ e ′ : Σa:γ.A

D1
a:γ, x:A ⊢ E [x] : C

· ⊢ E [e ′] : C

e ′ value Given

D0 :: · ⊢ e
′ : Σa:γ.A Subderivation

∃i. D ′
0 :: ·

where ·
⊢
⊢
e ′ : [i/a]A

i : γ and Rank(D ′
0) = 0

}
By Theorem 2.17 (iii)

· ⊢ · : · By empty-σ

· ⊢ i/a : a:γ By ivar-σ

· ⊢ i/a, e ′/x : a:γ, x:A By pvar-σ

Rank(i/a, e ′/x) = 0 Rank(D ′
0) = 0

D1 :: a:γ, x:A ⊢ E [x] : C Subderivation

D ′
1 :: ·

Rank(D ′
1)

⊢
=

[i/a, e ′/x] E [x] : [i/a, e ′/x]C
Rank(D1)

}
By Lemma 2.16

D ′
1 :: · ⊢ [e ′/x] E [x] : C i is a new index variable

D ′
1 :: · ⊢ E [e ′] : C x is new, so not free in E

August 6, 2007 — Proof of Theorem 2.21 (Type Preservation and Progress)

48 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

Rank(D1) < Rank(D) By Definition 2.15

Rank(D ′
1) < Rank(D) Rank(D ′

1) = Rank(D1)

µ(D ′
1) < µ(D) By Definition 2.15

Z E [e ′] 7→ e ′′ and · ⊢ e ′′ : C By IH

• Case OE: D ::

· ⊢ e ′ : P O A P, x:A ⊢ E [x] : C

· ⊢ E [e ′] : C

e ′ value Given

D0 :: · ⊢ e
′ : P O A Subderivation

D ′
0 :: ·

where ·
⊢
|=

e ′ : A

P and Rank(D ′
0) = 0

}
By Theorem 2.17 (iv)

· ⊢ · : · By empty-σ

· ⊢ · : P By prop-σ

· ⊢ e ′/x : P, x:A By pvar-σ

Rank(e ′/x) = 0 Rank(D ′
0) = 0

D1 :: P, x:A ⊢ E [x] : C Subderivation

D ′
1 :: ·

Rank(D ′
1)

⊢
=

[e ′/x] E [x] : [e ′/x]C
Rank(D1)

}
By Lemma 2.16

D ′
1 :: · ⊢ E [e ′] : C x is new, so not free in E

Rank(D1) < Rank(D) By Definition 2.15

Rank(D ′
1) < Rank(D) Rank(D ′

1) = Rank(D1)

µ(D ′
1) < µ(D) By Definition 2.15

Z E [e ′] 7→ e ′′ and · ⊢ e ′′ : C By IH

2.8 Related work

Refinement using indexed datatypes and dependent function types with indices drawn from a de-
cidable constraint domain was proposed by Xi and Pfenning [XP99]. Their language did not in-
troduce pure property types, requiring syntactic markers to eliminate existentials. Since this was
unrealistic for many programs, Xi [Xi98] presented an algorithm allowing existential elimination at
every binding site after translation to a let-normal form. Some of our results can be seen as a post

hoc justification for that basic idea; see the remarks at the end of Section 2.4.5—and Chapter 5.
Pierce [Pie91b] gave examples of programming with intersection and union types in a pure λ-

calculus using a typechecking mechanism that relied on syntactic markers. MacQueen et al. [MPS86]
appear to be the first to publish work on union types, in their development of a model of recur-
sive polymorphic types. The first systematic study of unions in a type assignment framework by

August 6, 2007

2.9. CONCLUSION 49

Barbanera et al. [BDCd95] identified a number of problems, including the failure of type preser-
vation even for the pure λ-calculus when the union elimination rule is too unrestricted (as it was
in MacQueen et al.). That study also provided a framework for our more specialized study of a
call-by-value language with possible effects.

Van Bakel et al. [vBDCdM00] showed that the minimal relevant logic B+ yields a type assign-
ment system for the pure call-by-value λ-calculus; conjunction and disjunction become intersection
and union, respectively. In their ∨-elimination rule, the subexpression may appear multiple times
but must be a value; this rule is sound but impractical (see Section 2.4.1).

Litvinov [Lit03] used pure intersections and unions in typechecking programs in the object-
oriented language Cecil. Igarashi and Nagira [IN06] extended Java with union types. Their type
system includes both an explicit case statement (based on objects’ runtime tags) and “direct access”
to object members: given two classes C1 and C2, neither of which is a subclass of the other, and an
x declared as type C1 ∨ C2, the access x.m is permitted as long as both C1 and C2 have a member
m. These are not exactly tagged unions in the usual sense, nor are they exactly pure unions like
those in our system—they are a form of pure union over the class hierarchy, which is itself a tagged
union.

Finally, forms of union types have been used for control flow analysis and soft typing, as men-
tioned in Section 1.6.1.

2.9 Conclusion

We have designed a system of property types for the purpose of checking program invariants in call-
by-value languages. We have presented the system as it was designed: incrementally, with each
type constructor added orthogonally to an intermediate system that is itself sound and logically
motivated. For both the definite and indefinite types, we have formulated rules that are not only
sound but internally regular: the differences among ∨E, ⊥E, ΣE, direct are logical consequences
of the type constructor’s arity. The remarkable feature shared by all four rules is that typing may
proceed in evaluation order, constituting a less ad hoc alternative to Xi’s conversion to let-normal
form. Lastly, we have formulated properties of definiteness of judgments, substitutions, and values,
vital for our proof of type safety.

The pure type assignment system presented here is undecidable. The present system can be
used to verify progress and preservation after erasure of all type annotations, and is the basis
of soundness in the bidirectional system in Chapter 3. In particular, it verifies that typechecked
programs do not need to carry types at runtime.

While we have elided any explicit effects from the present system for the sake of brevity, the
analysis in [DP00] applies to this setting and the present system.

August 6, 2007

50 CHAPTER 2. A TYPE ASSIGNMENT SYSTEM

August 6, 2007

Chapter 3

A tridirectional type system1

3.1 Introduction

Chapter 2 developed a system of pure type assignment designed for call-by-value languages with
effects and proved progress and type preservation. As a pure type assignment system, where
terms do not contain any types at all, it is inherently undecidable due to unrestricted intersection
types [CDCV81, AC98].

In this chapter we develop an annotation discipline and typechecking algorithm for the type
assignment system. The major contribution is the type system itself, which contains several novel
ideas, including an extension of the paradigm of bidirectional typechecking to union and existential
types, leading to the tridirectional system. While type soundness follows immediately by erasure
of annotations, completeness requires that we insert contextual typing annotations reminiscent of
principal typings [Jim95, Wel02]. Decidability is not obvious; we prove it by showing that a slightly
altered left tridirectional system is decidable (and sound and complete with respect to the tridirec-
tional system).

The basic underlying idea is bidirectional checking [PT98] of programs containing some type
annotations, combining type synthesis with type analysis, first adapted to property types by Davies
and Pfenning [DP00]. Synthesis generates a type for a term from its immediate subterms. Logically,
this is appropriate for destructors (or elimination forms) of a type. For example, the first product
elimination passes from e : A ∗ B to fst(e) : A. Therefore, if we can generate A ∗ B we can
extract A. Dually, analysis verifies that a term has a given type by verifying appropriate types for its
immediate subterms. Logically, this is appropriate for constructors (or introduction forms) of a type.
For example, to verify that (λx. e) : A → B we assume x : A and then verify e : B. Bidirectional
checking works for both the native types of the underlying programming language and the layer of
property types we construct over it.

However, the simple bidirectional model is not sufficient for the indefinite property types:
unions, existential quantification, the empty type and asserting types. This is because the pro-
gram lacks the requisite structure. For example, if we synthesize the union A ∨ B for an expression
e, we now need to distinguish the cases: the value of e might have type A or it might have type B.

1This chapter is based on joint work with Frank Pfenning [DP04a].

51

52 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Determining the proper scope of this case distinction depends on how e is used, that is, the position
in which e occurs. This means we need a “third direction” (whence the name tridirectional): we
might need to move to a subexpression e, synthesize its type, and only then analyze the expression
E [e] surrounding it.

Since the tridirectional type system (like the bidirectional one) requires annotations, we want to
know that any program well typed in the type assignment system can be annotated so that it is also
well typed in the tridirectional system. But with intersection types, such a completeness property
does not hold for the usual form of type annotation (e : A) (as previously noted [Pie91a, Dav05a,
WH02]), a problem exacerbated by scoping issues arising from quantified types. We therefore
extend the notion of type annotation to contextual typing annotation, (e : Γ1 ⊢ A1, . . . , Γn ⊢ An), in
which the programmer can write several context/type pairs. The idea is that an annotation Γk ⊢ Ak
may be used when e is checked in a context matching Γk. This idea might also be applicable to
arbitrary rank polymorphism, a possibility we leave to future work.

Unlike the bidirectional system, the indefinite property types that necessitate the third direction
make decidability of typechecking nontrivial. Two ideas come to the rescue. First, to preserve type
safety in a call-by-value language with effects, the type of a subterm e can only be analyzed if the
term containing it has the form E [e] for some evaluation context E , reducing2 the nondeterminism;
this was a key observation in Chapter 2. Second, one never needs to visit a subterm more than
once in the same derivation: the system which enforces this is sound and complete.

Section 3.2 presents a simple bidirectional type system. Section 3.3 adds refinements and a
rich set of types including intersections and unions, using tridirectional rules; this is the simple

tridirectional system. In Section 3.4, we explain our form of typing annotation and prove that the
simple tridirectional system is complete with respect to the type assignment system. Section 3.5
restricts the tridirectional rules and compensates by introducing left rules to yield a left tridirectional

system, reducing nondeterminism. We prove soundness and completeness with respect to the simple
tridirectional system, prove decidability, and use the results in Chapter 2 to prove type safety.
Finally, we discuss related work (Section 3.6) and conclude (Section 3.7).

3.2 The core language

In a pure type assignment system, the typing judgment is e : A, where e contains no types (eliding
contexts for the moment). In a bidirectional type system, we have two typing judgments: e ↑ A,
read e synthesizes A, and e ↓ A, read e checks against A. An implementation of such a system
consists of two mutually recursive functions: the first, corresponding to e ↑ A, takes the term e and
either returns A or fails; the second, corresponding to e ↓ A, takes the term e and a type A and
succeeds (returning nothing) or fails. This raises a question: Where do the types in the judgments
e ↓ A come from? More generally: what are the design principles behind a bidirectional type
system?

Avoiding unification or similar techniques associated with full type inference is fundamental
to the design of our bidirectional system. The motivation for this is twofold. First, for highly
expressive systems such as those considered here, full type inference is often undecidable, so we

2However, the choice of E is still quite nondeterministic, an important issue we address in Chapter 5.

August 6, 2007

3.2. THE CORE LANGUAGE 53

need less automatic and more robust methods. Second, since unification globally propagates type
information, it is often difficult to pinpoint the source of type errors.

We think of the process of bidirectional typechecking as a bottom-up construction of a typ-
ing derivation, either of e ↑ A or e ↓ A. Given that we want to avoid unification and similar
techniques, we need each inference rule to be mode correct, terminology borrowed from logic pro-
gramming [RP96]. That is, for any rule with conclusion e ↑ A we must be able to determine A
from the information in the premises. Conversely, if we have a rule with premise e ↓ A, we must
be able to determine A before traversing e.

However, mode correctness by itself is only a consistency requirement, not a design principle.
We find such a principle in the realm of logic, and transfer it to our setting. In natural deduction,
we distinguish introduction rules and elimination rules. An introduction rule specifies how to infer
a proposition from its components; when read bottom-up, it decomposes the proposition. For
example, the introduction rule for the conjunction A ∗ B decomposes it to the goals of proving A
and B. Therefore, a rule that checks a term against A ∗ B using an introduction rule will be mode
correct.

Γ ⊢ e1 ↓ A1 Γ ⊢ e2 ↓ A2
Γ ⊢ (e1, e2) ↓ A1 ∗A2

∗I

Conversely, an elimination rule specifies how to use the fact that a certain proposition holds; when
read top-down, it decomposes a proposition. For example, the two elimination rules for the con-
junction A ∗B decompose it to A and B, respectively. Therefore, a rule that infers a type for a term
using an elimination rule will be mode correct.

Γ ⊢ e ↑ A ∗ B

Γ ⊢ fst(e) ↑ A ∗E1
Γ ⊢ e ↑ A ∗ B

Γ ⊢ snd(e) ↑ B ∗E2

If we employ this design principle throughout, the constructors (corresponding to the introduction
rules) for the elements of a type are checked against a given type, while the destructors (corre-
sponding to the elimination rules) for the elements of a type synthesize their type. This leads to the
following rules for functions, in which rule→I checks against A→ B and rule→E synthesizes the
type A→ B of its subject

Γ, x:A ⊢ e ↓ B
Γ ⊢ λx. e ↓ A→ B

→I
Γ ⊢ e1 ↑ A→ B Γ ⊢ e2 ↓ A

Γ ⊢ e1(e2) ↑ B
→E

What do we do when the different judgment directions meet? If we are trying to check e ↓ A then
it suffices to synthesize a type e ↑ A ′ and check that A ′ = A. More generally, in a system with
subtyping, it suffices to know that every value of type A ′ also has type A, that is, A ′ ≤ A.

Γ ⊢ e ↑ A ′ Γ ⊢ A ′ ≤ A

Γ ⊢ e ↓ A sub

In the opposite direction, if we want to synthesize a type for e but can only check e against a given
type, then we do not have enough information. In the realm of logic, such a step would correspond
to a proof that is not in normal form (and might not have the subformula property [Pra65, p. 53].
The straightforward solution would be to allow source expressions (e : A) via a rule

August 6, 2007

54 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Γ ⊢ e ↓ A
Γ ⊢ (e : A) ↑ A

Unfortunately, this is not general enough due to the presence of intersections and universally and
existentially quantified property types. We discuss the issues and our solution in detail in Section
3.4. For now, only normal terms will typecheck in our system. These correspond exactly to normal
proofs in natural deduction [Pra65]. We can therefore already pinpoint where annotations will
be required in the full system: exactly where the term is not normal. This will be the case where
destructors are applied to constructors (that is, as redexes) and at certain let forms.

In addition we permit datatypes δ with constructors c(e) and corresponding case expressions
case e of ms, where the match expressions ms have the form c1(x1) ⇒ e1 || . . . cn(xn) ⇒ en. The
constants c are the constructors and case the destructor of elements of type δ. This means expres-
sions c(e) are checked against a type, while the subject of a case must synthesize its type. Assuming
constructors have type A→ δ, this yields the following rules.

c : A→ δ Γ ⊢ e ↓ A
Γ ⊢ c(e) ↓ δ δI

Γ ⊢ e ↑ δ Γ ⊢ ms ↓δ B
Γ ⊢ case e of ms ↓ B δE

Γ ⊢ · ↓δ C
c : A→ δ Γ, x:A ⊢ e ↓ B Γ ⊢ ms ↓δ B

Γ ⊢ c(x)⇒ e |ms ↓δ B

As in Chapter 2, the left-hand sides of a case expression with subject δ must cover all constructors
for a type δ (we will remove this requirement when we extend the language of patterns in Chapter
4). Note that in the elimination rule δE, we move from e ↑ δ to x:A (which should be read x↑A) ,
checking each branch against C.

In addition we have fixed points, which involve both directions: to check fix u.e ↓ A we assume
u:A (which should be read u↑A) then the check e againstA. Here we have a new form of variable u
that does not stand for a value, but for an arbitrary term, because the reduction form for fixed point
expressions reduces fix u.e to [fix u.e/u] e (the substitution of fix u.e for u in e). We do not exploit
this generality here, but our design is clearly consistent with common syntactic restriction on the
formation of fixed points in call-by-value languages; in particular, the SML declaration fun f x = e

corresponds to fix u. λx. e.
The syntax and semantics of our core language is given in Figure 3.1. Evaluation contexts E

and the small-step call-by-value semantics are unchanged from Chapter 2.
Figure 3.2 shows the subtyping and typing rules for the initial language. The subtyping rules are

standard except for the presence of the context Γ , used by the subtyping rules for index refinements
and index quantifiers, which we add in the next section. Variables must appear in Γ , so var is a
synthesis rule deriving x ↑ A. The subsumption rule sub is an analysis rule deriving e ↓ B, but its
first premise is a synthesis rule e ↑ A. This means both A and B are available when the subtyping
judgment A ≤ B is invoked; no complex constraint management is necessary. For introduction and
elimination rules, we follow the principles outlined above. Note that in practice, in applications
e1e2, the function e1 will usually be a variable or, in a curried style, another application—since we
synthesize types for these, e1e2 itself needs no annotation.

Ours is not the only plausible formulation of bidirectionality. Xi [Xi98] used a contrasting style,
in which several introduction forms have synthesis rules as well as checking rules, for example:

August 6, 2007

3.2. THE CORE LANGUAGE 55

Types A,B,C,D ::= 1 | A→ B | A ∗ B | δ

Terms e ::= x | u | λx. e | e1 e2 | fix u. e

| () | (e1, e2) | fst(e) | snd(e)

| c(e) | case e of ms

Matches ms ::= · | c(x)⇒ e ||ms

Values v ::= x | λx. e | () | (v1, v2)

Eval. contexts E ::= [] | E(e) | v(E)

| (E , e) | (v, E) | fst(E) | snd(E)

| c(E) | case E of ms

e ′ 7→R e
′′

E [e ′] 7→ E [e ′′]

(λx. e) v 7→R [v/x] e fst(v1, v2) 7→R v1

fix u. e 7→R [fix u. e /u] e snd(v1, v2) 7→R v2

case c(v) of . . . c(x)⇒ e . . . 7→R [v/x] e

Figure 3.1: Syntax and semantics of the core language

Γ ⊢ B1 ≤ A1 Γ ⊢ A2 ≤ B2
Γ ⊢ A1 → A2 ≤ B1 → B2

→
Γ ⊢ 1 ≤ 1

1
Γ ⊢ A1 ≤ B1 Γ ⊢ A2 ≤ B2
Γ ⊢ A1 ∗A2 ≤ B1 ∗ B2

∗
Γ ⊢ δ ≤ δ

δ

Γ(x) = A

Γ ⊢ x ↑ A var
Γ, x:A ⊢ e ↓ B

Γ ⊢ λx. e ↓ A→ B
→I

Γ ⊢ e1 ↑ A→ B Γ ⊢ e2 ↓ A
Γ ⊢ e1e2 ↑ B

→E

Γ ⊢ e ↑ A Γ ⊢ A ≤ B

Γ ⊢ e ↓ B sub
Γ(u) = A

Γ ⊢ u ↑ A fixvar
Γ, u:A ⊢ e ↓ A
Γ ⊢ fix u. e ↓ A fix

Γ ⊢ e1 ↓ A1 Γ ⊢ e2 ↓ A2
Γ ⊢ (e1, e2) ↓ A1 ∗A2

∗I
Γ ⊢ e ↑ A ∗ B

Γ ⊢ fst(e) ↑ A ∗E1
Γ ⊢ e ↑ A ∗ B

Γ ⊢ snd(e) ↑ B ∗E2
Γ ⊢ () ↓ 1

1I

Γ ⊢ c : A→ δ Γ ⊢ e ↓ A
Γ ⊢ c(e) ↓ δ δI

Γ ⊢ e ↑ δ Γ ⊢ ms ↓δ B
Γ ⊢ case e of ms ↓ B δE

Γ ⊢ · ↓δ B
c : A→ δ Γ, x:A ⊢ e ↓ C Γ ⊢ ms ↓δ C

Γ ⊢ c(x)⇒ e ||ms ↓δ C

Figure 3.2: Subtyping and typing in the core language

August 6, 2007

56 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Γ ⊢ e1 ↑ A1 Γ ⊢ e2 ↑ A2
Γ ⊢ (e1, e2) ↑ A1 ∗A2

Xi’s formulation does reduce the number of annotations; for example, in case (x, y) of ... the pair
(x, y) must synthesize, but under our formulation (x, y) never synthesizes and so requires an anno-
tation. However, ours seems to be the simplest plausible formulation and has a logical foundation
in the notion of introduction and elimination forms corresponding to constructors and destructors
for elements of a type under the Curry-Howard isomorphism. Consequently, a systematic extension
should suffice to add further language constructs. Furthermore, any term in normal form will need
no annotation except at the outermost level, so we should need annotations in few places besides
function definitions. In any case, if a system based on our formulation turns out to be inconvenient,
adding rules such as the one above should not be difficult.

3.3 Property types

The types present in the language so far are tied to constructors and destructors of terms. For exam-
ple, the type A→ B is realized by constructor λx. e and destructor e1e2, related to the introduction
and elimination forms of→ by a Curry-Howard correspondence.

In this section we are concerned with expressing richer properties of terms already present in
the language. The only change to the term language is to add typing annotations, discussed in
Section 3.4; otherwise, only the language of types is enriched:

Types A,B,C ::= . . .

| δ(i)

| A ∧ B | ⊤ | Πa:γ.A | P ⊃ A

| A ∨ B | ⊥ | Σa:γ.A | P O A

The basic properties are data structure invariants, that is, properties of terms of the form c(e).
All other properties are independent of the term language and provide general mechanisms to
combine simpler properties into more complex ones, yielding a very general type system. In this
chapter we do not formally distinguish between ordinary types and property types, though such a
distinction has been useful in the study of refinement types [FP91, Fre94, Dav05a].

Our formulation of property types was fully explained and justified in Chapter 2 for a pure
type assignment system; here, we focus on the bidirectionality of the rules. We do not extend the
operational semantics: it is easiest to erase annotations before executing the program. Hence, type
safety (Section 3.5.4) will follow directly from the result for the type assignment system (Theorem
2.21).

3.3.1 Intersections

A value v has type A ∧ B if it has type A and type B. Because this is an introduction form, we
proceed by checking v against A and B. Conversely, if e has type A ∧ B then it must have both type
A and type B, proceeding in the direction of synthesis.

August 6, 2007

3.3. PROPERTY TYPES 57

Γ ⊢ v ↓ A Γ ⊢ v ↓ B
Γ ⊢ v ↓ A ∧ B

∧I
Γ ⊢ e ↑ A ∧ B

Γ ⊢ e ↑ A ∧E1
Γ ⊢ e ↑ A ∧ B

Γ ⊢ e ↑ B ∧E2

While these rules combine properties of the same term (and are therefore not an example of a
Curry-Howard correspondence), the erasure of the terms still yields the ordinary logical rules for
conjunction. Therefore, by the same reasoning as for ordinary types, the directionality of the rules
follows from logical principles.

Usually, the elimination rules are a consequence of the subtyping rules (via the sub typing rule),
but once bidirectionality is enforced, this is not the case and the rules must be taken as primitive.
Note that the introduction form ∧I is restricted to values because its general form for arbitrary
expressions e is unsound in the presence of mutable references in call-by-value languages [DP00].

The subtyping rules are the same as in Chapter 2.

3.3.2 Greatest type: ⊤

A greatest type ⊤ can be thought of as the 0-ary form of intersection (∧). The rules are simply

Γ ⊢ v ok

Γ ⊢ v ↓ ⊤ ⊤I
Γ ⊢ A ≤ ⊤

⊤R

There is no elimination or left subtyping rule for ⊤. Its typing rule is a 0-ary version of ∧I, and
the value restriction is also required (see Chapter 2).

3.3.3 Refined datatypes

As in the previous chapter, δ(i) is the type of values having datasort δ and index i. The rule for
constructor application is

Γ ⊢ c : A→ δ(i) Γ ⊢ e ↓ A
Γ ⊢ c(e) ↓ δ(i) δI

To derive Γ ⊢ case e of ms ↓ B, we check that all the matches in ms check against B, under
zero or more contexts appropriate to each arm. The case typing rules (Figure 3.3) are identical to
the rules in the type assignment system (Figure 2.10, discussed in Section 2.3.4). except that e : C
and ms :B C have become e ↓ C and ms ↓B C. As in the earlier system, when the case arm can be
shown to be unreachable by virtue of the index refinements of the constructor type and the case
subject, the assumptions added by rule δS-ct may be inconsistent (Γ |= ⊥). In order to skip such
unreachable arms, we have rule contra:

Γ |= ⊥ Γ ⊢ e ok

Γ ⊢ e ↓ A contra

This is neither an introduction nor an elimination rule, but we clearly cannot synthesize a type
A out of nothing, so the only mode-correct formulation is one concluding e ↓ A, which anyway
matches the premise of δS-ct.

The typing rules for Π are

Γ, a:γ ⊢ v ↓ A
Γ ⊢ v ↓ Πa:γ.A ΠI

Γ ⊢ e ↑ Πa:γ.A Γ ⊢ i : γ

Γ ⊢ e ↑ [i/a]A ΠE

August 6, 2007

58 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Γ ; c : Acon; c(x) : δ(i) ⊢ e ↓ C

δ � δ ′ Γ, x:A, i
.
= i ′ ⊢ e ↓ C

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e ↓ C
δS-ct

δ 6� δ ′ Γ, x:A ⊢ e ok

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e ↓ C
δF-ct

Γ ; c : A1; c(x) : B ⊢ e ↓ C
Γ ; c : A2; c(x) : B ⊢ e ↓ C

Γ ; c : A1 ∧ A2; c(x) : B ⊢ e ↓ C ∧-ct
Γ, a:γ; c : A; c(x) : B ⊢ e ↓ C
Γ ; c : Πa:γ.A; c(x) : B ⊢ e ↓ C Π-ct

Γ, P; c : A; c(x) : B ⊢ e ↓ C
Γ ; c : (P ⊃ A); c(x) : B ⊢ e ↓ C ⊃-ct

Γ ⊢ ms ↓B C

Γ ⊢ · ↓B C
emptyms

Γ ; c : S(c); c(x) : B ⊢ e ↓ C Γ ⊢ ms ↓B C
Γ ⊢ (c(x)⇒ e ||ms) ↓B C

casearm

Figure 3.3: Case typing rules in the simple tridirectional system

By our general assumption that contexts are well formed, the index variable a added to the
context must be new, which can always be achieved via renaming. The directionality of these rules
follows our general scheme. As with intersections, the introduction rule is restricted to values, to
maintain type preservation in the presence of effects.

One potentially subtle issue with the introduction rule is that v cannot reference a in an internal
type annotation, because that would violate α-conversion: one could not safely rename a to b in
Πa:γ.A, which is the natural scope of a. We describe our solution, contextual typing annotations,
in Section 3.4.

As written, in ΠL and ΠE we must guess the index i; in practice, we would plug in a new
existentially quantified index variable and continue, using constraint solving to determine i. Thus,
even if we had no existential types Σ in the system, the solver for the constraint domain would have
to allow existentially quantified variables.

For the guarded type P ⊃ A, we again have the introduction rule check and the elimination rule
synthesize:

Γ, P ⊢ v ↓ A
Γ ⊢ v ↓ P ⊃ A

⊃I
Γ ⊢ e ↑ P ⊃ A Γ |= P

Γ ⊢ e ↑ A ⊃E

3.3.4 Indefinite property types

On values, the binary indefinite type is simply a union in the ordinary sense: if v : A ∨ B then
either v : A or v : B. The introduction rules directly express the simple logical interpretation, again
using checking for the introduction form.

August 6, 2007

3.3. PROPERTY TYPES 59

Γ ⊢ e ↓ A
Γ ⊢ e ↓ A ∨ B

∨I1
Γ ⊢ e ↓ B

Γ ⊢ e ↓ A ∨ B
∨I2

No restriction to values is needed for the introductions, but, dually to intersections, the elimi-
nation must be restricted. A sound formulation of the elimination rule in a type assignment form
(Chapter 2) without a syntactic marker3 requires an evaluation context E around the subterm of
union type.

Γ ⊢ e ′ : A ∨ B

Γ, x:A ⊢ E [x] : C
Γ, y:B ⊢ E [y] : C

Γ ⊢ E [e ′] : C

This is where the “third direction” is necessary. We no longer move from terms to their imme-
diate subterms, but when typechecking e we may have to decompose it into an evaluation context
E and subterm e ′. Using the analysis and synthesis judgments we have

Γ ⊢ e ′ ↑ A ∨ B

Γ, x:A ⊢ E [x] ↓ C
Γ, y:B ⊢ E [y] ↓ C

Γ ⊢ E [e ′] ↓ C
∨E

Here, if we can synthesize a union type for e ′—which is in evaluation position in E [e ′]—and check
E [x] and E [y] against C, assuming that x and y have typeA and type B respectively, we can conclude
that E [e ′] checks against C. Note that the assumptions x:A and y:B can be read as x↑A and y↑B
so we do indeed transition from _ ↑ A ∨ B to _ ↑ A and _ ↑ B. While typechecking still somehow
follows the syntax, there may be many choices of E and e ′, leading to excessive nondeterminism
(addressed in Chapter 5).

The 0-ary indefinite type is the empty or void type ⊥; it has no values and therefore no intro-
duction rules. For an elimination rule ⊥E, we proceed by analogy with ∨E:

Γ ⊢ e ′ ↑ ⊥ Γ ⊢ E [e ′] ok

Γ ⊢ E [e ′] ↓ C
⊥E

As before, the expression must be an evaluation context E with e ′ in evaluation position.
For existential dependent types, the introduction rule presents no difficulties, and proceeds

using the analysis judgment.

Γ ⊢ e ↓ [i/a]A Γ ⊢ i : γ

Γ ⊢ e ↓ Σa:γ.A ΣI

For the elimination rule, we follow ∨E and ⊥E:

Γ ⊢ e ′ ↑ Σa:γ.A Γ, a:γ, x:A ⊢ E [x] ↓ C
Γ ⊢ E [e ′] ↓ C

ΣE

As with Π, there is a potentially subtle issue: the index variable a must be new and cannot be
mentioned in an annotation in E .

3Pierce [Pie91b] used an explicit marker case e ′ of x⇒ e as the union elimination form. This is technically straight-
forward but a heavy burden on the programmer, particularly as markers would also be needed to eliminate Σ types,
which are especially common in code without refinements; legacy code would have to be extensively “marked” to make
it typecheck.

August 6, 2007

60 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

The bidirectional rules for the asserting type P O A are

Γ ⊢ e ↓ A Γ |= P

Γ ⊢ e ↓ P O A
OI

Γ ⊢ e ′ ↑ P O A Γ, P, x:A ⊢ E [x] ↓ C
Γ ⊢ E [e ′] ↓ C

OE

3.3.5 Subtyping

The subtyping rules are unchanged from the previous chapter (Figure 2.11). We obtain decidability,
reflexivity, and transitivity as before. Again, decidability relies on an ability to solve for existentially
quantified variables; see Chapter 6.

3.3.6 The tridirectional rule

Considering rule ⊥E to be the 0-ary version of ∨E for the binary indefinite type, what is the unary
version? It is:

Γ ⊢ e ′ ↑ A Γ, x:A ⊢ E [x] ↓ C
Γ ⊢ E [e ′] ↓ C

direct

The type assignment version of this rule was admissible. However, due to the restriction to evalua-
tion contexts, the bidirectional version is not. As a simple example, consider

append : Πa:N. list(a)→ Πb:N. list(b)→ list(a+ b)

filterpos : Πn:N. list(n)→ Σm:N. list(m)

⊢ filterpos [. . .] ↑ Σm:N. list(m)

Goal: ⊢ append [42] (filterpos [. . .]) ↓ Σk:N. list(k)

where [42] is shorthand for Cons(42,Nil) and [. . .] is some literal list. Without rule direct we cannot
derive the goal, because we cannot introduce the k on the type being checked against. To do so,
we would need to introduce the index variable m representing the length of the list returned by
filterpos [. . .], and usem+1 for k. But filterpos [. . .] is not in evaluation position, because append [42]

must be evaluated first. However, append [42] synthesizes only type Πb:N. list(b)→ list(1 + b). We
would be stuck without rule direct, which enables us to reduce

⊢ append [42] (filterpos [. . .]) ↓ Σk:N. list(k)

to
x : Πb:N. list(b)→list(1+b) ⊢ x (filterpos [. . .]) ↓ Σk:N. list(k)

Since x is a value, (filterpos [. . .]) is in evaluation position and we can use the existential elimination
rule

x:Πb:N. list(b)→list(1+b),m:N, y:list(m) ⊢ xy ↓ Σk:N. list(k)

Now we can complete the derivation with ΣI, using 1+m for k and several straightforward steps.

August 6, 2007

3.4. CONTEXTUAL TYPING ANNOTATIONS 61

3.4 Contextual typing annotations

Our tridirectional system so far has the property that only terms in normal form have types. Terms
not in normal form, such as (λx. x)(), neither synthesize nor check against a type. This is because
the function part of an application must synthesize a type, but there is no rule for λx. e that has a
synthesizing conclusion.

Clearly, we need some form of annotation, but this is not as straightforward as one might hope.
In our setting, two issues arise: checking against intersections, and index variable scoping.

3.4.1 Checking against intersections

Consider the following function, which conses 42 to its argument.

cons42 =
(
λx. (λy.Cons(42, x))()

)
: (odd→ even) ∧ (even→ odd)

This does not typecheck: λy.Cons(42, x) needs an annotation. Observe that by rule ∧I, cons42

will be checked twice: first against odd → even, then against even → odd. Hence, we cannot
write (λy.Cons(42, x)) : (1 → even)—it is correct only when checking cons42 against odd → even.
Moreover, we cannot write

(λy.Cons(42, x)) : (1→ even) ∧ (1→ odd)

We need to use 1 → even while checking cons42 against odd → even, and 1 → odd while checking
cons42 against even → odd. Exasperatingly, union types are no help here: (λy.Cons(42, x)) : (1 →
even) ∨ (1 → odd) is a value of type 1 → even or of type 1 → odd, but we do not know which;
following ∨E, we must suppose it has type 1 → even and then check its application to 1, and then

suppose it has type 1→ odd and check its application to 1. Only one of these checks will succeed—
a different one, depending on which conjunct of (odd → even) ∧ (even → odd) we happen to be
checking cons42 against—but according to ∨E both need to succeed.

Reynolds’ Forsythe language [Rey88] addressed this problem by allowing function arguments
to be annotated with a list of alternative types; the typechecker guesses the right one, backtracking
if necessary. Pierce extended this approach, allowing the alternative to be named [Pie91a, pp.
21, 31] (a generalization Reynolds incorporated in the revised Forsythe report [Rey96]). Davies
took a closely similar approach in his datasort refinement checker [Dav05a], allowing a term to be
annotated with (e : A,B, . . .). In that notation, the above function could be written as

cons42 =
(
λx. (((λy.Cons(42, x)) : 1→ even,1→ odd)()

)

: (odd→ even) ∧ (even→ odd)

Now the typechecker can choose 1→ even when checking against 1→ odd. This notation is easy to
use and effective but introduces additional backtracking, since the typechecker must guess which
type to use.

August 6, 2007

62 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

3.4.2 Index variable scoping

Some functions need type annotations inside their bodies, such as this (contorted) identity function
on lists.

id =
(
λx. (λz. x)()

)
: Πa:N. list(a)→ list(a)

In a bidirectional system, the function part of an application must synthesize a type, but we have
no rule to synthesize a type for a λ-abstraction. So we need an annotation on (λz. x). We need to
show that the whole application checks against list(a), so we might try

(λz. x) : 1→ list(a)

But this would violate variable scoping. α-convertibility dictates that Πa:N. list(a) → list(a) and
Πb:N. list(b)→ list(b) must be indistinguishable, which would be violated if we permitted

λx. ((λz. x) : 1→ list(a))() ↓ Πa:N. list(a)→ list(a)

but not
λx. ((λz. x) : 1→ list(a))() ↓ Πb:N. list(b)→ list(b)

Xi already noticed this problem and introduced a term-level abstraction over index variables,
Λa.e, to mirror universal index quantification Πa:γ.A [Xi98]. But this violates the basic principle
of property types that the term should not change as property types are added, and fails in the
presence of intersections. For example, we would expect the reverse function on lists, rev, to satisfy

rev : (Πa:N. list(a)→ list(a)︸ ︷︷ ︸
one outside quantifier

) ∧ ((Σb:N. list(b))→ Σc:N. list(c)︸ ︷︷ ︸
no outside quantifiers

)

but the first component of the intersection would demand a term-level index abstraction, while the
second would not tolerate one.

3.4.3 Contextual subtyping

We address these two problems by a method that extends and improves the notation of comma-
separated alternatives. The essential idea is to allow a context to appear in the annotation along
with each type:

Typings As ::= Γ ⊢A | Γ ⊢A, As

Terms e ::= . . . | (e : As)

where in (e : Γ1 ⊢ A1, . . . , Γn ⊢ An) each context Γk contains types for a subset of the free program
variables in e, as well as index variable sorts for index variables used in Γk and Ak. The scope of
Γk is just Ak; program variable typings appearing in Γk refer to program variables declared outside
the annotated term, while index variable sortings are binders whose scope is limited to the rest of
Γk (since index variables must appear to the left of their use in a context) and Ak. Index variables

August 6, 2007

3.4. CONTEXTUAL TYPING ANNOTATIONS 63

can appear in a term e only in a type annotation, and they must be bound by some Γk within that
annotation. Thus, no term has any free index variables.

In the first approximation we can think of such an annotated term as follows: if Γk ⊢ e ↓ Ak
then Γ ⊢ (e : Γ1 ⊢ A1, . . . , Γn ⊢ An) ↑ Ak if the current assumptions in Γ validate the assumptions
in Γk. For example,the second judgment below is not derivable, since x:odd does not validate x:even
(because odd 6≤ even).

x:even ⊢
(
(λy.Cons(42, x)) : x:even ⊢ 1→ odd,

x:odd ⊢ 1→ even
)
↑ 1→ odd

x:odd 6⊢
(
(λy.Cons(42, x)) : x:even ⊢ 1→ odd,

x:odd ⊢ 1→ even
)
↑ 1→ odd

In practice, this should significantly reduce the nondeterminism associated with type annotations
in the presence of intersection. However, we still need to generalize the rule in order to correctly
handle index variable scoping.

Returning to our earlier example, we would like to find an annotation As allowing us to derive

⊢ λx.
(
(λz. x) : As

)
() ↓ Πa:N. list(a)→ list(a)

The idea is to use a locally declared index variable (here, b)

λx.
(
(λz. x) : (b:N, x:list(b) ⊢ 1→ list(b))

)

to make the typing annotation self-contained. Now, when we check if the current assumptions for
x validate local assumption for x, we are permitted to instantiate b to any index i. In this example,
we could substitute a for b. As a result, we end up checking (λz. x) ↓ 1→ list(a), even though the
annotation does not mention a. Note that in an annotation e : (Γ0 ⊢ A0), As, all index variables
declared in Γ0 are considered bound and can be renamed consistently in Γ0 and A0. In contrast, free
term variables in Γ0, such as x, may actually occur in e and so cannot be renamed freely.

These considerations lead us to a contextual subtyping relation . :

(Γ0 ⊢ A0) . (Γ ⊢ A)

which is contravariant in the contexts Γ0 and Γ . It would be covariant in A0 and A, except that in
the way it is invoked, Γ0, A0, and Γ are known and A is generated as an instance of A0. This should
become more clear when we consider its use in the new typing rule

(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ⊢ e ↓ A
Γ ⊢ (e : (Γ0 ⊢ A0), As) ↑ A

ctx-anno

where we regard the typings as unordered (so Γ0 ⊢ A0 could occur anywhere in the list). In the
bidirectional style, Γ , e, Γ0, A0 and As are known when we try this rule. While finding a derivation
of (Γ0 ⊢ A0) . (Γ ⊢ A) we generate A, which is the synthesized type of the original annotated
expression e, if in fact e checks against A. It is also possible that (Γ0 ⊢ A0) . (Γ ⊢ A) fails to
have a derivation when Γ0 and Γ have incompatible declarations for the term variables occurring in

August 6, 2007

64 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Typings As ::= Γ ⊢A | Γ ⊢A, As

Terms e ::= . . . | (e : As)

Values v ::= . . . | (v : As)

Eval. contexts E ::= . . . | (E : As)

Figure 3.4: Language additions for contextual typing annotations

(· ⊢ A) . (Γ ⊢ A)
.-empty

Γ ⊢ i : γ0 ([i/a] Γ0 ⊢ [i/a]A0) . (Γ ⊢ A)

(a:γ0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-ivar

Γ |= P (Γ0 ⊢ A0) . (Γ ⊢ A)

(P, Γ0 ⊢ A0) . (Γ ⊢ A)
.-prop

Γ ⊢ Γ(x) ≤ B0 (Γ0 ⊢ A0) . (Γ ⊢ A)

(x:B0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-pvar

Figure 3.5: Contextual subtyping

them (as in the example above, if Γ0 = x:odd and Γ = . . . , x:even, . . .), in which case we try another
typing (Γk ⊢ Ak).

The formal rules for contextual subtyping are given in Figure 3.5. Besides the considerations
above, we also must make sure that any possible assumptions P about the index variables in Γ0 are
indeed entailed by the current context, after any possible substitution has been applied (this is why
we traverse Γ0 from left to right).

While the examples above are artificial, similar situations arise in ordinary programs in the
common situation when local function definitions reference free variables. Two small examples of
this kind are given in Figure 3.6, presented in the style of ML, where we follow the tradition of
systems such as Davies’ and write typing annotations inside bracketed comments.

The essence of the completeness result we prove in Section 3.4.5 is that annotations can be
added to any term that is well typed in the type assignment system to yield a well typed term in
the tridirectional system. For this result to hold, . must be reflexive:

(Γ ⊢ A) . (Γ ⊢ A)

Reflexivity (together with proper α-conversion) is sufficient for completeness: in the proof of com-
pleteness, where we see Γ ⊢ e : A we can simply add an annotation (Γ ⊢ A). But it would be absurd
to make programmers type in entire contexts—not only is the length impractical, but whenever a
declaration is added every contextual annotation in its scope would have to be changed!

Reflexivity of . follows easily from the following lemma.

Lemma 3.1. (Γ2 ⊢ A) . (Γ1, Γ2 ⊢ A).

Proof. By induction on Γ2.

August 6, 2007

3.4. CONTEXTUAL TYPING ANNOTATIONS 65

1. Case: Γ2 = ·. The result follows by .-empty.

2. Case: Γ2 = x:B, Γ .

Γ1, x:B, Γ ⊢ B ≤ B By reflexivity of subtyping

(Γ ⊢ A) . (Γ1, x:B, Γ ⊢ A) By IH

(x:B, Γ ⊢ A) . (Γ1, x:B, Γ ⊢ A) By .-pvar

3. Case: Γ2 = a:γ, Γ .

Γ1, a:γ, Γ ⊢ a : γ Using assumption

(Γ ⊢ A) . (Γ1, a:γ, Γ ⊢ A) By IH

([a/a] Γ ⊢ [a/a] A) . (Γ1, a:γ, Γ ⊢ A) Identity subst.

(a:γ, Γ ⊢ A) . (Γ1, a:γ, Γ ⊢ A) By .-ivar

4. Case: Γ2 = P, Γ .

Γ1, P, Γ |= P Using assumption

(Γ ⊢ A) . (Γ1, P, Γ ⊢ A) By IH

(P, Γ ⊢ A) . (Γ1, P, Γ ⊢ A) By .-prop

Corollary 3.2 (Reflexivity). (Γ ⊢ A) . (Γ ⊢ A).

Proof. By Lemma 3.1 with Γ2 empty.

3.4.4 Soundness

Let |e| denote the erasure of all typing annotations from e.

Theorem 3.3 (Soundness, Tridirectional). If Γ ⊢ e ↑ A or Γ ⊢ e ↓ A then Γ ⊢ |e| : A.

Proof. By straightforward induction on the derivation. Except for ctx-anno, which is not in the
type assignment system, the type assignment system is precisely the tridirectional system with :

replacing ↑ and ↓, so all cases except ctx-anno are utterly straightforward. For ctx-anno on a term
(e0 : A), apply the IH to obtain Γ ⊢ |e0| : A and use the equivalence |e0| = |(e0 : As)|.

3.4.5 Completeness

We cannot just take a derivation Γ ⊢ e : A in the type assignment system and obtain a derivation
Γ ⊢ e ↑ A in the tridirectional system. For example, ⊢ λx. x : A → A for any type A, but in the
tridirectional system λx. x does not synthesize a type. However, if we add a typing annotation, we
can derive

⊢ (λx. x : (⊢ A→ A)) ↑ A→ A

Clearly, the completeness result must be along the lines of “If Γ ⊢ e : A, then there is an annotated
version e ′ of e such that Γ ⊢ e ′ ↑ A.” To formulate this result (Corollary 3.16, a special case of
Theorem 3.15) we need a few definitions and lemmas.

August 6, 2007

66 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

true � bool, false � bool even � nat, odd � nat

evenlist � list, oddlist � list

S(Nil) = evenlist

S(Cons) = (evenlist→ oddlist) ∧ (oddlist→ evenlist)

eq : (even ∗ odd→ false)

∧ (odd ∗ even→ false)

∧ (nat ∗ nat→ bool)

(*[member : (even ∗ oddlist→ false)

∧ (odd ∗ evenlist→ false)

∧ (nat ∗ list→ bool)]*)

fun member (x, xs) =

(*[mem : x:even ⊢ (evenlist→ bool) ∧ (oddlist→ false),

x:odd ⊢ (evenlist→ false) ∧ (oddlist→ bool),

x:nat ⊢ list→ bool]*)

let fun mem xs =

case xs of Nil⇒ False

| Cons(y, ys)⇒ eq(x, y) orelse mem ys

in mem xs end

S(Nil) = list(0)

S(Cons) = Πa:N. int ∗ list(a)→ list(a+ 1)

(*[append : Πa:N. Πb:N. list(a) ∗ list(b)→ list(a+ b)]*)

fun append (xs, ys) =

(*[app : c:N, ys:list(c) ⊢ Πa:N. list(a)→ list(a+ c)]*)

let fun app xs = case xs of Nil⇒ ys

| Cons(x, xs)⇒ Cons(x, app xs)

in app xs end

Figure 3.6: Examples of contextual annotations

August 6, 2007

3.4. CONTEXTUAL TYPING ANNOTATIONS 67

Definition 3.4. A term is in synthesizing form if it has any of the forms

x, e1e2, u, (e : As), fst(e), snd(e)

Proposition 3.5. If Γ ⊢ e ↑ A then e is in synthesizing form.

Proof. By induction on the derivation.

Remark 3.6. The point of a typing annotation is to obtain a synthesizing term from a non-synthesizing
one. It is never necessary to add an annotation to the root of a term in synthesizing form (though
annotations may be needed inside the term).

Definition 3.7. e ′ extends a term e, written e ′ ⊒ e iff e ′ is e with zero or more additional typing
annotations and e ′ has no subterm (e ′′ : As) where e ′′ is in synthesizing form.

Definition 3.8. e ′ lightly extends a term e, written e ′ ⊒ℓ e iff e ′ is e with zero or more typing
annotations added to lists of typing annotations already present in e. For example, (e : As, Γ ⊢A ′)

lightly extends (e : As), but (e : Γ ⊢A ′) does not lightly extend e.

Proposition 3.9. ⊒ and ⊒ℓ are reflexive and transitive.

Proof. Obvious from the definitions.

Lemma 3.10. If e value and e ′ ⊒ e then e ′ value.

Proof. By a straightforward induction on e ′ (making use of (v : As) value).

Lemma 3.11. If e ′ ⊒ E [e0] where e0 is in synthesizing form then there exist E ′ and e ′0 such that

e ′ = E ′[e ′0] and e ′0 ⊒ e0 and for all terms e1 in synthesizing form it is the case that E ′[e1] ⊒ E [e1].

Proof. By induction on E . We show two representative cases.

• E = []

Let E ′ = [] and e ′0 = e ′. Then e ′ = E ′[e ′0]. Since e ′0 = e ′ and E [e0] = e0 the desired e ′0 ⊒ e ′0
follows from e ′ ⊒ E [e0]. Since E ′ = E , E ′[e1] ⊒ E [e1] follows by Proposition 3.9.

• E = (v, E∗)

By e ′ ⊒ (v, E∗[e0]) and Definition 3.7, either e ′ = (v ′, e ′∗) or e ′ = ((v ′, e ′∗) : As), where v ′ ⊒ v

and e ′∗ ⊒ E∗[e0]. We assume the former case, e ′ = (v ′, e ′∗); the latter case is similar. By IH,
there exist E ′

∗ and e ′0 such that

e ′∗ = E ′
∗[e

′
0] and e ′0 ⊒ e0 and for all e1, E ′

∗[e1] ⊒ E∗[e1] .

Let E ′ = (v ′, E ′
∗) (we know by Lemma 3.10 that v ′ is a value, so E ′ is indeed an evaluation

context). Then (v ′, E ′
∗[e

′
0]) = E ′[e ′0]. Since we have e ′ = (v ′, e ′∗) and e ′∗ = E ′

∗[e
′
0], we can

conclude e ′ = E ′[E ′
0], the first part of what was to be shown. The second part, e ′0 ⊒ e0, we

already know by IH. Now take any e1. We know v ′ ⊒ v and by IH we have E ′
∗[e1] ⊒ E∗[e1].

Therefore (v ′, E ′
∗[e1]) ⊒ (v, E∗[e1]). By E ′[e1] = (v ′, E ′

∗[e1]) and (v, E∗[e1]) = E [e1],

E ′[e1] ⊒ E [e1]

which is the last part of what was to be shown.

August 6, 2007

68 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Lemma 3.12. If e ′ ⊒ℓ E [e0] where e0 is in synthesizing form then there exist E ′ and e ′0 such that

e ′ = E ′[e ′0] and e ′0 ⊒ℓ e0 and for all e1 in synthesizing form it is the case that E ′[e1] ⊒ℓ E [e1].

Proof. By induction on E , following the proof of Lemma 3.11.

To reduce verbosity, when a result has two parts that are identical except for the direction (↑ or
↓) of the judgment(s) involved, we write ↓↑ to represent both. If there is more than one judgment
mentioned, the directions must be read consistently: either as all ↑, or all ↓. Thus, Lemma 3.13
(just below) is equivalent to the verbose statement:

If e ′ ⊒ℓ e then

(1) If Γ ⊢ e ↓ A then Γ ⊢ e ′ ↓ A.

(2) If Γ ⊢ e ↑ A then Γ ⊢ e ′ ↑ A.

Lemma 3.13 (Light Extension). If e ′ ⊒ℓ e and Γ ⊢ e ↓↑ A then Γ ⊢ e ′ ↓↑ A. (Similarly for case

typing judgments and matches ms.)

Proof. By induction on the derivation of the typing judgment. All cases are straightforward: either
e and e ′ must be identical (for instance, for 1I), or we apply the IH to all premises, which leads
directly to the result.

Recall that the rule ∧I led to the need for more than one typing annotation on a term. It
should be no surprise, then, that the ∧I case in the completeness proof is interesting. Applying the
induction hypothesis to each premise v : A, v : B yields two possibly different annotated terms v ′A
and v ′B such that v ′A ↓ A and v ′B ↓ B. But given a notion of monotonicity under annotation, we can
incorporate both annotations into a single v ′ such that v ′ ↓ A and v ′ ↓ B. However, the obvious
formulation of monotonicity

If e ↓ A and e ′ ⊒ e then e ′ ↓ A

does not hold: given a list of annotations As the type system must use at least one of them—it
cannot ignore them all. Thus ⊢ (() : (⊢ ⊤)) ↓ 1 is not derivable, even though ⊢ () ↓ 1 is derivable
and (() : (⊢ ⊤)) ⊒ (). However, further annotating (() : (⊢ ⊤)) to (() : (⊢ ⊤), (⊢ 1)) yields a term
that checks against both ⊤ and 1. Note that this further annotation was light—we added a typing
to an existing annotation. This observation leads to Lemma 3.14.

Lemma 3.14 (Monotonicity under annotation).

(1) If Γ ⊢ e ↓ A and e ′ ⊒ e then there exists e ′′ ⊒ℓ e
′ such that Γ ⊢ e ′′ ↓ A.

(2) If Γ ⊢ e ↑ A and e ′ ⊒ e then there exists e ′′ ⊒ℓ e
′ such that Γ ⊢ e ′′ ↑ A.

(3) If Γ ; c : Acon; c(x) : δ(i) ⊢ e ↓ C and e ′ ⊒ e then there exists e ′′ ⊒ℓ e
′ such that Γ ; c : Acon; c(x) :

δ(i) ⊢ e ′′ ↓ C.

(4) If Γ ⊢ ms ↓B C and ms ′ ⊒ ms then there exists ms ′′ ⊒ℓ ms
′ such that Γ ⊢ ms ′′ ↓B C.

August 6, 2007 — Proof of Lemma 3.14

3.4. CONTEXTUAL TYPING ANNOTATIONS 69

Proof. By induction on the derivation of the typing judgment.
The cases for rules such as ∧I, ∧-ct and sub, which have the same term in the premise(s) and

conclusion, are straightforward (for rules such as ∧I and ΠI where the term must be a value, we
use Lemma 3.10). For contra, just reapply the rule. We show several representative cases of the
remaining rules.

1. Case var: D ::

Γ(x) = A

Γ ⊢ x ↑ A

By the definition of ⊒, e ′ can contain no annotations on the roots of terms in synthesizing
form such as x. Therefore e ′ = x, and we already have Γ ⊢ x ↑ A. By Proposition 3.9, x ⊒ℓ x.

2. Case fixvar: Similar to the preceding case.

3. Case→I: D ::

Γ, x:A1 ⊢ e0 ↓ A2
Γ ⊢ λx. e0 ↓ A1 → A2

We have e ′ ⊒ λx. e0. Therefore there exists some subterm e ′0 of e ′ such that e ′0 ⊒ e0.

Γ, x:A1 ⊢ e0 ↓ A2 Subd.

Γ, x:A1 ⊢ e
′′
0 ↓ A2, e ′′0 ⊒ℓ e

′
0 By IH

Γ ⊢ λx. e ′′0 ↓ A1 → A2 By→I

λx. e ′′0 ⊒ℓ λx. e
′
0 By Definition 3.8

If e ′ has no annotation at its root, we are done. If it does, we have e ′ = (λx. e ′0 : As). By
Corollary 3.2, (Γ ⊢ A1 → A2) . (Γ ⊢ A1 → A2). By ctx-anno,

Γ ⊢ ((λx. e ′′0) : As, Γ ⊢ A1→A2) ↓ A1 → A2

By λx. e ′′0 ⊒ℓ λx. e
′
0 and Definition 3.8,

((λx. e ′′0) : As, (Γ ⊢ A1→A2)) ⊒ℓ (λx. e ′0 : As)

4. Case fix, ∗I, ∗E1, ∗E2, δI, δE: Similar to the preceding case.

5. Case→E: D ::

Γ ⊢ e1 ↑ B→ A Γ ⊢ e2 ↓ B
Γ ⊢ e1e2 ↑ A

e ′ ⊒ e1e2 Given

∃e ′1, e
′
2. e

′ = e ′1e
′
2, e

′
1 ⊒ e1, e

′
2 ⊒ e2 By Definition 3.7

Γ ⊢ e1 ↑ B→ A Subd.

Γ ⊢ e ′′1 ↑ B→ A, e ′′1 ⊒ℓ e
′
1 By IH

Γ ⊢ e2 ↓ B Subd.

Γ ⊢ e ′′2 ↓ B, e ′′2 ⊒ℓ e
′
2 By IH

Γ ⊢ e ′′1 e
′′
2 ↑ A By→E

e ′′1 e
′′
2 ⊒ℓ e

′
1e

′
2 By Definition 3.8

August 6, 2007 — Proof of Lemma 3.14

70 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

6. Case ∨E: D :: Γ ⊢ e0 ↑ B1 ∨ B2
Γ, x:B1 ⊢ E [x] ↓ A
Γ, y:B2 ⊢ E [y] ↓ A

Γ ⊢ E [e0] ↓ A
∨E

By Proposition 3.5, e0 is in synthesizing form. By Lemma 3.11, there exist E ′ and e ′0 such that
e ′ = E ′[e ′0] and e ′0 ⊒ e0 and E ′[x] ⊒ E [x].

Γ ⊢ e0 ↑ B1 ∨ B2 Subd.

e ′0 ⊒ e0 Above

Γ ⊢ e ′′0 ↑ B1 ∨ B2, e ′′0 ⊒ℓ e
′
0 By IH

Γ, x:B1 ⊢ E [x] ↓ A Subd.

E ′[x] ⊒ E [x] Above

Γ, x:B1 ⊢ e
′′ ↓ A, e ′′ ⊒ℓ E ′[x] By IH

∃E ′′. e ′′ = E ′′[x], E ′′[y] ⊒ℓ E [y] By Lemma 3.12

Γ, y:B2 ⊢ E [y] ↓ A Subd.

Γ, y:B2 ⊢ e
′′′ ↓ A, e ′′′ ⊒ℓ E ′′[y] By IH

∃E ′′′. e ′′′= E ′′′[y], E ′′′[x] ⊒ℓ E
′′[x] By Lemma 3.12

Γ, y:B2 ⊢ E ′′′[y] ↓ A By e ′′′ = E ′′′[y] and Γ, y:B2 ⊢ e
′′′ ↓ A

Γ, x:B1 ⊢ E ′′′[x] ↓ A By Lemma 3.13

Γ ⊢ E ′′′[e ′′0] ↓ A By ∨E

E ′′′[e ′′0] ⊒ℓ E
′[e ′0] By Definition 3.8

7. Case direct, ⊥E, ΣE, OE: Similar to the ∨E case, but simpler.

8. Case 1I: D :: Γ ⊢ () ↓ 1

We have e ′ ⊒ (). By definition of ⊒, either e ′ = () or e ′ = (() : As).

Γ ⊢ () ↓ 1 By 1I

In the first case (e ′ = ()) we’re done. In the second case:

(Γ ⊢ 1) . (Γ ⊢ 1) By Corollary 3.2

Γ ⊢ (() : As, (Γ ⊢ 1)) ↑ 1 By ctx-anno

Γ ⊢ 1 ≤ 1 By reflexivity of ≤

Γ ⊢ (() : As, (Γ ⊢ 1)) ↓ 1 By sub

9. Case ctx-anno: D ::

(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ⊢ e0 ↓ A
Γ ⊢ (e0 : (Γ0 ⊢ A0), As) ↑ A

We have e ′ ⊒ (e0 : (Γ0 ⊢ A0), As). By definition of ⊒, e ′ = (e ′0 : (Γ0 ⊢ A0), As, Bs) where
e ′0 ⊒ e0.

August 6, 2007 — Proof of Lemma 3.14

3.4. CONTEXTUAL TYPING ANNOTATIONS 71

Γ ⊢ e0 ↓ A Subd.

Γ ⊢ e ′′0 ↓ A, e ′′0 ⊒ℓ e
′
0 By IH

(Γ0 ⊢ A0) . (Γ ⊢ A) Subd.

Γ ⊢ (e ′′0 : (Γ0 ⊢ A0), As, Bs) ↑ A By ctx-anno

By definition of ⊒ℓ, we get (e ′′0 : (Γ0 ⊢ A0), As, Bs) ⊒ℓ (e
′
0 : (Γ0 ⊢ A0), As, Bs).

10. Case ⊤I: D ::

Γ ⊢ v ok

Γ ⊢ v ↓ ⊤

We have e ′ ⊒ℓ v, so by Lemma 3.10, e ′ value.

Γ ⊢ e ′ ok Follows from Γ ⊢ v ok

Γ ⊢ e ′ ↓ ⊤ By ⊤I

e ′ ⊒ℓ e
′ By Proposition 3.9

Theorem 3.15 (Completeness, Tridirectional). If Γ ⊢ e : A and e ′ ⊒ e then

(i) there exists e ′′1 such that e ′′1 ⊒ e ′ and Γ ⊢ e ′′1 ↓ A

(ii) there exists e ′′2 such that e ′′2 ⊒ e ′ and Γ ⊢ e ′′2 ↑ A

If Γ ; c : Acon; c(x) : B ⊢ e : C and e ′ ⊒ e then there exists e ′′ such that e ′′ ⊒ e ′ and Γ ; c : Acon; c(x) :

B ⊢ e ′′ ↓ C.

If Γ ⊢ ms :B C and ms ′ ⊒ ms then there exists ms ′′ such that ms ′′ ⊒ ms ′ and Γ ⊢ ms ′′ ↓B C.

Proof. By induction on the given derivation.
The presence of e ′ (resp. ms ′) is motivated by the need to traverse multiple subderivations,

adding annotations at each one. The simplest instance is in the ∧I case.
Whenever e is not in synthesizing form, it is possible that e has no annotation at its root, while

e ′ does. The extra steps to handle this situation are all similar, so except in→I, the first such case,
we assume e ′ has no annotation at its root.

Except in the 1I case, one can prove either part (i) or part (ii) and then prove the other part in
a manner that is similar across cases: In cases where part (i) is most naturally proved first, part (ii)
follows by adding a type annotation to e and applying ctx-anno. In cases where part (ii) is naturally
shown first, part (i) follows by applying sub using the reflexivity of subtyping. Except in the →I,
→E and 1I cases, we elide these steps.

The case-typing and matches-typing parts of the theorem are completely straightforward, with
the exception of the ∧-ct case, in which the multiple premises typing the same term necessitate
reasoning following that in the ∧I case below.

1. Case→I: D ::

Γ, x:A1 ⊢ e0 : A2
Γ ⊢ λx. e0 : A1 → A2

We have either e ′ = λx. e ′0 or e ′ = ((λx. e ′0) : As), for some e ′0 ⊒ e0.

August 6, 2007

72 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Γ, x:A1 ⊢ e0 : A2 Subd.

Γ, x:A1 ⊢ e
′′
0 ↓ A2, e ′′0 ⊒ e ′0 By IH

Γ ⊢ λx. e ′′0 ↓ A1 → A2 By→I

λx. e ′′0 ⊒ λx. e0 By Definition 3.7

If e ′ = λx. e ′0, we have shown part (i). Part (ii) follows:

Γ ⊢ λx. e ′′0 ↓ A1 → A2 Above

(Γ ⊢ A1→A2) . (Γ ⊢ A1→A2) By Corollary 3.2

Γ ⊢ (λx. e ′′0 : (Γ ⊢ A1→A2)) ↑ A1 → A2 By ctx-anno

(λx. e ′′0 : (Γ ⊢ A1→A2)) ⊒ λx. e ′0 By e ′′0 ⊒ e ′0 and Definition 3.7

On the other hand, if e ′ = (λx. e ′0 : As) then:

Γ ⊢ λx. e ′′0 ↓ A1 → A2 Above

(Γ ⊢ A1→A2) . (Γ ⊢ A1→A2) By Corollary 3.2

Γ ⊢ (λx. e ′′0 : (As, Γ ⊢ A1→A2)) ↑ A1 → A2 By ctx-anno

(λx. e ′′0 : (As, Γ ⊢ A1→A2)) ⊒ (λx. e ′0 : As) By e ′′0 ⊒ e ′0 and Definition 3.7

This suffices for part (ii), and to show part (i):

Γ ⊢ A1 → A2 ≤ A1 → A2 By reflexivity of ≤

Γ ⊢ (λx. e ′′0 : (As, Γ ⊢ A1→A2)) ↓ A1 → A2 By sub

(λx. e ′′0 : (As, Γ ⊢ A1→A2)) ⊒ (λx. e ′0 : As) By e ′′0 ⊒ e ′0 and Definition 3.7

2. Case→E: D ::

Γ ⊢ e1 : B→ A Γ ⊢ e2 : B

Γ ⊢ e1e2 : A

We have e ′ = e ′1e
′
2 for some e ′1, e

′
2.

Γ ⊢ e1 : B→ A Subd.

Γ ⊢ e ′′1 ↑ B→ A, e ′′1 ⊒ e ′1 By IH

Γ ⊢ e2 : B Subd.

Γ ⊢ e ′′2 ↓ B, e ′′2 ⊒ e ′2 By IH

(ii)Z Γ ⊢ e ′′1 e
′′
2 ↑ A By→E

(i), (ii)Z e ′′1 e
′′
2 ⊒ e ′1e

′
2 By Definition 3.7

We can now show part (i):

Γ ⊢ e ′′1 e
′′
2 ↑ A Above

Γ ⊢ A ≤ A By reflexivity of subtyping

(i)Z Γ ⊢ e ′′1 e
′′
2 ↓ A By sub

3. Case ∗E1, ∗E2: Essentially simpler instances of the→E case.

4. Case 1I: D :: Γ ⊢ () : 1

August 6, 2007

3.4. CONTEXTUAL TYPING ANNOTATIONS 73

e ′ ⊒ () is given. By the definition of ⊒, either e ′ = () or e ′ = (() : As) for some typing
annotations As. In the former case:

(i)Z Γ ⊢ () ↓ 1 By 1I

(i)Z () ⊒ () By Definition 3.7

(Γ ⊢ 1) . (Γ ⊢ 1) By Corollary 3.2

(ii)Z Γ ⊢ (() : (Γ ⊢ 1)) ↑ 1 By ctx-anno

(ii)Z (() : (Γ ⊢ 1)) ⊒ () By Definition 3.7

In the latter case, where e ′ = (() : As):

Γ ⊢ () ↓ 1 By 1I

(ii)Z Γ ⊢ (() : As, (Γ ⊢ 1)) ↑ 1 By ctx-anno

(ii)Z (() : As, (Γ ⊢ 1)) ⊒ (() : As) By Definition 3.7

(i)Z Γ ⊢ (() : As, (Γ ⊢ 1)) ↓ 1 By sub

5. Case sub: D ::

Γ ⊢ e : B Γ ⊢ B ≤ A

Γ ⊢ e : A

Γ ⊢ e : B Subd.

(i)Z Γ ⊢ e ′′ ↑ B, e ′′ ⊒ e ′ By IH

Γ ⊢ B ≤ A Subd.

(i)Z Γ ⊢ e ′′ ↓ A By sub

(ii)Z (e ′′ : A) ⊒ e ′′ By Definition 3.7

(Γ ⊢ A) . (Γ ⊢ A) By Corollary 3.2

(ii)Z Γ ⊢ (e ′′ : (Γ ⊢ A)) ↑ A By ctx-anno

6. Case ∗I: D ::

Γ ⊢ e1 : A1 Γ ⊢ e2 : A2
Γ ⊢ (e1, e2) : A1 ∗A2

We have e ′ ⊒ (e1, e2). Therefore there exist e ′1, e
′
2 such that e ′1 ⊒ e1 and e ′2 ⊒ e2.

Γ ⊢ e1 : A1 Subd.

Γ ⊢ e ′′1 ↓ A1, e ′′1 ⊒ e ′1 By IH

Γ ⊢ e2 : A2 Subd.

Γ ⊢ e ′′2 ↓ A2, e ′′2 ⊒ e ′2 By IH

Γ ⊢ (e ′′1 , e
′′
2) ↓ A1 ∗A2 By ∗I

(e ′′1 , e
′′
2) ⊒ (e ′1, e

′
2) By Definition 3.7

7. Case δI: Similar to the ∗I case.

August 6, 2007

74 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

8. Case ∧I: D ::

Γ ⊢ v : A1 Γ ⊢ v : A2
Γ ⊢ v : A1 ∧ A2

e ′ ⊒ v Given

Γ ⊢ v : A1 Subd.

Γ ⊢ e ′′ ↓ A1, e ′′ ⊒ e ′ By IH

e ′′ ⊒ e ′ Above

e ′′ ⊒ v By Proposition 3.9

Γ ⊢ v : A2 Subd.

Γ ⊢ e ′′′ ↓ A2, e ′′′ ⊒ e ′′ By IH

Γ ⊢ e ′′′′ ↓ A1, e ′′′′ ⊒ℓ e ′′′ By Lemma 3.14

Γ ⊢ e ′′′′ ↓ A2 By Lemma 3.13

e ′′′′ ⊒ v By Proposition 3.9

v value Given

e ′′′′ value By Lemma 3.10

Γ ⊢ e ′′′′ ↓ A1 ∧ A2 By ∧I

9. Case ΠI, ⊃I, ΠE, ΣI, ∨I1,2, OI, ⊃E, ∧E1,2: Similar to the ∧I case, but simpler (for instance,
no need to apply monotonicity).

10. Case ∨E: D :: Γ ⊢ e0 : B1 ∨ B2

Γ, x:B1 ⊢ E [x] : A
Γ, y:B2 ⊢ E [y] : A

Γ ⊢ E [e0] : A
∨E

By Lemma 3.11, there exist e ′0 ⊒ e0 and E ′ such that e ′ = E ′[e ′0] and for all e1, it is the case
that E ′[e1] ⊒ E [e1].

Γ ⊢ e0 : B1 ∨ B2 Subd.

e ′0 ⊒ e0 Given

Γ ⊢ e ′′0 ↑ B1 ∨ B2, e ′′0 ⊒ e ′0 By IH

Γ, x:B1 ⊢ E [x] : A Subd.

E ′[x] ⊒ E [x] Above

Γ, x:B1 ⊢ e
′′ ↓ A, e ′′ ⊒ E ′[x] By IH

∃E ′′. e ′′ = E ′′[x], E ′′[y] ⊒ E ′[y] By Lemma 3.11

Γ, y:B2 ⊢ E [y] : A Subd.

E ′′[y] ⊒ E ′[y] Above

Γ, y:B2 ⊢ e
′′′ ↓ A, e ′′′ ⊒ E ′′[y] By IH

∃E ′′′. e ′′′ = E ′′′[y], E ′′′[x] ⊒ E ′′[x] By Lemma 3.11

Γ, y:B2 ⊢ E ′′′[y] ↓ A By e ′′′ = E ′′′[y] and Γ, y:B2 ⊢ e
′′′ ↓ A

August 6, 2007

3.4. CONTEXTUAL TYPING ANNOTATIONS 75

E ′′′[x] ⊒ E ′′[x] Above

Γ, x:B1 ⊢ e
′′′′ ↓ A, e ′′′′ ⊒ℓ E ′′′[x] By Lemma 3.14

∃E ′′′′. e ′′′′ = E ′′′′[x],

E ′′′′[y] ⊒ℓ E
′′′[y]

By Definition 3.8

Γ, y:B2 ⊢ E ′′′′[y] ↓ A By Lemma 3.13

Γ ⊢ E ′′′′[e ′′0] ↓ A By ∨E

E ′′′′[e ′′0] ⊒ E ′[e ′0] By Proposition 3.9 and Definition 3.7

11. Case direct, ⊥E, ΣE, OE: Similar to the ∨E case, but simpler (for instance, no need to apply
monotonicity).

12. Case var: D ::

Γ(x) = A

Γ ⊢ x : A

We have e ′ ⊒ e. By definition of ⊒, there can be no annotations on variables, and so e ′ = x.

Γ ⊢ x ↑ A By var

13. Case fixvar: Similar to the preceding case.

14. Case ⊤I: D ::

Γ ⊢ v ok

Γ ⊢ v : ⊤

e ′ ⊒ v Given

e ′ value By Lemma 3.10

Γ ⊢ e ′ ↓ ⊤ By ⊤I

15. Case contra: D ::

Γ |= ⊥ Γ ⊢ e ok

Γ ⊢ e : A

Γ |= ⊥ Subd.

Γ ⊢ e ′ ↓ A By contra

Corollary 3.16. If Γ ⊢ e : A then there exists e ′ ⊒ e such that Γ ⊢ e ′ ↓tri A and there exists e ′′ ⊒ e

such that Γ ⊢ e ′′ ↑tri A.

Remark 3.17. Theorem 3.15 engenders a procedure for constructing an annotated term from a
derivation in the type assignment system. The annotated term may not be the “best” in the sense of
having a minimal (to say nothing of minimum) set of annotations. For example, we leave the term
unchanged in this checking derivation:

⊢ () : 1
=⇒

⊢ () ↓ 1

August 6, 2007

76 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Subtyping Γ ⊢ A ≤ B
Contextual subtyping (Γ0 ⊢A0) . (Γ ⊢A)

Constraint satisfaction Γ |= P

Index expression sorting Γ ⊢ i : γ
Data constructor typing Γ ⊢ c : A→ δ(i)

Simple tridirectional checking Γ ⊢ e ↓tri A, or ↓ A
Simple tridirectional synthesis Γ ⊢ e ↑tri A, or ↑ A

Left tridirectional checking Γ ;∆ ⊢ e ↓L A
Left tridirectional synthesis Γ ;∆ ⊢ e ↑L A

∆ appear linearly in e ∆ e ok

—and in evaluation position in e ∆ � e ev/ok

Figure 3.7: Judgment forms appearing in this chapter

But if the input indulges in aimless subsumption, we will add a superfluous annotation:

⊢ () : 1 1 ≤ 1

⊢ () : 1

=⇒ (⊢ 1) . (⊢ 1) ⊢ () ↓ 1

⊢ (() : (⊢ 1)) ↑ 1 1 ≤ 1

⊢ (() : (⊢ 1)) ↓ 1

3.5 The left tridirectional system

In the simple tridirectional system, the contextual rules are highly nondeterministic. Not only must
we choose which contextual rule to apply, but each rule can be applied repeatedly with the same
context E; for direct, which does not even break down the type of e ′, this repeated application is
quite pointless. The system in this section has only one contextual rule and disallows repeated
application. Inspired by the sequent calculus formulation of Barbanera et al. [BDCd95], it replaces
the contextual rules with one contextual rule directL, closely corresponding to direct, and several
left rules, shown in the upper right hand corner of Figure 3.8. In combination, these rules subsume
the contextual rules of the simple tridirectional system.

The typing judgments in the left tridirectional system are

Γ ;∆ ⊢ e ↑L A Γ ;∆ ⊢ e ↓L

where ∆ is a linear context whose domain is a new syntactic category, the linear variables x, y and
so forth. These linear variables correspond to the variables introduced in evaluation position in the
direct rule, and appear exactly once in the term e, in evaluation position. We consider these linear
variables to be values, like ordinary variables.

Note. From this point on, we write Γ ⊢ e ↓tri A and Γ ⊢ e ↑tri A for judgments in the
simple tridirectional system, to more clearly distinguish them from the left tridirectional
system. One can always determine a judgment’s system by the number of contexts: if

August 6, 2007

3.5. THE LEFT TRIDIRECTIONAL SYSTEM 77

Rules of the tridirectional system ab-
sent in the left tridirectional system:

Rules new or substantially altered in
the left tridirectional system:

Γ ; x:A ⊢ x ↑L A
var

Γ ⊢ e ′ ↑tri A Γ, x:A ⊢ E [x] ↓tri C
Γ ⊢ E [e ′] ↓tri C

direct

e ′ not a linear var

Γ ;∆1 ⊢ e
′ ↑L A Γ ;∆2, x:A ⊢ E [x] ↓L C
Γ ;∆1, ∆2 ⊢ E [e ′] ↓L C

directL

Γ ⊢ e ′ ↑tri ⊥ Γ ⊢ E [e ′] ok

Γ ⊢ E [e ′] ↓tri C
⊥E

Γ ⊢ e ok ∆, x:⊥ e ok

Γ ;∆, x:⊥ ⊢ e ↓L C
⊥L

Γ ⊢ e ′ ↑tri A ∨ B

Γ, x:A ⊢ E [x] ↓tri C
Γ, y:B ⊢ E [y] ↓tri C

Γ ⊢ E [e ′] ↓tri C
∨E

Γ ;∆, x:A ⊢ e ↓L C Γ ;∆, x:B ⊢ e ↓L C
Γ ;∆, x:A ∨ B ⊢ e ↓L C

∨L

Γ ⊢ e ′ ↑tri Σa:γ.A Γ, a:γ, x:A ⊢ E [x] ↓tri C
Γ ⊢ E [e ′] ↓tri C

ΣE
Γ, a:γ;∆, x:A ⊢ e ↓L C
Γ ;∆, x:Σa:γ.A ⊢ e ↓L C

ΣL

Γ ⊢ e ′ ↑ P O A Γ, P, x:A ⊢ E [x] ↓ C
Γ ⊢ E [e ′] ↓ C

OE
Γ, P;∆, x:A ⊢ e ↓ C

Γ ;∆, x:(P O A) ⊢ e ↓ C OL

Γ ;∆, x:A ⊢ e ↓LC
Γ ;∆, x:A∧B ⊢ e ↓LC

∧L1

Γ ;∆, x:B ⊢ e ↓LC
Γ ;∆, x:A∧B ⊢ e ↓LC

∧L2

Γ ⊢ i : γ Γ ;∆, x:[i/a]A ⊢ e ↓L C
Γ ;∆, x:Πa:γ.A ⊢ e ↓L C

ΠL

Γ |= P Γ ;∆, x:A ⊢ e ↓L C
Γ ;∆, x:P ⊃ A ⊢ e ↓L C

⊃L

Figure 3.8: Part of the left tridirectional system, with the part of the simple tridirectional system (upper left
corner) from which it substantially differs.

August 6, 2007

78 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Typing rules of the left tridirectional system identical to the simple tridirectional system,
except for the linear contexts ∆:

Γ ;∆ ⊢ e ↓ A Γ ;∆ ⊢ e ↑ A

Γ(x) = A

Γ ; · ⊢ x ↑ A var
Γ, x:A; · ⊢ e ↓ B

Γ ; · ⊢ λx. e ↓ A→ B
→I

Γ ;∆1 ⊢ e1 ↑ A→ B Γ ;∆2 ⊢ e2 ↓ A
Γ ;∆1, ∆2 ⊢ e1e2 ↑ B

→E

Γ ;∆ ⊢ e ↑ A Γ ⊢ A ≤ B

Γ ;∆ ⊢ e ↓ B sub
Γ(u) = A

Γ ; · ⊢ u ↑ A fixvar
Γ, u:A; · ⊢ e ↓ A
Γ ; · ⊢ fix u. e ↓ A fix

Γ ; · ⊢ () ↓ 1
1I

Γ ;∆1 ⊢ e1 ↓ A1 Γ ;∆2 ⊢ e2 ↓ A2
Γ ;∆1, ∆2 ⊢ (e1, e2) ↓ A1 ∗A2

∗I
Γ ;∆ ⊢ e ↑ A ∗ B

Γ ;∆ ⊢ fst(e) ↑ A ∗E1
Γ ;∆ ⊢ e ↑ A ∗ B

Γ ;∆ ⊢ snd(e) ↑ B ∗E2

Γ ⊢ c : A→ δ2(i) Γ ⊢ δ2(i) ≤ δ1(j) Γ ;∆ ⊢ e ↓ A
Γ ;∆ ⊢ c(e) ↓ δ1(j)

δI
Γ |= ⊥ Γ ⊢ e ok ∆ e ok

Γ ;∆ ⊢ e ↓ A contra

Γ ;∆ ⊢ e ↑ δ(i) Γ ; · ⊢ ms ↓δ(i) C
Γ ;∆ ⊢ case e of ms ↓ C δE

Γ ⊢ v ok ∆ v ok

Γ ;∆ ⊢ v ↓ ⊤ ⊤I
Γ ;∆ ⊢ v ↓ A Γ ;∆ ⊢ v ↓ B

Γ ;∆ ⊢ v ↓ A ∧ B
∧I

Γ ;∆ ⊢ e ↑ A ∧ B

Γ ;∆ ⊢ e ↑ A
∧E1

Γ ;∆ ⊢ e ↑ A ∧ B

Γ ;∆ ⊢ e ↑ B
∧E2

Γ, a:γ;∆ ⊢ v ↓ A
Γ ;∆ ⊢ v ↓ Πa:γ.A ΠI

Γ ;∆ ⊢ e ↑ Πa:γ.A Γ ⊢ i : γ

Γ ;∆ ⊢ e ↑ [i/a]A ΠE
Γ ;∆ ⊢ e ↓ [i/a]A Γ ⊢ i : γ

Γ ;∆ ⊢ e ↓ Σa:γ.A ΣI

Γ ;∆ ⊢ e ↓ A
Γ ;∆ ⊢ e ↓ A ∨ B

∨I1
Γ ;∆ ⊢ e ↓ B

Γ ;∆ ⊢ e ↓ A ∨ B
∨I2

(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ;∆ ⊢ e ↓ A
Γ ;∆ ⊢ (e : (Γ0 ⊢ A0), As) ↑ A

ctx-anno

Γ, P;∆ ⊢ v ↓ A
Γ ;∆ ⊢ v ↓ P ⊃ A

⊃I
Γ ;∆ ⊢ e ↑ P ⊃ A Γ |= P

Γ ;∆ ⊢ e ↑ A ⊃E

Γ ;∆ ⊢ e ↓ A Γ |= P

Γ ;∆ ⊢ e ↓ P O A
OI

Figure 3.9: The part of the left tridirectional system substantially similar from the simple tridirectional
system. The figure also summarizes the simple tridirectional system: The complete typing rules for the
simple tridirectional system can be obtained by removing the second context ∆, including premises of the
form ∆ e ok. Hence the subscripts ↑L, ↓L are elided.

August 6, 2007

3.5. THE LEFT TRIDIRECTIONAL SYSTEM 79

Γ ; c : Acon; c(x) : δ(i) ⊢ e ↓L C

δ � δ ′ Γ, x:A, i
.
= i ′; · ⊢ e ↓L C

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e ↓L C
δS-ct

δ 6� δ ′ Γ, x:A ⊢ e ok · e ok

Γ ; c : A→ δ(i); c(x) : δ ′(i ′) ⊢ e ↓L C
δF-ct

Γ ; c : A1; c(x) : B ⊢ e ↓L C
Γ ; c : A2; c(x) : B ⊢ e ↓L C

Γ ; c : A1 ∧ A2; c(x) : B ⊢ e ↓L C
∧-ct

Γ, a:γ; c : A; c(x) : B ⊢ e ↓L C
Γ ; c : Πa:γ.A; c(x) : B ⊢ e ↓L C

Π-ct

Γ, P; c : A; c(x) : B ⊢ e ↓L C
Γ ; c : (P ⊃ A); c(x) : B ⊢ e ↓L C

⊃-ct

Γ ⊢ ms ↓LB C

Γ ; · ⊢ · ↓LB C
emptyms

Γ ; c : S(c); c(x) : B ⊢ e ↓L C Γ ; · ⊢ ms ↓LB C
Γ ; · ⊢ (c(x)⇒ e ||ms) ↓LB C

casearm

Figure 3.10: Case typing rules in the left tridirectional system, identical except for added empty linear
contexts

Γ ⊢ |e| : A

Type
assignment
system
(Chapter 2)

Thm. 3.15

❄

✻

Thm. 3.3

Γ ⊢ e ↑tri A
Γ ⊢ e ↓tri A

Simple
tridirectional
system

Thm. 3.30

❄

✻

Thm. 3.25

Γ ;∆ ⊢ e ↑L A
Γ ;∆ ⊢ e ↓L A

Left
tridirectional
system

Figure 3.11: Connections between our type systems; see also Figure 5.10

August 6, 2007

80 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

there is one (Γ) it must be in the simple tridirectional system (↓tri↑tri), if there are two
(Γ ;∆) it must be in the left tridirectional system (↓L↑L).

(The next chapter leaves the simple tridirectional system behind and uses unadorned ↓
and ↑ symbols for judgments in the left tridirectional system.)

The rule directL is the only rule that adds to the linear context, and is the true source of linearity:
x appears exactly once in evaluation position in E [x]. It requires that the subterm e ′ being brought
out cannot itself be a linear variable, so one cannot bring out a term more than once, unlike with
direct.

To maintain linearity, the linear context is split among subterms. For example, in ∗I (Figure 3.8),
the context ∆ = ∆1, ∆2 is split between e1 and e2. To maintain the property that linear variables
appear in evaluation position, the linear context is empty in rules such as→I, which cannot possibly
have a linear variable in evaluation position in its subject.

After some preliminary definitions and lemmas, we prove that this new left tridirectional system

is sound and complete with respect to the simple tridirectional system from Section 3.3. (See also
Figure 3.11).

Definition 3.18. Let FLV(e) denote the set of linear variables appearing free in e. Furthermore, let
∆ e ok if and only if (1) for every x ∈ dom(∆), x appears exactly once in e, and (2) FLV(e) ⊆
dom(∆). (Similarly define FLV(ms) and ∆ ms ok.)

Proposition 3.19 (Linearity). If Γ ;∆ ⊢ e ↑L C or Γ ;∆ ⊢ e ↓L C then ∆ e ok. Similarly, if

Γ ;∆ ⊢ ms ↓δ(i) C then ∆ ms ok.

Proof. By induction on the derivation. For contra, ⊤I, ⊥L, δF-ct use the appropriate premise. For
all cases in which the term and linear context of each premise are the same as the term and linear
context of the conclusion, simply apply the IH. Cases for rules that decompose the term (such as
∗E1) require an additional step, such as from ∆ e ′ ok to ∆ fst(e ′) ok; the cases for matches all
have empty linear contexts.

Definition 3.20. Let ∆ � e ev/ok if and only if (1) for every x ∈ dom(∆), there exists an E such
that e = E [x] and x /∈ FLV(E), and (2) FLV(e) ⊆ dom(∆). (It is clear that ∆ � e ev/ok implies
∆ e ok.)

Remark 3.21. Note that the assertion

“If Γ ;∆ ⊢ e ↑L C or Γ ;∆ ⊢ e ↓L C then ∆ � e ev/ok”

does not hold. Suppose Γ ; x ⊢ x(e2e3) ↑L A → B and Γ ; y ⊢ y ↓L A. It is the case that
x � x(e2e3) ev/ok and y � y ev/ok. We can apply →E to get Γ ; x, y ⊢ (x(e2e3)) y, but y is not
in evaluation position in (x(e2e3)) y so we do not have x, y � (x(e2e3)) y ev/ok. However, the
following lemma does hold.

Lemma 3.22. If D derives Γ ;∆ ⊢ e ↑L C or Γ ;∆ ⊢ e ↓L C by a rule R and ∆ � e ev/ok, then for each

premise Γ ′;∆ ′ ⊢ e ′ ↑L C ′ or Γ ′;∆ ′ ⊢ e ′ ↓L C ′ of R, it is the case that ∆ ′ � e ′ ev/ok.

August 6, 2007

3.5. THE LEFT TRIDIRECTIONAL SYSTEM 81

Proof. The proposition is obvious if the linear context is empty in the premise, and for rules where
the terms in the premises are identical to the conclusion’s term. If the term in each premise is e ′

where there exists an E such that the term of the conclusion is E [e ′], the linear contexts are identical,
and a linear variable appears in evaluation position in e, then it also appears in evaluation position
in e ′. This takes care of anno, ∗E1, ∗E2, and δI. For→E, ∗I, δE, and directL, we use the fact that if
E [x] = e, e ′ is a subterm of e, and x appears linearly in e and e ′, there must be some E ′ such that
E ′[x] = e ′.

3.5.1 Soundness

Definition 3.23. A renaming ρ is a variable-for-variable substitution from one set of variables
(dom(ρ)) to another, disjoint set.

When a renaming is applied to a term, [ρ]e, it behaves as a substitution, and can substitute
the same variable for multiple variables. Unlike a substitution, however, it can also be applied
to contexts. A renaming from linear variables to ordinary program variables, ρ = x/x, . . . , may
be applied to a linear context ∆: [ρ]∆ yields an ordinary context Γ by renaming all variables in
dom(∆). In the other direction, a renaming ρ from ordinary program variables to linear variables
may be applied to an ordinary context Γ : [ρ]Γ yields a zoned context Γ ′;∆, where dom(Γ ′) =

dom(Γ) − dom(ρ) and dom(∆) is the image of ρ on Γ restricted to dom(ρ).

Definition 3.24. ([ρ]Γ)a denotes ∆ where [ρ]Γ = Γ ′;∆.

Theorem 3.25 (Soundness, Left Tridirectional System). If ρ renames linear variables to ordinary

program variables and Γ ;∆ ⊢ e ↑L C (resp. Γ ;∆ ⊢ e ↓L C) and ∆ � e ev/ok and dom(ρ) ⊇ dom(∆),

then Γ, [ρ]∆ ⊢ [ρ]e ↑tri C (resp. Γ, [ρ]∆ ⊢ [ρ]e ↓tri C).

Remark 3.26. The condition ∆ � e ev/ok is trivially satisfied if ∆ = · and e contains no linear
variables, which is precisely the situation for the whole program.

Proof. By induction on the typing derivation. We silently use Lemma 3.22 to satisfy the linearity
condition whenever we apply the IH. Most cases are completely straightforward, except for the
rules not present in the simple tridirectional system: var and the left rules.

1. Case var: The derivation is Γ ; x:A ⊢ x ↑L A. By var,

[ρ]Γ, [ρ]x:A ⊢ [ρ]x ↑tri A

2. Case directL: D ::

Γ ;∆1 ⊢ e
′ ↑L A Γ ;∆2, x:A ⊢ E [x] ↓L C
Γ ;∆1, ∆2 ⊢ E [e ′] ↓L C

Let x be new.

August 6, 2007

82 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Γ, [ρ]∆1 ⊢ [ρ]e ′ ↑tri A By IH

Γ, [ρ]∆1, [ρ]∆2 ⊢ [ρ]e ′ ↑tri A By weakening

Γ, [ρ, x/x](∆2, x:A) ⊢ [ρ, x/x] E [x] ↓tri C By IH

Γ, [ρ]∆2, x:A ⊢ [ρ] E [x] ↓tri C By def. of subst. (∆1, ∆2 � E [e ′] ev/ok and x /∈ FV(E))

Γ, [ρ]∆1, [ρ]∆2, x:A ⊢ [ρ] E [x] ↓tri C By weakening

Γ, [ρ]∆1, [ρ]∆2 ⊢ [ρ] E [e ′] ↓tri C By direct

3. Case ⊥L: D ::

Γ ⊢ e ok ∆, x:⊥ e ok

Γ ;∆, x:⊥ ⊢ e ↓L C

Let x = [ρ]x.

∃E . e = E [x] By ∆, x:⊥ � e ev/ok

Γ, [ρ]∆, x:⊥ ⊢ x ↑tri ⊥ By var

Γ, [ρ]∆, x:⊥ ⊢ [ρ] E [x] ↓tri ⊥ By ⊥E

Γ, [ρ]∆, x:⊥ ⊢ [ρ] e ↓tri ⊥ By e = E [x] and def. of subst.

4. Case ∨L: D ::

Γ ;∆, x:A ⊢ e ↓L C Γ ;∆, x:B ⊢ e ↓L C
Γ ;∆, x:A ∨ B ⊢ e ↓L C

Let ρ ′ = ρ− x. Let ρA = ρ ′, xA/x, where xA is new. Let ρB = ρ ′, xB/x, where xB is new.

e = E [x] By ∆, x:A∨B � e ev/ok

Γ ;∆, x:A ⊢ e ↓L C Subderivation

Γ, [ρA]∆, xA:A ⊢ [ρA]e ↓tri C By IH

Γ, [ρ ′]∆, [ρA]x:A ⊢ [ρ ′] E [xA] ↓tri C ρA = ρ ′, xA/x

Γ, [ρ ′]∆, [ρ]x:A∨B, xA:A ⊢ [ρ ′] E [xA] ↓tri C By weakening

Γ, [ρ ′]∆, [ρ]x:A∨B, xA:A ⊢ ([ρ] E)[xA] ↓tri C By ∆, x:A∨B � E [x] ev/ok

Γ ;∆, x:B ⊢ e ↓L C Subderivation

Γ, [ρB]∆, [ρB]x:B ⊢ [ρ ′] E [xB] ↓tri C By IH

Γ, [ρ ′]∆, xB:B ⊢ [ρ ′] E [xB] ↓tri C ρB = ρ ′, xB/x

Γ, [ρ ′]∆, [ρ]x:A∨B, xB:B ⊢ [ρ ′] E [xB] ↓tri C By weakening

Γ, [ρ ′]∆, [ρ]x:A∨B, xB:B ⊢ ([ρ] E)[xB] ↓tri C By ∆, x:A∨B � E [x] ev/ok

Γ, [ρ ′]∆, [ρ]x:A∨B ⊢ [ρ]x ↑tri A ∨ B By var

Γ, [ρ ′]∆, [ρ]x:A∨B ⊢ ([ρ] E)[x] ↓tri C By ∨E

Γ, [ρ ′]∆, [ρ]x:A∨B ⊢ [ρ] E [x] ↓tri C By e = E [x] and subst.

August 6, 2007

3.5. THE LEFT TRIDIRECTIONAL SYSTEM 83

5. Case ΣL: D ::

Γ, a:γ;∆, x:A ⊢ e ↓L C
Γ ;∆, x:Σa:γ.A ⊢ e ↓L C

Let ρ ′ = ρ− x. Let ρA = ρ ′, xA/x, where xA is new.

e = E [x] By ∆, x:A � e ev/ok

Γ, a:γ;∆, x:A ⊢ e ↓L C Subderivation

Γ, a:γ, [ρA]∆, [ρA]x:A ⊢ [ρA]e ↓tri C By IH

Γ, a:γ, [ρ ′]∆, xA:A ⊢ ([ρ ′] E)[xA] ↓tri C ρA = ρ ′, xA/x and xA is new

Γ, a:γ, [ρ ′]∆, [ρ]x:Σa:γ.A, xA:A ⊢ ([ρ ′] E)[xA] ↓tri C By weakening

Γ, a:γ, [ρ ′]∆, [ρ]x:Σa:γ.A, xA:A ⊢ ([ρA]E)[xA] ↓tri C By defn. of subst.

Γ, a:γ, [ρ ′]∆, [ρ]x:Σa:γ.A, xA:A ⊢ ([ρ]E)[xA] ↓tri C By ∆, x:A � E [x] ev/ok

Γ, [ρ ′]∆, [ρ]x:Σa:γ.A ⊢ [ρ]x ↑tri Σa:γ.A By var

Γ, [ρ ′]∆, [ρ]x:Σa:γ.A ⊢ ([ρ]E)[[ρ]x] ↓tri C By ΣE

Γ, [ρ ′]∆, [ρ]x:Σa:γ.A ⊢ [ρ]e ↓tri C By e = E [x] and subst.

6. Case OL: Similar to the ΣL case.

7. Case ∧L1: D ::

Γ ;∆, x:A ⊢ e ↓L C
Γ ;∆, x:A ∧ B ⊢ e ↓L C

Let ρ ′ = ρ− x. Let ρA = ρ ′, xA/x, where xA is new.

e = E [x] By ∆, x:A∧ B � e ev/ok

Γ ;∆, x:A ⊢ e ↓L C Subderivation

Γ, [ρA]∆, [ρA]x:A ⊢ [ρA]e ↓tri C By IH

Γ, [ρ ′]∆, xA:A ⊢ ([ρ ′] E)[xA] ↓tri C ρA = ρ ′, xA/x and xA is new

Γ, [ρ ′]∆, [ρ]x:A∧B, xA:A ⊢ ([ρ ′] E)[xA] ↓tri C By weakening

Γ, [ρ ′]∆, [ρ]x:A∧B, xA:A ⊢ ([ρ] E)[xA] ↓tri C By ∆, x:A∧B � E [x] ev/ok

Γ, [ρ ′]∆, [ρ]x:A∧B ⊢ [ρ]x ↑tri A ∧ B By var

Γ, [ρ ′]∆, [ρ]x:A∧B ⊢ [ρ]x ↑tri A By ∧E1

Γ, [ρ ′]∆, [ρ]x:A∧B ⊢ ([ρ] E)[[ρ]x] ↓tri C By direct

Γ, [ρ ′]∆, [ρ]x:A∧B ⊢ [ρ]e ↓tri C By e = E [x] and subst.

Γ, [ρ](∆, x:A∧B) ⊢ [ρ]e ↓tri C By [ρ](∆, x:A∧B) = [ρ ′]∆, [ρ]x:A∧B

Cases ∧L2, ΠL, and ⊃L are analogous to the previous case.

3.5.2 Completeness

We now show completeness: If a term can be typed in the simple tridirectional system, it can be
typed in the left tridirectional system. First, we prove a strengthening lemma and a lemma about

August 6, 2007

84 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

linear variables.

Lemma 3.27 (Strengthening). If Γ, y:A, Γ ′ ⊢ e ↓tri↑tri C where y /∈ FV(e) then Γ, Γ ′ ⊢ e ↓tri↑tri C.

Proof. By induction on the given derivation. In most cases, including ⊥E, simply apply the IH to
all premises (note that if y is not free in e it is not free in any subterm of e—as always, we rename
bound variables where needed to avoid capture) and apply the same rule.

In the var case we have e = x; it is given that y /∈ FV(e) so y 6= x. We have (Γ, y:A, Γ ′)(x) = C,
but y 6= x so also (Γ, Γ ′)(x) = C. By rule var, Γ, Γ ′ ⊢ x ↑tri C.

In the contra case, use Γ, y:A, Γ ′ = Γ, Γ ′.

Remark 3.28. An analogous strengthening lemma appears to hold for the left tridirectional system
(even, rather vacuously, for linear variables: if Γ ;∆ ⊢ e ↓ C then ∆ e ok, so the condition that the
variable to be removed is not free in e can never be satisfied), but it is not required.

Lemma 3.29. If Γ ; x:A ⊢ x ↑L B and Γ ;∆, x:B ⊢ e ↓L C then Γ ;∆, x:A ⊢ e ↓L C.

Proof. By induction on the first derivation. The only rules that could have been used are var, ∧E1,2,
ΠE, and ⊃E. In the var case, A = B so the result is immediate. We show the ∧E1 case.

• Case ∧E1: D ::

Γ ; x:A ⊢ x ↑L B ∧ B ′

Γ ; x:A ⊢ x ↑L B

Γ ;∆, x:B ⊢ e ↓L C Given

Γ ;∆, x:B∧B ′ ⊢ e ↓L C By ∧L1

Γ ; x:A ⊢ x ↑L B ∧ B ′ Subd.

Γ ;∆, x:A ⊢ e ↓L C By IH

Theorem 3.30 (Completeness, Left Rule System). If ρ is a renaming from ordinary program vari-

ables to linear variables and Γ ⊢ e ↑tri C (resp. Γ ⊢ e ↓tri C) and ([ρ]Γ)a � [ρ]e ev/ok, then

[ρ]Γ ⊢ [ρ]e ↑L C (resp. [ρ]Γ ⊢ [ρ]e ↓L C).

Proof. By induction on the typing derivation. Most cases are straightforward, and the →E case is
given as a representative example. The more interesting cases are those where the rule used does
not exist in the left rule system.

1. Case direct: D ::

Γ ⊢ e ′ ↑tri A Γ, x:A ⊢ E [x] ↓tri C
Γ ⊢ E [e ′] ↓tri C

Suppose [ρ]e ′ 6= y for any y. In this case, we can apply directL, so the proof is easy. Let ρ ′ be
ρ restricted to variables appearing in e ′, and let ρ0 = (ρ − ρ ′), x/x where x is new. We have
([ρ]Γ)a � [ρ] E [e ′] ev/ok.

August 6, 2007

3.5. THE LEFT TRIDIRECTIONAL SYSTEM 85

Γ ⊢ e ′ ↑tri A Subderivation

[ρ ′]Γ ⊢ [ρ ′]e ′ ↑L A By IH with subst. ρ ′

[ρ]Γ ⊢ [ρ]e ′ ↑L A By defn. of subst.

Γ, x:A ⊢ E [x] ↓tri C Subderivation

[ρ0] (Γ, x:A) ⊢ [ρ0] E [x] ↓L C By IH with subst. ρ0
[ρ]Γ, x:A ⊢ [ρ] E [x] ↓L C By defn. of ρ0

[ρ]Γ ⊢ [ρ] E [e ′] ↓L C By directL

On the other hand, suppose [ρ]e ′ = y for some y. Then e ′ must be a variable; suppose
Γ(e ′) = B. Let Γ ′ be Γ with e ′:B omitted.

Γ ⊢ e ′ ↑tri A Subderivation

[ρ]Γ ′, y:B ⊢ y ↑L A By IH

Γ, x:A ⊢ E [x] ↓tri C Subderivation

e ′ /∈ FV(E [x]) By ([ρ]Γ)a [ρ] E [e ′] ok

Γ ′, x:A ⊢ E [x] ↓tri C By Lemma 3.27

[ρ, y/x](Γ ′, x:A) ⊢ [ρ, y/x] E [x] ↓L C By IH

[ρ]Γ ′, y:A ⊢ [ρ] E [y] ↓L C Applying substs.

[ρ]Γ ′, y:B ⊢ [ρ] E [e ′] ↓L C By Lemma 3.29

2. Case ⊥E: D ::

Γ ⊢ e ′ ↑tri ⊥ Γ ⊢ E [e ′] ok

Γ ⊢ E [e ′] ↓tri C

Suppose [ρ]e ′ 6= y for any y. Let x be new. Let ρ1 be ρ restricted to variables appearing in e ′.
Let ρ2 = ρ− ρ1.

Γ ⊢ e ′ ↑tri ⊥ Subderivation

[ρ1]Γ ⊢ [ρ1]e
′ ↑L ⊥ By IH

([ρ]Γ)a, x:⊥ [ρ] (E [e ′]) ok Given

([ρ2]Γ)a, x:⊥ ([ρ2] E)[x] ok

[ρ2]Γ, x:⊥ ⊢ ([ρ2] E)[x] ↓L C By ⊥L

[ρ]Γ ⊢ [ρ] E [e ′] ↓L C By directL

Otherwise, suppose [ρ]e ′ = x for some x. Then e ′ must be a variable. Suppose Γ(e ′) = A. Let
Γ ′ be Γ without e ′:A.

([ρ]Γ)a [ρ] E [e ′] ok Given

([ρ]Γ ′)a, x:⊥ ([ρ] E)[[ρ]e ′] ok Γ ′ is Γ without e ′:A

([ρ]Γ ′)a, x:⊥ ([ρ] E)[x] ok By [ρ]e ′ = x

[ρ]Γ ′, x:⊥ ⊢ ([ρ] E)[x] ↓L C By ⊥L

August 6, 2007

86 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

Γ ⊢ e ′ ↑tri ⊥ Subderivation

([x/e ′]Γ)a ⊢ x ↑L ⊥ By IH

[ρ]Γ ′, x:A ⊢ ([ρ] E)[x] ↓L C By Lemma 3.29

[ρ]Γ ′, x:A ⊢ [ρ] E [e ′] ↓L C By [ρ]e ′ = x and def. of subst.

3. Case ∨E: D :: Γ ⊢ e ′ ↑tri A ∨ B

Γ, x:A ⊢ E [x] ↓tri C
Γ, y:B ⊢ E [y] ↓tri C

Γ ⊢ E [e ′] ↓tri C
∨E

Suppose [ρ]e ′ 6= y for any y. Let ρ ′ be ρ restricted to variables appearing in e ′. Let ρ0 = ρ−ρ
′.

Let ρx = ρ0, x/x and ρy = ρ0, x/y where x is new.

Γ, x:A ⊢ E [x] ↓tri C Subderivation

[ρx](Γ, x:A) ⊢ [ρx] E [x] ↓tri C By IH

[ρ0]Γ, x:A ⊢ ([ρ0] E)[x] ↓tri C By ρx = ρ0, x/x

Γ, y:B ⊢ E [y] ↓tri C Subderivation

[ρy](Γ, y:B) ⊢ [ρy] E [y] ↓tri C By IH

[ρ0]Γ, x:B ⊢ ([ρ0] E)[x] ↓tri C By ρy = ρ0, x/y

[ρ0]Γ, x:A∨B ⊢ ([ρ0] E)[x] ↓tri C By ∨L

[ρ]Γ, x:A∨B ⊢ ([ρ] E)[x] ↓tri C By defn. of renaming

Γ ⊢ e ′ ↑tri A ∨ B Subderivation

[ρ ′]Γ ⊢ [ρ ′]e ′ ↑L A ∨ B By IH

[ρ]Γ ⊢ [ρ]e ′ ↑L A ∨ B By defn. of renaming

[ρ]Γ ⊢ ([ρ] E)[[ρ]e ′] ↓L C By directL

[ρ]Γ ⊢ [ρ] E [e ′] ↓L C By def. of subst.

Otherwise, suppose [ρ]e ′ = x for some x. Then e ′ must be a variable. Suppose Γ(e ′) = D. Let
Γ ′ be Γ without e ′:D. Let ρx = ρ, x/x and ρy = ρ, x/y where x is new.

Γ, x:A ⊢ E [x] ↓tri C Subderivation

[ρx]Γ
′, x:A ⊢ [ρx] E [x] ↓tri C By IH

[ρ]Γ ′, x:A ⊢ ([ρ] E)[x] ↓tri C By defn. of renaming

Γ, y:B ⊢ E [y] ↓tri C Subderivation

[ρy]Γ
′, x:B ⊢ [ρy] E [y] ↓tri C By IH

[ρ]Γ ′, x:B ⊢ ([ρ] E)[x] ↓tri C By defn. of renaming

[ρ]Γ ′, x:A∨B ⊢ ([ρ] E)[x] ↓L C By ∨L

Γ ⊢ e ′ ↑tri A ∨ B Subderivation

([x/e ′]Γ)a ⊢ x ↑L A ∨ B By IH

August 6, 2007

3.5. THE LEFT TRIDIRECTIONAL SYSTEM 87

[ρ]Γ ′, x:A ⊢ ([ρ] E)[x] ↓L C By Lemma 3.29

[ρ]Γ ′, x:A ⊢ [ρ] E [e ′] ↓L C By defn. of renaming

4. Case ΣE: Similar to the ∨E case.

5. Case OE: Similar to the ∨E case.

6. Case→E: D ::

Γ ⊢ e1 ↑tri A→ C Γ ⊢ e2 ↓tri A
Γ ⊢ e1e2 ↑tri C

Let ρ1 and ρ2 be ρ restricted to variables appearing in e1 and e2 respectively.

([ρ]Γ)a � e1e2 Given

([ρ1]Γ)a � e1 By defn. of evaluation contexts

([ρ2]Γ)a � e2 By defn. of evaluation contexts

Γ ⊢ e1 ↑tri A→ C Subderivation

[ρ1]Γ ⊢ [ρ1]e1 ↑L A→ C By IH

Γ ⊢ e2 ↓tri A Subderivation

[ρ2]Γ ⊢ [ρ2]e2 ↓L A By IH

[ρ]Γ ⊢ [ρ] e1e2 ↑L C By→E

3.5.3 Decidability of typing

Theorem 3.31. Γ ;∆ ⊢ e ↓L A is decidable.

Proof. We impose an order < on two judgments J1,J2. Each of these may be a checking judgment
Γk;∆k ⊢ ek ↓ Ak, a synthesis judgment Γk;∆k ⊢ ek ↑ Ak, a match judgment Γk; · ⊢ msk ↓Bk Ak or a
case typing judgment Γ ; c : Ck; c(x) : δk(ik) ⊢ ek ↓ Ak.

When ordering terms, we consider linear variables to be smaller than any other terms; for ex-
ample, (x, e2) is smaller than (y, e2)). When ordering types (that is, type expressions), we consider
all index expressions to be of equal size.

The ordering on judgments is defined as follows.

1. If e1 is smaller than e2 (or ms1 is smaller than ms2, etc.) then J1 < J2. If the subject
terms/matches are the same size:

2. If one judgment is synthesis and the other is checking, the synthesis judgment is smaller.

3. If one judgment is checking and the other is case typing, the checking judgment is smaller.

4. If both judgments are checking judgments and A1 is smaller than A2, then J1 < J2. If both
judgments are synthesis judgments, Γ1 = Γ2, ∆1 = ∆2, A1 is at least as small as some type in
Γ1;∆1 and A1 is larger than A2, then J1 < J2. Otherwise:

5. If both judgments are case typing judgments and C1 is smaller than C2, then J1 < J2.

August 6, 2007

88 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

6. If the number of times any of the type constructors ∨, Σ, ⊥, O, ∧, Π, ⊤, ⊃ appear in ∆1 is
less than the number of times they appear in ∆2 then J1 < J2.

Now we show that for every rule, each premise is smaller than the conclusion. It is easy to see that
in each rule concluding a match judgment or case typing judgment, the premises are smaller than
the conclusion. Only rules δE and δS-ct cross from/to checking judgments; in δE the subject ms is
smaller than case e ′ of ms, and in δS-ct the premise is considered smaller because it is a checking
judgment and the subject e is the same.

Turning to the typing rules, for most premises, the first criterion alone makes the premise
smaller. The second criterion is for sub. The fourth criterion is needed for rules such as ΠI and
ΠE. Note that a synthesis judgment whose type expression becomes larger is considered smaller!
Synthesis judgments eventually “bottom out” at rules like ctx-anno and ∗E1, in which the term be-
comes smaller, or at rules var, fixvar or var, where the type synthesized is taken from Γ or ∆. Since
all the type expressions in Γ and ∆ are finite, there is no problem. The sixth criterion is for the left
rules, where the term, direction, and type do not change.

The second premise of directL is smaller than its conclusion because we consider linear variables
to be the smallest terms and directL does not permit e ′ to be a linear variable.

3.5.4 Type Safety

If ·; · ⊢ e ↓L A in the left tridirectional system, from Theorem 3.25 we know · ⊢ e ↓tri A. Then
by Theorem 3.3, · ⊢ |e| : A in our type assignment system (Chapter 2). That is, erasing type
annotations leads to a typing derivation in the type assignment system. It follows from Theorem
2.21, Type Preservation and Progress, that |e| either diverges or evaluates to a value of type A.

3.6 Related work

3.6.1 Refinements, intersections, unions

Index refinements were proposed by Xi and Pfenning [XP99]. As mentioned earlier, the necessary
existential quantifier Σ led to difficulties [Xi98] because elaboration must determine the scope of Σ,
which is not syntactically apparent in the source program. Xi addressed this by translating programs
into a let-normal form before checking index refinements, which is akin to typechecking the original
term in evaluation order. Because of the specific form of Xi’s translation, our tridirectional system
admits more programs, even when restricted to just index refinements and quantifiers. In Chapter
5 we show that a variant of Xi’s idea of evaluation-order traversal is applicable in our significantly
more complex setting to eliminate the nondeterminism inherent in the (directL) rule.

3.6.2 Partial inference systems

Our system shares several properties with Pierce and Turner’s local type inference [PT98]. Their
language has subtyping and impredicative polymorphism, making full type inference undecidable.
Their partial inference strategy is formulated as a bidirectional system with synthesis and checking
judgments, in a style not too far removed from ours. In order to handle parametric polymorphism

August 6, 2007

3.7. CONCLUSION 89

without using nonlocal methods such as unification, they infer type arguments to polymorphic
functions, which substantially complicates matters compared to our system, which does not have
parametric polymorphism (see Section 8.1.1). Hosoya and Pierce [HP99] further discuss this style,
particularly its effectiveness in achieving a reasonable number of annotations.

3.6.3 Principal typings

A principal type of e is a type that represents all types of e—in some particular context Γ . A
principal typing [Jim95] of e is a pair (Γ,A) of a context and a type, such that (Γ,A) represents
all pairs (Γ ′, A ′) such that Γ ′ ⊢ e : A ′. These definitions depend on some idea of representation,
which varies from type system to type system, making comparisons between systems difficult; Wells
introduced a general notion of representation [Wel02]. Since full type inference seems in any case
unattainable, we have not investigated whether principal typings exist for our language. However,
the idea of assigning a typing (rather than just a type) to a term appears in our system in the form
of contextual typing annotations, enabling us to solve some otherwise very unpleasant problems
regarding the scope of quantified index variables.

3.7 Conclusion

Chapter 2 developed a type assignment system with a rich set of property type constructors. That
system is sound in a standard call-by-value semantics, but is inherently undecidable. Now, by
taking a tridirectional version of the type assignment system, we have obtained a rich yet decidable
type system. Every program well-typed under the type assignment system has an annotation with
contextual typings that checks under the tridirectional rules. Contextual typing annotations may
be useful in other settings, such as systems of parametric polymorphism in which subtyping is
decidable.

In order to show decidability, and as the first important step towards a practical implementation,
we also presented a less nondeterministic left tridirectional system and proved it to be decidable and
sound and complete with respect to the tridirectional system.

Chapter 5 will drastically reduce the nondeterminism in rule directL by forcing the typechecker
to (almost always) traverse subterms in evaluation order, while being sound and complete with
respect to the left tridirectional system.

August 6, 2007

90 CHAPTER 3. A TRIDIRECTIONAL TYPE SYSTEM

August 6, 2007

Chapter 4

Pattern matching

4.1 Introduction

Our atomic refinement mechanisms of datasorts and indices refine algebraic datatypes, for which
case is the elimination form. In earlier chapters we allowed only the simplest form of pattern
matching: if e : δ(i) and δ refines a datatype with constructors c1, . . . , cn, the only legal form of
case was

case e of c1(x1)⇒ e1 | . . . | cn(xn)⇒ en

However, even in small programs, tuple patterns (p1, p2), nested patterns c(p), and named patterns
x as p are essential to keep case expressions reasonably concise. In addition, we may prefer to omit
from the program text case arms that are impossible; in Standard ML this leads to a warning that
the case is nonexhaustive, but type refinements enable the typechecker to deduce the impossibility
of many such case arms.1

This chapter extends the formal system to include all the interesting pattern forms found in
Standard ML. In our setting, this extension is not trivial: precise analysis of named patterns requires
two-way information flow as illustrated below. (This example is taken from Section 7.2.4.)

case ins1 dict of

Red (t as (__,Red __, __))⇒ Black t

||Red (t as (__, __,Red __))⇒ Black t

||dict⇒ dict

Here, ins1 dict ↑ badRoot, and the whole case is being checked against rbt. When the last case
arm is reached, the remaining pattern space is the union of patterns Empty⊔Black(__)⊔p (where p
is irrelevant here). Each component of this union is considered, giving us (first) the pattern space
Empty and the given pattern dict. The intersection dict ∩ Empty of these, is (dict as Empty). We
start out knowing dict : badRoot (since that is the type of the scrutinee ins1 dict); however, upon
descending into the pattern dict as Empty we find that dict is really Empty, and from S(Empty) we

1This effect can be achieved within the formalism of the earlier chapters by writing a case arm with an obviously
ill-typed body, so that the case expression typechecks only if the case arm is skipped entirely.

91

92 CHAPTER 4. PATTERN MATCHING

can deduce that we actually have something black. Since black � rbt � badRoot, proceeding with
the assumption dict : black allows us to check dict ↓ rbt.

The point is that in the pattern dict as Empty—more generally, x as p—examining p can provide
a more precise type for x. If the pattern checking system ignored this new information, we would
be unable to derive dict ↓ rbt, since we would only know dict : badRoot, and badRoot 6� rbt.
Moreover, the user would have to stultify the case expression by expanding . . . ||dict ⇒ dict

into . . . ||Empty ⇒ Empty ||Black x ⇒ Black x, which is clearly unacceptable for patterns of any
complexity.

We begin with syntactic foundations: the grammar of patterns, well-formedness, pattern match-
ing, and subtraction and intersection of patterns. Then we extend the operational semantics to sup-
port sequential pattern matching (not needed before because we assumed each arm in a case was
guarded by a distinct constructor). We then give an overview of pattern checking (Section 4.3) and
explain the new pattern typing rules, constructor typing rules, and generalized case rules. After
defining a type assignment version of the system thus constructed, we prove several lemmas and
a soundness result (Theorem 4.11) for pattern typing rules, which allows us to prove type safety.
Finally, we discuss the implementation of pattern typechecking (Section 4.8) and examine related
work in Section 4.9.

4.2 Foundations of pattern checking

4.2.1 Pattern language

The language of patterns (Figure 4.3) comprises pattern variables x (syntactically the same as
program variables), the unit pattern (), pair patterns (p1, p2), the wildcard pattern __, layered
patterns x as p, constructor patterns, the empty pattern {}, and or-patterns p1 ⊔ p2. The empty
pattern is of no use to the programmer and need not appear in the source language, but it lets us
write the result of pattern subtraction: c(x) − c(y) = {}. We likewise include or-patterns with no
source representation: for instance, given a datatype with constructors Nil and Cons, the result of
__ − Cons(__,Nil(__)) is Nil(__) ⊔ Cons(__,Cons(__)).2

4.2.2 Free variables and well-formedness

The definition of the free pattern variables FPV(p) of a pattern is fairly straightforward; we build
in a notion of well-formedness: if FPV(p) is defined then p is well-formed: in every union p1 ⊔ p2
the free variables of p1 and p2 are the same, and no variable appears more than once (counting a
variable appearing once in p1 and once in p2 as appearing once in p1 ⊔ p2).

Definition 4.1. FPV(p) denotes the free pattern variables in p:

2Or-patterns are disallowed in the source program because pattern matching of unions is not deterministic: p1 ⊔

p2
σ

−→ v if p1
σ

−→ v or p2
σ

−→ v. The operational semantics, defined in terms of p
σ

−→ v for p ⇒ e, would become
nondeterministic if p contained ⊔s, and the combined type safety theorem (whose form we “inherit” from Chapter 2) is
not useful if e 7→ e ′1 and e 7→ e ′2 does not imply e ′1 = e ′2. It would be straightforward to resolve this by forcing matching
of p1 ⊔p2 to go left to right by adding a premise v /∈ p1 to the last rule of Figure 4.1, but that would require an inductive
definition of v /∈ p1. Since or-patterns are not even part of Standard ML, we chose not to bother.

August 6, 2007

4.2. FOUNDATIONS OF PATTERN CHECKING 93

FPV(x) = {x}

FPV(()) = {}

FPV((p1, p2)) = FPV(p1) ∪ FPV(p2) if FPV(p1) ∩ FPV(p2) = {}

FPV(x as p) = {x} ∪ FPV(p) if x /∈ FPV(p)

FPV(c(p)) = FPV(p)

FPV(__) = {}

FPV({}) = {}

FPV(p1 ⊔ p2) = FPV(p1) if FPV(p1) = FPV(p2)

In the remainder of this chapter, we implicitly assume that every pattern is well-formed.

4.2.3 Pattern matching

We inductively define a judgment p
σ

−→ v that holds if σ applied to p yields v (Figure 4.1).3 When
σ is not of interest, it is convenient to write v ∈ p, read “v matches p”:

Definition 4.2. v ∈ p if and only if there exists σ such that p
σ

−→ v.

We extend the operational semantics from a single disjoint layer to sequential matching (Figure
4.2), introducing a “tiny step” relation e 7→M e ′ modeling sequential evaluation of match sequences
ms. For example,

case Cons(3,Nil) of Nil⇒ e1 ||Cons(h, t)⇒ e2
7→M case Cons(3,Nil) of Cons(h, t)⇒ e2
7→M [3/h,Nil/t] e2

This is necessary to avoid temporarily creating an ill-typed term: the intermediate term

case Cons(3,Nil) of Cons(h, t)⇒ e2

is nonexhaustive, and this would break type preservation. Rule ev-match+ provides the transition
from 7→M to 7→R: if case v of ms 7→+

M e then case v of ms 7→R e, where 7→+
M denotes one or more

applications of 7→M.
There is no reduction rule that “falls off the end”—terms such as case c1() of c2()⇒ e will get

stuck:
case c1() of c2()⇒ e 7→ case c1() of · 67→

This is by design. In our type system, a program will pass typechecking only if all matches are
exhaustive. In Standard ML, users are forced to either write nonexhaustive matches (and become
used to the compiler crying wolf) or add spurious __ ⇒ raise Match catch-alls (which clutter the
code and are tempting to add without thinking, just to get rid of the warning). With refinements,
the typechecker can determine that matches a simple typechecker would consider nonexhaustive,
such as x:red ⊢ case x of Red __⇒ e, are in fact exhaustive. Hence the warning can reasonably
be made an error. In instances where exhaustiveness is due to an invariant not captured by type
refinements, the user will have to add a catch-all, but such cases should be rare.

3This notation was chosen instead of [σ]p = v because the latter strongly suggests that [σ]p is a function, but σ and p
do not uniquely determine v: consider σ = · and p = c1() ⊔ c2().

August 6, 2007

94 CHAPTER 4. PATTERN MATCHING

()
·

−→ ()

p1
σ1
−→ v1 p2

σ2
−→ v2

(p1, p2)
σ1,σ2
−→ (v1, v2)

p
σ

−→ v

c(p)
σ

−→ c(v)

__
·

−→ v x
v/x
−→ v

p
σ

−→ v

x as p
σ,v/x
−→ v

p1
σ

−→ v

p1 ⊔ p2
σ

−→ v

p2
σ

−→ v

p1 ⊔ p2
σ

−→ v

Figure 4.1: Definition of pattern matching

p
σ

−→ v

case v of p⇒ e ||ms 7→M [σ] e
ev-match

v /∈ p

case v of p⇒ e ||ms 7→M case v of ms
ev-no-match

case v of ms 7→+
M e

case v of ms 7→R e
ev-match+

Figure 4.2: Operational semantics

4.2.4 Subtraction and intersection

A notion of pattern subtraction is needed to reason about sequential pattern matching. The result
of pattern subtraction can be the empty pattern (as in x − y), or a union of patterns: if c1, c2, c3
are the constructors of some datatype, __ − c1(__) = c2(__) ⊔ c3(__).

We do not formally define pattern subtraction; we require only that it satisfy the following
property:

Property 4.3. If p
σ

−→ v and v /∈ p ′ then p− p ′ σ
−→ v.

If this property does not hold, type safety can be violated. Suppose e has type δ where δ
has constructors c1, c2 and case e of c1(x)⇒ e1. If __ − c1(x) = {}, the case expression would be
considered exhaustive, yet we could not make a transition when e = c2(v).

A consequence of the property is that p − p ′ must ‘prefer’ the variables in p. For example, it
cannot be the case that (c1(x) ⊔ c2(x)) − c1(y) = c2(y), because then the two σs in the property

would not be the same: c1(x) ⊔ c2(x)
v/x
−→ c2(v), but c2(y)

v/y
−→ c2(v).

Likewise, we do not define pattern intersection p1 ∩ p2, but it must satisfy Property 4.4.

Property 4.4. If p1
σ1
−→ v and v ∈ p2 then p1 ∩ p2

σ1
−→ v.

As with subtraction, type safety is threatened if this property fails to hold. A case arm p ⇒ e

is checked against the intersection of p and whatever pattern “remains” (initially the wildcard
pattern). Suppose we have lists refined by empty and nonempty. If, absurdly, __ ∩ x = Cons(__), we
can incorrectly derive (case e of x⇒ x) ↓ nonempty, since only Cons(__) will be considered, leaving
out the possibility that the value is Nil().

As with subtraction, the intersection property is written so that intersection must ‘prefer’ the
pattern variables in the first pattern. Correspondingly, rule casearm has p ∩ p∗ where p is the

August 6, 2007

4.3. OVERVIEW 95

pattern given by the user in a match p⇒ e and p∗ is the pattern representing the space of remaining
possible values. The pattern variables in p appear in the term e, so they should be preserved, while
those in p∗ are irrelevant.

Both properties are needed to prove Lemma 4.13.

4.3 Overview

At a high level, typechecking an expression case e of p1 ⇒ e1 ||ms is straightforward:

1. Synthesize a type A for e (the scrutinee).

2. Let p := __, the wildcard pattern.

3. Compute the intersection p1 ∩p. In general, this produces a possibly empty union of patterns
p11 ⊔ . . . ⊔ p1n.

4. For each disjunct p1k, check e1 under appropriate typing assumptions for pattern variables
appearing in p1k.

5. Let p :=p− p1.

6. Repeat steps 3–5 on the remaining matches in ms.

7. If p is nonempty, check if any values matching p are possible given A. If so, inform the user
that the match is nonexhaustive.

In step 4, e1 may need to be checked several times under varying assumptions. For example,
assuming c : (A1 → δ(1)) ∧ (A2 → δ(1)) and x : δ(1), given case x of c(y)⇒ f(y) step 4 must
check f(y) first under the assumption that y : A1 and then under the assumption that y : A2. (In
the earlier system, this was managed by rule ∧-ct.)

Determining types for the pattern variables in a way that is both sound (if the scrutinee value
matches the pattern, the matched values really do check against the types determined) and suffi-
ciently precise (a notion we do not attempt to formalize4) is not trivial. A major confounding factor
is the need to pass information up and down in x as p patterns, as in the example given earlier
(p. 91). This precludes a simpler formulation via left rules [Dav05a, ch. 6]: in a system with Γ
extended to permit pattern typings p : A, the derivation

Γ, x : badRoot ⊢ . . .

Γ, x : badRoot,Empty : badRoot ⊢ . . .

Γ, (x as Empty) : badRoot ⊢ . . .

4Precision is a kind of completeness, but completeness with respect to what? We are not even prepared to claim we
know completeness when we see it, though some things are clearly incomplete: it would be perfectly sound to use ⊤ for
every pattern variable, but nothing useful would typecheck.

August 6, 2007

96 CHAPTER 4. PATTERN MATCHING

loses the improved type black for x.5 Instead, we formulate a system based on continuing judgments

of the form

Γ ⊢ p ↓ A ⊲ J

This is to be read “under context Γ , matching a value of type A against p yields information that,
when ‘passed’ to J , validates J .” A so-called continuation J is, in general, a sequence J1 ⊲
. . . ⊲ Jn where ⊲ is right associative; ⊲ may be loosely read as left-to-right function composition:
(J ⊲ J ′)(−) acts as J ′(J (−)). One of the simpler forms of a J is FORGETTYPE ⊲ e ↓ C, which,
when ‘passed’ information—a type A and context Γ—drops the type and checks e (the body of some
case arm) against C under Γ .

The rules analyze p to figure out what holds for all v ∈ p of type A, producing both a new
context Γ, Γ ′ (where Γ ′ types pattern variables encountered along the way) and an A ′ ≤ A (as in
the earlier example, where A = badRoot and A ′ = black). Both of these are ‘passed’ to J via a
subderivation concluding

A ′ + Γ ⊢ J

which should be read “(under Γ) if the scrutinee is known to have type A ′, then J holds”, the + is
punctuation. A typical derivation structure is

A ′ + (Γ, Γ ′) ⊢ J
...

Γ ⊢ p ↓ A ⊲ J

where A ′ ≤ A. The type A ′ can be thought of as being generated by the elided portion of the
derivation, and then ‘passed’ to J along with the typing context, which has been extended with Γ ′.
More generally, derivations have the form

A ′
1 + (Γ, Γ ′1) ⊢ J

...
. . .

A ′
n + (Γ, Γ ′n) ⊢ J

...

Γ ⊢ p ↓ A ⊲ J

where A ′
k ≤ Ak for k ∈ 1..n.

For the simplest instance of this structure, consider a case arm x ⇒ e. First we give the rule
casearm.

Γ, FPV(p) ⊢ e ok
Γ ⊢ (p ∩ p∗) ↓ A ⊲ (FORGETTYPE ⊲ e ↓ C)
Γ ⊢ ((p∗ − p) ↓ A)⊲ms ↓ C

Γ ⊢ (p∗ ↓ A)⊲ (p⇒ e ||ms) ↓ C casearm

Say we have p∩p∗ = x (for x⇒ e). One of casearm’s premises, Γ ⊢ x ↓ A ⊲ (FORGETTYPE ⊲ e ↓ C),
can be read “check pattern x against A, producing a context and a type; forget the type; check the

5The flavor of this fictional derivation is similar to the simplified pattern matching in Chapter 2, if one generalizes the
c(x) : δ(i) assumption to p : A.

August 6, 2007

4.3. OVERVIEW 97

body e against C”. In terms of the structure illustrated above, J is FORGETTYPE ⊲ e ↓ C and
A ′ = A.

...
A+ (Γ, x:A) ⊢ FORGETTYPE ⊲ e ↓ C
Γ ⊢ x ↓ A ⊲ (FORGETTYPE ⊲ e ↓ C) var-p

Rule var-p (Figure 4.5) does not provide any new information about the scrutinee, so it immediately
‘calls’ its continuing judgment FORGETTYPE ⊲ e ↓ C with the same type A and a context with x:A
added. The sole rule for FORGETTYPE ⊲ J judgments simply forgets the type before the + and
‘calls’ J—which is here the garden-variety typing judgment e ↓ C.

Γ, x:A ⊢ e ↓ C
A+ (Γ, x:A) ⊢ FORGETTYPE ⊲ e ↓ C FORGETTYPE-J

Γ ⊢ x ↓ A ⊲ (FORGETTYPE ⊲ e ↓ C) var-p

The rules for x as p are key:

Γ ⊢ p ↓ A ⊲ (AS x ⊲ J)

Γ ⊢ x as p ↓ A ⊲ J
as-p

A ′ + (Γ, x:A ′) ⊢ J

A ′ + Γ ⊢ AS x ⊲ J
AS-p

In these rules, A ′ may differ from A. In the derivation below, A (in the conclusion of as-p) is the
initially known type badRoot, and A ′ (in rule AS-p) is black (where black � badRoot):6

Γ ⊢ Empty : black Γ ⊢ black ≤ badRoot

A ′

︷ ︸︸ ︷
black+(Γ, x:black) ⊢ J

black+ Γ ⊢ AS x ⊲ J
AS-p

black+ Γ ⊢ CON Empty ↓ badRoot ⊲ (AS x ⊲ J)
...

Γ ⊢ Empty ↓ badRoot ⊲ (AS x ⊲ J)

CON-p

Γ ⊢ x as Empty ↓ badRoot︸ ︷︷ ︸
A

⊲ J
as-p

With the judgment forms established, the rules deriving Γ ⊢ p ↓ A ⊲ J are fairly easy to
formulate. These rules, collected in Figure 4.5, are divided into two classes: pattern-directed rules
that decompose p, and type-directed rules that decompose A. We have already seen rule var-p for
variables and rule as-p for patterns of the form x as p. The rules for wildcards and unit patterns are
similar to var-p but do not add to Γ :

A+ Γ ⊢ J

Γ ⊢ __ ↓ A ⊲ J
__-p

1 + Γ ⊢ J

Γ ⊢ () ↓ 1 ⊲ J
()-p

Since nothing can match the empty pattern {}, its rule has no premises. Likewise, given a pattern
union p1 ⊔ p2, both p1 and p2 must be checked: p1 ⊔ p2 ⇒ e is essentially the same as p1 ⇒ e and

6This derivation elides some detail via the nullary constructor Empty. Rule CON-p is discussed below.

August 6, 2007

98 CHAPTER 4. PATTERN MATCHING

p2 ⇒ e.

Γ ⊢ {} ↓ A ⊲ J
{}-p

Γ ⊢ p1 ↓ A ⊲ J Γ ⊢ p2 ↓ A ⊲ J

Γ ⊢ p1 ⊔ p2 ↓ A ⊲ J
⊔-p

Some machinery is needed for pair patterns: given Γ ⊢ (p1, p2) ↓ A1 ∗ A2 ⊲ J , we first analyze
p1, yielding subderivations A ′

1k + Γ, Γ
′
1k ⊢ In each of these, we analyze p2, resulting in sub-

subderivationsA ′
2kj+Γ, Γ

′
1k, Γ

′
2kj ⊢ Finally, theA ′

1k andA ′
2kj are combined to yield subderivations

(A ′
1k ∗A

′
2kj) + Γ, Γ

′
1k, Γ

′
2kj ⊢ J . Doing this requires “administrative rules” similar to AS-p above. In a

simple derivation involving these rules, a single subderivation results from analyzing p1 and from
analyzing p2, as in the case where p1 = x1 and p2 = x2. In this case, the components are simply
variables and provide no information, but in general A ′

1k ≤ A1 and A ′
2kj ≤ A2.

(A1 ∗A2) + Γ, x1:A1, x2:A2 ⊢ J

A2 + Γ, x1:A1, x2:A2 ⊢ COMBINE2 (A1)(∗) ⊲ J
COMBINE2-p

Γ, x1:A1 ⊢ x2 ↓ A2 ⊲ (COMBINE2 (A1)(∗) ⊲ J)
var-p

A1 + Γ, x1:A1 ⊢ COMBINE (∗)(x2 ↓ A2) ⊲ J
COMBINE-p

Γ ⊢ x1 ↓ A1 ⊲ (COMBINE (∗)(x2 ↓ A2) ⊲ J)
var-p

Γ ⊢ (x1, x2) ↓ A1 ∗A2 ⊲ J
(_, _)-p

Analysis of constructor patterns, in rule c-p,

Γ ; c : S(c); c(p) : δ(i) ⊢ J

Γ ⊢ c(p) ↓ δ(i) ⊲ J
c-p

devolves to a judgment of the form Γ ; c : Acon; c(p) : C ⊢ J , read “under context Γ , if c has type
Acon and we have a scrutinee of type C matching a pattern c(p) then J holds”. The rules for this
judgment in Figure 4.4 closely follow those in Chapter 2, with the exception that δS-ct devolves to
a premise of the form Γ, i

.
= i ′ ⊢ p ↓ A ⊲ ((CON c ↓ δ(i)) ⊲ J), which analyzes p, arriving at a

subderivation (in general, zero or more subderivations) of the form . . . ⊢ CON c ↓ δ(i) ⊲ J . The
relevant administrative rule CON-p refers again to the type of c (which was already broken down by
the rules in Figure 4.4) in order to get a more accurate type of c(p): the analysis of p has resulted
in a possibly improved type B, so if c : C1 → C2 with B ≤ C1 and C2 ≤ A, we have c(p) : C2. In the
derivation structure we have established, this deduction takes the form of a premise C2 + Γ ⊢ J .

Γ ⊢ c : C1 → C2 Γ ⊢ B ≤ C1 Γ ⊢ C2 ≤ A C2 + Γ ⊢ J

B+ Γ ⊢ CON c ↓ A ⊲ J
CON-p

The type-directed rules—for ∧, ⊥, ∨, Σ and O—are fairly straightforward. The rule for ∧ uses
COMBINE continuing judgments, similar to the rule for ∗. There are no rules for ⊤, Π, and ⊃; to
understand why, see Section 4.7.

Exhaustiveness checking involves several rules. If the current pattern space is p∗, a sequence of
empty matches, representing the end of a case expression, checks provided that no value of type
A can actually match p∗. The premise of emptyms is read “under Γ , if the scrutinee (of type A)
matches p∗, something impossible happens”; the premise is derivable only if it cannot be the case
that the scrutinee matches p∗.

August 6, 2007

4.3. OVERVIEW 99

Γ ⊢ p∗ ↓ A⊲ IMPOSSIBLE

Γ ⊢ (p∗ ↓ A)⊲ · ↓ C emptyms

If p∗ = {}, no value can possibly match p∗. This is captured by rule {}-p, which derives Γ ⊢ {} ↓ A ⊲
J for any J , including IMPOSSIBLE:

Γ ⊢ {} ↓ A ⊲ J
{}-p

This rule permits the following derivation, which can be used to show that syntactically exhaustive
matches are exhaustive.

Γ ⊢ {} ↓ A ⊲ IMPOSSIBLE
{}-p

Γ ⊢ ({} ↓ A) ⊲ · ↓ C emptyms

With emptyms and {}-p we have the same conservative exhaustiveness checking found in Standard
ML. However, we have additional rules bringing datasort and index refinements into play, so that
even if p∗ is syntactically nonempty (p∗ 6= {}) we can show that the matches are exhaustive, as in
this example with a nonempty datasort refinement of lists (where S(Nil) = 1 → empty): given a
value of type nonempty, it is impossible that the value is Nil(), so the matches are exhaustive even
though the space of remaining patterns p∗ is not empty.

nonempty 6� empty

Γ ;Nil : 1→empty;Nil() : nonempty ⊢ IMPOSSIBLE
δF-ct

Γ ⊢ Nil() ↓ nonempty ⊲ IMPOSSIBLE
c-p

Γ ⊢ (Nil() ↓ nonempty) ⊲ · ↓ C emptyms

The final rule, contra-J , that can (ultimately) derive the premise of emptyms is neither pattern- or
type-directed. contra-J , analogous to rule contra, allows one to conclude any . . . ⊢ J if Γ |= ⊥.

Γ |= ⊥

B+ Γ ⊢ J
contra-J

For example, with an index refinement S(Nil) = 1 → list(0), rule contra-J can “short-circuit” the
derivation:

list � list

0
.
= 2 |= ⊥

1 + (Γ, 0
.
= 2) ⊢ CON c ↓ list(2) ⊲ IMPOSSIBLE

contra-J

Γ, 0
.
= 2 ⊢ () ↓ 1 ⊲ (CON c ↓ list(2) ⊲ IMPOSSIBLE)

()-p

Γ ;Nil : 1→list(0);Nil() : list(2) ⊢ J
δS-ct

Γ ⊢ Nil() ↓ list(2) ⊲ IMPOSSIBLE
c-p

Γ ⊢ Nil() ↓ list(2) ⊲ · ↓ C emptyms

August 6, 2007

100 CHAPTER 4. PATTERN MATCHING

Patterns p ::= x | () | (p1, p2) | x as p | c(p) | __ | {} | p1 ⊔ p2

COMBINE operators Θ ::= ∧ | ∗
Continuing judgments J ::= FORGETTYPE ⊲ e ↓ A

| FORGETTYPE ⊲ e : A

| IMPOSSIBLE

| AS x ⊲ J
| CON c ↓ A ⊲ J
| COMBINE (Θ)(p ↓ A) ⊲ J
| COMBINE2 (A)(Θ) ⊲ J

[σ](FORGETTYPE ⊲ e : A) = FORGETTYPE ⊲ [σ]e : [σ]A

[σ] (AS x ⊲ J) = AS x ⊲ [σ]J
[σ] (CON c ↓ A ⊲ J) = CON c ↓ [σ]A ⊲ [σ]J

[σ] (COMBINE (Θ)(p ↓ A) ⊲ J) = COMBINE (Θ)(p ↓ [σ]A) ⊲ [σ]J
[σ] (COMBINE2 (A)(Θ) ⊲ J) = COMBINE2 ([σ]A)(Θ) ⊲ [σ]J

[σ] IMPOSSIBLE = IMPOSSIBLE

Figure 4.3: Grammar

4.3.1 Case, match, and constructor typing

The rules for typing case expressions, matches ms, and terms with a constructor on the left (in
previous chapters, the judgment form used was Γ ; c : Acon; c(x) : B ⊢ e ↓ C) are fairly similar to
those in previous chapters. See Figure 4.4.

The form of an ms-checking judgment is generalized from Γ ⊢ ms ↓B C to

Γ ⊢ (p∗ ↓ B) ⊲ ms ↓ C

where p∗ is the remaining pattern space (initially the wildcard __, in rule δE), which is subtracted
from as the derivation moves along the sequence of matches. The new casearm checks the first
case arm p ⇒ e with the intersection of p and p∗, then checks the remaining case arms with p
subtracted out.7

The earlier judgment form Γ ; c : Acon; c(x) : B ⊢ e ↓ C is generalized to Γ ; c : Acon; c(p) : B ⊢ J ,
replacing the variable x with an arbitrary nested pattern p, and replacing e ↓ C with J to allow the
resulting obligations to be ‘passed’ to either FORGETTYPE ⊲ e ↓ C or a pattern checking judgment
(if c(p) is itself nested). Note that δS-ct’s premise

Γ, i
.
= i ′ ⊢ p ↓ A ⊲ (CON c ↓ δ(i) ⊲ J)

7The premise Γ, FPV(p) ⊢ e ok ensures that all variables free in e are known, either in Γ or as pattern variables in p.
This premise is not actually used anywhere; it is here only to bolster the argument that the work in Chapter 5, which is
based on the simple pattern matching of earlier chapters, could be readily extended to handle the full pattern language
presented here. The simple pattern matching system includes a similar premise in its version of δF-ct; putting a premise
in our δF-ct would be problematic because there is no immediate way to “dig out” the e at the end of J .

August 6, 2007

4.4. TYPE ASSIGNMENT VERSION OF THE SYSTEM 101

Γ ; c : Acon; c(p) : B ⊢ J

δ � δ ′ Γ, i
.
= i ′ ⊢ p ↓ A ⊲ (CON c ↓ δ(i) ⊲ J)

Γ ; c : A→ δ(i); c(p) : δ ′(i ′) ⊢ J
δS-ct

δ 6� δ ′

Γ ; c : A→ δ(i); c(p) : δ ′(i ′) ⊢ J
δF-ct

Γ ; c : A1; c(p) : B ⊢ J
Γ ; c : A2; c(p) : B ⊢ J

Γ ; c : A1 ∧ A2; c(p) : B ⊢ J
∧-ct

Γ, a:γ; c : A; c(p) : B ⊢ J

Γ ; c : Πa:γ.A; c(p) : B ⊢ J
Π-ct

Γ, P; c : A; c(p) : B ⊢ J

Γ ; c : (P ⊃ A); c(p) : B ⊢ J
⊃-ct

Γ ⊢ (p∗ ↓ A) ⊲ ms ↓ C

Γ, FPV(p) ⊢ e ok
Γ ⊢ (p ∩ p∗) ↓ A ⊲ (FORGETTYPE ⊲ e ↓ C)
Γ ⊢ ((p∗ − p) ↓ A)⊲ms ↓ C

Γ ⊢ (p∗ ↓ A)⊲ (p⇒ e ||ms) ↓ C casearm

Γ ⊢ p∗ ↓ A⊲ IMPOSSIBLE

Γ ⊢ (p∗ ↓ A)⊲ · ↓ C emptyms

Γ ⊢ e ↓ C Replaces the earlier δE (Chapter 3)

Γ ⊢ e ↑ A Γ ⊢ (__ ↓ A)⊲ms ↓ C
Γ ⊢ case e of ms ↓ C δE

Figure 4.4: Typing rules for left-constructor judgments, matches, and case

analyzes p to obtain a (hopefully smaller) type A ′, which rule CON-p will use to obtain some δ ′ � δ.
These rules are otherwise substantially similar to the earlier rules—compare Figures 4.4 and 3.3
(p. 58).

4.4 Type assignment version of the system

The system presented thus far checks case arms against a type (e ↓ C), conforming to the simple
tridirectional system of Chapter 3. In order to prove soundness and a substitution lemma, we
formulate type assignment versions of the rules in Figure 4.4. The left-constructor typing rules
speak only of an unspecified J and so require no changes at all. The type assignment versions of
rules casearm, emptyms and FORGETTYPE-J simply have “: C” instead of “↓ C” in their premises and
conclusions. The pattern typing rules in Figure 4.5, like the left-constructor rules, speak only of
some J and likewise require no changes. In particular, they keep their p ↓ A judgment form, as

August 6, 2007

102 CHAPTER 4. PATTERN MATCHING

Γ ⊢ p ↓ A ⊲ J B+ Γ ⊢ J

Concluding rules:
Γ ⊢ e ↓ C

A+ Γ ⊢ FORGETTYPE ⊲ e ↓ C FORGETTYPE-J
Γ |= ⊥

B+ Γ ⊢ J
contra-J

Type-directed rules:
Γ ⊢ p ↓ A1 ⊲ (COMBINE (∧)(p ↓ A2) ⊲ J)

Γ ⊢ p ↓ A1 ∧ A2 ⊲ J
∧-p

Γ ⊢ p ↓ ⊥ ⊲ J
⊥-p

Γ ⊢ p ↓ A1 ⊲ J Γ ⊢ p ↓ A2 ⊲ J

Γ ⊢ p ↓ A1 ∨ A2 ⊲ J
∨-p

Γ, a:γ ⊢ p ↓ A ⊲ J

Γ ⊢ p ↓ Σa:γ.A ⊲ J
Σ-p

Γ, P ⊢ p ↓ A ⊲ J

Γ ⊢ p ↓ P O A ⊲ J
O-p

Pattern-directed rules:

A+ (Γ, x:A) ⊢ J

Γ ⊢ x ↓ A ⊲ J
var-p

A+ Γ ⊢ J

Γ ⊢ __ ↓ A ⊲ J
__-p

1 + Γ ⊢ J

Γ ⊢ () ↓ 1 ⊲ J
()-p

(A1 Θ A2) + Γ ⊢ J

A2 + Γ ⊢ COMBINE2 (A1)(Θ) ⊲ J
COMBINE2-p

Γ ⊢ p2 ↓ A2 ⊲ (COMBINE2 (A1)(Θ) ⊲ J)

A1 + Γ ⊢ COMBINE (Θ)(p2 ↓ A2) ⊲ J
COMBINE-p

Γ ⊢ p1 ↓ A1 ⊲ (COMBINE (∗)(p2 ↓ A2) ⊲ J)

Γ ⊢ (p1, p2) ↓ A1 ∗A2 ⊲ J
(_, _)-p

Γ ⊢ p ↓ A ⊲ (AS x ⊲ J)

Γ ⊢ x as p ↓ A ⊲ J
as-p

A+ (Γ, x:A) ⊢ J

A+ Γ ⊢ AS x ⊲ J
AS-p

Γ ⊢ c : C1 → C2 Γ ⊢ B ≤ C1 Γ ⊢ C2 ≤ A C2 + Γ ⊢ J

B+ Γ ⊢ CON c ↓ A ⊲ J
CON-p

Γ ; c : S(c); c(p) : δ(i) ⊢ J

Γ ⊢ c(p) ↓ δ(i) ⊲ J
c-p

Γ ⊢ {} ↓ A ⊲ J
{}-p

Γ ⊢ p1 ↓ A ⊲ J Γ ⊢ p2 ↓ A ⊲ J

Γ ⊢ p1 ⊔ p2 ↓ A ⊲ J
⊔-p

Figure 4.5: Pattern typing rules

August 6, 2007

4.4. TYPE ASSIGNMENT VERSION OF THE SYSTEM 103

the logic of pattern typing is the same.
We briefly state soundness and completeness theorems corresponding to Theorem 3.3 and

Corollary 3.16, eliding a full statement for the various new judgment forms and the proofs, which
closely follow those of the earlier theorems: type annotations cannot appear in patterns and the
pattern checking rules do not examine terms.

|e| is the
erasure of type
annotations
from e.

Theorem 4.5 (Soundness (Type Assignment)). If Γ ⊢ e ↓ C or Γ ⊢ e ↑ C (in the system presented

thus far) then Γ ⊢ |e| : C (in the type assignment version of that system).

Theorem 4.6 (Completeness (Type Assignment)). If Γ ⊢ e : C (in the type assignment version of the

system presented) then Γ ⊢ e ′ ↓ C (in the system presented) where e ′ ⊒ e.

All judgments and derivations in the remainder of this chapter are in the type assignment sys-
tem.

4.4.1 Substitution

Definition 4.7 (Derivation measure). Let D ′ ≺ D (resp. D ′ � D) if and only if the height of
D ′ is less than (resp. less than or equal to) the height of D, considering every subtree deriving
. . . ⊢ FORGETTYPE . . . to have height 1.

By counting subderivations concluding term typing judgments (as opposed to pattern typing
judgments) as all being the same size, the measure allows us to apply the induction hypothesis to
the result of substituting values for pattern variables in a subderivation. Simply counting the num-
ber of pattern checking rules applied in the whole derivation does not work, since the subderivation
typing a substituted value v may have a case inside a λ inside v.

Lemma 4.8 (Substitution). If Γ ′ ⊢ σ : Γ then:

(1) If D :: Γ ⊢ p ↓ A ⊲ J then D ′ :: Γ ′ ⊢ p ↓ [σ]A ⊲ [σ]J .

(2) If D :: B+ Γ ⊢ J then D ′ :: [σ]B+ Γ ′ ⊢ [σ]J .

(3) (As Lemma 2.14.)

(4) If D :: Γ ; c : Acon; c(p) : B ⊢ J then D ′ :: Γ ′; c : [σ]Acon; c(p) : [σ]B ⊢ [σ]J .

where D ′ � D.

Proof. Part (1):

• Case var-p: D ::

A+ (Γ, x:A) ⊢ J ′

Γ ⊢ x ↓ A ⊲ J ′

Γ ′ ⊢ σ : Γ Given

Γ ′, x:[σ]A ⊢ σ : Γ By Lemma 2.13

Γ ′, x:[σ]A ⊢ x : [σ]A By var

Γ ′, x:[σ]A ⊢ (σ, x/x) : (Γ, x:A) By pvar-σ

[σ]A+ (Γ ′, x:[σ]A) ⊢ [σ]J ′ By IH(2)

Γ ′ ⊢ x ↓ [σ]A ⊲ [σ]J ′ By var-p

August 6, 2007

104 CHAPTER 4. PATTERN MATCHING

• Case AS-p: D ::

A+ (Γ, x:A) ⊢ J ′

A+ Γ ⊢ AS x ⊲ J ′

Γ ′ ⊢ σ : Γ Given

Γ ′, x:[σ]A ⊢ σ : Γ By Lemma 2.13

Γ ′, x:[σ]A ⊢ x : [σ]A By var

Γ ′, x:[σ]A ⊢ (σ, x/x) : (Γ, x:A) By pvar-σ

[σ]A+ (Γ ′, x:[σ]A) ⊢ [σ]J ′ By IH(2)

Γ ′ ⊢ AS x ⊲ [σ]J ′ By AS-p

Part (2): In the FORGETTYPE-J case, use part (3).
The proof of part (3) follows that of Lemma 2.14, except that in the δE case, part (1) must be

used.
The proof of part (4) is straightforward, using part (1) in the δS-ct case.

4.5 Lemmas for soundness

To prove soundness, we need two lemmas related to constructors:

• Lemma 4.9 says that given Γ ; c : Acon; c(p) : δ(i) ⊢ J where A1 → δ ′(i ′) is a ‘component’ of
Acon, there exists a smaller derivation of Γ ⊢ p ↓ A1 ⊲ (CON c ↓ δ ′(i ′) ⊲ J). It plays part of
the role that Lemma 2.19 did in Chapter 2.

• Lemma 4.10 is an easy inversion lemma on derivations of . . . ⊢ CON c ↓ A; note that the
derivation yielded by Lemma 4.9 contains such derivations.

Lemma 4.9. If D :: Γ ; c : Acon; c(p) : δ(i) ⊢ J where Γ ⊢ Acon ↑ A1 → δ ′(i ′) and Γ ⊢ δ ′(i ′) ≤ δ(i),
then there exists D ′ ≺ D where D ′ :: Γ ⊢ p ↓ A1 ⊲ (CON c ↓ δ ′(i ′) ⊲ J).

Proof. By induction on D with the measure ≺ (Definition 4.7).
Note that D includes a smaller derivation . . . ⊢ J for each “component” of Acon, while it follows

from Γ ⊢ Acon ↑ A1 → δ ′(i ′) that A1 → δ ′(i ′) is one of those components.

• Case δS-ct: D ::

δ ′′ � δ ′ Γ, i ′′
.
= i ′ ⊢ p ↓ A ′′

1 ⊲ (CON c ↓ δ ′′(i ′′)) ⊲ J)

Γ ; c : A ′′
1 → δ ′′(i ′′); c(p) : δ ′(i ′) ⊢ J

By inversion on Γ ⊢ A ′′
1 → δ ′′(i ′′) ↑ A1 → δ ′(i ′), we have A ′′

1 → δ ′′(i ′′) = A1 → δ ′(i ′), from
which A ′′

1 = A1, δ
′′ = δ ′, i ′′ = i ′ follow.

Thus the second premise (subderivation), which is the desired D ′, is

Γ, i ′
.
= i ′ ⊢ p ↓ A1 ⊲ (CON c ↓ δ ′(i ′)) ⊲ J)

We have Γ |= [Γ/Γ] (i ′
.
= i ′) for all i ′, so by prop-σ, Γ ⊢ Γ/Γ : Γ, i ′

.
= i ′, which with Lemma 4.8

yields Γ ⊢ p ↓ A1 ⊲ (CON c ↓ δ ′(i ′)) ⊲ J).

August 6, 2007

4.6. SOUNDNESS 105

• Case δF-ct: The premise is δ ′′ 6� δ ′. Yet inversion (as in the δS-ct case) yields δ ′′ = δ ′.
Thus we have δ ′ 6� δ ′, yet � is assumed to be reflexive, so we have a contradiction. Rule δF-ct
could not have been used.

• Case ∧-ct: We have A = B1 ∧ B2. By inversion on Γ ⊢ (B1 ∧ B2) ↑ A1 → δ ′(i ′), either
Γ ⊢ B1 ↑ A1 → δ ′(i ′) or Γ ⊢ B2 ↑ A1 → δ ′(i ′). Suppose the former (the second case is
symmetric). The result follows by the IH.

• Case Π-ct: D ::

Γ, a:γ; c : A0; c(p) : δ
′(i ′) ⊢ J

Γ ; c : Πa:γ.A0; c(p) : δ
′(i ′) ⊢ J

By inversion on Γ ⊢ Πa:γ.A0 ↑ A1 → δ ′(i ′), there exists j such that Γ ⊢ [j/a]A0 ↑ A1 → δ ′(i ′)

and Γ ⊢ j : γ.

By Lemma 4.8, Γ ; c : [j/a]A0; c(p) : δ(i) ⊢ J . (Note that a cannot be free in i or J .) The
result follows by IH.

• Case ⊃-ct: Similar to the Π-ct case, using prop-σ in the manner of the δS-ct case.

Lemma 4.10. If D :: B+ Γ ⊢ CON c ↓ A ⊲ J then D ′ :: C2 + Γ ⊢ J where D ′ ≺ D and

Γ ⊢ c : C1 → C2, Γ ⊢ B ≤ C1, Γ ⊢ C2 ≤ A.

Proof. B+ Γ ⊢ CON c ↓ A ⊲ J Given

Z ∃C2. Γ ⊢ c : C1 → C2 and Γ ⊢ B ≤ C1 and Γ ⊢ C2 ≤ A By inversion

Z D ′ :: C2 + Γ ⊢ J By inversion

4.6 Soundness

The soundness theorem (4.11) says that given ⊢ p ↓ A ⊲ J and a value ⊢ v : A, where p
σ

−→ v,
there exists a smaller derivation of A ′ + · ⊢ [σ]J where A ′ ≤ A and ⊢ v : A ′. Recall the typical
derivation structure discussed earlier:

D ::

A ′
1 + Γ

′
1 ⊢ J

...
. . .

A ′
n + Γ

′
n ⊢ J

...

· ⊢ p ↓ A ⊲ J

Roughly, the soundness theorem takes one from the root derivation D to an appropriate A ′
i+Γ

′
i ⊢ J

derivation, that is, one such that ⊢ v : A ′
i. This is not quite accurate: the theorem’s result is a

derivation of A ′ + · ⊢ [σ]J , in which the typing context is empty. To obtain a derivation with the

empty context, the proof of the theorem uses inversion on p
σ

−→ v with Lemma 4.8 to substitute

August 6, 2007

106 CHAPTER 4. PATTERN MATCHING

for pattern variables in Γ ′i , and value definiteness (since ⊢ v : A is given) to substitute for index
variables arising from rules such as Σ-p.

Note that if J is simply FORGETTYPE ⊲ e : C—as it is in the premise of rule casearm—the
theorem yields ⊢ FORGETTYPE ⊲ [σ]e : C. Only FORGETTYPE-J can derive such a judgment;

inversion yields ⊢ [σ]e : C, corresponding to reduction of a case arm p⇒ e to [σ]e given p
σ

−→ v.

Theorem 4.11 (Soundness of pattern checking). For all J , if D :: · ⊢ p ↓ A ⊲ J
and · ⊢ v : A
and p

σ
−→ v

then

there exists D ′ :: A ′ + · ⊢ [σ]J
where D ′ ≺ D (Definition 4.7) and

(i) · ⊢ A ′ ≤ A,

(ii) · ⊢ v : A ′.

Proof. By induction on the derivation D with measure ≺ (Definition 4.7).

• Case var-p: D ::

A+ (·, x:A) ⊢ J

· ⊢ x ↓ A ⊲ J

p = x. Let A ′ = A.

By empty-σ and pvar-σ, · ⊢ v/x : x:A. By Lemma 4.8, A+ · ⊢ [v/x]J . By inversion on x
σ

−→ v

we have σ = v/x, so in fact A+ · ⊢ [σ]J , which was to be shown.

Parts (i)–(ii) are easily satisfied: (i) · ⊢ A ′ ≤ A by Lemma 2.9; (ii) · ⊢ v : A ′ is the same as
· ⊢ v : A which was given.

• Case __-p: Similar to the var-p case, but simpler.

• Case ()-p: p = () and A = 1. Similar to the var-p case, but simpler.

• Case (_, _)-p: p = (p1, p2) and A = A1 ∗A2.

· ⊢ p1 ↓ A1 ⊲ (COMBINE (∗)(p2 ↓ A2) ⊲ J) Subderivation

· ⊢ v : A1 ∗A2 Given

v =(v1, v2) and · ⊢ v1 : A1 and · ⊢ v2 : A2 By Lemma 2.18

(p1, p2)
σ

−→ v Given

σ =σ1, σ2 and p1
σ1
−→ v1 and p2

σ2
−→ v2 By inversion

A ′
1 + ·

·
⊢
⊢

COMBINE (∗)(p2 ↓ A2) ⊲ [σ1]J
A ′
1 ≤ A1 and ⊢ v1 : A

′
1

}
By IH

· ⊢ p2 ↓ A2 ⊲ (COMBINE2 (A ′
1)(∗) ⊲ [σ1]J) By inversion

A ′
2 + ·

·
⊢
⊢
[σ2] (COMBINE2 (A ′

1)(∗) ⊲ [σ1]J)

A ′
2 ≤ A2 and ⊢ v2 : A

′
2

}
By IH

A ′
2 + · ⊢ COMBINE2 (A ′

1)(∗) ⊲ [σ2][σ1]J By defn. of subst.

A ′
2 + · ⊢ COMBINE2 (A ′

1)(∗) ⊲ [σ]J By defn. of subst.

August 6, 2007 — Proof of Theorem 4.11

4.6. SOUNDNESS 107

Z D ′ :: (A ′
1 ∗A

′
2)︸ ︷︷ ︸

A ′

+ · ⊢ [σ]J By inversion

(i) Z · ⊢ A ′
1 ∗A

′
2︸ ︷︷ ︸

A ′

≤ A1 ∗A2︸ ︷︷ ︸
A

By rule ∗

· ⊢ v1 : A
′
1 Above (IH (ii), 1st subd.)

· ⊢ v2 : A
′
2 Above (IH (ii), 2nd subd.)

(ii) Z · ⊢ (v1, v2) : A
′
1 ∗A

′
2 By ∗I

• Case as-p: D ::

· ⊢ p0 ↓ A ⊲ (AS x ⊲ J)

· ⊢ x as p0 ↓ A ⊲ J

p = x as p0. By inversion on x as p0
σ

−→ v, we have σ = σ0, v/x and p0
σ0
−→ v. By IH on

the subderivation ⊢ p0 ↓ A ⊲ (AS x ⊲ J), we obtain a sub-subderivation D ′′ :: A ′ + · ⊢
[σ0](AS x ⊲ J) such that (i), (ii) hold (showing (i), (ii)). Pushing [σ0] through and applying
inversion, we obtain

A ′ + (·, x:A ′) ⊢ [σ0]J

Following the case for var-p, we obtain A ′ + · ⊢ [σ0, v/x]J .

• Case ⊥-p: Here A = ⊥ and · ⊢ v : ⊥, which is impossible by Theorem 2.17. Thus the case
cannot arise.

• Case ∨-p: A = A1 ∨ A2.

· ⊢ v : A1 ∨ A2 Given

· ⊢ v : A1 or · ⊢ v : A2︸ ︷︷ ︸
assume w.l.o.g.

By Theorem 2.17

· ⊢ p ↓ A2 ⊲ J Subderivation

D ′ :: A ′
2 + · ⊢ [σ]J and · ⊢ A ′

2 ≤ A2 By IH

· ⊢ A2 ≤ A1 ∨ A2 By ∨R2
(i) Z · ⊢ A ′

2 ≤ A1 ∨ A2 By Lemma 2.9 (transitivity)

(ii) Z · ⊢ v : A ′
2︸︷︷︸

A ′

IH (ii)

• Case Σ-p: A = Σa:γ.A0.

· ⊢ v : Σa:γ.A0 Given

∃i. · ⊢ i : γ and · ⊢ v : [i/a]A0 By Theorem 2.17

·, a:γ ⊢ p ↓ A0 ⊲ J Subderivation

· ⊢ p ↓ [i/a]A0 ⊲ J By Lemma 4.8

(ii) Z
A ′
0 + · ⊢ [σ]J and · ⊢ A ′

0 ≤ [i/a]A0
(ii) holds for A ′

0

}
By IH

· ⊢ A0 ≤ Σa:γ.A0 By ΣR

(i) Z · ⊢ A ′
0 ≤ Σa:γ.A0 By Lemma 2.9 (transitivity)

August 6, 2007 — Proof of Theorem 4.11

108 CHAPTER 4. PATTERN MATCHING

• Case O-p: Similar to the Σ-p case.

• Case ∧-p: Broadly similar to the (_, _)-p case. (To show (i), use subtyping rules ∧L1, ∧L2,
∧R instead of rule ∗.)

⊢ p ↓ A1 ⊲ (COMBINE (∧)(p ↓ A2) ⊲ J) Subderivation

⊢ v : A1 ∧ A2 Given

⊢ v : A1 and ⊢ v : A2 By ∧E1 and ∧E2

A ′
1 + ·

·
⊢
⊢

COMBINE (∧)(p ↓ A2) ⊲ [σ]J
A ′
1 ≤ A1 and ⊢ v : A ′

1

}
By IH

⊢ p ↓ A2 ⊲ (COMBINE2 (A ′
1)(∧) ⊲ [σ]J) By inversion

A ′
2 + ·

·
⊢
⊢
[σ] (COMBINE2 (A ′

1)(∧) ⊲ [σ]J)

A ′
2 ≤ A2 and ⊢ v : A ′

2

}
By IH

A ′
2 + · ⊢ COMBINE2 (A ′

1)(∧) ⊲ [σ][σ]J By defn. of subst.

A ′
2 + · ⊢ COMBINE2 (A ′

1)(∧) ⊲ [σ]J By defn. of subst.

Z D ′ :: (A ′
1 ∧ A

′
2)︸ ︷︷ ︸

A ′

+ · ⊢ [σ]J By inversion

(i) Z · ⊢ A ′
1 ∧ A

′
2︸ ︷︷ ︸

A ′

≤ A1 ∧ A2︸ ︷︷ ︸
A

By ∧L1, ∧L2, ∧R

· ⊢ v : A ′
1 Above (IH (ii), 1st subd.)

· ⊢ v : A ′
2 Above (IH (ii), 2nd subd.)

(ii) Z · ⊢ v : A ′
1 ∧ A

′
2 By ∧I

• Case c-p: p = c(p0) and A = δ(i).

c(p0)
σ

−→ v Given

v = c(v0) and p0
σ

−→ v0 By inversion

· ⊢ c(v) : A Given

· ⊢ δ(i) ≤ δ(i) By Lemma 2.9

· 6|= ⊥ By Proposition 2.5

∃δ ′, i ′, B1. · ⊢ S(c) ↑ B1 → δ ′(i ′)

By Lemma 2.18· ⊢ v0 : B1
· ⊢ δ ′(i ′) ≤ δ(i)

·; c : S(c); c(p0) : δ(i) ⊢ J Subd.

· ⊢ p0 ↓ B1 ⊲ (CON c ↓ δ ′(i ′) ⊲ J) By Lemma 4.9

By IH, D ′
0 :: B

′
1 + · ⊢ CON c ↓ δ ′(i ′) ⊲ J with

(i) · ⊢ B ′
1 ≤ B1,

(ii) · ⊢ v0 : B
′
1.

By Lemma 4.10, D ′
0 has a subderivation A ′ + · ⊢ J such that · ⊢ A ′ ≤ δ ′(i ′). We have

· ⊢ δ ′(i ′) ≤ δ(i). By transitivity (Lemma 2.9) · ⊢ A ′ ≤ δ(i), satisfying obligation (i).

August 6, 2007 — Proof of Theorem 4.11

4.6. SOUNDNESS 109

· ⊢ c : C1 → C2 Above (Lemma 4.10)

· ⊢ B ′
1 ≤ C1 Above (Lemma 4.10)

· ⊢ v0 : B
′
1 Above (IH (ii))

· ⊢ v0 : C1 By sub

· ⊢ c(v0) : C2 By δI

· ⊢ C2 ≤ A
′ Above (Lemma 4.10)

(ii) Z · ⊢ c(v0) : A
′ By sub

• Case {}-p: It is clear from Figure 4.1 that there exists no σ such that {}
σ

−→ v. Since {}
σ

−→ v

is given, the case cannot arise.

• Case ⊔-p: By inversion on p1 ⊔ p2
σ

−→ v, either p1
σ

−→ v or p2
σ

−→ v. Applying the IH to
the appropriate premise yields the result.

Corollary 4.12 (Soundness of pattern checking). If

· ⊢ p ↓ A ⊲ (FORGETTYPE ⊲ e : C)

where · ⊢ v : A and p
σ

−→ v then · ⊢ [σ]e : C.

Proof. By Theorem 4.11 followed by inversion on · ⊢ FORGETTYPE ⊲ [σ]e : C.

Lemma 4.13. If

· ⊢ (p∗ ↓ A)⊲ms : C

where · ⊢ v : A and v ∈ p∗ then there exists e ′ such that case v of ms 7→+
M e ′ and ⊢ e ′ : C.

Proof. By induction on the first derivation. Only two rules could have concluded the judgment
form.

• Case casearm:

D ::

FPV(p) ⊢ e ok
· ⊢ (p ∩ p∗) ↓ A ⊲ (FORGETTYPE ⊲ e : C)
· ⊢ ((p∗ − p) ↓ A)⊲ms ′ : C

· ⊢ (p∗ ↓ A)⊲ (p⇒ e ||ms ′) : C

We have ms = (p⇒ e ||ms ′). Either v ∈ p holds or it does not.

– If it does not hold, we have both v ∈ p∗ (given) and v /∈ p. By Property 4.3, v ∈ p∗ − p.
By IH on Γ ⊢ ((p∗ − p) ↓ A) ⊲ms ′ : C, there exists e ′ such that case v of ms ′ 7→+

M e ′

and ⊢ e ′ : C. By rule ev-no-match, case v of p⇒ e ||ms ′ 7→M case v of ms ′. It follows
that case v of p⇒ e ||ms ′ 7→+

M e ′.

– If it does hold, we have both v ∈ p∗ and v ∈ p. By Property 4.4, v ∈ p ∩ p∗. By v ∈ p,

there exists σp such that p
σp
−→ v.

We have a subderivation of · ⊢ (p ∩ p∗) ↓ A ⊲ (FORGETTYPE ⊲ e : C). By Lemma 4.8,

· ⊢ (p ∩ p∗) ↓ A ⊲ (FORGETTYPE ⊲ e : C)

August 6, 2007

110 CHAPTER 4. PATTERN MATCHING

By Theorem 4.11, A ′ + · ⊢ FORGETTYPE ⊲ [σp]e : C for some A ′. By inversion,
· ⊢ [σp]e : C. With [σp]e as our e ′, we have · ⊢ e ′ : C.

By ev-match, (case v of p⇒ e ||ms) 7→ [σp] e, which is e ′.

• Case emptyms: D ::

· ⊢ p∗ ↓ A⊲ IMPOSSIBLE

· ⊢ (p∗ ↓ A)⊲ · : C

Following the reasoning in the second subcase above, with IMPOSSIBLE in place of
FORGETTYPE ⊲ . . . , we get

A ′ + · ⊢ IMPOSSIBLE

for some A ′. The only rule that can possibly conclude A ′ + · ⊢ IMPOSSIBLE is contra-J , with
premise · |= ⊥. However, · 6|= ⊥ by Property 2.5. We have a contradiction, so this case
cannot arise.

Now we can prove the extension of Theorem 2.21 to the richer pattern language.

Theorem 4.14 (Type Preservation and Progress (Full Pattern Language)). (Restatement of Theorem

2.21.)

If · ⊢ e : C then either

(1) e value, or

(2) there exists e ′ such that e 7→ e ′ and ⊢ e ′ : C.

Proof. Following Theorem 2.21, except in the δE case.

• Case δE: D ::

· ⊢ e : A · ⊢ (__ ↓ A)⊲ms : C

· ⊢ case e of ms : C

By IH, either e value or there is some e ′ such that e 7→ e ′. For the second case, see the
proof of Theorem 2.21. For the first case, we have e value. By Lemma 4.13, there exists e ′

such that case e of ms 7→+
M e ′. By rule ev-match+, case e of ms 7→R [σ]e ′. By rule ev-context,

case e of ms 7→ e ′.

4.7 Limitations

We do not have a type-directed rule for every property type: there are no rules for most of the
definite property types.

• The rule for ⊤, if included, would be

⊤+ Γ ⊢ J

Γ ⊢ p ↓ ⊤ ⊲ J

August 6, 2007

4.7. LIMITATIONS 111

which provides no information; wherever such a rule could be applied it would be at least as
helpful to apply a pattern-directed rule.

• The rules for Π and ⊃ would be

Γ, a:γ ⊢ p ↓ A ⊲ (UNIV a ⊲ J)

Γ ⊢ p ↓ Πa:γ.A ⊲ J
Π-p

(Πa:γ.A) + (Γ1, Πa:γ. Γ2) ⊢ J

A+ Γ1, a:γ, Γ2 ⊢ UNIV a ⊲ J

Γ, P ⊢ p ↓ A ⊲ (GUARD P ⊲ J)

Γ ⊢ p ↓ P ⊃ A ⊲ J
⊃-p

(P ⊃ A) + Γ1, P ⊃ Γ2 ⊢ J

A+ Γ1, P, Γ2 ⊢ GUARD P ⊲ J

where “Πa:γ. Γ2” and “P ⊃ Γ2” distribute into Γ2: for example,
Πa:γ. (P, x:B) = (∀a:γ. P), (Πa:γ. x:B). (Note the “∀a:γ. P”, a proposition form not otherwise
required by the formalism, though it is required for constraints in the implementation.)

These rules are excluded because of a difficulty with quantifier alternation. Suppose S(c) =
(Πa:γ. Σb:γ. B) → δ(0). (Having a constructor with such a type might seem strange, but our
system permits it.) When checking a pattern c(p), we will check ⊢ p ↓ Πa:γ. Σb:γ. B ⊲ J .
Its derivation will have the form

(Πa:γ. B ′) + Γ, Πa:γ. (b:γ, Γ2) ⊢ J

B ′ + Γ, a:γ, b:γ, Γ2 ⊢ UNIV a ⊲ J
...

Γ, a:γ, b:γ ⊢ p ↓ B ⊲ (UNIV a ⊲ J)

Γ, a:γ ⊢ p ↓ Σa:γ. B ⊲ (UNIV a ⊲ J)
Σ-p

Γ ⊢ p ↓ Πa:γ. Σb:γ. B ⊲ J
Π-p

But what is Πa:γ. (b:γ, Γ2), exactly? It cannot be Πa:γ. Σb:γ. Γ2 (pushing the Σ inside in the
same way as the Π), because the b will get duplicated in each assumption. For example, if
p = (x1, x2) and B = B1 ∗B2, we will get assumptions x1:Πa:γ. Σb:γ. B1, x2:Πa:γ. Σb:γ. B2. We
no longer know that the b in B1 and B2 is the same.

Nor can it be b:γ,Πa:γ. Γ2; then we would end up assuming b:γ, x1:Πa:γ. B1, x2:Πa:γ. B2, an
obviously erroneous reversal of quantifier order.

There appears to be no easy way out. The core issue is that the proposition that naturally
represents the typechecking problem, given the information gleaned from pattern checking,
has the shape

(
∀a.∃b.(p1(a, b) ∧ p2(a, b))

)
⇒ q, where p1 is about x1, p2 is about x2, and q

is roughly “such and such a term is well typed”. However, the judgment Γ ⊢ . . . cannot have
such a shape.

Fortunately, the constructor types that lead us into this issue do not seem to arise often. Types
like c : (Πa:γ. Σb:γ.A1→A2)→ δ(i) are no problem, since functions cannot be meaningfully
pattern-matched: given a pattern c(p) the p cannot break down the function and decompose
A1 → A2. In terms of the derivation tree above, nothing interesting can happen in the elided
portion. Without the above rules, for c(x) we will get the assumption x : (Πa:γ. Σb:γ.A1 →
A2), which is clearly the best possible.

August 6, 2007

112 CHAPTER 4. PATTERN MATCHING

4.8 Implementation

A direct implementation of the pattern checking system involves too much backtracking to be
practical. A major factor is the first premise of rule CON-p, Γ ⊢ c : C1 → C2, in which a “component”
C1 → C2 of a constructor type is chosen. Removing redundant components turns out to be quite
effective. Given a pattern c(x) and value c(v) : C2, a component C ′

1 → C2 of S(c) is redundant if
there is a C1 → C2 such that C ′

1 ≤ C1. At first glance this might seem backward: don’t we want the
smaller type C ′

1 that gives the best information about the domain? But either C ′
1 → C2 or C1 → C2

might have been applied to conclude c(v) : C2: we must consider both cases, checking the case
arm under x:C ′

1 and then under x:C1. However, since C1 is a supertype of C ′
1, if we succeed while

assuming x:C1 we will certainly succeed assuming x:C ′
1. On the other hand, succeeding under the

assumption x:C ′
1 does not guarantee success assuming x:C1. So we can safely ignore the C ′

1 → C2
component.

Thus, the implementation does not directly follow the logical system: the code corresponding
to rule CON-p repeatedly ‘invokes’ Γ ⊢ c : − to produce all the results C such that Γ ⊢ c : C, then
strips out those having a domain that is “obviously” a subtype of another result’s domain. A is
obviously a subtype of B if:

• A = δA(iA) and B = δB(iB) and δA � δB and iA = iB (literally); or

• A and B are products and are componentwise obvious subtypes; or

• A = Σa:γ.A ′ and B = Σb:γ. B ′ and A ′ is obviously a subtype of [a/b]B ′.

Unlike real subtyping ≤, the “obviously” test cannot cause backtracking (and does not generate
index constraints, since indices are compared literally, not with genuine index equality

.
=).

In practice, this strategy eliminates enough backtracking to cut the number of times a case arm
with a moderately complicated pattern is checked by about an order of magnitude.

4.9 Related work

4.9.1 Pattern checking in unrefined type systems

In more traditional type systems such as that of Standard ML, basic concepts such as subtraction,
intersection, and pattern matching itself (p

σ
−→ v) can be handled in similarly straightforward ways

(though there seem to be few formal treatments of all of these concepts—for example, the SML
Definition lacks a formal basis for redundancy and exhaustiveness checking, leading to an informal
treatment of those topics [MTHM97, p. 28]). However, pattern checking itself is much simpler than
in our system, primarily because information flows in only one direction during pattern checking:
down toward the pattern’s leaves; see the Definition, or the Harper-Stone semantics [HS97].

4.9.2 Davies’ datasort refinement system

Davies’ work on pattern checking is probably the most similar to ours: his system includes datasort
refinements, intersection types, and even union types (the last introduced in a limited way specifi-
cally for pattern checking). He formulates pattern checking as a set of left rules whose assumptions

August 6, 2007

4.9. RELATED WORK 113

include pattern typings8 of the form p:Z, where Z is a pattern type9, which is essentially a pattern
with types instead of variables at the leaves. For example, c(A1, c(A2, A3)) is a valid pattern type.
Every type is a valid pattern type (since x is a valid pattern, A must be a valid pattern type).

Davies’ implementation supports all the pattern constructs of SML. However, his formal system
does not support layered patterns x as p. Davies can justify this decision by arguing [Dav05a, pp.
238–9] that his implementation’s handling of layered patterns is equivalent to typechecking after
transforming the case arm by inserting a let-binding: x as p ⇒ e can become p ⇒ let x =p in e

since every well-formed pattern (with all “x as ”s removed) is also a well-formed term. (His imple-
mentation does not actually do this transformation: it is merely a device to describe the semantics.)
The idea of such a transformation is easy to understand, and is a reasonable bridge from the formal
system without layered patterns. His argument works because pattern checking yields the same
information about x that reconstructing the value and binding x to it would. We might like to
make the same argument, which would allow us to drop layered patterns from the formal treat-
ment and permit an arguably simpler formulation approximating Davies’. However, in our system,
reconstructing the value does not yield the same information as pattern checking. This is due
to the difference in the way refinements are specified: in Davies’ system the user gives a regular
tree grammar, from which inversion properties can be deduced and used in pattern checking; we
assume, instead, a signature S of constructor types, which allows the specification of invaluable
refinements (Section 7.4). For example, if we assume n : red, then the following is ill typed in our
system:

case n of

S(x as S(Z)) ⇒ (x : blue)

| ...

because it attempts to use x at type blue, and the only thing the system can deduce from n : red

and n = S(. . .), according to the signature S(S) = (red→ red) ∧ (blue→ blue), is that · · · : red, i.e.
x : red. Thus, pattern checking results in checking the arm with the assumption x : red. However,
the values inhabiting red and blue are identical; if we transformed the program to

case n of

S(S(Z)) ⇒ let x=S(Z) in (x : blue) end

| ...

it would typecheck10!

8Where we say “type”, Davies says “sort”; the reader can substitute appropriately. We likewise adapt Davies’ notation
to ours wherever possible in this discussion.

9That is, Davies’ “pattern sort”.
10Actually it would not, since S(Z) is not a synthesizing form, but we could then speak of substituting S(Z) for x in the

case arm; (S(Z) : blue) would typecheck, proving the point.

August 6, 2007

114 CHAPTER 4. PATTERN MATCHING

August 6, 2007

Chapter 5

A let-normal type system

5.1 Introduction

Previous chapters developed a rich system in which typechecking of indefinite property types, such
as union and existential types, is based on a tridirectional rule that decomposes its subject term
according to some evaluation context E:

Γ ;∆1 ⊢ e
′ ↑ A Γ ;∆2, x:A ⊢ E [x] ↓ C
Γ ;∆1, ∆2 ⊢ E [e ′] ↓ C

directL

This rule gives e ′ a (linear) name x, so that left rules can eliminate union and existential types
appearing in A. While the notion of evaluation context is purely syntactic, this rule is not syntax-
directed in the usual sense, as many terms have more than one decomposition into some E [e ′]
where the subterm1 e ′ can synthesize a type. For example, f(x, y) has four decompositions: E = [],
E = [](x, y), E = f([], y), and E = f(x, []). Thus, a straightforward implementation of the system
of Chapter 3 would require far too much backtracking. Compounded with backtracking due to
intersection and union types (e.g. if f : (A1 → A2) ∧ (B1 → B2) we may have to try both f : A1 → A2
and f : B1 → B2), such a straightforward implementation is clearly impractical.

In this chapter, we reformulate the earlier system (summarized in Section 5.2) to work on terms
in a particular let-normal form. The let-normal transformation (Section 5.3) drastically constrains
the decomposition by sequentializing terms, forcing typechecking to proceed left to right (with an
interesting exception). Our soundness and completeness results in Sections 5.6 and 5.7 guarantee
that the let-normal version of a program e is well typed under the let-normal version of the type
system if and only if e is well typed under the tridirectional system.

The details of the transformation may be of interest to designers of advanced type systems,
whether their need for a sequentialized form arises from typechecking per se (as in this case) or
from a concern for compiler efficiency.

A warning to the reader: This chapter is quite long. The let-normal translation itself is not
complicated, though the motivation for our particular formulation is somewhat involved. The real
pain is in the proof of completeness.

1In this discussion, “subterm” means “subterm in synthesizing syntactic form”; checking forms such as (e1, e2) cannot
be named by directL because they can never synthesize a type.

115

116 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

5.2 Tridirectional typechecking

When this chapter mentions “the tridirectional system”, it means the left tridirectional system (or
“left rule system”). The “simple tridirectional system” in the first part of Chapter 3 is not needed
here; the soundness and completeness proofs will be with respect to the left tridirectional system.

5.2.1 Evaluation contexts do not strictly determine order

Rule directL’s use of an evaluation context might give the impression that typechecking simply
proceeds in the order in which terms are actually evaluated. However, this is not the case. The
subject of directL is E [e ′] where e ′ synthesizes a type, so certainly e ′ must be in an evaluation
position, but there may be several such positions. Even a term as simple as f (x y) has 5 subterms
in evaluation position, each corresponding to a different evaluation context E:

E = [] (x y) and e ′ = f

E = f ([] y) and e ′ = x

E = f (x []) and e ′ = y

E = f [] and e ′ = (x y)

E = [] and e ′ = f (x y)

In fact, we may need to repeatedly apply directL to the same subject term with different choices
of E! For example, we might use E = [] (x y) to name an f of union type, introducing f:A∨B

into the context; then, case-analyze A∨B with ∨E; finally, choose E = f ([] y) to name x (also
of union type). Thus we are faced not with a choice over decompositions, but over sequences of
decompositions.

It is an essential fact that typechecking cannot always proceed left to right. Consider

(map f) (filter xs)

where map : (int → int) → Πa:N. list(a) → list(a) and filter : Πb:N. list(b) → Σb ′:N. list(b ′). (For
simplicity, we omit the functional argument to filter.)

The term (map f) synthesizes a Π type, which must be eliminated—by instantiating a to some
index—so that rule →E can be applied to (map f) (filter xs). However, the proper instantiation of
a is b ′ (from the type of filter), which is unknown since the (filter xs) subterm has not yet been
visited.

How do we “jump over” (map f) to type (filter xs) first so we can get a b ′ to plug in for a?
First apply directL with evaluation context E = [] (filter xs), giving (map f) the name x; second,
apply directL with context E = x [], synthesizing Σb ′:N. list(b ′) for (filter xs) and introducing the
assumption y : Σb ′:N. list(b ′). Now apply the left existential rule ΣL to unpack the Σ, introducing
the assumption b ′ : N while changing y : Σb ′:N. list(b ′) to y : list(b ′) in the context ∆. Since b ′ is
now known, a can be instantiated to it.

On a purely theoretical level, the tridirectional system is satisfactory, but the nondeterminism is
excessive. Xi approached (very nearly) the same problem by transforming the program so the term
of Σ type appears early enough to instantiate the Π. A standard let-normal translation |e| [Xi98, p.
86], where

|e1 e2| = let x1 = |e1| in let x2 = |e2| in x1x2

suffices for the examples above. (In Xi’s system, existential variables are unpacked where a term
of existential type is let-bound: b ′ is unpacked at the binding of x2, which appears before the

August 6, 2007

5.2. TRIDIRECTIONAL TYPECHECKING 117

application x1x2 at which a must be instantiated.) Unfortunately, the translation interacts unpleas-
antly with bidirectionality: terms such as map (λx. e), in which (λx. e) must be checked, no longer
typecheck because the λ becomes the right hand side of a let, in

let x1 =map in let x2 = λx. e in x1x2

and let-bound expressions must synthesize a type, but λx. e does not. Thus typability is lost in
translation; typechecking becomes incomplete in the sense that certain programs that are well
typed before translation are not well typed after translation.

Xi ameliorated this incompleteness by treating e1 v2 as a special case [Xi98, p. 139]:

|e1 v2| = let x1 = |e1| in x1 v2

Now v2 (which is λx. e in the above example) is in a checking position. This is adequate for non-
synthesizing values, but terms such as map (case z of . . .), where a non-synthesizing non-value is
in checking position, remain untypable. It is not clear why Xi did not add corresponding special
cases for case and other non-synthesizing non-values, e.g.

|e1 (case e of ms)| = let x1 = |e1| in x1 |case e of ms|

Another region of incompleteness is evident in terms such as f (case x of ms). Suppose x syn-
thesizes an existential that must be unpacked to eliminate a Π quantifier on the type of f. Since
x’s scope—and thus the scope of its existential—is entirely within the let created for the case,
typechecking fails.

|f (case x of ms)| = let f1 = f in let x0 = |case x of ms| in f1 x0

= let f1 = f in let x0 =
(
let x1 = x in case x1 of |ms|

)
in f1 x0

It could be argued that the cases in which Xi’s translation fails are rare in practice. However,
that may only increase confusion when such a case is encountered.

We follow Xi’s general approach of sequentializing the program before typechecking, but no
programs are lost in our translation.

5.2.2 Approaching the problem

Do we need all the freedom that directL provides? No. At the very least, if we do not need to name
a subterm, naming it anyway does no harm. But this only slightly reduces the nondeterminism.
Clearly, a strategy of in-order traversal is sound (we can choose to apply directL from left to right if
we like). It is tempting to think it is complete. This conjecture (which we believed for some time)
holds for many programs, but fails for a certain class of annotated terms. We will explain why as we
present the general mechanism for enforcing a strategy of left-to-right traversal except for certain
annotated terms.

August 6, 2007

118 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

5.3 Let-normal typechecking

This section explains and motivates our particular formulation of let-normalization. We briefly
discuss previous work on let-normal forms, then explain the ideas behind our variant, including
why we need to prove a principal synthesis of values property. Because the most universal form of
principality does not hold for a few terms, we introduce slack bindings.

Traditional let-normal or A-normal transformations [Mog88, FSDF93]

1. explicitly sequence the computation, and

2. name the result of each intermediate computation.

(One may compare these to continuation-passing style (CPS) [Rey93], which in addition

3. introduces named continuations.

Thus let-normal form is sometimes called two-thirds CPS.) Many compilers for functional languages,
to facilitate optimizations, translate programs to some kind of let-normal form; see, for instance,
Tarditi et al. [TMC+96], Tolmach and Oliva [TO98], Reppy [Rep01], and MacKenzie and Wolver-
son [MW03].

Our variant of let-normal form sequentializes the computation in much the usual way. However,
it does not only name intermediate computations, but values as well. In our let-normal type system,
directL is replaced by a rule let that can only be applied to let:2

e ′ not a linear var

Γ ;∆1 ⊢ e
′ ↑ A Γ ;∆2, x:A ⊢ E [x] ↓ C
Γ ;∆1, ∆2 ⊢ E [e ′] ↓ C

directL

Γ ;∆1 ⊢ e
′ ↑ A Γ ;∆2, x:A ⊢ Q[x] ↓ C

Γ ;∆1, ∆2 ⊢ let x = e ′ in Q[x] ↓ C
let

Our let is a syntactic marker with no computational character. In contrast to let-normal trans-
lations for compilation purposes, there is no evaluation step (reduction) corresponding to a let. In
fact we do not even give a dynamic semantics for terms with lets. Such a semantics would not
be difficult; it is simply not useful here, since our let-normal form is not intended for use in com-
pilation. If we insist on knowing what a let-normal term e “means”, we can use the operational
semantics in Chapter 2 on the term’s reverse translation ←֓(e) (defined below).

Instead of making explicit the order of computation, our let-normal form makes explicit the or-
der of typechecking—specifically, the order in which directL names subterms in evaluation position.
Thus, to be complete with respect to the tridirectional system, the transformation must create a
let for every subterm in synthesizing form: if an (untranslated) program contains a subterm e ′ in
synthesizing form, it might be possible to name e ′ with directL, so the let-normal translation must
contain a let binding e ′.3 Otherwise, necessary opportunities to apply left rules such as ∨L may be

2Q is an elongated evaluation context, defined below.
3The subterm itself may change in the translation, so this is not strictly accurate.

August 6, 2007

5.3. LET-NORMAL TYPECHECKING 119

lost. Even variables x must be named, since they synthesize a type and so can be named in directL.
On the other hand, terms in checking form cannot synthesize, so they are not named. Again, these
aspects are motivated by a desire to sequentialize the term according to (an “aggressive left-to-
right” strategy for) application of directL.

Another consequence of our let-normal form following typechecking, not evaluation, is that
let x = v1 in v2 is considered a value—after all, the original term [v1/x] v2 is a value, and if the let-
normal transformation made a value into a non-value, we could not apply value-restricted typing
rules such as ∧I, leading to incompleteness.

We define the translation via a judgment e →֒ L + e ′, read “e translates to a sequence of let-
bindings L with body e ′”. For example, the translation of f (x y), which names every synthesizing
subterm, is

let f = f in let x = x in let y =y in let z = x y in let a = f z in a

This is expressed by the judgment

f (x y) →֒ f = f, x = x, y =y, z = x y, a = f z + a

The definition is given in Figure 5.2. Note that L + e ′ is not a term; + is punctuation in the
translation judgment. We write L in e ′ as shorthand for the obvious expansion: when one sees
e →֒ L + e ′ one should think L in e ′. The distinction between the two notations arises from the
multiple ways in which a term can be decomposed into a pair of a sequence of bindings and a “body”
term. For example, let x1 = e1 in let x2 = e2 in e3 has three possible decompositions, depending on
how many bindings one chooses to include in L:

· in let x1 = e1 in let x2 = e2 in e3 = (x1 = e1) in let x2 = e2 in e3

= (x1 = e1, x2 = e2) in e3

We call the last decomposition maximal: it has the maximum number of bindings (and the smallest
‘body’), which is the case exactly when the body is not itself a let. If e →֒ L + e ′, it is the case
that L in e ′ is maximal (Proposition 5.16); but this is because we distinguish the notations and use
+ exclusively in the definition of →֒ . If we did not, the definition would allow one to reinterpret
the right hand side of a premise as a non-maximal decomposition. Fortunately, this rather tedious
distinction really matters only in Lemma 5.72; generally, one can read L+ e ′ the same as L in e ′.

To precisely model an aggressive left-to-right strategy of directL-application, we must translate
e →֒ L + e ′ with L binding exactly those subterms that could be in evaluation position (after zero
or more “preliminary” applications of directL). We draw a syntactic distinction between

The háček, ,̌
above the e is
shaped like a
‘v’, for ‘value’.

• pre-values ě: terms that are either values (such as x) or that can “become” values in the
derivation via directL (such as x y, which “becomes” z, which is a value), and

• anti-values ê: terms such as case e0 of ms that are not values and cannot become values.

directL can replace any synthesizing subterm with a linear variable, so the prevalues must include
both the values and the synthesizing forms. Also, terms such as c(x y) must be prevalues: c(x y)
is neither a value nor a synthesizing form, but by applying directL with E = c([]) we have a
subderivation typing c(z), which is a value since c(e) value iff e value. Likewise, (e1, e2) is a prevalue

August 6, 2007

120 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

if both e1 and e2 are—if either one is a case, say, there is no way to turn the whole pair into a value.
This leads to the following grammar, with values x, x, λx. e, and (); synthesizing forms (e : As),
e1e2, u, fst(e), and snd(e); and checking forms that can become values if all their subterms can:
(e1, e2) and c(e).

Pre-values ě ::= x | x | (e : As) | λx. e | e1e2 | u | (ě1, ě2) | fst(e) | snd(e) | () | c(ě)

We write e prevalue to mean that a given e is a pre-value, and e antivalue to mean e is an anti-value.
Every e is either a pre- or anti-value, leading us to the following grammar for the anti-values.

Anti-values ê ::= case e of ms | fix u. e | (ê1, e2) | (e1, ê2) | c(ê)

It is easy to verify that for any e we have either e antivalue or e prevalue, but not both.
The distinction comes into play in the translation only for terms with sequences of immediate

subterms such that at least two subterms in the sequence may be in evaluation position. Only
application e1e2 and pairing (e1, e2) have this property; other terms, such as case e0 of ms have
subterms in sequence but only one of them (e0) is in evaluation position, while λx. e and fix u. e

have no subterms in evaluation position at all.
A telling example is

(case x of c(y)⇒ e,ω x)

whereω : ⊤→ ⊥. In the left tridirectional system, the only subterm in evaluation position is x, and
applying directL to replace it with x does not bring any other subterms into evaluation position. In
particular, ω x is not in evaluation position, so however we translate the term, we must not bind
ω x outside the pair; if we did, we would add z:⊥ to the context and could apply rule ⊥L to declare
the entire pair well typed without examining e! If e is () (), this is actually unsound. On the other
hand, in the term

(f g,ω x)

the left tridirectional system can bind ω x before checking the pair, by applying directL with E =

([],ω x) to yield a subject (x,ω x) in which ω x is in evaluation position.
The difference is that case x of c(y)⇒ e is an anti-value, while f g is a pre-value. Therefore,

given a pair (e1, e2), if e1 is some anti-value ê1, the translation places the bindings for subterms of
e2 (e.g. z =ω x above) inside the second component. On the other hand, if e1 is a pre-value ě1, the
translation puts the bindings for subterms of e2 outside the pair.

ê1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

(ê1, e2) →֒ L1 + (e ′1, L2 in e ′2)

ě1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

(ě1, e2) →֒ L1, L2 + (e ′1, e
′
2)

We define elongated evaluation contexts Q, which—unlike ordinary evaluation contexts E—can
skip over pre-values. Elongated evaluation position is a sort of transitive closure of evaluation
position: if, by repeatedly replacing prevalues in evaluation position with values, some subterm is
then in evaluation position, that subterm is in elongated evaluation position. This corresponds to a
sequence of directL-applications: subterms in evaluation position are replaced with linear variables,
which are values. For example, z is not in evaluation position in (x y) z, but applying directL with
E = [] z yields a subderivation with subject x z, in which z is in evaluation position. A Q is thus a

August 6, 2007

5.3. LET-NORMAL TYPECHECKING 121

Anti-values ê ::= case e of ms | fix u. e | (ê1, e2) | (e1, ê2) | c(ê)

Pre-values ě ::= x | x | (e : As) | λx. e | e1e2 | u | (ě1, ě2) | fst(e) | snd(e) | () | c(ě)

Elongated Q ::= [] | Qe | ěQ | (Q, e) | (ě,Q) | fst(Q) | snd(Q) | c(Q) | case Q of ms | (Q : As)

evaluation | let x =Q in e | let x = ě in Q
contexts | let ∼x =Q in e | let ∼x = v in Q

Terms e ::= . . . | let x = e1 in Q[x] | let ∼x = v1 in Q[x]

Values v ::= . . . | x | let x = v1 in v2 | let ∼x = v1 in v2

Eval. contexts E ::= . . . | let x = E in e | let x = v in E | let ∼x = E in e | let ∼x = v in E

Sequences L ::= · | L, (x = e) | L, (∼x = v)

of bindings

Figure 5.1: Syntax of terms and contexts in the let-normal type system

path that can skip prevalues: if every intervening subterm is a pre-value (equivalently, if there is no
intervening anti-value), the hole is in elongated evaluation position.

A subterm in elongated evaluation position is said to be viable. The grammar for let-normal
terms enforces the invariant that let-bound variables are viable in their scopes: the body e2 of
let x = e1 in e2 must have the form Q[x].

Definition 5.1 (Viable). A term e ′ is a viable subterm of e iff Q[e ′] = e for some Q.

5.3.1 Principal synthesis of values

One of the key steps in the completeness proof is the movement of let-bindings outward. To prove
that such movements preserve typing, we show that principal types [Hin69] exist in certain cases.
To see why, consider the judgment

x : (A1→B) ∧ (A2→B), y : A1 ∨ A2; · ⊢ x y ↓ B

To derive this judgment in the left tridirectional system, we start by using directL with E = x [] to
name y as a new linear variable y:A1 ∨ A2. Then we use ∨L to decompose the union; we must
now derive

x : (A1→B) ∧ (A2→B), . . . ; y:A1 ⊢ x y ↓ B and x : (A1→B) ∧ (A2→B), . . . ; y:A2 ⊢ x y ↓ B

Here, the scope of y is x y, and we synthesize a type for x twice, once in each branch:

. . . , y : A1 ∨ A2; · ⊢ y ↑ A1 ∨ A2

. . . ; · ⊢ x ↑ A1→B
...

. . . ; y:A1 ⊢ x y ↓ B →E
. . . ; · ⊢ x ↑ A2→B

...

. . . ; y:A2 ⊢ x y ↓ B →E

. . . ; y : A1 ∨ A2 ⊢ x y ↓ B ∨L

x : (A1→B) ∧ (A2→B), y : A1 ∨ A2; · ⊢ x y ↓ B
directL

August 6, 2007

122 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

e →֒ L+ e ′ read “e translates to bindings L with result e ′”

x →֒ (x = x) + x

e →֒ L+ e ′

λx. e →֒ ·+ λx. (L in e ′)

ê1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

ê1e2 →֒ L1, x = e
′
1(L2 in e ′2) + x

ě1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

ě1e2 →֒ L1, L2, x = e
′
1e

′
2 + x

u →֒ (x =u) + x

e →֒ L+ e ′

fix u. e →֒ ·+ fix u. (L in e ′)

e →֒ L+ e ′ e not a value

(e : As) →֒ L, x = (e ′ : As) + x

v →֒ L+ e ′

(v : As) →֒ L,∼x = (e ′ : As) + x

() →֒ ·+ ()

ê1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

(ê1, e2) →֒ L1 + (e ′1, L2 in e ′2)

ě1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

(ě1, e2) →֒ L1, L2 + (e ′1, e
′
2)

e →֒ L+ e ′

fst(e) →֒ L, x = fst(e ′) + x

e →֒ L+ e ′

snd(e) →֒ L, x = snd(e ′) + x

e →֒ L+ e ′

c(e) →֒ L+ c(e ′)

e →֒ L+ e ′ ms →֒ ms ′

case e of ms →֒ L+ case e ′ of ms ′

x →֒ ·+ x

ms →֒ ms ′ read “matches ms translate to ms ′”

· →֒ ·

e →֒ L+ e ′ ms →֒ ms ′

(c(x)⇒ e ||ms) →֒ (c(x)⇒ L in e ′) ||ms ′

Figure 5.2: Let-normal translation

August 6, 2007

5.3. LET-NORMAL TYPECHECKING 123

However, when checking the translated term

let x = x in let y =y in let z = x y in z︸ ︷︷ ︸

against B, we need to first name x as x, then y as y, then use ∨L to decompose the union y:A1 ∨ A2
with subject let z = x y in z.

. . . ; · ⊢ x ↑ (A1→B) ∧ (A2→B) . . . ; x:(A1→B) ∧ (A2→B) ⊢ let y =y in let z = x y in z ↓ B
x : (A1→B) ∧ (A2→B), y : A1 ∨ A2; · ⊢ let x = x in let y =y in let z = x y in z ↓ B let

But we only get to synthesize a type for x once (at the point highlighted above), so we must take care
when using let to name x; if we choose to synthesize x ↑ A1→B in let, we will be unable to derive
x:A1→B, y:A2 ⊢ let z = x y in z ↓ B while if we choose to synthesize x ↑ A2→B we will be unable to
derive x:A2→B, y:A1 ⊢ let z = x y in z ↓ B. The only choice that works is Γ(x) = (A1→B) ∧ (A2→B),
since given x:(A1→B) ∧ (A2→B) we can synthesize x ↑ A1 → B and x ↑ A2 → B using ∧E1 and
∧E2, respectively.

In the above situation, e ′ = x is a variable, so there is a best type C—namely Γ(x)—such
that if x ↑ C1 and x ↑ C2 then x ↑ C, from which follows (by rules ∧E1,2 in the example above)
x ↑ C1 and x ↑ C2. We say that x has the property of principal synthesis. However, it is not readily
apparent which terms have this property. It holds for all variables4: the best type for some x is
Γ(x). On the other hand, it does not hold for many non-values: f x ↑ A1 and f x ↑ A2 do not imply
f x ↑ A1 ∧ A2, since the intersection introduction rule ∧I is (1) restricted to values and (2) in the
checking direction. Fortunately, it does not need to hold for non-values: Consider (e1 e2) y. Since
(e1 e2) is not a value, y is not in evaluation position in (e1 e2) y, so even in the tridirectional system,
to name y we must first name (e1 e2). Here, the let-normal system is no more restrictive than the
tridirectional system. Moreover, some values such as () are checking forms and never synthesize,
so they do not have the principal synthesis property. But again, this is fine, because we never bind
values in checking form to linear variables.

All the above led us to conjecture that all values in synthesizing form have the principal synthesis
property. The only values in synthesizing form are ordinary variables x, linear variables x, and
annotated values (v : As). For x or x the principal type is simply Γ(x) or ∆(x). Unfortunately,
principal types do not always exist for terms of the form (v : As). For example,

((λx. x) : (⊢ 1→ 1), (⊢ bool→ bool))(5.1)

can synthesize 1→ 1, and it can synthesize bool→ bool, but it cannot synthesize their intersection,
so it has no principal type.

Best typings?

We considered requiring a best typing among the list of typings in an annotation, where by “best”
we mean “a subtype of the right hand side of all matching typings”. Thus

((λx. x) : (⊢ (1→ 1)), (⊢ bool→ bool), (⊢ (1→ 1) ∧ (bool→ bool)))

4In rules such as contra that do not examine their subject, this property is guaranteed by premises of the form Γ ⊢ e ok.

August 6, 2007

124 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

has a best typing because (1 → 1) ∧ (bool → bool) is a subtype of each of its conjuncts. One
can effectively force best typings to exist by synthesizing the intersection of matching types: for
(5.1) we could synthesize (1 → 1) ∧ (bool → bool).5 Unfortunately, this is not enough: even if
there is a best typing, the formulation of contextual subtyping means that there may be no best
type arising from that typing. That is, given Γ0, A0 and Γ , there may be more than one A such that
(Γ0 ⊢ A0) . (Γ ⊢ A). In the following example, the index variable a is underdetermined—in rule
.-ivar (Fig. 3.5), we can substitute any natural number i for a. Consequently, for every i the term
synthesizes list(i) → list(i), but no choice of i subsumes all of these: the term cannot synthesize
Πa:N. list(a)→ list(a).

((λx. x) : (a:N ⊢ list(a)→ list(a)))

One might call this example, like (5.1), silly: the user should simply have written

((λx. x) : ⊢ Πa:N. list(a)→ list(a))

Could we change the definition of contextual subtyping to ensure a unique A in (Γ0 ⊢ A0) .

(Γ ⊢ A)? Not easily. It seems clear that contextual subtyping must depend on subtyping: x:A
supports x:B if A ≤ B. In practice, subtyping cannot be implemented directly from the declarative
system of Figure 2.11; rather, rules such as δ generate constraints. Due to nondeterminism in the
subtyping system, such as the choice between rules ∧L1 and ∧L2, the constraint generated need
not be unique.

Slack bindings

Rather than try to invent some restriction on the form of typing annotations, we finesse the whole
issue by “slackening” bindings of annotated values: a slack binding ∼x = v is like an ordinary lin-
ear variable binding except that v’s type need not be synthesized at its binding site, but can be
synthesized at any point up to its use:

Γ ;∆1 ⊢ v ↑ A Γ ;∆2, x:A ⊢ e ↓ C
Γ ;∆1, ∆2,∼x = v ⊢ e ↓ C ∼var

Γ ;∆,∼x = v ⊢ Q[x] ↓ C
Γ ;∆ ⊢ let ∼x = v in Q[x] ↓ C let∼

Wherever x is in scope, we can try rule ∼var to synthesize a type A for v and replace ∼x = v with an
ordinary linear variable typing x:A.

Slack variables have the obvious shortcoming that for every slack binding we must choose
when to synthesize its type, similar to how we would have to choose when to apply directL to
the annotated term in a naïve implementation of the tridirectional system. If all our bindings
were slack we would have put ourselves in motion to no purpose, but we use slack variables for
annotated values only. Besides, even if we came up with some wonderful solution to the issue,
there would remain major sources of nondeterminism, such as the left rules which may be applied
to any variables in any order. Finally, our experiments so far suggest that slack variables cause little
trouble in practice; see Section 6.7.4.

5This would be unsound if the annotated term were not a value—it would evade the value restriction of ∧I—but we
are concerned only with values here.

August 6, 2007

5.3. LET-NORMAL TYPECHECKING 125

Remark on ⊤

The above discussion of best typings centered on ∧, but a similar issue arises with ⊤. Suppose
e2 ↑ ⊥. The let-normal translation of ((λx. x) : ⊢ 1) e2 is

let x = ((λx. x) : ⊢ 1) in let y = e2 in let z = x y in z

The original term is well typed in the tridirectional system: e2 ↑ ⊥ is in evaluation position, so we
can apply directL and then use ⊥L to show that the entire term checks against any type whatsoever
(this is perfectly sound: if e2 ↑ ⊥ then e2 diverges, so v e2 diverges for all v, including ((λx. x) : . . .)).
But in a let-normal system without slack variables, we are stuck because ((λx. x) : ⊢ 1) does
not synthesize anything. A solution might be to behave as though ⊤ were always one of the
annotations, so (v : As) ↑ ⊤ for all v, but slack variables work as well:

let ∼x = ((λx. x) : ⊢ 1) in let y = e2 in let z = x y in z

Here the offending term ((λx. x) : ⊢ 1) is bound to x but rule ∼var is never applied, since type-
checking is “short-circuited” by ⊥L.

Value synthesis lemmas

Here we prove that, except for annotations (v ′ : As), values in synthesizing form have a principal
synthesis property (Lemma 5.3) and an “obligatory synthesis” property, that is, every value in
synthesizing form synthesizes something (subject to certain conditions that hold everywhere). Both
lemmas are used to prove the permutation lemmas that appear later in this chapter. But first, we
need to show that A ↑ B judgments (Figure 2.8) are transitive.

The typing rules are summarized in Figures 5.3 and 5.4.

Proposition 5.2. If Γ ⊢ A ↑ B and Γ ⊢ B ↑ C then Γ ⊢ A ↑ C.

Proof. By induction on the first derivation. In case refl-↑, A = B so simply replace B with A in
Γ ⊢ B ↑ C. In case ∧↑1, we have A = A1 ∧ A2; by IH, Γ ⊢ A1 ↑ C; by rule ∧↑1, Γ ⊢ A1 ∧ A2 ↑ C,
which was to be shown. The remaining cases are similar.

Lemma 5.3 (Principal Synthesis for (Some) Values). If Γ ;∆ ⊢ v ↑ Ak for k ∈ 1..n where v does not
have the form (v ′ : As) then there exists A such that Γ ;∆ ⊢ v ↑ A and for k ∈ 1..n, Γ ⊢ A ↑ Ak.

Proof. By induction on the set of given typing derivations. Due to the restriction to judgments
synthesizing types for values, most typing rules cannot have been used. The possible cases (for
each derivation) are var, var, ∧E1,2, ΠE, and ⊃E. (ctx-anno is excluded by the condition that v does
not have the form (v ′ : As).) First we treat cases in which a term-invariant rule—∧E1,2, ΠE, or
⊃E—concludes one of the derivations; without loss of generality, assume it is the first derivation.

• Case ∧E1: D ::

Γ ;∆ ⊢ v ↑ A1 ∧ B1
Γ ;∆ ⊢ v ↑ A1

August 6, 2007 — Proof of Lemma 5.3

126 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Γ ;∆ ⊢ v ↑ A1 ∧ B1 Subderivation

Γ ;∆ ⊢ v ↑ Ak (for k ∈ 2..n) Derivation

∃A. Γ ;∆ ⊢ v ↑ A and Γ ⊢ A ↑ A1 ∧ B1
and Γ ⊢ A ↑ Ak

(for k ∈ 2..n) By IH (one derivation got smaller)

Γ ⊢ A1 ∧ B1 ↑ A1 By ∧↑1
Γ ⊢ A ↑ A1 By Proposition 5.2

• Cases ∧E2, ΠE, ⊃E: Similar to the previous case.

The remaining rules var and var type distinct syntactic forms. Hence the remaining cases are:

• var concluding all derivations. In this case Ak = Γ(x) for all k ∈ 1..n, and the principal type A
is simply Γ(x).

• var concluding all derivations. Similar to the previous case.

Lemma 5.4 (Obligatory Synthesis for (Some) Values). If v is in synthesizing form, v does not have

the form (v ′ : As), and Γ ⊢ v ok and ∆ v ok then there exists A such that Γ ;∆ ⊢ v ↑ A.

Proof. By case analysis on v, which must have the form x or x.

• v = x We have Γ ⊢ v ok, that is, Γ ⊢ x ok. Therefore x ∈ dom(Γ), so we can apply rule var.

• v = x Similar to the preceding case, using ∆ x ok and var.

5.4 Introduction to the proofs

The two major results shown are soundness: if the let-normal form of a program is well typed in
the let-normal type system, the original program is well typed in the left tridirectional system—
and completeness: if a program is well typed in the left tridirectional type system, its translation is
well typed in the let-normal type system. Once these are shown, it follows from previous results
(Chapter 3) that the let-normal system is sound and complete with respect to the type assignment
system in Chapter 2, for which we proved preservation and progress in a call-by-value semantics.

Soundness is relatively straightforward. This is no surprise: let-normal typechecking can be
seen as left tridirectional typechecking in which the choice inherent in directL is forced, that is, the
let-normal system is a weakening of the left tridirectional system.

On the other hand, proving completeness—that the let-normal system is not strictly weaker
than the left tridirectional system—is quite involved; the proof overview at the start of Section 5.7
may be consulted as one reads through that section.

August 6, 2007

5.5. PRELIMINARIES 127

5.5 Preliminaries

The subtyping rules (Figure 2.11) are unchanged from previous chapters.
Throughout this chapter, we restrict the bound expression e1 in let x = e1 in e2 to be in synthe-

sizing form.
We define a let-equivalence relation e ≡let e

′ that holds if e and e ′ are (possibly distinct) versions
of the same direct-style term. For example:

let x = x in (x, ()) ≡let (x, ())

Definition 5.5 (Let-Equivalence). The relation e ≡let e
′ is defined in Figure 5.5.

Proposition 5.6. If v ≡let e or e ≡let v then e value.

Proof. By induction on the derivation of v ≡let e.

Figure 5.4 gives the rules typing the new syntactic forms. Every rule from the left tridirectional
system is also a rule of the let-normal type system, with the sole exception of directL which is
replaced by let.

The inverse translation, the unwinding, is defined in Figure 5.6.

Definition 5.7. A term e is direct style iff it contains no lets and let∼s.

Note that by this definition, linear variables can appear in a direct style term! All such variables
must be free since a direct style term contains no linear variable binders.

Proposition 5.8. For all e, ←֓(e) ≡let e and ←֓(e) is direct style.

Proof. By induction on e.
Example case: e = let x = e1 in e2.

←֓(let x = e1 in e2) = [←֓(e1)/x] ←֓(e2)

≡let let x = ←֓(e1) in ←֓(e2) By defn. of ≡let

←֓(e1) ≡let e1 By IH

←֓(e2) ≡let e2 By IH

Z ←֓(let x = e1 in e2) ≡let let x = e1 in e2 Congruence of ≡let

←֓(e1), ←֓(e2) are direct style By IH

←֓(let x = e1 in e2) = [←֓(e1)/x] ←֓(e2)

Z [←֓(e1)/x] ←֓(e2) is direct style

Proposition 5.9. If e is direct style then ←֓(e) = e.

Proof. By induction on e.

Proposition 5.10. If e1 ≡let e2 then ←֓(e1) = ←֓(e2).

August 6, 2007

128 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Γ(x) = A

Γ ; · ⊢ x ↑ A var
Γ ; x:A ⊢ x ↑ A var

Γ, x:A; · ⊢ e ↓ B
Γ ; · ⊢ λx. e ↓ A→ B

→I
Γ ;∆1 ⊢ e1 ↑ A→ B Γ ;∆2 ⊢ e2 ↓ A

Γ ;∆1, ∆2 ⊢ e1e2 ↑ B
→E

Γ ;∆ ⊢ e ↑ A Γ ⊢ A ≤ B

Γ ;∆ ⊢ e ↓ B sub
Γ(u) = A

Γ ; · ⊢ u ↑ A fixvar
Γ, u:A; · ⊢ e ↓ A
Γ ; · ⊢ fix u. e ↓ A fix

Γ ; · ⊢ () ↓ 1
1I

Γ ;∆1 ⊢ e1 ↓ A1 Γ ;∆2 ⊢ e2 ↓ A2
Γ ;∆1, ∆2 ⊢ (e1, e2) ↓ A1 ∗A2

∗I
Γ ;∆ ⊢ e ↑ A ∗ B

Γ ;∆ ⊢ fst(e) ↑ A ∗E1
Γ ;∆ ⊢ e ↑ A ∗ B

Γ ;∆ ⊢ snd(e) ↑ B ∗E2

Γ ⊢ c : A→ δ2(i) Γ ⊢ δ2(i) ≤ δ1(j) Γ ;∆ ⊢ e ↓ A
Γ ;∆ ⊢ c(e) ↓ δ1(j)

δI
Γ ;∆ ⊢ e ↑ δ(i) Γ ; · ⊢ ms ↓δ(i) C

Γ ;∆ ⊢ case e of ms ↓ C δE

Γ |= ⊥ Γ ⊢ e ok ∆ e ok

Γ ;∆ ⊢ e ↓ A contra
(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ;∆ ⊢ e ↓ A

Γ ;∆ ⊢ (e : (Γ0 ⊢ A0), As) ↑ A
ctx-anno

Γ ⊢ e ok ∆, x:⊥ e ok

Γ ;∆, x:⊥ ⊢ e ↓ C ⊥L
Γ ⊢ v ok ∆ v ok

Γ ;∆ ⊢ v ↓ ⊤ ⊤I

Γ ;∆, x:A ⊢ e ↓C
Γ ;∆, x:A∧B ⊢ e ↓C ∧L1

Γ ;∆, x:B ⊢ e ↓C
Γ ;∆, x:A∧B ⊢ e ↓C ∧L2

Γ ;∆ ⊢ v ↓ A Γ ;∆ ⊢ v ↓ B
Γ ;∆ ⊢ v ↓ A ∧ B

∧I

Γ ;∆ ⊢ e ↑ A ∧ B

Γ ;∆ ⊢ e ↑ A ∧E1

Γ ;∆ ⊢ e ↑ A ∧ B

Γ ;∆ ⊢ e ↑ B ∧E2

Γ ;∆, x:[i/a]A ⊢ e ↓ C Γ ⊢ i : γ

Γ ;∆, x:Πa:γ.A ⊢ e ↓ C
ΠL

Γ, a:γ;∆ ⊢ v ↓ A
Γ ;∆ ⊢ v ↓ Πa:γ.A ΠI

Γ ;∆ ⊢ e ↑ Πa:γ.A Γ ⊢ i : γ

Γ ;∆ ⊢ e ↑ [i/a]A
ΠE

Γ, a:γ;∆, x:A ⊢ e ↓ C
Γ ;∆, x:Σa:γ.A ⊢ e ↓ C ΣL

Γ ;∆ ⊢ e ↓ [i/a]A Γ ⊢ i : γ

Γ ;∆ ⊢ e ↓ Σa:γ.A ΣI

Γ |= P Γ ;∆, x:A ⊢ e ↓ C
Γ ;∆, x:P ⊃ A ⊢ e ↓ C ⊃L

Γ, P;∆ ⊢ v ↓ A
Γ ;∆ ⊢ v ↓ P ⊃ A

⊃I
Γ ;∆ ⊢ e ↑ P ⊃ A Γ |= P

Γ ;∆ ⊢ e ↑ A ⊃E

Γ, P;∆, x:A ⊢ e ↓ C
Γ ;∆, x:(P O A) ⊢ e ↓ C OL

Γ ;∆ ⊢ e ↓ A Γ |= P

Γ ;∆ ⊢ e ↓ P O A
OI

Γ ;∆, x:A ⊢ e ↓ C Γ ;∆, x:B ⊢ e ↓ C
Γ ;∆, x:A ∨ B ⊢ e ↓ C ∨L

Γ ;∆ ⊢ e ↓ A
Γ ;∆ ⊢ e ↓ A ∨ B

∨I1
Γ ;∆ ⊢ e ↓ B

Γ ;∆ ⊢ e ↓ A ∨ B
∨I2

Rules of the left tridirectional system absent in the let-normal system:

e ′ not a linear var

Γ ;∆1 ⊢ e
′ ↑L A Γ ;∆2, x:A ⊢ E [x] ↓L C
Γ ;∆1, ∆2 ⊢ E [e ′] ↓L C

directL

Figure 5.3: Rules common to the left tridirectional and let-normal type systems

August 6, 2007

5.5. PRELIMINARIES 129

Marker version of directL;
replaces directL

Γ ;∆1 ⊢ e
′ ↑ A Γ ;∆2, x:A ⊢ Q[x] ↓ C

Γ ;∆1, ∆2 ⊢ let x = e ′ in Q[x] ↓ C
let

. .

New rules for
slack let-bindings

Γ ;∆,∼x = v ⊢ Q[x] ↓ C
Γ ;∆ ⊢ let ∼x = v in Q[x] ↓ C let∼

Γ ;∆1 ⊢ v ↑ A Γ ;∆2, x:A ⊢ e ↓ C
Γ ;∆1, ∆2,∼x = v ⊢ e ↓ C ∼var

Figure 5.4: Typing rules new in the let-normal system

Congruence closure of:

let x = e1 in e2 ≡let [e1/x] e2 let ∼x = v1 in e2 ≡let [v1/x] e2

Figure 5.5: Relation between different versions of the same direct-style term

←֓(x) = x

←֓(x) = x

←֓(λx. e) = λx. ←֓(e)

←֓(e1 e2) = ←֓(e1) ←֓(e2)

←֓(u) = u

←֓(fix u. e) = fix u. ←֓(e)

←֓(e : As) = ←֓(e) : As

←֓(()) = ()

←֓((e1, e2)) = (←֓(e1), ←֓(e2))

←֓(fst(e)) = fst(←֓(e))

←֓(snd(e)) = snd(←֓(e))

←֓(c(e)) = c(←֓(e))

←֓(case e of ms) = case ←֓(e) of ←֓(ms)

←֓(·) = ·

←֓(c(x)⇒ e ||ms) = c(x)⇒ ←֓(e) || ←֓(ms)

←֓(let x = e1 in e2) = [←֓(e1)/x] ←֓(e2)

←֓(let ∼x = e1 in e2) = [←֓(e1)/x] ←֓(e2)

Figure 5.6: Unwinding

August 6, 2007

130 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Proof. By induction on the derivation of e1 ≡let e2.
In the transitive rule (which is elided), we have subderivations of e1 ≡let e

′ and e ′ ≡let e2. By
induction on these, we get ←֓(e1) = ←֓(e ′) and ←֓(e ′) = ←֓(e2), from which ←֓(e1) = ←֓(e2) follows
by transitivity of equality.

Proposition 5.11. If e1 ≡let e2 where e1 and e2 are direct style, then e1 = e2.

Proof. By Proposition 5.10, ←֓(e1) = ←֓(e2). Since e1 and e2 are direct style, by Proposition 5.9
←֓(e1) = e1 and ←֓(e2) = e2. Thus e1 = e2.

We defined a linearity judgment ∆ e ok back in Chapter 3, where we had no binders for linear
variables and no slack variables, and the judgment was so simple that we omitted a formal inductive
definition, saying only that the judgment holds iff everything in dom(∆) appears exactly once inSee Def. 3.18.

e and FLV(e) ⊆ dom(∆). With the addition of binders, a formal definition becomes worthwhile.
However, the bulk of the definition is uninteresting, so we show only rules involving linear variables
or syntactic markers, along with a couple of uninteresting rules to make the pattern clear. (Having
x:⊤ is a hack perpetrated to avoid defining something exactly like ∆ but without types.)

∆1 e1 ok ∆2, x:⊤ e2 ok

∆1, ∆2 let x = e1 in e2 ok x:A x ok

∆1 e1 ok ∆2, x:⊤ e2 ok

∆1, ∆2 let ∼x = e1 in e2 ok

· e ok

· λx. e ok · x ok

∆1 e1 ok ∆2 e2 ok

∆1, ∆2 (e1, e2) ok

Figure 5.7: Part of the new definition of the linearity judgment ∆ e ok

Proposition 5.12. If Γ ;∆ ⊢ e ↑ C or Γ ;∆ ⊢ e ↓ C then ∆ e ok.

Proof. By induction on the derivation.

Definition 5.13. The substitution of bindings [L]e is defined as follows:

[·]e = e

[L, x = e ′] e = [L] [e ′/x] e

[L, (∼x = e ′)] e = [L] [e ′/x] e

Lemma 5.14. L in e ≡let [L]e.

Proof. By induction on L. If L = · then e ≡let e = [·]e, which was to be shown. If L = L ′, x = e ′ then:

L in e =L ′, x = e ′ in e

=L ′ in (x = e ′ in e)

≡let L
′ in ([e ′/x]e) By defn. of ≡let

≡let [L
′] ([e ′/x]e) By IH

= [L]e By Def. 5.13

August 6, 2007

5.5. PRELIMINARIES 131

Let ←֓(L) be defined in the obvious way: ←֓(x = e), L ′ = x = ←֓(e), ←֓(L ′).

Lemma 5.15. ←֓(L in e) = [←֓(L)] ←֓(e).

Proof. By induction on L.

Proposition 5.16. If e →֒ L+ e ′ then L in e ′ is maximal, i.e. e ′ is not a let or let∼.

Proof. By case analysis on e →֒ L+ e ′.

Proposition 5.17. Let BLV(L) denote the linear variables bound by L (e.g. BLV(x = e1, y = x()) = {y}).

If · e ok and e →֒ L+ e ′ then BLV(L) = FLV(e ′).

Proof. By induction on e →֒ L+ e ′.

Proposition 5.18. If e →֒ L+ e ′ then e ≡let L in e ′. (Likewise, if ms →֒ ms ′ then ms ≡let ms
′.)

Proof. By induction on e →֒ L+ e ′. We show one of the more involved cases.

• Case : D ::

ě1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

ě1e2 →֒ (L1, L2, x = e
′
1e

′
2) + x

BLV(L1),BLV(L2) disjoint

FLV(e ′1) =BLV(L1) By Proposition 5.17

FLV(e ′1),BLV(L2) disjoint

ě1 ≡let L1 in e ′1 By IH

e2 ≡let L2 in e ′2 By IH

ě1e2 ≡let (L1 in e ′1)(L2 in e ′2) By defn. of ≡let

≡let ([L1]e
′
1)(L2 in e ′2) By Lemma 5.14 and defn. of ≡let

= [L1] (e
′
1(L2 in e ′2)) BLV(L1), FLV(L2 in e ′2) disjoint

= [L1] (e
′
1([L2]e

′
2)) By Lemma 5.14

= [L1, L2] (e
′
1e

′
2) BLV(L2), FLV(e ′1) disjoint

≡let L1, L2 in e ′1e
′
2 By Lemma 5.14

≡let L1, L2, x = e
′
1e

′
2 in x By defn. of ≡let

Proposition 5.19. If e →֒ L+ e ′ then ←֓(L in e ′) = e.

Proof. By Proposition 5.8, ←֓(L in e ′) ≡let L in e ′ and ←֓(L in e ′) is direct style.

The relation e →֒ . . . is defined only when e is direct style, so e is direct style. Thus we have
two direct style terms ←֓(L in e ′) and e. By Proposition 5.18 e ≡let L in e ′. By transitivity of ≡let,
e ≡let ←֓(L in e ′). By Proposition 5.11, ←֓(L in e ′) = e.

August 6, 2007

132 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

5.6 Soundness

In this section, we show that if a term is well typed in the let-normal system, it is well typed in the
left tridirectional system.

Proposition 5.20. If Γ ⊢ e ok then Γ ⊢ ←֓(e) ok.

Proof. By induction on e.

Proposition 5.21. If ∆ e ok then ∆ ←֓(e) ok.

Proof. By induction on e.

Proposition 5.22. If e value then ←֓(e) value.

Proof. By induction on e. In the case where e is a let [∼], use the fact that substituting a value for a
value in a value yields a value.

Definition 5.23. e is let-respecting if for every let-binding let x = e1 in e∗ appearing anywhere in e,
there exists E such that E [x] = ←֓(e∗).

Recall that C denotes contexts with a hole in any position, in contrast to evaluation contexts E
in which the hole must be in an evaluation position. For example, if C = λx. [] then C[x] = λx. x,
but since x is not in evaluation position in λx. x, there is no E such that E [x] = λx. x.

Proposition 5.24. For all C there exists C ′ such that:

for all e such that no linear variable free in e is bound in C,

←֓(C[e]) = C ′[←֓(e)].

Moreover, if C is an evaluation context (i.e. E = C) and C[e] is let-respecting,

then C ′ is also an evaluation context, that is, there exists E ′ = C ′ such that ←֓(E [e]) = E ′[←֓(e)].

Remark 5.25. The condition on e forbids situations such as C = let x = x in [] with e = x, where x

would be captured and the proposition would not hold: ←֓(let x = x in x) = x, but there is no C ′

such that x = C ′[←֓(x)] = C ′[x].

Proof. By induction on C. Most cases are straightforward. In the case where C = let x = e1 in C2, let
C ′ = [←֓(e1)/x] C2; note that x is bound in C[e] so it cannot appear free in e.

In the ‘Moreover’ part, we show the two interesting cases:

• E = let x = E0 in e2 ←֓(let x = E0[e] in e2) = [←֓(E0[e])/x] (←֓(e2)). It is given that E [e] is let-
respecting, so ←֓(e2) = E2[x] for some E2. By IH, ←֓(E0[e]) = E ′

0[←֓(e)] for some E ′
0. Assuming

x appears linearly, ←֓(let x = E0[e] in e2) = [E ′
0[←֓(e)]/x] E2[x] = E2[E

′
0[←֓(e)]]. Let E ′ = E2[E

′
0].

• E = let x = v in E0 ←֓(let x = v in E0[e]) = [←֓(v)/x] (←֓(E0[e])).

By IH, this is equal to [←֓(v)/x] E ′
0[←֓(e)] for some E ′

0. By Proposition 5.22, ←֓(v) is a value.
Replacing the value (x) with the value (←֓(v)) cannot affect whether a subterm (←֓(e)) is in
evaluation position. Therefore ←֓(let x = v in E0[e]) = E ′[←֓(e)], where E ′ = [←֓(v)/x] E ′

0.

August 6, 2007

5.6. SOUNDNESS 133

Proposition 5.26. For all C, if ←֓(e1) = ←֓(e2) then ←֓(C[e1]) = ←֓(C[e2]).

Proof. By induction on C.

Lemma 5.27. If ě →֒ L+ e ′ then e ′ value.

Proof. By induction on the derivation. We consider only rules deriving a conclusion where the
domain of the translation is a pre-value. In most of those cases, e ′ = x so e ′ value is immediate.
Two cases require a little work:

• In the rule deriving (ě1, e2) →֒ (L1, L2) + (e ′1, e
′
2) we have ě = (ě1, e2); since (ě1, e2) prevalue,

according to the grammar of pre-values it must be the case that e2 prevalue; by IH, e ′2 value.
Also by IH, e ′1 value. Therefore e ′ = (e ′1, e

′
2) value.

• In the rule deriving c(ě) →֒ L+ c(e ′), we must apply the IH.

Lemma 5.28. If e →֒ L+ e ′ then L in e ′ is let-respecting.

Proof. By induction on the derivation. If e has any of the forms {x, λx. e0, u,fix u. e0, (e0 : As), (v0 :

As), fst(e0), snd(e0), (), x, c(e0), case e0 of ms} the case for the corresponding rule is fairly straight-
forward. The cases for e = ê1e2 and e = (ê1, e2) are similar. However, if e = ě1e2 or e = (ě1, e2) we
must take care: the corresponding rule interpolates the bindings from the translation of e2 between
L1 and e ′1 (where ě1 →֒ L1 + e

′
1). We show the e = (ě1, e2) case in full:

• Case : D ::

ě1 →֒ L1 + e
′
1 e2 →֒ L2 + e

′
2

ě1e2 →֒ L1, L2, x = e
′
1e

′
2 + x

ě1 →֒ L1 + e
′
1 Subd.

(L1 in e ′1) is let-respecting By IH

e2 →֒ L2 + e
′
2 Subd.

(L2 in e ′2) is let-respecting By IH

First we show that the bindings in L1 are let-respecting.

– Consider each y = ey in L1, where L1 = L11, y = ey, L12. By IH, L1 in e ′1 is let-respecting; in
particular, ←֓(L12 in e ′1) = E [y] for some E . By Lemma 5.15, we have [←֓(L12)] ←֓(e ′1) =

E [y]. This will be useful shortly.

Next, by the same lemma, we have

←֓(L12, L2, x = e
′
1e

′
2 in x) = [←֓(L12)] [←֓(L2)] [←֓(e ′1e

′
2)/x] x

= [←֓(L12)] [←֓(L2)] ←֓(e ′1e
′
2)

Since variables in BLV(Lk) are free only in e ′k, and in particular BLV(L12) ∩ e
′
2 = {} and

BLV(L2) ∩ e
′
1 = {}, we get

(
[←֓(L12)] ←֓(e ′1)

) (
[←֓(L2)] ←֓(e ′2)

)

August 6, 2007

134 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

We obtained [←֓(L12)] ←֓(e ′1) = E [y] earlier, so we get

←֓(L12, L2, x = e
′
1e

′
2 in x) = E [y]

(
[←֓(L2)] ←֓(e ′2)

)

Let E ′ = E [y] ([←֓(L2)] ←֓(e ′2)). This is the evaluation context that shows the binding of y

is let-respecting.

Showing that the bindings in L2 are let-respecting starts out similarly, but then hinges on ě1
being a pre-value, which allows us to show e ′1 value:

– Consider each y = ey in L2, where L2 = L21, y = ey, L22. By IH, L2 in e ′2 is let-respecting; in
particular, ←֓(L22 in e ′2) = E [y] for some E . By Lemma 5.15, we have [←֓(L22)] ←֓(e ′2) =

E [y]. This will be useful shortly.

Next, by the same lemma, we have ←֓(L22, x = e
′
1e

′
2 in x) = [←֓(L22)] [←֓(e ′1e

′
2)/x] x =

[←֓(L22)] ←֓(e ′1e
′
2). Since variables in BLV(Lk) are free only in e ′k, and in particular

BLV(L22) ∩ e
′
2 = {}, we get (

←֓(e ′1)
) (

[←֓(L22)] ←֓(e ′2)
)

We have ě1 →֒ L1 + e
′
1, so e ′1 value by Lemma 5.27. By Proposition 5.22, ←֓(e ′1) value.

Earlier, we obtained [←֓(L22)] ←֓(e ′2) = E [y], so let E ′ = ←֓(e ′1) E [y]; this is the evaluation
context that shows the binding of y is let-respecting.

Lemma 5.29. If C[e] is let-respecting and FLV(e) ⊆ FLV(C[e]), then C[x] is let-respecting.

Proof. By induction on C. Most cases are straightforward; if C = let y = e1 in C ′ we need to
show that y is in evaluation position in ←֓(C ′[e]). By Proposition 5.24 there exists C ′′ such that
←֓(C ′[e]) = C ′′[←֓(e)] and ←֓(C ′[x]) = C ′′[x]. It is given that C[e] = let y = e1 in C ′[e] is let-respecting
so C ′′[←֓(e)] = E [y] for some E . Since FLV(e) ⊆ FLV(C[e]) and y /∈ FLV(C[e]) (it is bound inside C[e]),
we have y /∈ FLV(e). Then y /∈ FLV(←֓(e)). Replacing a subterm with a value (x) in E [y] must yield
a term of the form E ′[y]. By IH, C ′[x] is let-respecting.

Soundness is now quite easy to formulate and prove.

Theorem 5.30 (Let-Normal Soundness). If Γ ;∆ ⊢ e ↓let↑let C where e is let-respecting then Γ ;∆ ⊢

←֓(e) ↓L↑L C.

Proof. By induction on the given derivation. Since the two systems share most of their rules, most
of the cases are straightforward. For the remaining cases, we proceed as follows:

• Case let: Apply the IH to each premise. Since e is let-respecting, there exists an evaluation
context E such that ←֓(e) = E [e ′]. Apply directL.

• Cases contra, ⊥L: Use Propositions 5.20 and 5.21.

• Case ⊤I: Use Propositions 5.20, 5.21, and 5.22.

Corollary 5.31. (Let-Normal Soundness) If e →֒ L+ e ′ and ·; · ⊢ L in e ′ ↓let C then ·; · ⊢ e ↓L C.

Proof. By Lemma 5.28, L in e ′ is let-respecting. By Theorem 5.30, ·; · ⊢ ←֓(L in e ′) ↓L C. Substitut-
ing e for ←֓(L in e ′), justified by Proposition 5.19, yields the result.

August 6, 2007

5.7. COMPLETENESS 135

5.7 Completeness

In this section, we show that given a term e that is well typed in the left tridirectional type system,
the let-normal translation L in e ′ where e →֒ L + e ′ is well typed in the let-normal type system.
To be precise, given a derivation D deriving Γ ;∆ ⊢ e ↓L C we must construct a derivation Γ ;∆ ⊢
L in e ′ ↓let C, where e →֒ L + e ′. Attempts to prove this in a straightforward way, that is, by
induction on the derivation, failed: rule directL means that the relationship between the “shapes”
of D and e is nontrivial. Nor is L+ e ′ trivially compositional in e: in particular, for a given subterm
of e there is not always a subterm of L+ e ′ corresponding to it.

Instead, the completeness proof proceeds as follows:

1. Mark e with let bindings according to the given derivation: wherever directL is used add a
corresponding let. However, if ∧I or another subject-duplicating rule is used, the subderiva-
tions need not apply directL in the same way, resulting in distinct terms to which ∧I cannot
be applied. In those cases we use the second step Transform inductively to obtain typing
derivations for the canonical version of the subterm, to which ∧I can be applied.

The main component of this step is Lemma 5.79, which produces a let-system typing deriva-
tion for a new term. This term is not necessarily in canonical let-normal form. For example, if
the original left tridirectional typing derivation for λx. x does not use directL at all, no let bind-
ings are created, which does not match the canonical let-normal translation λx. let x = x in x.

2. Transform the marked term into L + e ′ in small steps, adding or moving one let at a time,
systematically approaching L + e ′. The main component of this step is Lemma 5.78, which
relies on the lemmas in Section 5.7.4 to show that types are preserved as lets are added
and moved. We define a syntactic measure (a tuple of natural numbers) that quantifies how
different a term is from L+ e ′; each let-manipulating step reduces the measure, bringing the
term closer to L + e ′. The last piece of this puzzle is to check that when the measure is all
zeroes, the term is L+ e ′, shown by Lemma 5.72.

The completeness theorem itself (5.80) simply applies Lemmas 5.79 and 5.78 (and a final bit
of tedious syntactic reasoning).

The remainder of this chapter consists of proofs and the infrastructure necessary for them. It
may be helpful at this point to skim Lemma 5.79 and Theorem 5.80.

5.7.1 Let-free paths and the ‘precedes’ relation

A let-free viable path is one that (a) skips over no let and (b) leads to a hole [] that, if replaced by
a term in synthesizing form, can be named by directL, perhaps only after applying directL to other
subterms. For example, (λx. e) [] is a let-free viable path (directL could be applied immediately
with E = (λx. e) []), as is ((e1e2)[] (directL can be applied first with E1 = ([]) · · · , yielding x [];
directL can then be applied with E2 = x []).

Definition 5.32 (Let-Free Viable Paths).

W ::= [] | W e | ěW | (W, e) | (ě,W) | fst(W) | snd(W)

| (W : As) | c(W) | case W of ms | let x =W in e

August 6, 2007

136 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Lemma 5.33. If E = W and W[let x = e2 in e3] is let-respecting then W[e3] is let-respecting.

Proof. By induction on W. The only vaguely interesting case is when W = let y =W ′ in e4. By
induction, W ′[e3] is let-respecting. Since the given term is let-respecting, there exists E4 such that
e4 = E4[y]; also, e4 is let-respecting. Therefore let y =W ′[e3] in e4 is let-respecting.

Definition 5.34. A subterm e ′ of e is in let-free viable position if there exists W such that e = W[e ′].
A variable x is in let-free viable position [in its scope] if, in let x = e1 in e2, there exists W such

that e2 = W[x].

Note that the languages defined by the various contexts satisfy
L(E)
L(W)

⊂ L(Q) ⊂ L(C) where all

inclusions are proper. (It is not the case that L(E) ⊆ L(W), since let x = v in [] is an E but not a W.)
We also say what it means for a term to precede another:

Definition 5.35. Given e1 and e2 such that C1[e1] = C2[e2] = e, we say that e1 precedes e2 in e if e1
appears to the left of e2 when the term is written out in the usual way.

5.7.2 Properties of →֒

Here we show that →֒ is a function, so there is a single canonical let-normal version of any direct-
style term, and that →֒ is injective, so no distinct let-normal terms share “common ancestry”.

Proposition 5.36. The →֒ translation is a function: If e →֒ L1 + e1 and e →֒ L2 + e2 then L1 = L2
and e1 = e2.

Proof. By induction on the derivation of the judgments.

The following proposition is used only in the proof of Proposition 5.38.

Proposition 5.37. If e →֒ L+ e ′ then e ′ is a linear variable if and only if e prevalue.

Proof. By inspection of each rule’s conclusion.

Proposition 5.38. The →֒ translation is injective: If e1 →֒ L+ e ′ and e2 →֒ L+ e ′ then e1 = e2.

Proof. By induction on the derivation of the judgments.
Except for those rules with a pair or application on the left hand side of the conclusion, all the

right hand sides are syntactically disjoint: for instance, the only rule concluding a judgment with
(. . . , x = (· · · : As)) + x on the right is the rule with (e : As) on the left. So (again, leaving out the
pair and application rules) whatever rule derived e1 →֒ L+ e ′ also derived e2 →֒ L+ e ′.

The two rules for application are obviously syntactically disjoint in the r.h.s. of their conclusion
from all the others, but not from each other. However, again the same rule must conclude both
derivations. Suppose, for a contradiction, that the anti-value rule concludes ê11e12 →֒ L + e ′ and
the pre-value rule concludes ě21e22 →֒ L + e ′. In both rules, the last binding in L has the form
x = e ′1 . . . ; the . . . might vary but the e ′1 in the first rule is identical to the e ′1 in the second.6 In the

6Note that to apply the IH here, we would need to prove that the ‘. . . ’ are actually the same.

August 6, 2007

5.7. COMPLETENESS 137

first rule, we have a premise ê11 →֒ · · ·+ e ′1. By Proposition 5.37, e ′1 is not a linear variable. In the
second rule, we have a premise ě21 →֒ · · · + e ′2. But by Proposition 5.37, e ′1 is a linear variable, a
contradiction.

The reasoning for the pair rules is similar.

5.7.3 Position and ordering of let-bindings

We give a number of tedious syntactic definitions. The intuition about roots (Definition 5.41) is
that a root is somewhere that the canonical translation →֒ may place a sequence of let-bindings.
In the course of letification (Corollary 5.49), we create lets that are not at roots—these are called
prickly—and permute them outward (Corollary 5.63) until they are.

For similar reasons, we call terms like let x = (v1 : As) in e2 brittle, since they need to be slack-
ened (changed to let ∼x = (v1 : As) in e2, using Corollary 5.51) to obtain a program in canonical
let-normal form.

Finally, even when all the prickly bindings are at roots and all the brittle bindings have been
slackened, individual bindings in a sequence may appear transposed, as in let y =y in let x = x in (x, y).
The unwinding of that term is (x, y), but the canonical translation is let x = x in let y =y in (x, y),
with linear variables used in the same order they are bound. So the bindings must be swapped
(with Lemma 5.69).

Definition 5.39 (Colocation). A set of let-bindings is colocated if there is a subterm L in e ′ such
that every binding in the set is in L.

Definition 5.40. A decomposition L in e is maximal iff e is not any kind of let.

Definition 5.41. A term e ′ such that C[e ′] = e is a root in e if e ′ = e or e ′ is a case arm or the body
of a λ or fix (i.e. if C = [] or C = C ′[case e of . . . || . . .⇒ [] || . . .] or C = λx. [] or C = fix u. []).

We call a binding that is not part of a leftmost sequence of bindings at some root prickly:

Definition 5.42. Given a term e = C[e0] where e0 = let x = e1 in e2, the binding x = e1 is prickly iff
there exists W 6= [] and C ′ such that C = C ′[W].

Remark 5.43. For example, the let-binding in x (let x = e1 in e2) is prickly (with W = x[]). On
the other hand, the binding in (case e0 of ms) (let x = e1 in e2) is not, since W paths cannot cross
anti-values such as case e0 of ms.

Also note that the canonical translation →֒ does not create prickly bindings.

Definition 5.44. A subterm e ′ of an expression e is brittle if e ′ = let x = (v1 : As) in e2 and, in ←֓(e),
the unwinding of v1 is a value.

Remark 5.45. Note that the unwinding of the value v1 is not necessarily a value, as in

e = let y =y z in

e ′︷ ︸︸ ︷
let x = ((y, ())︸ ︷︷ ︸

v1

: As) in e2

←֓(e) = ((y z︸︷︷︸
unwinding of x

, ()) : As)

August 6, 2007

138 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Definition 5.46 (Transposition). A pair of linear variables 〈x, y〉 is transposed iff (1) the bindings
of x and y are colocated, (2) in the unwinding, x precedes y, (3) x is bound after y.

5.7.4 Type preservation lemmas

In this section, we prove that each of the following operations, when applied to a well typed term,
yields a well typed term:

• adding a binding for a synthesizing subterm (letification)

• changing a let binding into a let∼ binding (slackening)

• moving a let or let∼, subject to certain conditions (permutation and value permutation)

The subsections are in the order in which these lemmas are used in the proof of Lemma 5.78:
we first bind all synthesizing subterms without bindings, then slacken some of the bindings, then
reorder the bindings to ensure that subterms are bound in the order they are used.

In this section, we silently use the fact that terms never contain bindings of the form let x = y in e.
The reader can verify that no derivations involving such terms ever arise.

Letification

The letification lemma shows that adding a let binding a term in synthesizing form preserves typing.
Given a term E [e ′] where e ′ is in synthesizing form, the binding is inserted at the nearest checking

position. That is, if e ′ is in a checking position the binding is inserted at that point: the term becomes
E [let x = e ′ in x]. Otherwise, we go up the syntax tree toward the root until a checking position is
reached. For example, in (x(y), z) the subterm e ′ = x is in a synthesizing position in x(y), so we
insert the binding at the nearest checking position, yielding (let x = x in x(y), z).

In the example (x(y), z), we could also insert the binding outside the pair: let x = x in (x(y), z).
However, the proof requires that there be no choice in the matter: in ∧I, ∨L and ∧-ct the term is
duplicated in both premises, so in those cases we need to apply the induction hypothesis twice. If
we do not fix the position of the new binding, applying the IH twice could result in different terms,
leaving us unable to reapply the rule.

The nearest checking position function 〈↓〉(−) is defined in Figure 5.8.

Lemma 5.47 (Letification). Assume e ′ is in synthesizing form, but is not a linear variable.

(1) If Γ ;∆ ⊢ E [e ′] ↓ C then Γ ;∆ ⊢ E ′[let x = e ′ in E ′′[x]] ↓ C
where E ′ = 〈↓〉(E) and E = E ′[E ′′].

(2) If Γ ;∆ ⊢ E [e ′] ↑ C then either

(a) E = [] (and therefore 〈↓〉(E) = []) and there exist A ′, ∆1, ∆2 such that ∆ = (∆1, ∆2) and

Γ ;∆1 ⊢ e
′ ↑ A ′ and Γ ;∆2, x:A

′ ⊢ E [x] ↑ C, or

(b) E 6= [] and Γ ;∆ ⊢ E ′[let x = e ′ in E ′′[x]] ↑ C
where E ′ = 〈↓〉(E) and E = E ′[E ′′].

August 6, 2007

5.7. COMPLETENESS 139

〈↓〉([]) = []

〈↓〉((E , e)) = (〈↓〉(E), e)
〈↓〉((v, E)) = (v, 〈↓〉(E))

〈↓〉(Ee) = 〈↓〉(E) e if 〈↓〉(E) 6= [], otherwise []

〈↓〉(vE) = v 〈↓〉(E)
〈↓〉(fst(E)) = fst(〈↓〉(E)) if 〈↓〉(E) 6= [], otherwise []

〈↓〉(snd(E)) = snd(〈↓〉(E)) if 〈↓〉(E) 6= [], otherwise []

〈↓〉(E : As) = (〈↓〉(E) : As)
〈↓〉(c(E)) = c(〈↓〉(E))

〈↓〉(case E of ms) = case 〈↓〉(E) of ms if 〈↓〉(E) 6= [], otherwise []

〈↓〉(let x = E in e) = let x = 〈↓〉(E) in e if 〈↓〉(E) 6= [], otherwise []

〈↓〉(let x = v in E) = let x = v in 〈↓〉(E)

Figure 5.8: The nearest checking position function 〈↓〉(−)

Remark 5.48. In part (2), we have a synthesizing term E [e ′]: following some path from the root of
E [e ′], we reach a subterm e ′. If there is no checking position along that path (if 〈↓〉(E) = []), there
is nowhere to insert a let. So instead, we give the lemma’s “caller” the facts necessary to insert the
let in a more shallow position (in whatever term has E [e ′] as a subterm). This explains part (2)(a).
If we happen to have a checking position in E (as for example E = (x [])), we can insert the let and
produce a result (2)(b) that mirrors (1).

Proof. For (1), by induction on the derivation of Γ ;∆ ⊢ E [e ′] ↓ C; for (2), by induction on the
derivation of Γ ;∆ ⊢ E [e ′] ↑ C. In order for the induction hypothesis to be well-founded in the case
for rule sub, we consider a synthesis judgment Γ ;∆ ⊢ e ↑ C1 to be smaller than a checking judgment
Γ ;∆ ⊢ e ↓ C2 (regardless of C1 and C2).

For (1), the cases fall into several categories:

(a) Cases that are impossible because there exists no evaluation context with a synthesizing sub-
term in evaluation position: 1I,→I, fix.

(b) Cases where the term is duplicated: ∧I, ∨L, ∧-ct. Here we apply the IH (1) to each premise.
Since E ′ and E ′′ are syntactically determined, they must be consistent across both applications
of the IH. For ∧I, it is clear that if E [e ′] value and E = E ′[E ′′] then E ′[let x = e ′ in E ′′[x]] value.

(c) Cases with 0 or 1 premises, where the premise (if any) is in the checking direction and types
the same term as the conclusion: ⊤I, ΠI, ⊃I, ΣI, OI, ∨I1,2, contra, ⊥L, ΣL, OL, ∧L1,2, ΠL, ⊃L.
Here we simply apply the IH (1) and reapply the rule, or, for ⊤I and contra, we reapply the
rule to the appropriate term.

August 6, 2007 — Proof of Lemma 5.47

140 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

(d) Cases where all premises are in the checking direction and we decompose the subject term: ∗I,
δI. In these cases we simply apply the IH (1) with a smaller evaluation context and reapply the
rule. The syntactic conditions E ′ = 〈↓〉(E) and E ′ = E ′[E ′′] are easy to satisfy using the result of
applying the IH and the definition of 〈↓〉(−).

(e) Other cases: let, sub, δE.

• Case let: D ::

Γ ;∆ ⊢ e1 ↑ B Γ ;∆ ′, y:B ⊢ e2 ↓ C
Γ ;∆,∆ ′ ⊢ let y = e1 in e2 ↓ C

We have E [e ′] = (let y = e1 in e2).

e ′ must be a subterm of either e1 or e2.

– e ′ is a subterm of e1: Then E = (let y = E1 in e2) and e1 = E1[e
′] for some E1. By IH (2),

either

(a) there exists A ′ such that Γ ;∆1 ⊢ e
′ ↑ A ′ and Γ ;∆2, x:A

′ ⊢ E1[x] ↑ B, or

(b) E1 6= [] and Γ ;∆ ⊢ E ′
1[let x = e ′ in E ′′

1 [x]] ↑ B where E ′
1[E

′′
1] = E1 and E ′

1 = 〈↓〉(E1).

Subcase (a):

∆ =∆1, ∆2

Γ ;∆2, x:A
′ ⊢ E1[x] ↑ B By IH (2)(a)

Γ ;∆ ′, y:B ⊢ e2 ↓ C Subd.

Γ ;∆2, x:A
′, ∆ ′ ⊢ let y = E1[x] in e2 ↓ C By let

Γ ;∆1 ⊢ e
′ ↑ A ′ By IH (2)(a)

Γ ;∆1, ∆2, ∆
′ ⊢ let x = e ′ in let y = E1[x] in e2 ↓ C By let

Let E ′ = []

and E ′′ = E = let y = E1 in e2.

〈↓〉(E1) = [] By IH (2)(a)

〈↓〉(let y = E1 in e2) = [] By defn. of 〈↓〉(−)

Z E ′ = 〈↓〉(E)
E = E ′[E] By E ′ = []

Z E = E ′[E ′′] By E ′′ = E

Γ ;∆1, ∆2, ∆
′ ⊢ let x = e ′ in let y = E1[x] in e2 ↓ C By let

Γ ;∆1, ∆2, ∆
′ ⊢ E ′[let x = e ′ in E ′′[x]] ↓ C By E ′′ = let y = E1 in e2 and E ′ = []

Z Γ ;∆,∆ ′ ⊢ E ′[let x = e ′ in E ′′[x]] ↓ C By ∆ = ∆1, ∆2

Subcase (b):

August 6, 2007 — Proof of Lemma 5.47

5.7. COMPLETENESS 141

Γ ;∆ ⊢ E ′
1[let x = e ′ in E ′′

1 [x]] ↑ B By IH (2)(b)

Γ ;∆ ′, y:B ⊢ e2 ↓ C Subd.

Γ ;∆,∆ ′ ⊢ let y = E ′
1[let x = e ′ in E ′′

1 [x]] in e2 ↓ C By let

Let E ′ = let y = E ′
1 in e2 and E ′′ = E ′′

1 .

Z Γ ;∆,∆ ′ ⊢ E ′[let x = e ′ in E ′′[x]] ↓ C Using previous line

E1 6= [] By IH (2)(b)

〈↓〉(E) = 〈↓〉(E1) By defn. of 〈↓〉(−)

E ′
1 = 〈↓〉(E1) By IH (2)(b)

E ′ = let y = E ′
1 in e2 above

= let y = 〈↓〉(E1) in e2 By E ′
1 = 〈↓〉(E1)

= 〈↓〉(let y = E1 in e2) By defn. of 〈↓〉(−) and E1 6= []

Z = 〈↓〉(E) By E = let y = E ′
1 in e2

E = let y = E1 in e2 above

= let y = E ′
1[E

′′
1] in e2 By IH (2)(b)

= E ′[E ′′
1] By E ′ = let y = E ′

1 in e2

Z = E ′[E ′′] By E ′′ = E ′′
1

– e ′ is a subterm of e2: In this case, there exists E2 such that E = let y = e1 in E2, and e1 is
a value.

Γ ;∆ ⊢ e1 ↑ B Subd.

Γ ;∆ ′, y:B ⊢ e2 ↓ C Subd.

Γ ;∆ ′, y:B ⊢ E ′
2[let x = e ′ in E ′′

2 [x]] ↓ C By IH (1)

Γ ;∆,∆ ′ ⊢ let y = e1 in E ′
2[let x = e ′ in E ′′

2 [x]] ↓ C By let

Let E ′ = let y = e1 in E ′
2 (allowed since e1 value)

and E ′′ = E ′′
2 .

Z Γ ;∆,∆ ′ ⊢ E ′[let x = e ′ in E ′′[x]] ↓ C
E ′
2 = 〈↓〉(E2) By IH(1)

E ′ = let y = e1 in E ′
2 above

= let y = e1 in 〈↓〉(E2) By E ′
2 = 〈↓〉(E2)

= 〈↓〉(let y = e1 in E2) By defn. of 〈↓〉(−)

Z = 〈↓〉(E) By E = let y = e1 in E2

E2 = E ′
2[E

′′
2] By IH(1)

E = let y = e1 in E2 above

= let y = e1 in E ′
2[E

′′
2] By E2 = E ′

2[E
′′
2]

Z = E ′[E ′′] By E ′ = let y = e1 in E ′
2 and E ′′ = E ′′

2

• Case sub: Similar to the first subcase of let: apply IH (2) and either:

August 6, 2007 — Proof of Lemma 5.47

142 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

– apply sub to E [x] then apply let, or

– apply sub to E ′[let x = e ′ in E ′′[x]].

• Case δE: E must be case E0 of ms for some E0. Similar to sub.

Part (2):
Either E = [] or E 6= [].
If E = [], we show (2)(a): Let A ′ = C and ∆2 = ·. Then Γ ;∆ ⊢ E [e ′] ↑ C leads to Γ ;∆1 ⊢ e

′ ↑ A ′.
By var, Γ ;∆2, x:A

′ ⊢ E [x] ↑ C.
If E 6= [], we show (2)(b), and distinguish the following cases:

• Cases ΠE, ∧E1, ∧E2, ⊃E: Apply the IH (2). Since E 6= [], we obtain (2)(b). Reapplying the
rule yields the result.

• Case ctx-anno: IH (1) then show (2)(b).

• Cases var, fixvar: Under the assumption that E 6= [], these cases are impossible.

• Case →E: If e ′ is a subterm of e1, use IH (2), then reapply →E, showing (2)(b). If e ′ is a
subterm of e2, use IH (1) then reapply→E, showing (2)(b).

• Case var: Impossible: e ′ cannot be a linear variable.

Corollary 5.49 (Letification). If e = C[e ′] where e ′ is in synthesizing form and is not a linear variable

and is not the right hand side of a let-binding, and either

(1) Γ ;∆ ⊢ e ↓ C, or

(2) Γ ;∆ ⊢ e ↑ C and C is not an evaluation context in e

then Γ ;∆ ⊢ C ′[E ′[let x = e ′ in E ′′[x]]] ↓ C (if (1)),

or Γ ;∆ ⊢ C ′[E ′[let x = e ′ in E ′′[x]]] ↑ C (if (2))

for some C ′, E ′, E ′′ such that e = C ′[E ′[E ′′[e ′]]].

Proof. By induction on the given derivation. For case (1):

• If e ′ is in evaluation position in e, use Lemma 5.47.

• Otherwise, e ′ is not in evaluation position in e. If a “short-circuit” rule—contra or ⊥L—
concludes the derivation, apply that rule again to C[E ′[let x = e ′ in E ′′[x]]] for some E ′, E ′′

such that e0 = E ′[E ′′[e ′]] is a subterm of e. Use the IH on the premise whose subject has e ′

as a subterm. If that premise is synthesizing, its subject is in evaluation position in e (for
example, in δE on e = case e1 of ms, e1 is in evaluation position)7. Suppose e ′ were in
evaluation position in the premise’s subject; then it would be in evaluation position in e, a
contradiction. Hence the side condition on (2) is satisfied.

We finish by reapplying the rule.

7Every rule in the type system has its premises ordered left-to-right by subject: in →E, typing e1e2, the first premise’s
subject is e1 and the second premise’s subject is e2. Every set of premises so ordered consists of zero or one synthesis
judgments, followed by zero or more checking judgments. Thus the synthesizing premise, if any, “hugs the left edge” of
the term.

August 6, 2007 — Proof of Corollary 5.49

5.7. COMPLETENESS 143

For case (2), e ′ cannot be in evaluation position in e. Short-circuit rules are impossible (they
all have a checking judgment as conclusion), but otherwise proceed as in the second bullet in case
(1) above.

Slackening

Here we show that slackening a variable x—changing let x = v in e to let ∼x = v in e—preserves
typing. We must slacken x when v has the form (v ′ : As); it would be pointless to do it for other v,
since all other v have the principal synthesis property and need not be slackened.

Lemma 5.50. If Γ ;∆1 ⊢ v ↑ A and Γ ;∆2, x:A ⊢ e ↓ C
then Γ ;∆1, ∆2 ⊢ let ∼x = v in e ↓ C.

Proof. By ∼var, Γ ;∆1, ∆2,∼x = v ⊢ e ↓ C. By let∼, Γ ;∆1, ∆2 ⊢ let ∼x = v in e ↓ C.

Corollary 5.51 (Slackening). If Γ ;∆ ⊢ C[let x = v1 in e2] ↓ C then Γ ;∆ ⊢ C[let ∼x = v1 in e2] ↓ C.

Proof. By induction on the given derivation. In the case when a short-circuit rule such as contra

was used we simply replace the let with let ∼x = v in e and reapply. If let was used and C = [], we
apply Lemma 5.50, yielding the desired result. In all other cases, we apply the IH to the derivation
whose subject contains the let and reapply the rule.

Permutation

In this section, we prove that moving a let or let∼ leftward in a term, passing over no other lets, W: a let-free
viable path,
Def. 5.32

preserves typing:

If Γ ;∆ ⊢ W[let [∼] x = e ′ in e] ↓ C then Γ ;∆ ⊢ let [∼] x = e ′ in W[e] ↓ C.

For let∼ bindings, this can be proved quite easily. Recall that for let ∼x = e ′ in e, the variable
x is bound to e ′ without examining e ′; synthesizing a type for e ′ can be done at any later point.
Thus, we can move a slack binding backward without changing the part of the derivation where
we synthesize the type of e ′.

Lemma 5.52 (Slack Binding Inversion). If Γ ;∆ ⊢ let ∼x = v2 in e3 ↓ C then Γ ;∆,∼x = v2 ⊢ e3 ↓ C.

Proof. By induction on the given derivation.

• Case let∼: The subderivation constitutes the result.

• Case ⊥L: Apply ⊥L to yield Γ ;∆,∼x = v2 ⊢ e3 ↓ C .

• Case ∨L: Apply IH to each premise, then reapply ∨L.

• Cases ΣL, OL, ∧L1, ∧L2, ΠL, ⊃L: Apply IH to the premise, then reapply.

• Case sub: Impossible since let ∼x = v2 in e3 cannot synthesize a type.

August 6, 2007

144 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

• Case contra: Apply contra.

• Case ⊤I, ∧I, ΠI: Given (let ∼x = v2 in e3) value, we have e3 value. Apply the IH to each
premise (if any), then reapply the rule.

• Cases ∨I1, ∨I2, ΣI: Apply the IH to the premise, then reapply the rule.

The ↓↑ notation was first used in Lemma 3.13 and is described on page 68.

Lemma 5.53. If Γ ;∆ ⊢ W[let ∼x = e ′ in e] ↓↑ C then Γ ;∆,∼x = e ′ ⊢ W[e] ↓↑ C.

Proof. By induction on the given derivation. If W = · use Lemma 5.52. Otherwise apply the IH to
the appropriate premise and reapply the rule.

Lemma 5.54. If Γ ;∆ ⊢ W[let ∼x = e ′ in e] ↓ C then Γ ;∆ ⊢ let ∼x = e ′ in W[e] ↓ C.

Proof. By Lemma 5.53, Γ ;∆,∼x = e ′ ⊢ W[e] ↓ C. Applying let∼ gives the result.

The judgment {(Γ1;∆1), . . . , (Γn;∆n)} Ψ Γ ′;∆ ′, read “the set Γ1;∆1 through Γn;∆n joins Γ ′;∆ ′”
(in a way corresponding to the left rules) is defined in Figure 5.9.

Proposition 5.55. If {(Γ1;∆1), . . . , (Γn;∆n)} Ψ Γ ;∆, and

Γ1;∆1 ⊢ e ↓ B

and
...

and Γn;∆n ⊢ e ↓ B
are derivable, Γ ;∆ ⊢ e ↓ B is derivable.

Proof. By induction on the given derivation.

Lemma 5.56. If {Γi;∆i} Ψ Γ ′;∆ ′ then {Γi;∆i, ∆} Ψ Γ ′;∆ ′, ∆.

Proof. By induction on the given derivation.

Proposition 5.57. If Γ ⊢ A ↑ B then {Γ ;∆, x:B} Ψ Γ ;∆, x:A.

Proof. By induction on Γ ⊢ A ↑ B.

Lemma 5.58. If Γ ⊢ A ′ ↑ A then Γ ; x:A ′ ⊢ x ↑ A.

Proof. By induction on the derivation of Γ ⊢ A ′ ↑ A.

Lemma 5.59 (Synthesis Subtyping Weakening). If Γ ;∆1, x:A,∆2 ⊢ e ↓↑ B and Γ ⊢ A ′ ↑ A then

Γ ;∆1, x:A
′, ∆2 ⊢ e ↓↑ B.

Proof. By induction on the first derivation. In most cases, simply apply the IH and reapply the rule.
In the var case, use Lemma 5.58.

The result we would now like to obtain is the following, which moves a binding outward over
W:

August 6, 2007

5.7. COMPLETENESS 145

Γ∆s Ψ Γ ;∆ Γ∆s ::= · | Γ∆s, (Γ ;∆)

{(Γ ;∆)} Ψ Γ ;∆
Ψ-refl

Γ ;∆, x:A ⊢ e ↓C
Γ ;∆, x:A∧B ⊢ e ↓C ∧L1

Γ∆s Ψ Γ ;∆, x:A

Γ∆s Ψ Γ ;∆, x:A ∧ B
∧Ψ1

Γ ;∆, x:B ⊢ e ↓C
Γ ;∆, x:A∧B ⊢ e ↓C ∧L2

Γ∆s Ψ Γ ;∆, x:B

Γ∆s Ψ Γ ;∆, x:A ∧ B
∧Ψ2

Γ ;∆, x:[i/a]A ⊢ e ↓ C Γ ⊢ i : γ

Γ ;∆, x:Πa:γ.A ⊢ e ↓ C ΠL
Γ∆s Ψ Γ ;∆, x:[i/a]A Γ ⊢ i : γ

Γ∆s Ψ Γ ;∆, x:Πa:γ.A
ΠΨ

Γ, a:γ;∆, x:A ⊢ e ↓ C
Γ ;∆, x:Σa:γ.A ⊢ e ↓ C ΣL

Γ∆s Ψ Γ, a:γ;∆, x:A

Γ∆s Ψ Γ ;∆, x:Σa:γ.A
ΣΨ

Γ |= P Γ ;∆, x:A ⊢ e ↓ C
Γ ;∆, x:P ⊃ A ⊢ e ↓ C ⊃L

Γ |= P Γ∆s Ψ Γ ;∆, x:A

Γ∆s Ψ Γ ;∆, x:P ⊃ A
⊃Ψ

Γ, P;∆, x:A ⊢ e ↓ C
Γ ;∆, x:(P O A) ⊢ e ↓ C OL

Γ∆s Ψ Γ, P, a:γ;∆, x:A

Γ∆s Ψ Γ ;∆, x:(P O A)
OΨ

Γ ;∆, x:A ⊢ e ↓ C Γ ;∆, x:B ⊢ e ↓ C
Γ ;∆, x:A ∨ B ⊢ e ↓ C ∨L

Γ∆s1 Ψ Γ ;∆, x:A Γ∆s2 Ψ Γ ;∆, x:B

Γ∆s1 ∪ Γ∆s2 Ψ Γ ;∆, x:A ∨ B
∨Ψ

Figure 5.9: Definition of the ‘joins’ judgment. The left rules are repeated in this figure to show their
relationship to the ‘joins’ rules.

August 6, 2007

146 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

If Γ ;∆ ⊢ W[let x = e ′ in e] ↓ C then Γ ;∆ ⊢ let x = e ′ in W[e] ↓ C.

However, we cannot prove that without the lemma below. We need a synthesis version of the above
(or we cannot apply the IH to a ↑-premise, such as in rule sub), but we cannot just flip the ↓s to ↑s
because let x = e ′ in W[e] cannot synthesize anything. So instead the synthesis version must show
that e ′ synthesizes something and W[e] synthesizes something. Unfortunately, that is not enough:
if ∨L analyzes a linear variable free in e ′, after pushing e ′ outward we cannot reapply ∨L with
subject W[e] because linear variables free in e ′ are no longer available in the linear context. Nor
can we reapply ∨L with subject e ′, because we need e ′ ↑ . . . , not e ′ ↓ . . . , and ∨L is a checking
rule. We must delay applying ∨L until the checking mode is entered. Thus we produce not just a
single e ′ ↑ . . . and W[e] ↑ . . . but a set of them, with varying linear contexts (as the linear contexts
in the premises of ∨L differ). But we know that those varying linear contexts can be reconciled by
applying ∨L again; we express that knowledge through the Ψ judgment.

So much for the inductive reasoning when we go from a checking judgment in a rule’s con-
clusion to a synthesis judgment in a premise; but we also have rules like →E. To usefully apply
the induction hypothesis if W = vW ′ we must yield a set of e ′ ↑ . . . and W[e] ↓ . . . judgments
with varying linear contexts in the checking version of the result, not just in the synthesis version.
Finally, we have formulated part (b) of the lemma below.

The very last wrinkle is that in the contra and ⊥L cases, we cannot show e ′ ↑ . . . at all. However,
both contra and ⊥L are based on Γ and ∆ only, so Γ ;∆ ⊢ e∗ ↓ D for any e∗ and D. This is part (a).
At last, we know what to prove:

Lemma 5.60 (Let Inversion). If Γ ;∆ ⊢ W[let x = e ′ in e] ↓↑ C and ∆ let x = e ′ in W[e] ok where e ′

does not have the form (v : As)8 and does not have the form y then either

(a) for all D, Γ∗, ∆∗ such that Γ, Γ∗ ⊢ e∗ ok and ∆,∆∗ e∗ ok,

it is the case that Γ, Γ∗;∆,∆∗ ⊢ e∗ ↓ D, or

(b) for i from 1 to n, there exist Γi, Ai, ∆i1, ∆i2 such that

Γ, Γi;∆i1 ⊢ e
′ ↑ Ai and Γ, Γi;∆i2, x:Ai ⊢ W[e] ↓↑ C

and {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆.

Remark 5.61. The requirement ∆ let x = e ′ in W[e] ok excludes terms like W[let x = y() in e]

where W contains a binding of y and y /∈ dom(∆).

Proof. By induction on the first derivation.

• Cases var, →I, fixvar, fix, 1I are impossible, because the term typed cannot possibly have the
form W[let x = e ′ in e].

• Case→E: D ::

Γ ;∆1 ⊢ W ′[let x = e ′ in e] ↑ B→ C Γ ;∆2 ⊢ e2 ↓ B
Γ ;∆1, ∆2 ⊢ (W ′[let x = e ′ in e]) e2 ↑ C

8When this lemma is invoked, all (v : As) bindings will have been slackened with Lemma 5.54.

August 6, 2007 — Proof of Lemma 5.60

5.7. COMPLETENESS 147

(This is the first →E subcase, in which the let appears inside the function expression: W =

W ′e2.)

It is given that ∆ let x = e ′ in W[e] ok. Since ∆ = ∆1, ∆2 and W = W ′e2,

∆1, ∆2 let x = e ′ in (W ′[e]) e2 ok

By Proposition 5.12, ∆2 e2 ok. It is then clear from the definition of that we can strip ∆2
and e2 out to get

∆1 let x = e ′ in W ′[e] ok

which lets us apply the IH to the first premise. If it shows part (a), we are done (note that
part (a) is not tied to a particular term).

If it shows (b), then for each i, let ∆i1 = ∆
′
i1 and ∆i2 = ∆1, ∆

′
i2.

Z Γ, Γi;∆
′
i1 ⊢ e

′ ↑ Ai From IH

Γ, Γi;∆
′
i2, x:Ai ⊢ W ′[e] ↑ B→ C From IH

Γ ;∆2 ⊢ e2 ↓ B Subd.

Γ, Γi;∆2 ⊢ e2 ↓ B Weakening

Γ, Γi;∆
′
i2, ∆2, x:Ai ⊢ (W ′[e]) e2 ↑ C By→E

Z Γ, Γi;∆
′
i2, ∆2, x:Ai ⊢ W[e] ↑ C By W = W ′e

To show the joining:

Γ, Γi;∆
′
i1, ∆

′
i2 Ψ Γ ;∆1 From IH

Z Γ, Γi;∆
′
i1, ∆

′
i2, ∆2 Ψ Γ ;∆1, ∆2 By Lemma 5.56

• Case→E: D ::

Γ ;∆1 ⊢ e1 ↑ B→ C Γ ;∆2 ⊢ W ′[let x = e ′ in e] ↓ B
Γ ;∆1, ∆2 ⊢ e1(W

′[let x = e ′ in e]) ↑ C

(This is the second →E subcase, in which the let appears inside the argument expression:
W = e1W

′.)

Apply the IH to the subderivation Γ ;∆2 ⊢ W ′[let x = e ′ in e] ↓ B. If it shows part (a), we are
done (part (a) is tied only to the context Γ , which is the same in the conclusion and second
premise of→E).

If it shows (b), then for each i, let ∆i1 = ∆1, ∆
′
i1 and ∆i2 = ∆

′
i2.

Z Γ, Γi;∆
′
i1 ⊢ e

′ ↑ Ai From IH

Γ, Γi;∆
′
i2, x:Ai ⊢ W ′[e] ↓ B From IH

Γ ;∆1 ⊢ e1 ↑ B→ C Subd.

Γ, Γi;∆1 ⊢ e1 ↑ B→ C Weakening

Γ, Γi;∆1, ∆
′
i2, x:Ai ⊢ e1 (W

′[e]) ↑ C By→E

Z Γ, Γi;∆1, ∆
′
i2, x:Ai ⊢ W[e] ↑ C By W = e1W

′

To show the joining:

August 6, 2007 — Proof of Lemma 5.60

148 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Γ, Γi;∆
′
i1, ∆

′
i2 Ψ Γ ;∆2 From IH

Z Γ, Γi;∆1, ∆
′
i1, ∆

′
i2 Ψ Γ ;∆1, ∆2 By Lemma 5.56

• Case sub: Apply IH to show that either (a) or (b) holds. If (a), we’re done (part (a) is
dependent only on Γ and ∆, which are the same in the premise and conclusion of sub). If (b):

Z Γ, Γi;∆i1 ⊢ e
′ ↑ Ai (for i ∈ 1..n) IH (b)

Z {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆ IH (b)

Γ, Γi;∆i2; x:Ai ⊢ W[e] ↑ C (for i ∈ 1..n) IH (b)

Γ, Γi ⊢ C ≤ C (for i ∈ 1..n) By Lemma 2.9

Z Γ, Γi;∆i2; x:Ai ⊢ W[e] ↓ C (for i ∈ 1..n) By sub

• Cases ∗I, δI, δE, ∗E1, ∗E2, ∧E1,2, ΠE, ctx-anno: Roughly analogous to case→E.

• Case let: D ::

Γ ;∆ ′ ⊢ e1 ↑ B Γ ;∆ ′′, y:B ⊢ e2 ↓ C
Γ ;∆ ′, ∆ ′′ ⊢ let y = e1 in e2 ↓ C

If W = [] then the subderivations provide what we needed to show ({(Γ ;∆ ′, ∆ ′′)} Ψ

(Γ ;∆ ′, ∆ ′′) by Ψ-refl). Otherwise, by definition of W, W = let y =W ′[let x = e ′ in e] in e2.

e1 =W ′[let x = e ′ in e] Given

Γ ;∆ ′ ⊢ W ′[let x = e ′ in e] ↑ B Subd.

Use the IH. If (a), we’re done. If (b), then

Z {(Γ ;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆ ′, ∆ ′′ By IH (b)

and for all i:

Z Γ, Γi;∆i1 ⊢ e
′ ↑ Ai By IH (b)

Γ, Γi;∆i2, x:Ai ⊢ W ′[e] ↑ B By IH (b)

Γ ;∆ ′′, y:B ⊢ e2 ↓ C Subd.

Γ, Γi;∆
′′, y:B ⊢ e2 ↓ C Weakening

Z Γ, Γi;∆i2, x:Ai, ∆
′′ ⊢ let y =W ′[e] in e2 ↓ C By let

• Case ΣI: D ::

Γ ;∆ ⊢ W[let x = e ′ in e] ↓ [j/a]C ′ Γ ⊢ j : γ

Γ ;∆ ⊢ W[let x = e ′ in e] ↓ Σa:γ.C ′

Use the IH. If (a), we’re done. If (b):

Γ, Γi;∆i1 ⊢ e
′ ↑ Ai and Γ, Γi;∆i2, x:Ai ⊢ W[e] ↓ [i/a]C ′ (for i ∈ 1..n) From IH

Γ ⊢ j : γ Subd.

Γ, Γi ⊢ j : γ (for i ∈ 1..n) By Property 2.3

Z Γ, Γi;∆i2, x:Ai ⊢ W[e] ↓ Σa:γ.C ′ (for i ∈ 1..n) By ΣI

Z {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆ From IH

August 6, 2007 — Proof of Lemma 5.60

5.7. COMPLETENESS 149

• Case contra: Show (a).

• Case ⊤I: Let ∆11, ∆12 = ∆. We have a term W[let x = v ′ in v2] value that checks against C.
By assumption, v ′ is not an annotation. Therefore we can apply Lemma 5.4 to show there
exists A1 such that Γ ;∆11 ⊢ v

′ ↑ A1. By ⊤I, Γ ;∆12 ⊢ W[v2] ↓ ⊤.

• Case ΠI: D ::

Γ, a:γ;∆ ⊢ W[let x = e ′ in e] ↓ C ′

Γ ;∆ ⊢ W[let x = e ′ in e] ↓ Πa:γ.C ′

We have W[let x = e ′ in e] value, so e ′ value, e value, and W[e] value.

If the IH yields (a): We cannot “short out” instantly as usual, since Γ, a:γ is not the same as Γ ;
we must show (b). We know e ′ is a value and that it is a synthesizing form. The only syntactic
forms that are synthesizing values are annotations, linear variables, and ordinary variables.
By assumption, e ′ is neither an annotation nor a linear variable. Therefore it must be some
ordinary variable y. By Lemma 5.4, Γ ; · ⊢ e ′ ↑ A∗ for some A∗. Now let e∗ = W[e] and
D = C ′; from the IH, we get Γ, a:γ;∆, x:A∗ ⊢ W[e] ↓ C ′. By ΠI, Γ ;∆, x:A∗ ⊢ W[e] ↓ Πa:γ.C ′.

Since {Γ ;∆} Ψ Γ ;∆, we’re done.

If the IH yields (b):

Γ, a:γ, Γ ′i ;∆
′
i1 ⊢ e

′ ↑ Ai and Γ, a:γ, Γ ′i ;∆
′
i2, x:Ai ⊢ W[e] ↓ C ′ (for i ∈ 1..n) From IH

{Γ, a:γ, Γ ′i ;∆
′
i1, ∆

′
i2 | i ∈ 1..n} Ψ Γ, a:γ;∆ From IH

Γ, Γ ′i ;∆
′
i2, x:Ai ⊢ W[e] ↓ Πa:γ.C ′ (for i ∈ 1..n) By ΠI

Given Γ, a:γ, Γ ′i ; · ⊢ e
′ ↑ Ai for all i, we have by principal synthesis (Lemma 5.3) that there

exists A∗ such that Γ, a:γ, Γ ′i ; · ⊢ e
′ ↑ A∗ and for all i, Γ, a:γ, Γ ′i ⊢ A∗ ↑ Ai. In fact, A∗ = Γ(x),

and {a} ∪ FV(Γ ′i) and FV(A∗) are disjoint, so Γ ; · ⊢ e ′ ↑ A∗.

Recall that the multiplicity of derivations resulted from the subcase of ∨L in which the linear
variable of union type being split by ∨L appeared in e ′. In the present situation (resulting
from the value restriction), e ′ is some variable y, so we can join the judgments now.

Let ∆12 = ∆ and Γ1 = · and ∆11 = ·.

Γ, a:γ, Γ ′i ;∆
′
i2, x:Ai ⊢ W[e] ↓ C ′ (for i ∈ 1..n) Above

Γ, a:γ, Γ ′i ⊢ A
∗ ↑ Ai (for i ∈ 1..n) Above

Γ, a:γ, Γ ′i ;∆
′
i2, x:A

∗ ⊢ W[e] ↓ C ′ (for i ∈ 1..n) By Lemma 5.59

{Γ, a:γ, Γ ′i ;∆
′
i2 | i ∈ 1..n} Ψ Γ, a:γ;∆ Above

{Γ, a:γ, Γ ′i ;∆
′
i2, x:A

∗ | i ∈ 1..n} Ψ Γ, a:γ;∆, x:A∗ By Lemma 5.56

Γ, a:γ;∆, x:A∗ ⊢ W[e] ↓ C ′ By Proposition 5.55

W[let x = e ′ in e] value ΠI restricted to values

W[e] value

Γ ;∆, x:A∗ ⊢ W[e] ↓ Πa:γ.C ′ By ΠI

Z Γ, Γ1;∆12, x:A
∗ ⊢ W[e] ↓ Πa:γ.C ′ By ∆12 = ∆ and Γ1 = ·

August 6, 2007 — Proof of Lemma 5.60

150 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Γ ; · ⊢ y ↑ A∗ Above

Z Γ, Γ1;∆11 ⊢ y ↑ A∗ By Γ1 = · and ∆11 = ·

{Γ ;∆} Ψ Γ ;∆ By Ψ-refl

Z {Γ, Γ1;∆12} Ψ Γ ;∆ By ∆12 = ∆ and Γ1 = ·

• Case ⊃I: D ::

Γ, P;∆ ⊢ W[let x = e ′ in e] ↓ C ′

Γ ;∆ ⊢ W[let x = e ′ in e] ↓ P ⊃ C ′

Use the IH. If (a), we’re done. If (b):

Γ, P, Γi;∆i1
Γ, P, Γi;∆i2, x:Ai

⊢
⊢
e ′ ↑ Ai
W[e] ↓ C ′

}
(for i ∈ 1..n) By IH

W[let x = e ′ in e] value ⊃I restricted to values

W[e] value

Z Γ, Γi;∆i2, x:Ai ⊢ W[e] ↓ P ⊃ C ′ (for i ∈ 1..n) By ⊃I

Z {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆ By IH

• Case ∧I: D ::

Γ ;∆ ⊢ W[let x = e ′ in e] ↓ C1 Γ ;∆ ⊢ W[let x = e ′ in e] ↓ C2
Γ ;∆ ⊢ W[let x = e ′ in e] ↓ C1 ∧ C2

Use the IH twice.

– If either use of the IH shows (a), show (a).

– If both uses show (b), much of the reasoning follows the ΠI case above; we omit some
of the detail here. As in ΠI we have a value restriction; by assumption, e ′ is not an
annotation; we assume that there is no binding with just a linear variable on the right
hand side. Thus, e ′ must be some ordinary variable y.

IH on first premise IH on second premise

{(Γ, Γ 1i ; ·, ∆
1
i2) | i ∈ 1..n1} Ψ Γ ;∆ {(Γ, Γ 2i ; ·, ∆

2
i2) | i ∈ 1..n2} Ψ Γ ;∆

Γ, Γ 1i ; · ⊢ y ↑ A1i for i ∈ 1..n1 Γ, Γ 2i ; · ⊢ y ↑ A2i for i ∈ 1..n2
Γ, Γ 1i ;∆

1
i2, x:A

1
i ⊢ W[e] ↓ C1 for i ∈ 1..n1 Γ, Γ 2i ;∆

2
i2, x:A

2
i ⊢ W[e] ↓ C2 for i ∈ 1..n2

By Lemma 5.3, Γ ; · ⊢ y ↑ A∗ such that for all i ∈ 1..n1, A
∗ ↑ A1i , and for i ∈ 1..n2,

A∗ ↑ A2i .
{(Γ, Γ 1i ; ·, ∆

1
i2) | i ∈ 1..n1} Ψ Γ ;∆} Above

{(Γ, Γ 1i ; ·, ∆
1
i2, x:A

∗) | i ∈ 1..n1} Ψ Γ ;∆, x:A∗} By Lemma 5.56

Γ, Γ 1i ;∆
1
i2, x:A

1
i ⊢ W[e] ↓ C1 (for all i ∈ 1..n1) Above

Γ, Γ 1i ⊢ A∗ ↑ A1i (for all i ∈ 1..n1) Above

Γ, Γ 1i ;∆
1
i2, x:A

∗ ⊢ W[e] ↓ C1 (for all i ∈ 1..n1) By Lemma 5.59

Γ ;∆, x:A∗ ⊢ W[e] ↓ C1 By Proposition 5.55

Γ ;∆, x:A∗ ⊢ W[e] ↓ C2 By similar reasoning w.r.t. 2nd premise

August 6, 2007 — Proof of Lemma 5.60

5.7. COMPLETENESS 151

W[let x = e ′ in e] value ∧I restricted to values

W[e] value

Z Γ ;∆, x:A∗ ⊢ W[e] ↓ C1 ∧ C2 By ∧I

Z Γ ; · ⊢ y ↑ A∗ Above

Z {Γ ;∆} Ψ Γ ;∆ By Ψ-refl

• Case ⊥L: Show (a).

• Case ∨L: D ::

Γ ;∆, y:D1 ⊢ W[let x = e ′ in e] ↓ C Γ ;∆, y:D2 ⊢ W[let x = e ′ in e] ↓ C
Γ ;∆, y:D1∨D2 ⊢ W[let x = e ′ in e] ↓ C

Use the IH twice.

– If either use of the IH shows (a), show (a).

– If both uses show (b), either y ∈ FLV(e ′) or y ∈ FLV(W[e]). The former case motivates
the multiplicity of judgments; the latter case can be proved in analogous fashion to the
former case. Hence we show only the former case.

IH on first premise IH on second premise

{(Γ, Γ 1i ;∆
1
i1, ∆

1
i2) | i ∈ 1..n1} Ψ Γ ;∆, y:D1 {(Γ, Γ 2i ;∆

1
i1, ∆

2
i2) | i ∈ i..n2} Ψ Γ ;∆, y:D2

Γ, Γ 1i ;∆
1
i1 ⊢ e

′ ↑ A1i for i ∈ 1..n1 Γ, Γ 2i ;∆
2
i1 ⊢ e

′ ↑ A2i for i ∈ 1..n2

Γ, Γ 1i ;∆
1
i2, x:A

1
i ⊢ W[e] ↓ C for i ∈ 1..n1 Γ, Γ 2i ;∆

2
i2, x:A

2
i ⊢ W[e] ↓ C for i ∈ 1..n2

Unlike the ∧I case we have no value restriction—e ′ is not necessarily a variable, so we
may not have a single best type for e ′, and cannot join anything now.

We start by collecting all our derivations together; this is mere bookkeeping. Let n =

n1 + n2. Think of laying out all objects superscripted 1, then all objects superscripted 2.
To be painfully precise, for i ∈ 1..n1, let ∆i1 = ∆1i1, y:D1; for i ∈ (n1 + 1)..(n1 + n2), let
∆i1 = ∆

2
(i−n1)1

, y:D2. Doing the same for Γi and ∆i2, we get

Z Γ, Γi;∆i1 ⊢ e
′ ↑ Ai for i ∈ 1..n

Z Γ, Γi;∆i2, x:Ai ⊢ W[e] ↓ C for i ∈ 1..n

We now need to show {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆. We have

{(Γ, Γ 1i ;∆
1
i1, ∆

1
i2) | i ∈ 1..n1} Ψ Γ ;∆, y:D1

and {(Γ, Γ 2j ;∆
1
j1, ∆

2
j2) | j ∈ (n1+1)..n2} Ψ Γ ;∆, y:D2

That is, the set of contexts coming out of the first premise joins Γ ;∆, y:D1, and the set
coming out of the second premise joins Γ ;∆, y:D2. By rule ∨Ψ,

{(Γ, Γ 1i ;∆
1
i1, ∆

1
i2) | i ∈ 1..n1} ∪

{(Γ, Γ 2j ;∆
1
j1, ∆

2
j2) | j ∈ (n1+1)..n2}

Ψ Γ ;∆, y:D1∨D2

August 6, 2007 — Proof of Lemma 5.60

152 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Bookkeeping gives us

Z {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆, y:D1∨D2

• Case ΣL: D ::

Γ, a:γ;∆ ′, y:B ⊢ W[let x = e ′ in e] ↓ C
Γ ;∆ ′, y:Σa:γ. B ⊢ W[let x = e ′ in e] ↓ C

Apply the IH. If it shows part (a), for all Γ∗, ∆∗, e∗, D we have Γ, a:γ, Γ∗;∆ ′, y:B,∆∗ ⊢ e∗ ↓ D.
By ΣL, we have Γ, Γ∗;∆ ′, y:Σa:γ. B,∆∗ ⊢ e∗ ↓ D, which shows (a).

If the IH shows part (b), we have {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ, a:γ;∆ ′, y:B. By ΣΨ, we have

Z {(Γ, Γi;∆i1, ∆i2) | i ∈ 1..n} Ψ Γ ;∆ ′, y:Σa:γ. B

The rest of what was to be shown is identical to what was shown by the IH.

• Cases ∧L1,2, ΠL, ⊃L, OL: Similar to the ΣL case.

Corollary 5.62 (Permutation). If Γ ;∆ ⊢ W[let x = e ′ in e] ↓ C then Γ ;∆ ⊢ let x = e ′ in W[e] ↓ C.

Proof. By Lemma 5.60.
If (a), let Γ∗ = ∆∗ = · and e∗ = let x = e ′ in W[e], yielding Γ ;∆ ⊢ let x = e ′ in W[e].
If (b), apply let to each pair of derivations

Γ, Γi;∆i1 ⊢ e
′ ↑ Ai Γ, Γi;∆i2, x:Ai ⊢ W[e] ↓ C

yielding Γ, Γi;∆i1, ∆i2 ⊢ let x = e ′ in W[e] ↓ C for i ∈ 1..n. Part (b) also gives us {(Γ, Γi;∆i1, ∆i2) | i ∈

1..n} Ψ Γ ;∆. By Proposition 5.55, Γ ;∆ ⊢ let x = e ′ in W[e] ↓ C.

Corollary 5.63 (Permutation of a Subterm). If e = C[W[let x = e1 in e2]] and either

(1) Γ ;∆ ⊢ e ↓ C, or

(2) Γ ;∆ ⊢ e ↑ C and C 6= []

then Γ ;∆ ⊢ C[let x = e1 in W[e2]] ↓↑ C.

Proof. By induction on the given derivation.
Case (1):

• If C 6= [], apply the induction hypothesis to the appropriate premise with a smaller C; if that
premise is synthesizing, the smaller C cannot be [] by reasoning similar to that in the proof of
Corollary 5.49; finally, reapply the rule.

• If C = [], Corollary 5.62 suffices.

Case (2): As in case (1) where C 6= [].

Corollary 5.64 (Permutation of a Subterm, Slack). If e = C[W[let ∼x = v1 in e2]] and either

August 6, 2007

5.7. COMPLETENESS 153

(1) Γ ;∆ ⊢ e ↓ C, or

(2) Γ ;∆ ⊢ e ↑ C and C 6= []

then Γ ;∆ ⊢ C[let ∼x = v1 in W[e2]] ↓↑ C.

Proof. By induction on the given derivation.

Case (1):

• If C 6= [], apply the induction hypothesis to the appropriate premise with a smaller C; if that
premise is synthesizing, the smaller C cannot be [] by reasoning similar to that in the proof of
Corollary 5.49; finally, reapply the rule.

• If C = [], use Lemma 5.54.

Case (2): As in case (1) where C 6= [].

Value permutation

In this section, we show that given a term let y = e1 in let x = v2 in e3 where y is not free in v2 (and
certain other conditions hold), swapping the bindings preserves typing. We first prove an inversion
lemma. The final result, Lemma 5.69, is shown for all variants of slackness (zero, one, or both
bindings slack).

Lemma 5.65 (Value Binding Inversion). If Γ ;∆3 ⊢ let x = v2 in e3 ↓ C where v2 is a synthesizing form

that is not some (v ′2 : As) then there exists B such that

Γ ; · ⊢ v2 ↑ B and Γ ;∆3, x:B ⊢ e3 ↓ C

Remark 5.66. The requirement that v2 is a value is key. Otherwise the ⊥L case would fail—moving
the binding of a non-value can change the order of computational effects, and the (only) computa-
tional effect in the language is nontermination, which ⊥L takes account of.

Proof. By induction on the second derivation.

By the condition that v2 is not an annotation and the assumption that no binding has just a
linear variable on the right hand side, v2 must be some ordinary variable y, allowing us to apply
Lemmas 5.3 and 5.4 at will.

• Case let: D ::

Γ ; · ⊢ v2 ↑ B Γ ;∆3, x:B ⊢ e3 ↓ C
Γ ;∆3 ⊢ let x = v2 in e3 ↓ C

We need not use the IH.

Z Γ ;∆3, x:B ⊢ e3 ↓ C Subd.

Z Γ ; · ⊢ v2 ↑ B Subd.

August 6, 2007 — Proof of Lemma 5.65

154 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

• Case contra: D ::

Γ |= ⊥ Γ ⊢ let x = v2 in e3 ok ∆3 let x = v2 in e3 ok

Γ ;∆3 ⊢ let x = v2 in e3 ↓ C

Γ ⊢ let x = v2 in e3 ok Subd.

Γ ⊢ v2 ok By defn. of ⊢ . . . ok

Z ∃B. Γ ; · ⊢ v2 ↑ B By Lemma 5.4

∆3 let x = v2 in e3 ok Subd.

· v2 ok By defn. of (given that v2 = y for some y)

∆3, x:B e3 ok By defn. of

Γ |= ⊥ Subd.

Z Γ ;∆3, x:B ⊢ e3 ↓ C By contra

• Case ∧I: D ::

Γ ;∆3 ⊢ v ↓ C1 Γ ;∆3 ⊢ v ↓ C2
Γ ;∆3 ⊢ v ↓ C1 ∧ C2

Here v = (let x = v2 in e3) and e3 value.

Γ ;∆3, x:B1 ⊢ e3 ↓ C1 and Γ ; · ⊢ v2 ↑ B1 By IH

Γ ;∆3, x:B2 ⊢ e3 ↓ C2 and Γ ; · ⊢ v2 ↑ B2 By IH

∃B. Γ ; · ⊢ v2 ↑ B and Γ ;∆3, x:B ⊢ e3 ↓ C1
and Γ ;∆3, x:B ⊢ e3 ↓ C2

By Lemma 5.3

e3 value Given

Z Γ ;∆3, x:B ⊢ e3 ↓ C1 ∧ C2 By ∧I

Z Γ ; · ⊢ v2 ↑ B Above

• Case ⊤I: D ::

Γ ⊢ v ok ∆3 v ok

Γ ;∆3 ⊢ v ↓ ⊤

Similar to the contra case, with additional (easy) reasoning about values.

• Case ΠI: D ::

Γ, a:γ;∆3 ⊢ let x = v2 in e3 ↓ C ′

Γ ;∆3 ⊢ let x = v2 in e3 ↓ Πa:γ.C ′

Γ, a:γ;∆3 ⊢ let x = v2 in e3 ↓ C ′ Subd.

∃B. Γ, a:γ; · ⊢ v2 ↑ B and
Γ, a:γ;∆3, x:B ⊢ e3 ↓ C ′

By IH

a /∈ dom(Γ) a fresh

∀x. a /∈ FV(Γ(x)) Γ cannot refer to index variables not in dom(Γ)

Z Γ ; · ⊢ v2 ↑ B By var

August 6, 2007 — Proof of Lemma 5.65

5.7. COMPLETENESS 155

e3 value By (let x = v2 in e3) value

Z Γ ;∆3, x:B ⊢ e3 ↓ Πa:γ.C ′ By ΠI

• Cases ∨I1, ∨I2, ΣI, OI: Apply the IH and reapply the rule to the checking judgment
obtained.

• Cases ∧L1, ∧L2, ΠL, ⊃L: Apply the IH and reapply the rule to the checking judgment
obtained.

• Case ∨L: D ::

Γ ;∆3, z:D1 ⊢ let x = v2 in e3 ↓ C Γ ;∆3, z:D2 ⊢ let x = v2 in e3 ↓ C
Γ ;∆3, z:D1 ∨ D2 ⊢ let x = v2 in e3 ↓ C

v2 is some ordinary variable y so FLV(v2) = {}. Thus z ∈ FLV(e3).

Γ ;∆3, z:D1 ⊢ let x = v2 in e3 ↓ C Subd.

∃B1. Γ ;∆3, x:B1, z:D1 ⊢ e3 ↓ C and Γ ; · ⊢ y2 ↑ B1 By IH

Γ ;∆3, z:D2 ⊢ let x = v2 in e3 ↓ C Subd.

∃B2. Γ ;∆3, x:B2, z:D2 ⊢ e3 ↓ C and Γ ; · ⊢ y2 ↑ B2 By IH

Z ∃B. Γ ; · ⊢ y2 ↑ B and Γ ⊢ B ↑ B1, Γ ⊢ B ↑ B2 By Lemma 5.3

Γ ;∆3, x:B, z:D1 ⊢ e3 ↓ C By Props. 5.57, 5.55

Γ ;∆3, x:B, z:D2 ⊢ e3 ↓ C By Props. 5.57, 5.55

Z Γ ;∆3, x:B, z:D1 ∨ D2 ⊢ e3 ↓ C By ∨L

• Case ⊥L: Show ∆, z:D e3 ok as in contra, then apply ⊥L.

• Case ΣL: D ::

Γ, a:γ;∆3, z:D ⊢ let x = v2 in e3 ↓ C
Γ ;∆3, z:Σa:γ.D ⊢ let x = v2 in e3 ↓ C

Γ, a:γ;∆3, z:D ⊢ let x = v2 in e3 ↓ C Subd.

v2 is some ordinary variable y so FLV(v2) = {}. Thus z ∈ FLV(e3).

Γ, a:γ;∆3, z:D, x:B ⊢ e3 ↓ C
and Γ, a:γ; · ⊢ v2 ↑ B

By IH

Z Γ ; · ⊢ v2 ↑ B By reasoning analogous to the ΠI case

Z Γ ;∆3, z:Σa:γ.D, x:B ⊢ e3 ↓ C By ΣL

• Case OL: Similar to the ΣL case.

Lemma 5.67 (Value Permutation, First Binding Ordinary). If

Γ ;∆ ⊢ let y = e1 in let [∼] x = v2 in e3 ↓ C

August 6, 2007 — Proof of Lemma 5.67

156 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

where y /∈ FV(v2) and v2 is a synthesizing form

and, if the binding of x is ordinary, v2 does not have the form (v2 : As),

then Γ ;∆ ⊢ let [∼] x = v2 in let y = e1 in e3 ↓ C.

Proof. By induction on the given derivation. At times, we silently partition ∆ into ∆1, ∆2, ∆3 where
∆1 e1 ok, ∆2 v2 ok, ∆3 e3 ok.

• Case let: D ::

Γ ;∆1 ⊢ e1 ↑ A Γ ;∆2, ∆3, y:A ⊢ let [∼] x = v2 in e3 ↓ C
Γ ;∆1, ∆2, ∆3 ⊢ let y = e1 in let [∼] x = v2 in e3 ↓ C

Γ ;∆1 ⊢ e1 ↑ A Subd.

Γ ;∆2, ∆3, y:A ⊢ let [∼] x = v2 in e3 ↓ C Subd.

Now we split on whether the binding of x is slack.

– The binding of x is ordinary:

Γ ; · ⊢ v2 ↑ B and Γ ;∆3, x:B, y:A ⊢ e3 ↓ C By Lemma 5.65

Γ ;∆1 ⊢ e1 ↑ A Subd.

Γ ;∆1, ∆3, x:B ⊢ let y = e1 in e3 ↓ C By let

Γ ;∆1, ∆2, ∆3 ⊢ let x = v2 in let y = e1 in e3 ↓ C By let

– The binding of x is slack:

Γ ;∆2, ∆3, y:A,∼x = v2 ⊢ e3 ↓ C By Lemma 5.54

Γ ;∆1, ∆2, ∆3,∼x = v2 ⊢ let y = e1 in e3 ↓ C By let

Γ ;∆1, ∆2, ∆3 ⊢ let ∼x = v2 in let y = e1 in e3 ↓ C By let∼

• Case contra: We have in the premise of contra ∆ let y = e1 in let [∼] x = v2 in e3 ok. Since
y /∈ FV(v2), it follows from the definition of that ∆ let [∼] x = v2 in let y = e1 in e3 ok.
Applying contra gives the result.

• Case ∧I: It follows from

let y = e1 in let [∼] x = v2 in e3 value

that e1 value and e3 value. Therefore (let [∼] x = v2 inlet y = e1 in e3) value. Apply the IH to each
premise and reapply the rule.

• Case ⊤I: By the same reasoning as in the contra case, ∆ let [∼] x = v2 in let y = e1 in e3 ok.
Apply ⊤I; the value restriction is satisfied by the reasoning in the ∧I case above.

• Case ⊥L: Similar to the ⊤I case.

• Cases ΠI, ΣI, OI, ∨I1, ∨I2, ∨L, ΣL, OL, ∧L1, ∧L2, ΠL, ⊃L: IH to each premise, then
reapply.

August 6, 2007

5.7. COMPLETENESS 157

• Case sub: Impossible: a let-term can never synthesize, so the first premise could not have
been derived.

Lemma 5.68 (Value Permutation, First Binding Slack). If Γ ;∆ ⊢ let ∼y = e1 in let [∼] x = v2 in e3 ↓ C
where y /∈ FV(v2)

and, if the binding of x is ordinary, v2 does not have the form (v2 : As),

then Γ ;∆ ⊢ let [∼] x = v2 in let ∼y = e1 in e3 ↓ C.

Proof. By induction on the given derivation, following the proof of Lemma 5.67 except in the let∼
case.

• Case let∼: D ::

Γ ;∆,∼y = e1 ⊢ let [∼] x = v2 in e3 ↓ C
Γ ;∆ ⊢ let ∼y = e1 in let [∼] x = v2 in e3 ↓ C

Now we split on whether the binding of x is slack.

– The binding of x is ordinary:

Γ ;∆,∼y = e1 ⊢ let x = v2 in e3 ↓ C Subd.

Γ ; · ⊢ v2 ↑ B and Γ ;∆,∼y = e1, x:B ⊢ e3 ↓ C By Lemma 5.65

Γ ;∆, x:B ⊢ let ∼y = e1 in e3 ↓ C By let∼

Γ ;∆ ⊢ let x = v2 in let ∼y = e1 in e3 ↓ C By let

– The binding of x is slack:

Γ ;∆,∼y = e1 ⊢ let ∼x = v2 in e3 ↓ C Subd.

Γ ;∆,∼y = e1,∼x = v2 ⊢ e3 ↓ C By Lemma 5.52

Γ ;∆,∼x = v2 ⊢ let ∼y = e1 in e3 ↓ C By let∼

Γ ;∆ ⊢ let ∼x = v2 in let ∼y = e1 in e3 ↓ C By let∼

Lemma 5.69 (Omnibus Value Permutation). If Γ ;∆ ⊢ C[e ′] ↓↑ C where e ′ = let [∼] y = e1 in

(let [∼] x = v2 in e3) and y /∈ FV(v2)

and, if the binding of x is ordinary, v2 does not have the form (v2 : As),

then

Γ ;∆ ⊢ C[let [∼] x = v2 in let [∼] y = e1 in e3] ↓↑ C

(This includes all 4 possibilities: neither binding slack, first binding slack, second binding slack, and

both bindings slack.)

Proof. By a straightforward induction on the derivation of Γ ;∆ ⊢ e ↓↑ C.
If C = [] then C[e ′] = e ′ is a let, which cannot synthesize anything, so we have a checking

judgment Γ ;∆ ⊢ e ↓ C. In this case we use Lemma 5.67 (if the first binding is ordinary) or Lemma
5.68 (if the first binding is slack).

Otherwise, we just apply the IH to the appropriate subterm and reapply the rule. For short-
circuit rules we use the side condition that y /∈ FV(v2) and the ok-premises of the rule to show that
the appropriate ok-premises hold, enabling us to apply the same rule to the new term.

August 6, 2007

158 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

5.7.5 Results

Recall that ↓let↑let appear in judgments in the type system for terms with lets and other syntactic
markers, while ↓L↑L appear in judgments for terms in the left tridirectional type system. In most of
this chapter, ↓ and ↑ are used instead of ↓let and ↑let.

Definition 5.70. Variables x, y in a term e are disordered iff x is bound before y but y precedes x

(see Def. 5.35).

Lemma 5.71. If Γ ;∆ ⊢ e ↓let↑let C then every linear variable in dom(∆) appears exactly once in e.

Moreover, the same holds for every linear variable bound in e.

Proof. By induction on the given derivation.

Lemma 5.72. If

(1) for every subterm e ′ of e,brittle: see
Def. 5.44

e ′ is synthesizing and not a linear variable and not brittle iff e ′ is the right hand side of a let

(2) if x and y are used at the same level (that is, there are no intervening bindings) and the use of x

precedes the use of y, then the binding of x precedes the binding of y

(3) for every subterm e ′ of e, ←֓(e ′) has the form (v : As) iff it is the right hand side of a let∼

(4) e contains no prickly subterms (i.e. for all C, if e = C[e ′] then there exists no W 6= [] such that

e = C ′[W[e ′]])

(5) ∆ e ok

then there exists e−1 such that e−1 →֒ Lm + em and e = Lm in em. (By Proposition 5.38, e−1 is the

unique such expression.)

Moreover, given matches ms instead of some e, where conditions (1)–(5) hold for every case arm

in ms (in (5), with ∆ = ·), there exists ms−1 such that ms−1 →֒ ms.

Proof. By induction on the size of e.
Decompose e into L in e∗ where L is maximal. We distinguish cases of e∗. Several synthesizing

form cases are impossible by (1) (but see the subcases of e∗ = x): e∗ = x, fst(e0), snd(e0), e1 e2, u.

• e∗ = () By (5), any bound variable must be used in e∗, but FLV(e∗) = {}, so L = ·. Let

e−1 = ().

• e∗ = (e1, e2)

– If e1 antivalue:

By the syntactic restriction that a let-bound variable must appear in a viable position
in its scope, every variable bound in L appears in a viable position in (e1, e2). The
only possible positions—given that e1 antivalue—are in e1. Therefore we have BLV(L) =

FLV(e1). By linearity (5), FLV(e1) ∩ FLV(e2) = {}.

August 6, 2007 — Proof of Lemma 5.72

5.7. COMPLETENESS 159

By IH on L in e1, there exists e1
−1 →֒ L ′ + e ′1 where L ′ in e ′1 = L in e1. By Proposition

5.16, L ′ in e ′1 is maximal. Also maximal is L in e1, since (4) forbids any let on e1.
Therefore L ′ = L and e ′1 = e1: we have e1

−1 →֒ L+ e1.

By IH on e2, there exists e2
−1 →֒ L ′

2 + e
′
2 where L ′

2 in e ′2 = e2.

It is clear from the definition of →֒ that e1
−1 antivalue if and only if e1 antivalue. There-

fore e1
−1 antivalue. By the appropriate rule, we have (e1

−1, e2
−1) →֒ L + (e1, e2). Let

e−1 = (e1
−1, e2

−1).

– Otherwise, e1 prevalue.

By (2) and (5), L can be decomposed into L1, L2 such that BLV(L1) ⊆ FLV(e1) and
BLV(L2) ⊆ FLV(e2). By IH, there exist e1

−1, e2
−1 such that ek

−1 →֒ L ′
k + e

′
k. Analo-

gous to the e1 antivalue subcase (reasoning about maximality), L ′
k = Lk and e ′k = ek.

Dual to the previous case, we obtain e1
−1 prevalue. We have (e1

−1, e2
−1) →֒ L1, L2 +

(e1, e2) by the appropriate rule. Let e−1 = (e1
−1, e2

−1).

• e∗ = λx. e0 A term of the form λx. e0 has no viable subterms. By (5), L = ·.

By IH, there exists e0
−1 such that e0

−1 →֒ e0. Let e−1 = λx. e0
−1.

• e∗ = fix u. e0 By (5), L ′ = ·. By IH, there exists e0
−1 →֒ e0. Let e−1 = fix u. e0

−1.

• e∗ = case e0 of ms By (5), BLV(L ′) = FLV(e0). By IH, there exists e0
−1 →֒ L ′ + e0. Also by

IH, there exists ms−1 such that ms−1 →֒ ms. Let e−1 = case e0
−1 of ms−1.

• e∗ = c(e0) Similar to the e∗ = case e0 of ms case, without ms.

• e∗ = x Using (5), we have BLV(L) = FLV(e∗) = {x}. Therefore L = L ′, [∼]x = e ′ for some e ′

such that BLV(L ′) = FLV(e ′). By (1), e ′ is a synthesizing form. Now we distinguish cases of
e ′:

– e ′ = x By (5), BLV(L ′) = FLV(e ′), which is empty. Thus L ′ = ·. Let e−1 = x.

– e ′ = u Similar to the preceding case.

– e ′ = fst(e0) Apply IH to L ′ in e0, yielding some e0
−1. Let e−1 = fst(e0

−1).

– e ′ = snd(e0) Similar to the preceding case.

– e ′ = e1 e2 Broadly similar to the (e1, e2) case: distinguish e1 prevalue and e1 antivalue
subcases; apply the IH and reason about maximality; apply the appropriate rule. The
binding of x, not present in the (e1, e2) case, makes no real difference.

– e ′ = (e0 : As) Similar to the e ′ = fst(e0) case.

The cases for ms are straightforward.

Definition 5.73. A pair of transposed bindings x = e1, . . . , y = e2 is redeemable if e2 value.

August 6, 2007

160 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

Proposition 5.74. If e = E1[e1] = E2[y] and the hole in E1 precedes the hole in E2 (i.e. e1 precedes y)

then e1 value.

Proof. By simultaneous induction on E1 and E2.

Lemma 5.75. Given L in e with L = L1, x = e1, L2, y = e3, L3 and x, y transposed, there exist adjacent

transposed bindings, i.e. x = e1, L2, y = e3 = . . . , z1 = e21, z2 = e22, . . . where z1 and z2 are transposed.

Proof. By induction on the length of L2.

• If L2 = · then x = e1 and y = e3 are themselves adjacent.

• Otherwise L2 = (x2 = e2), L
′
2.

– If x2 precedes x in the unwinding, we have our adjacent transposed bindings.

– Otherwise x precedes x2. It is given that x and y are transposed, so y precedes x. Tran-
sitively, y precedes x2, but y is bound after x2 is. Therefore x2 and y are transposed.
The length of L ′

2 is one less than the length of L2, so we can apply the IH, obtaining the
result.

Lemma 5.76. If e is let-respecting (Def. 5.23) then all adjacent transpositions are redeemable.

Proof. By induction on e. The interesting case is when e = let y = ey in let x = ex in e ′ and y, x are
transposed. Since e is let-respecting ←֓(e) = Ex[x] and ←֓(let x = ex in e) = Ey[y]; by definition of
←֓ and linearity, ←֓(let x = ex in e) = [←֓(ex)/x] ←֓(e) = [←֓(ex)/x] Ex[x] = Ex[←֓(ex)]. We therefore
have Ex[←֓(ex)] = Ey[y] in which x precedes y. By Proposition 5.74, ←֓(ex) value. By Propositions
5.8 and 5.6, ex value. Therefore the binding is redeemable.

Definition 5.77 (Measure for Induction). Let the measure of a term e ′ be defined as

µ(e ′) = 〈unbound↑(e
′), brittle(e ′), prickly(e ′), transposed(e ′)〉

where

• unbound↑(e
′) is the number of subterms of e ′ in synthesizing form that are not let-bound,

• brittle(e ′) is the number of brittle subterms of e ′, and

• prickly(e ′) is the number of prickly subterms of e ′, and

• transposed(e ′) is the number of transposed variable pairs (Definition 5.46) in e ′,

Order the quadruples lexicographically.

Lemma 5.78 (Typing of Canonical Let-Normal Terms). If Γ ;∆ ⊢ e ′ ↓let C where e ′ is let-respecting,

then Γ ;∆ ⊢ L in e∗ ↓let C where ←֓(e ′) →֒ L+ e∗ and L in e∗ is let-respecting.

August 6, 2007

5.7. COMPLETENESS 161

This lemma says that, given a term in the let-system, the corresponding canonical term is well
typed. Note that ∆ may be nonempty and the given term e ′ may contain free linear variables, if the
lemma is invoked on a subterm:

let x = f in . . . x . . .︸ ︷︷ ︸
e ′

In such a situation the unwinding ←֓(e ′) contains free linear variables and so does not correspond
to any source program, though it is still a direct style term according to Definition 5.7.

Proof. By induction on e ′ with measure µ(e ′) (in Definition 5.77):

µ(e ′) = 〈unbound↑(e
′), brittle(e ′), prickly(e ′), transposed(e ′)〉

• If there exists any subterm e0 of e ′, where e0 is in synthesizing form and is not the right hand
side of a let binding, then:

– Use Corollary 5.49 to obtain a new term e ′′ such that

Γ ;∆ ⊢ e ′′ ↓ C

It is clear that the first component of µ(e ′′) is unbound↑ − 1. Therefore µ(e ′′) is smaller
than µ(e ′).

Corollary 5.49 replaces E ′′[e1] with let x = e1 in E ′′[x] for some E ′′.

The body of the new binding has the form E ′′[x]; by applying Proposition 5.24 we can
show that x appears in evaluation position in ←֓(E ′′[x]). To apply the proposition, we
show that E ′′[x] is let-respecting: We know that E ′′[e1] is let-respecting; by Lemma 5.29,
E ′′[x] is let-respecting (since the resulting term is well typed, FLV(e1) ⊆ FLV(E ′′[e1])).

Next, we show that outer bindings remain let-respecting: By Proposition 5.10,

←֓(let x = e1 in E ′′[x]) = ←֓(E ′′[e1])

By Proposition 5.26, the unwinding of C[let x = e1 in E ′′[x]] is identical to the unwinding
of C[E ′′[e1]] for any C. Thus, the let-respecting property of all outer bindings is preserved.

The result follows by IH on e ′′.

• Otherwise, if there exists any brittle subterm, i.e. e ′ = let x = (v1 : As) in e2 where e = C[e ′]:

– Use Corollary 5.51 to show that C[let ∼x = (v1 : As) in e2] is well typed. This merely con-
verts an ordinary binding to a slack binding, so it reduces brittle while leaving unbound↑
unchanged. Clearly, simply making a binding slack does not affect whether a term is
let-respecting. The result follows by IH.

• Otherwise, if there exists any prickly subterm (e.g. e1(let x = e2 in e3) where e1 prevalue):

August 6, 2007 — Proof of Lemma 5.78

162 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

– Permute the violating let/let∼ outward: replace W[let x = e2 in e3] with let x = e2 in W[e3].
By Corollary 5.63 or Corollary 5.64,

Γ ;∆ ⊢ e ′′ ↓ C

The number of unbound synthesizing subterms and the number of brittle subterms re-
main zero, and the number of prickly subterms is reduced by 1. Therefore µ(e ′′) is
smaller than µ(e ′).

To show that e ′′ is let-respecting, we first show that the lifted binding is let-respecting:

∗ It must be the case that W is an evaluation context. To see why, suppose W = ěW ′.
Since unbound↑ = 0, the ě cannot be a synthesizing form other than a linear vari-
able, which is a value; supposing W ′ is an evaluation context, vW ′ is an evaluation
context.
The original term is let-respecting, so its subterm W[let x = e2 in e3] is too. By
Lemma 5.33, W[e3] is let-respecting.
By Proposition 5.24, there exists E ′ such that ←֓(W[e3]) = E ′[←֓(e3)]. Since the
original term was let-respecting, there exists E3 such that ←֓(e3) = E3[x]. Thus
←֓(W[e3]) = E ′[E3[x]] = (E [E3])[x]: the binding let x = e2 in W[e3] is let-respecting.

∗ Showing that all other bindings are let-respecting is analogous to the letification
phase above, using Proposition 5.10, etc.

The result follows by IH on e ′′.

• Otherwise, if there exists any subterm e0 = L in e such that any bindings in L are transposed,
by Lemma 5.75 there exist adjacent transposed bindings:

L = L1, ([∼]y = ey), ([∼]x = ex), L2

where either or both of the bindings of y and x are slack, and x precedes y in ←֓(L2 in e).

– By Lemma 5.76, ex value.

Exchange the binding of x with the binding of y, yielding

e ′0 = (L1, ([∼]x = ex), ([∼]y = ey), L2) in e

We know that x precedes y in ←֓(L2 in e).

We need to show that y /∈ FV(ex). Suppose it were free in ex. Assuming y appears linearly,
y cannot also appear free in L2 in e. By Proposition 5.21, y is not free in ←֓(L2 in e). But
we know that x precedes y in ←֓(L2 in e), so both x and y must be free in ←֓(L2 in e), a
contradiction.

Assuming y appears linearly, y /∈ FV(ex). By Lemma 5.69, Γ ;∆ ⊢ C[e ′0] ↓ C. (e ′ has no
brittle subterms, so the condition about v2 is satisfied.)

Here, we only exchange two lets, so the numbers of unbound synthesizing subterms,
brittle subterms, and prickly subterms do not change—they are still 0. Moreover, trans-
position is defined in terms of the unwinding, so swapping two transposed bindings does
not affect whether any other variable pair is transposed. Thus

µ(C[e ′0]) = 〈0, 0, 0, transposed(e ′) − 1〉

August 6, 2007 — Proof of Lemma 5.78

5.7. COMPLETENESS 163

which is smaller than µ(e ′).

We now show that e ′ is let-respecting. To show that outer bindings are still let-respecting,
the same argument used in the Letify and Permute steps suffices. Now we show that the
exchanged bindings are let-respecting:

∗ Show ←֓(let y = ey in e) = E ′
x[x].

let y = ey in e = [←֓(ey)/y] ←֓(e) By definition of ←֓
= [←֓(ey)/y] Ex[x] Original x-binding is let-respecting

Since y follows x in Ex[x], substituting a term for y will preserve x’s evaluation
position: there exists E ′

x such that [←֓(ey)/y] Ex[x] = E ′
x[x].

∗ Show ←֓(e) = E ′
y[y].

The original y-binding is let-respecting, so ←֓(let x = ex in e) = Ey[y]. By definition
of ←֓ , it is also equal to [←֓(ex)/x] ←֓(e); the original

Ey[y] = ←֓(let x = ex in e) Original y-binding is let-respecting

= [←֓(ex)/x] ←֓(e) By definition of ←֓
= [←֓(ex)/x] Ex[x] Original x-binding is let-respecting

The only difference between [←֓(ex)/x] Ex[x], in which y is in evaluation position,
and Ex[x] is that a value (ex) is replaced by x. This preserves all evaluation positions,
including y’s. Therefore ←֓(e) = E ′

y[y] for some E ′
y.

The result follows by IH on C[e ′0].

• Otherwise, we have µ(e ′) = 〈0, 0, 0, 0〉. By Lemma 5.72 (using Lemma 5.71 to satisfy condi-
tion (5) of Lemma 5.72), e ′ is precisely the canonical let-translation L in e∗. It is given that
Γ ;∆ ⊢ e ′ ↓ C, so Γ ;∆ ⊢ L in e∗ ↓ C.

The next lemma takes us from a left tridirectional typing derivation of e to a let-system typing
derivation of a term e ′ ≡let e, where e ′ is not guaranteed to be canonical: for example, if e = x

and the given left tridirectional derivation of . . . ⊢ e ↓L C just applies var and sub, e ′ will also be x.
Alternatively, given a derivation that does apply directL, e ′ will be let x = x in x.9

Lemma 5.79 (Let-System Completeness). If Γ ;∆ ⊢ e ↓L↑L C and ∆ � e ev/ok ∆ � e ev/ok if
∆ e ok and
each x in ∆ is
in evaluation
position in e
(Def. 3.20).

then Γ ;∆ ⊢ e ′ ↓let↑let C where

(i) e ′ ≡let e,

(ii) e ′ is let-respecting.

Proof. By induction on the derivation of Γ ;∆ ⊢ e ↓L↑L C. The condition ∆ � e is always easy to
show when applying the IH, so we elide it.

Parts (i) and (ii) are straightforward syntactic properties:

• Since ≡let is congruent, (i) is almost always easy to show: for example, in →E we have
e = e1e2; by IH on each subderivation, e ′1 ≡let e1 and e ′2 ≡let e2, from which e ′ = e ′1e

′
2 ≡let e2.

• Likewise, the reasoning to show (ii) is compositional except where a let is introduced.

9Given a synthesis derivation . . . ⊢ x ↑L C, the lemma will simply yield . . . ⊢ x ↑let C.

August 6, 2007

164 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

The above reasoning suffices to show (i)–(ii) in almost all cases. The exception is directL, where
we add a let to e to get e ′, and must show that e ′ is let-equivalent and that the new binding is
let-respecting.

In most cases, we use the following strategy to obtain Γ ;∆ ⊢ e ′ ↓let↑let C:

1. Apply the IH to each subderivation, yielding a new term typed in the let-normal system.

2. Apply the let-normal system rule corresponding to the left tridirectional system rule. (Recall
that the two systems are almost identical.)

For example, for var (left tridirectional system) we just apply var (let-normal system). We are not
required to reach a canonical let-normal term in this lemma; let Theorem 5.80 take care of that.
Our job at the moment is to take the left tridirectional typing derivation and get a let-normal typing
derivation for a (probably) let-strewn term.

There are two classes of exceptions where we cannot follow the easy strategy. The first com-
prises directL, which is of course not present in the let-normal system; there we must add a let

and apply rule let. The second comprises the subject-duplicating rules ∧I, ∨L, and ∧-ct. There we
apply the IH twice to the same term, yielding two possibly different terms: an e ′1 from the IH on
the first subderivation and an e ′2 from the second. We have e ′ ≡let e

′
1 and e ′ ≡let e

′
2, and therefore

e ′1 ≡let e
′
2, but if directL was not applied identically in each subderivation, e ′1 and e ′2 will have lets

in different places. Fortunately, Lemma 5.78 gives us a way to unify e ′1 and e ′2—into their canonical
let-normal form.10 (The fact that Lemma 5.78 only works on checking judgments is no barrier,
since all the subject-duplicating rules are checking rules.)

• Case directL: D ::

Γ ;∆1 ⊢ e1 ↑ A Γ ;∆2, x:A ⊢ E [x] ↓ C
Γ ;∆1, ∆2 ⊢ E [e1] ↓ C

IH on E [x] yields some e ′2.

(i):

e ′1 ≡let e1 By IH (i)

e ′2 ≡let E [x] By IH (i)

let x = e ′1 in e ′2 ≡let let x = e1 in E [x] ≡let congruent

≡let [e1/x] E [x] By defn. of ≡let

Γ ;∆2, x:A ⊢ E [x] ↓L C Subd.

∆2, x:A E [x] ok By Proposition 3.19

[e1/x] E [x] = E [e1] By substitution

(i)Z let x = e ′1 in e ′2 ≡let E [e1] Transitivity and substitution

(ii): By IH, e1 and e ′2 are let-respecting. However, to show that let x = e ′1 in e ′2 is let-respecting
we also need to show that ←֓(e2) = E ′[x] for some E ′. By IH, we have e ′2 ≡let E [x]. By
Proposition 5.10, ←֓(e ′2) = ←֓(E [x]), which by Proposition 5.9 equals E [x]. Thus ←֓(e ′2) = E [x]:
the new binding is let-respecting.

10This is why we had to define x →֒ . . . : we need to translate subterms with free linear variables.

August 6, 2007

5.7. COMPLETENESS 165

• Case ∧I: D ::

Γ ;∆ ⊢ v ↓ C1 Γ ;∆ ⊢ v ↓ C2
Γ ;∆ ⊢ v ↓ C1 ∧ C2

By IH on Γ ;∆ ⊢ v ↓ C1, we have Γ ;∆ ⊢ v ′1 ↓ C1, and likewise Γ ;∆ ⊢ v ′2 ↓ C2.

(ii) satisfies the condition of Lemma 5.78, which we now apply to v ′1 yielding Γ ;∆ ⊢ v ′′1 ↓ C1,
where ←֓(v ′1) →֒ v ′′1 , and to v ′2 yielding Γ ;∆ ⊢ v ′′2 ↓ C2 where ←֓(v ′2) →֒ v ′′2 .

We need to show that v ′′1 and v ′′2 are identical.

v ′1 ≡let v By IH

v ′2 ≡let v By IH

v ′1 ≡let v
′
2 By symmetry and transitivity of ≡let

←֓(v ′1) ≡let ←֓(v ′2) By Proposition 5.10

v ′′1 = v ′′2 By Proposition 5.36

Let v ′ = v ′′1 = v ′′2 . By Proposition 5.18, v ≡let v
′.

By Proposition 5.6, v ′ value. By ∧I, Γ ;∆ ⊢ v ′ ↓ C1 ∧ C2.

Condition (i) follows from v ≡let v
′ above. Condition (ii) follows from Lemma 5.78.

• Case ∨L: Similar to the previous case (without the reasoning about terms being values).

• Case contra: Let e ′ = e. By contra, Γ ;∆ ⊢ e ′ ↓ C.

(i) holds by reflexivity of ≡let. Since e ′ = e is a term in the left tridirectional system it contains
no lets at all, so (ii) is trivially satisfied.

• Case ⊥L: Similar to the contra case.

Theorem 5.80 (Let-Normal Completeness). If D derives ·; · ⊢ e ↓L C and e →֒ L + e∗ then ·; · ⊢
L in e∗ ↓let C.

Proof. By Lemma 5.79, ·; · ⊢ e ′ ↓let C where e ′ ≡let e and e ′ is let-respecting.

By Lemma 5.78, ·; · ⊢ L ′ in e ′∗ ↓let C where ←֓(e ′) →֒ L ′ + e ′∗. Now we just need to show that
L ′ = L and e ′∗ = e∗.

e ′ ≡let e Given

←֓(e ′) = ←֓(e) By Proposition 5.10

= e By Proposition 5.9 (e is direct style)

←֓(e ′) →֒ L ′ + e ′∗ Above

e →֒ L ′ + e ′∗ Substituting

e →֒ L+ e∗ Given

L ′ in e ′∗ =L in e∗ By Proposition 5.36

·; · ⊢ L ′ in e ′∗ ↓let C Above

Z ·; · ⊢ L in e∗ ↓let C Substituting

August 6, 2007

166 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

5.8 Extension to full pattern matching

This chapter has used the simplistic form of pattern matching used in Chapters 2 and 3. Extending
it to the full formalism in Chapter 4 appears straightforward. The key is the minimal interaction
between pattern matching and the let-normal transform. In particular, in case e of ms no linear
variables—including those bound to subterms of e—can appear free in ms, since nothing in ms is
in evaluation position; consequently, the let-normal translation “restarts” itself in each case arm.
Moreover, the rules in Chapter 4 leave the term e alone entirely, hidden behind a FORGETTYPE, so
the changes to term typing in this chapter should not interfere with them. Finally, the property
of principal synthesis of values (Lemma 5.3) depends on having no unknown variables in terms,
which is guaranteed by the premise Γ, FPV(p) ⊢ e ok in rule casearm (Figure 4.4)—a premise which
was superfluous in that chapter.

5.9 Related work

The effects of transformation to continuation passing style on the precision of program analyses
such as 0-CFA have been studied for some time [SF94]. The effect depends on the specific details
of the CPS transform and the analysis done [DD01, PW03].

The “analysis” in our work is the process of bidirectional checking/synthesis. Our soundness
and completeness results prove that our let-normal transformation does not affect our analysis. It
is not clear whether our result means anything for more traditional let-normal transformations and
compiler analyses.

5.10 Conclusion

We now have a type system without obvious major impediments to implementation. The system is
sound and complete with respect to the type assignment system (Chapter 2), in contrast to previous
work in which completeness is lost; the tridirectional rule can be made into something practical.

Since we proved the safety of the type assignment system, the chain of soundness results (Figure
5.10) guarantee that if we run a program e whose let-normal translation typechecks in the system
in this chapter, it will not go wrong.

August 6, 2007

5.10. CONCLUSION 167

Γ ⊢ |e| : A

Type
assignment
system
(Chapter 2)

Thm. 3.15

❄

✻

Thm. 3.3

Γ ⊢ e ↑tri A
Γ ⊢ e ↓tri A

Simple
tridirectional
system

Thm. 3.30

❄

✻

Thm. 3.25

Γ ;∆ ⊢ e ↑L A
Γ ;∆ ⊢ e ↓L A

Left
tridirectional
system

Thm. 5.80

❄

✻

Cor. 5.31

Γ ;∆ ⊢ L+ e ′ ↑let A
Γ ;∆ ⊢ L+ e ′ ↓let A

Let-normal
system
e →֒ L+ e ′

✲completeness

✛ soundness

Figure 5.10: The menagerie: our type systems and the key results relating them

August 6, 2007

168 CHAPTER 5. A LET-NORMAL TYPE SYSTEM

August 6, 2007

Chapter 6

Implementation

We have developed a typechecker, called Stardust, for a language and type system similar to that of
Chapter 5, adapted to a subset of core Standard ML [MTHM97]. After describing the implemented
language in more detail, we discuss how predefined identifiers (the ‘basis’) and user refinements
are declared. We then give an overview of the implementation itself (Section 6.2), showing how
certain impractical rules from the formal type system are elaborated into a practical constraint-
based system and why incremental (online) constraint solving is needed. Next, we examine the
interaction between the typechecker and the external constraint solver in detail, including how we
handle index domains not supported by the external solver. Finally, we discuss the efficiency of
typechecking and explain why we expect the system to scale well with larger programs.

6.1 The implemented language

A program in the implemented language consists of a sequence of SML datatype declarations—each
of which may also declare a datasort relation, an index sort refining the datatype, and the refined
types S(c) of the constructors—followed by one or more blocks. A block is a sequence of mutually
recursive declarations (either fun . . . and . . . and . . . , or just a single fun or val binding). Each block
may be preceded by a type annotation of the form (*[. . .]*) (the notation is adapted from
Davies [Dav05a]). This annotation form appears as a comment (* . . . *) to Standard ML compilers,
allowing programs in the subset language to be compiled normally. For example, in the following
fragment the refined type annotation badLeft→ rbt is processed only by Stardust.

(*[val restore_left : badLeft → rbt

]*)

fun restore_left arg = case arg of

...

Contextual typing annotations can of course appear in nested declarations, but are not permitted on
top-level declarations. This ensures that typechecking is modular, in the sense that each top-level
block of mutually recursive declarations can be checked independently of the others.

The following are among the SML features not supported:

– parametric polymorphism

169

170 CHAPTER 6. IMPLEMENTATION

– modules

– ref

– user exception declarations

– records

– various forms of syntactic sugar, such as clausal function declarations and user-defined infix
operators

However, Stardust does support all of the SML pattern forms (except literal patterns). It also
supports exceptions through the usual raise and handle constructs, but the exception datatype is
declared in the basis declaration file lib_basis.rml and cannot be supplemented by the user pro-
gram.1

We give part of the grammar for the language in Figures 6.1 and 6.2, presented in an extended
BNF in which [. . .], (. . .)∗, and (. . .)+ respectively denote zero or one, zero or more (Kleene clo-
sure), and one or more occurrences of the enclosed string of symbols. Nonterminals are written
nonterm. Terminals with several lexemes, such as identifiers id, appear in bold italic, while key-
words appear in bold and other terminals with only one lexeme appear as themselves: →, :, &,
etc.

sort ::= atomic-sort (* atomic-sort)∗ | unit | { id : sort || proposition }

atomic-sort ::= id | (sort)

proposition ::= index-exp | proposition and proposition | proposition \/ proposition

texp ::= unit | (texp)

| id [(index-exp (, index-exp)∗)]

| texp→ texp | texp * texp

| texp & texp | texp \/ texp

| { proposition } texp | [proposition] texp

| -all id (, id)∗ : sort- texp | -exists id (, id)∗ : sort- texp

| top | bot

index-exp ::= id | id index-exp | index-aexp

index-aexp ::= () | # integer-literal (index-exp) | integer-literal | (index-exp (, index-exp)∗)

Figure 6.1: Concrete syntax for types, sorts, propositions, and index expressions in Stardust

6.1.1 Type expressions

In addition to a subset of SML types, Stardust supports the following forms of type expression texp
(corresponding to the formal system’s A, B, etc.; see Figure 2.9):

1For historical reasons (p. 196), Stardust source files have the suffix .rml.

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

6.1. THE IMPLEMENTED LANGUAGE 171

• atomic refinements, written id(index-exp) where id is a datasort and index-exp is an index
expression, discussed below (the index expression may be omitted, in which case the “injec-
tion” phase described in Section 6.3.2 will add a default index expression or an existential
quantifier);

• intersection and union types, written texp & texp and texp \/ texp;

• guarded and asserting types, written {proposition} texp and [proposition] texp, respectively;

• index-level quantifiers, written -all id (, id)∗ : sort- texp and -exists id (, id)∗ : sort- texp;

• top and bottom types top and bot.

The following table relates the notation used in the rest of the thesis to the Stardust syntax.2

index expression i index-exp
index sort γ sort
atomic refinement δ(i) id(index-exp)
. . . datasort only n/a id

intersection A1 ∧ A2 texp1 & texp2
union A1 ∨ A2 texp1 \/ texp2
guarded type P ⊃ A {proposition} texp
asserting type P O A [proposition] texp
universal quantifier Πa:γ.A -all id (, id)∗ : sort- texp
existential quantifier Σa:γ.A -exists id (, id)∗ : sort- texp
greatest type ⊤ top

empty type ⊥ bot

The grammar of type expressions in Figure 6.1 is simplified and ambiguous, so we need to specify
precedence of type constructors:

(lowest) & → * \/ (highest)

The unary type constructors -all . . . - and {P} A, which form definite types, have lower precedence
than &, which is the corresponding definite binary constructor. Thus one can write types such as
Πa:Z. (A → list(a)) ∧ (B → list(a + 1)) without parentheses, with a in scope in both parts of the
intersection:

-all a:int- A→ list(a) & B→ list(a+1)

Likewise, -exists . . . - and [P] A, which form indefinite types, have lower precedence than \/.
However, they also have higher precedence than → (but lower than *). Unions, existentials, and
asserting types usually (if not always) appear within arrows; typical index refinements of A → B

are Πa:γ1. A(a)→ Σb:γ2. B(a, b) and A→ B1 ∨ B2. We have not encountered unions of arrows or
existential quantifications of arrows. Such types are perfectly legal in our formal systems, and are
permitted by Stardust; the user just has to write enough parentheses.

2The effect of a type refined only by a datasort can be achieved in the formal systems by refining the type with a unit
index sort and writing the unit index, or with an integer index sort and an arbitrary integer such as 0.

August 6, 2007

172 CHAPTER 6. IMPLEMENTATION

program ::= (anno-datatype-dec)∗ ; blocks

anno-datatype-dec ::= [datatype-annos] datatype datatype-dec (and datatype-dec)∗

datatype-annos ::= (*[(datatype-anno)∗]*)

datatype-anno ::= datacon id : texp | datatype id index-spec

| datasort id : datasort-pair (; datasort-pair)∗

| indexsort id = sort | indexfun id : sort→ sort (, sort→ sort)∗

| indexconstant id : sort | indexpred id [:! id] : sort

| primitive type id index-spec

| primitive (fun | val) id : texp

datasort-pair ::= id < id

datatype-dec ::= id = con (|| con)∗

con ::= id | id of texp (* texp)∗

index-spec ::= [with sort [default-index-spec]]

default-index-spec ::= = index-exp

typedec ::= id : ctxanno | id :! texp

ctxanno ::= typing(, typing)∗

typing ::= texp | ((ccelem)∗ ⇒ texp)

ccelem ::= id :: sort | id : texp

decpragmas ::= (*[(val typedec)+]*)

exp ::= . . . | exp : ctxanno | (*[ctxanno :]*) exp

Figure 6.2: Part of the concrete syntax for datatype annotations, datatype declarations, value annotations,
and value declarations in Stardust

August 6, 2007

6.1. THE IMPLEMENTED LANGUAGE 173

6.1.2 Basis

Certain basic declarations, including the (refined) types of a small subset of the SML top-level Basis,
are given in a file lib_basis.rml, which may be regarded as a header or “prelude”: when a source
file is given to Stardust, lib_basis.rml is processed first (in the same way as the main source file).
In theory, lib_basis.rml is just another source file and could contain val and fun declarations; in
practice, the blocks part of the program production (Figure 6.2) is empty.

lib_basis.rml is shown in Listing 6.1. The file begins with declarations of index constants, in-
dex functions, and index predicates. These declarations could logically be “hard-wired” in the
typechecker (as the base sorts int, etc. are), but editing lib_basis.rml is easier than editing the
typechecker itself. Note that indexfun declarations permit several function sorts, enabling a limited
form of overloading, so that functions such as ∗ can be used in index expressions with both integers
(e.g. 2*a) and dimensions (e.g. M*S):

indexfun * : int * int → int, dim * dim → dim

We use a comma-separated list rather than writing &, because the latter would promise too much:
we do not have general “intersection sorts”.3

Listing 6.1: lib_basis.rml

(∗ The "basis" "library" ∗)

(*[

(∗ −−−−−−−−−−− Index domain −−−−−−−−−−− ∗)

indexconstant false : bool

indexconstant true : bool

indexconstant NODIM : dim (∗ The only place NODIM should need to be written
is in this file, as the default index for type
‘real’, so its ugliness is not a problem. ∗)

indexconstant M : dim

indexconstant S : dim

indexconstant KG : dim

(∗ Index functions and predicates ∗)
indexfun + : int * int → int

indexfun - : int * int → int

indexfun * : int * int → int, dim * dim → dim

indexfun / : int * int → int, dim * dim → dim

indexfun ^ : dim * int → dim

indexfun mod : int * int → int

indexpred = : int * int, bool * bool, dim * dim

indexpred < : int * int

indexpred <= : int * int

3These pseudo-“intersection sorts” are analogous to Standard ML’s operator overloading mechanism, which effectively
allows intersections (of arrows) on predefined identifiers such as the (ordinary, term-level) functions + and -, but does
not allow intersections on user-declared functions: declaring fun plus (x, y) = x + y yields plus : int * int → int, not
plus : int * int → int & real * real → real &

August 6, 2007 — Listing 6.1: libbasis.rml

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

174 CHAPTER 6. IMPLEMENTATION

indexpred > :! <= : int * int

indexpred >= :! < : int * int

indexpred <> :! = : int * int, bool * bool, dim * dim

(∗ −−−−−−−−−−− Index refinements of primitive types −−−−−−−−−−− ∗)
primitive type int with int

primitive type real with dim = NODIM

primitive type string

(∗ −−−−−−−−−−− Index refinement of ‘bool’ −−−−−−−−−−− ∗)
datacon false : bool(false)

datacon true : bool(true)

datatype bool with bool

(∗ −−−−−−−−−−− Types of primitive values −−−−−−−−−−− ∗)
primitive val M : real(M)

primitive val S : real(S)

primitive val KG : real(KG)

(∗ −−−−−−−−−−− Types of primitive functions −−−−−−−−−−− ∗)
primitive fun ^ : string * string → string

primitive fun Int.toString : int → string

primitive fun + : (-all a, b : int- int(a) * int(b) → int(a + b))

& (-all d : dim- real(d) * real(d) → real(d))

primitive fun - : (-all a, b : int- int(a) * int(b) → int (a - b))

& (-all d : dim- real(d) * real(d) → real(d))

primitive fun * : (-all a, b : int- int(a) * int(b) → int(a * b))

& (-all a, b : int- {a >= 0}{b >= 0} int(a) * int(b)

→ -exists c : int- [c >= 0] int(c))

& (-all d1, d2 : dim- real(d1) * real(d2) → real(d1 * d2))

primitive fun div : int * int → int (∗ −all a,b : int− int(a) ∗ int(b)→ int(a div b) ∗)
primitive fun / : -all d1, d2 : dim- real(d1) * real(d2) → real(d1 / d2)

primitive fun rem : int * int → int

primitive fun mod : int * int → int (∗ −all a,b : int− int(a) ∗ int(b)→ int(a mod b) ∗)
primitive fun ~ : (-all a : int- int(a) → int(0 - a))

& (-all d : dim- real(d) → real(d))

primitive fun abs : (-all a : int- int(a) → -exists b : int- [b >= 0] int(b))

& (-all d : dim- real(d) → real(d))

primitive fun < : (-all a, b : int- int(a) * int(b) → bool(a < b))

& (-all d : dim- real(d) * real(d) → bool)

primitive fun <= : (-all a, b : int- int(a) * int(b) → bool(a <= b))

& (-all d : dim- real(d) * real(d) → bool)

primitive fun > : (-all a, b : int- int(a) * int(b) → bool(a > b))

& (-all d : dim- real(d) * real(d) → bool)

primitive fun >= : (-all a, b : int- int(a) * int(b) → bool(a >= b))

& (-all d : dim- real(d) * real(d) → bool)

August 6, 2007 — Listing 6.1: libbasis.rml

6.1. THE IMPLEMENTED LANGUAGE 175

primitive fun = : (-all a, b : int- int(a) * int(b) → bool(a = b))

& (-all a, b : bool- bool(a) * bool(b) → bool(a = b))

& (-all d : dim- real(d) * real(d) → bool)

primitive fun <> : -all a, b : int- int(a) * int(b) → bool(a <> b)

primitive fun print : string → unit

primitive fun exit : unit → bot

(∗ −−−−−−−−−−− Subset sorts −−−−−−−−−−− ∗)
indexsort nat = {a:int | a >= 0}

]*)

datatype bool = false | true

datatype exn = Match | Option | Subscript | Exn | Item_already_exists | NotFound

| BadInput of string

;

Listing 6.1: lib_basis.rml

Lines starting with indexpred declare index predicates. To negate propositions, required for the
Boolean sort (Section 6.6), the typechecker needs to know which predicates are complementary,
such as > and <=: the former holds iff the latter does not. These are declared by an obscure form
of indexpred declaration; the following line declares an index predicate > with domain Z ∗ Z and
asserts that <= is its complement.

indexpred > :! <= : int * int

Primitive types such as int are declared next. An index refinement is optional; if present, a default
index is optional. The following line gives real the index refinement dim, with default index NODIM

(written 1 in Section 7.4).

primitive type real with dim = NODIM

Primitive constants and functions are declared with primitive val and primitive fun4.
The last part of the lib_basis.rml annotation section declares subset sorts; there is presently only

one, nat (corresponding to N):

(∗ −−−−−−−−−−− Subset sorts −−−−−−−−−−− ∗)
indexsort nat = {a:int | a >= 0}

lib_basis.rml concludes with datatype declarations. These are unremarkable except that the exn

type is distinguished: the typechecker looks for a datatype with that name so it can check raise and
handle expressions. As mentioned, Stardust does not support exception declarations.

6.1.3 Declaring refinements

Each program begins with zero or more blocks of datatype declarations, where a block is a collection
of mutually recursive datatype declarations (in the rest of the program, a block is a collection

4val and fun are synonyms here; allowing only val would be more consistent with other annotation syntax.

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

176 CHAPTER 6. IMPLEMENTATION

of mutually recursive fun/val declarations). Each block can begin with a bracketed refinement
declaration, such as the following comprised of datacon declarations and an index sort specification
datatype list with int indicating that list is to be refined by the index sort of integers.

(*[

datacon Nil : list(0)

datacon Cons : -all u:int- int * list(u) → list(u + 1)

datatype list with int

]*)

datatype list = Nil | Cons of int * list

The datacon declarations can be read as

S(Nil) = list(0)

S(Cons) = Πu:Z. int ∗ list(u)→ list(u+ 1)

Note that the implementation, unlike the formal system, supports nullary constructors.
To specify a datasort refinement, the user writes a “kernel” of the datasort relation � as a

set of pairs, of which the system takes the reflexive-transitive closure. In addition to being more
convenient for the user than writing the whole relation, this ensures reflexivity and transitivity of
subsorting, needed for reflexivity and transitivity of subtyping. The declaration datasort list : odd <

list; even < list defines the kernel of the datasort refinement of list to be {〈odd, list〉, 〈even, list〉};
taking the reflexive-transitive closure yields

{〈odd, list〉, 〈even, list〉, 〈odd, odd〉, 〈even, even〉, 〈list, list〉}

(*[

datasort list : odd < list; even < list

datacon Nil : even

datacon Cons : int * odd → even

& int * even → odd

& int * list → list

]*)

datatype list = Nil | Cons of int * list

To refine by both a datasort and an index, the user can write the appropriate declarations:

(*[

datasort list : odd < list; even < list

datacon Nil : even(0)

datacon Cons : -all u:int- int * odd(u) → even(u+1)

& int * even(u) → odd(u+1)

& int * list(u) → list(u+1)

]*)

datatype list = Nil | Cons of int * list

Remark 6.1. The use of < in the concrete syntax is somewhat unfortunate. δ1 < δ2 suggests that
δ1 is strictly a subsort of δ2, which need not be the case: δ1 < δ2; δ2 < δ1 is legal and creates

August 6, 2007

6.1. THE IMPLEMENTED LANGUAGE 177

two synonymous datasorts: δ1 � δ2 and δ2 � δ1. The user almost certainly intends strict ordering
(otherwise, why have both δ1 and δ2?), but it is not clear if that makes the syntax a lesser or greater
misfortune.

6.1.4 Annotating declarations

Type annotations can be written in (*[. . .]*) blocks, e.g.

(*[val square : -all d : dim- real(d)→ real(d * d)]*)

fun square x = x ∗ x

The relevant part of the grammar appears near the end of Figure 6.2. A typedec has either the
form id : ctxanno or the unusual form id :! texp, which declares that the specified typing does not

hold; this is primarily useful for testing purposes: typechecking “succeeds” if the system catches
bugs in functions annotated with :!. A ctxanno is a comma-separated list of typings, each of which
can be just a texp (sugar for (⇒ texp)), or a genuine typing with a context: ((ccelem)∗ ⇒ texp).
A ccelem (for concrete context element) is either an index variable typing id :: sort or a program
variable typing id : texp.5

typing ::= texp | ((ccelem)∗ ⇒ texp)

ccelem ::= id :: sort | id : texp

6.1.5 Annotating expressions

Expression annotations can be written as exp : ctxanno. Unfortunately, some such annotations
are not valid SML, meaning that programs containing them cannot be compiled normally. For
example, double : int→int & real→real is not a valid SML expression because SML does not
have intersection types.

The best course would probably be to generate an SML program with such annotations removed
or converted to the corresponding simple type, either as a byproduct of successful refinement type-
checking or via a separate tool. In the interests of expediency, we instead simply provide a second,
rather inelegant, syntax for annotated expressions:

(*[ctxanno :]*) exp

Annotations in this form, such as (*[int→int & real→real :]*) double, can be used with-
out interfering with SML compilation, since the annotation is interpreted as a comment.

5Using :: for index variables disambiguates strings such as a:int, which could otherwise refer either to an index
variable of sort int (that is, Z) or to a program variable of type int. We would like to allow index variable declarations
to be elided entirely; it should be possible to infer them from the rest of the concrete context, e.g. the sort of a from
x:list(a). Then there would be no need for the tedious ::/: distinction.

August 6, 2007

178 CHAPTER 6. IMPLEMENTATION

6.1.6 Expression syntax

Besides the annotations discussed in the previous section, Stardust diverges from SML’s surface
syntax in a number of ways:

• the clausal form of function declarations is not allowed: the formal arguments to a function
are written only once;

• the formal arguments must be a sequence (allowing curried style) of identifiers or tuples:
fun append (xs, ys) = . . . is allowed, as are fun map f xs = . . . and even fun composeMap (f, g) xs =

. . . , but fun map (Cons(x, xs)) = . . . has a constructor pattern and is not allowed;

• the only pattern permitted on the left hand side of a val binding val p = e is a sin-
gle variable; bindings such as let val Cons(x,Nil) = e1 in e2 end must be rewritten as
case e1 of Cons(x,Nil)⇒ e2;

• user-defined infix operators (including their precedence and associativity) are not supported—
instead, the only infix identifiers are those in the Standard ML basis, and they have the cor-
responding precedence and associativity [MTHM97, p. 72];

• records are not supported;

• since modules are not supported, “.” is allowed in identifier names so that SML library func-
tions like Int.toString can be used (a side effect is that non-SML code such as val x.yz = 3

is accepted by Stardust, but this is only mildly unfortunate since such code will be rejected by
SML compilers).

6.2 Design

Stardust consists of a parser, a few preprocessing phases, a translator from the source language to
let-normal form, and a typechecker that includes interfaces to external constraint solvers. Parsing
is unremarkable, and let-normal translation is straightforward except for minor issues arising from
the additional complexity of the implemented language compared to the one in Chapter 5; see
Section 6.3.5.

The type system in Chapter 5 presents several implementation challenges. The first is evident
in rules such as ΠE, which pretend that we can somehow guess how to instantiate index variables.
The usual approach, which we follow, is to postpone instantiation by generating constraints with
existential variables. However, for efficient typechecking, constraint solving must be online. Oth-
erwise, if we check f(x) where f : A ∧ B, we may choose f ↑ A, continue typechecking to the end
of the block6, find that the constraint is false, backtrack and choose f ↑ B, etc. If A = list(0) → A ′

and x : list(1), we should know immediately that trying f ↑ A is wrong, since 0
.
= 1 (the constraint

generated by list(1) ≤ list(0)) is invalid. Thus, we give the additional constraint to the solver on
the fly, and when it reports that 0

.
= 1 is invalid we can proceed immediately to consider f : B. For

6We emphasize, again, that each top-level block of mutually recursive declarations (which may be a single function
or val declaration) is typechecked independently.

August 6, 2007

6.3. INITIAL PHASES 179

n such choices, if the program is ill typed and all choices (would) ultimately fail, this takes us from
typechecking the block 2n times to only n times.

The constraint-based rules that the typechecker implements are largely unwritten; we show
a few instances here. Writing Ω for solver contexts and Φ for the built-up constraint, the basic
judgment form Γ ;∆ ⊢ e ↓ A becomes Γ ;∆;Ω;Φ ⊢ e ↓ A Γ ′;Ω ′;Φ ′ (resp. for ↑); the output Γ ′

lets us add existential index variables â. For example, rule ΠE becomes

Γ ;∆ ⊢ e ↑ Πa:γ.A Γ ⊢ i : γ

Γ ;∆ ⊢ e ↑ [i/a]A ΠE =⇒ Γ ;∆;Ω;Φ ⊢ e ↑ Πa:γ.A (Γ ′;Ω ′;Φ ′)

Γ ;∆;Ω;Φ ⊢ e ↑ [â/a]A (Γ ′, â:γ;Ω ′;Φ ′)

The constraint version of var does nothing interesting:

Γ(x) = A

Γ ; · ⊢ x ↑ A var =⇒ Γ(x) = A

Γ ; ·;Ω;Φ ⊢ x ↑ A (Γ ;Ω;Φ)

The constraint version of ⊃L adds a proposition to Φ:

Γ |= P Γ ;∆, x:A ⊢ e ↓ C
Γ ;∆, x:(P ⊃ A) ⊢ e ↓ C ⊃L =⇒ Γ ;∆, x:A;Ω;Φ

V

P ⊢ e ↓ C (Γ ′;Ω ′;Φ ′)

Γ ;∆;Ω;Φ ⊢ e ↓ C (Γ ′;Ω ′;Φ ′)

The typechecker is written in continuation-passing style; functions check and infer take contin-
uations expecting (Γ ;Ω;Φ) and (Γ ;Ω;Φ;A) respectively, where A is the type synthesized by infer.

6.3 Initial phases

Stardust performs sort checking and applies several transformations to the program before let-
translating and typechecking it. We briefly describe these initial phases.

6.3.1 Index sort checking

This phase (the only initial phase that does not transform the program) checks that index expres-
sions are well sorted—rejecting, for example, (a < b) + 1 and #1(a) where a : Z, as well as
unknown identifiers. It also examines each type expression id(i) and verifies that (1) id is the
name of an indexed type (either a datatype or a refined primitive type such as int) or of a datasort
refining such a type; (2) i is of the sort that indexes id.7

6.3.2 Injection

For each type τ indexed by sort γ, the injection phase replaces occurrences of τ that are not indexed
(i.e. do not have the form τ(i)) with Σa:γ. τ(a), unless a default index is specified in lib_basis.rml.
For example, int is a primitive type indexed by the integer sort Z, so injection replaces int ∗ int

with (Σa1:Z. int(a1)) ∗ (Σa2:Z. int(a2)). For type real, the default index is NODIM, as specified in
lib_basis.rml:

primitive type real with dim = NODIM

Accordingly, injection replaces real ∗ real with real(NODIM) ∗ real(NODIM).

7Our “index sort checking” should not be confused with Davies’ “sort checking”—which we would call typechecking
(of datasorts, not index sorts).

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

180 CHAPTER 6. IMPLEMENTATION

6.3.3 Product sort flattening

This phase replaces quantifiers Πa:γ.A (respectively Σ) where γ is an n-ary product sort with

Πa1:γ1. . . . Πan:γn. A

(resp. Σ) and substitutes (a1, . . . , an) for a throughout A. (This leads to index equations on tuples,
which are reduced pointwise to yield equations for the external constraint solver: (i1, i2, i3)

.
=

(j1, j2, j3) becomes (i1
.
= j1)

V

(i2
.
= j2)

V

(i3
.
= j3).)

6.3.4 Subset sort elimination

Most uses of subset sorts {a:γ | P} can be eliminated very simply:

Πa:{a:γ | P}. A becomes Πa:γ. (P ⊃ A)

Σa:{a:γ | P}. A becomes Σa:γ. (P O A)

For example, Πa:nat. is replaced by Πa:int. (a ≥ 0) ⊃ A. A more difficult situation is when a
datatype is refined by a subset sort. Suppose we have the refinement declaration

(*[datacon Nil : list(0)

datacon Cons : Πu:nat. list(u)→ list(u+ 1)

datatype list with nat]*)

We must of course replace the quantifier in the declared type of Cons as above, yielding Πu:Z. (u ≥
0) ⊃ list(u+1). We also need to replace each occurrence of the subset sort-indexed type, elsewhere
in the program, with the appropriate asserting type; in general, if τ is a datatype indexed by a
subset sort {a:γ | P},

τ(i) becomes [i/a]P O τ(i)

Typechecking will then ensure through rule OI that [i/a]P holds: to show e ↓ [i/a]P O τ(i) one
must show [i/a]P.

However, the occurrences of τ(i) in the datacon declarations themselves cannot be replaced
this way, because S(c) = (0 ≥ 0) O list(0) is an indefinite type—not an Acon—which is not allowed
(Section 2.4.4). In this case, the proposition (0 ≥ 0) is true, but if we had

datacon Nil : list(−1)

we would be able to create values v : (−1 ≥ 0) O list(−1) which, when used, would cause −1 ≥ 0

to be added to Γ (rule OE), allowing anything to typecheck (rule contra). It appears that we must
validate the constructor types by checking the appropriate propositions (such as −1 ≥ 0). We have
not yet precisely formulated and implemented such a check, leaving it up to the user to verify that
the indices in constructor types have the declared subset sort.

August 6, 2007

6.4. INTERFACE TO AN IDEAL CONSTRAINT SOLVER 181

6.3.5 Let-normal translation

The let-normal translation is a fairly straightforward rendering of the rules in Figure 5.2, modulo
syntactic differences between the formal language and the implemented one. Two points may be
worth noting:

• The user-level let val x = e1 in e2 construct, being a sequence of subterms like e1e2 and (e1, e2),
requires a similar bifurcation on whether e1 is a pre- or anti-value. Note that in practice e1
is always a pre-value, since e1 must be a synthesizing form for the let to typecheck (unless
contra or a similar rule can be applied, but it is not likely that such a rule can be applied every
time the let is visited during typechecking).

• Since not only pairs but n-ary tuples are allowed in the implemented language, the distinction
on pre-/anti-values becomes more complex: given a tuple (e1, . . . , en), if either none of the
ek are anti-values or only en is, the translation corresponds to the formal rule when e1 is a
pre-value, binding all synthesizing subterms outside the tuple; otherwise, only synthesizing
subterms from the components up to and including the leftmost anti-value are bound outside.
For example,

(ě1, ê2, e3, e4) is translated to L1, L2 in (e ′1, e
′
2, (L3 in e ′3), (L4 in e ′4))

Here it does not matter whether e3 or e4 are pre- or anti-values, since the anti-value ê2 blocks
any of their subterms from being in evaluation position outside the tuple. This corresponds
to the formal rule for (e1, e2) in the case where e1 is an anti-value; that rule does not care if
e2 is a pre- or anti-value.

6.4 Interface to an ideal constraint solver

We would like a constraint solver that supports the following for all index domains of interest:

1. A notion of solver context (represented by Ω) that encapsulates assumptions, corresponding
to Γ ; we will abuse notation and write Ω |= P to mean that P is true under the assumptions
encapsulated by Ω, etc.

2. An ASSERT operation taking a context Ω and proposition P, yielding one of three answers:

(a) Valid if P is already valid under the current assumptions, i.e. Ω |= P;

(b) Invalid if P is unsatisfiable, that is, leads to an inconsistent set of assumptions: Ω,P |= ⊥;

(c) Contingent(Ω ′) if Ω 6|= P and Ω,P 6|= ⊥; yields a new context Ω ′ = Ω,P.

3. A VALID operation taking a context Ω and proposition P, and returning one of two possible
answers:

(a) Valid if P is valid under the current assumptions, i.e. Ω |= P;

(b) Invalid otherwise.

August 6, 2007

182 CHAPTER 6. IMPLEMENTATION

4. A DECLARE operation taking a context Ω, name a, and index sort γ, which declares a to be a
(universally quantified) variable of sort γ and returns the resulting context Ω ′ = Ω,a:γ.

Implicit in this specification is that the contextsΩ are persistent: if ASSERT(Ω1, P) yields Contingent(Ω2),
the “earlier” contextΩ1 should remain unchanged. This is a key property, given all the backtracking
the typechecker does. Where a constraint solver does not have this property, it can be simulated,
though at some cost; see Section 6.11.1. Likewise, where the constraint solver does not support an
index domain, propositions in that domain must be reduced to propositions in a supported domain.

6.5 Constraint-based typechecking

The Typecheck module (the typechecker proper) calls a Solve module, which in turn calls one of
the following, based on a selection of the user (defaulting to Cvcl):

• Cvcl implements an interface to CVC Lite (Section 6.5.2) as a shared library;

• CvclPiped implements an interface to CVC Lite as a separate process, communicating via
Unix pipes;

• Ics implements an interface to ICS (Section 6.5.1) as a separate process, communicating via
Unix pipes.

Within Solve there is a notion of state that is independent of the particular constraint solver used.

datatype state = STATE of {assn : indexassn list,

constraint : constraint,

exiSub : ExiSub.exisub,

context : U.context}

The field assn is a list of assumptions corresponding to some Γ (Γ restricted to index variable
sortings and propositions); constraint is a proposition8; exiSub is a substitution containing solu-
tions for existentially quantified variables; and context is the context manipulated by the functor
argument U, encapsulating the particular solver interface’s state. Relative to the rules sketched
above, assn corresponds to Γ , constraint to Φ, and context to Ω. For all states, the assumptions
encapsulated (on the external constraint solver) by ics (Ω) correspond to assn (Γ).

Our constraint solvers do not support existential variables at all (ICS), or support them in a
formally incomplete way (CVC Lite). This has significant repercussions on the whole design. The
typechecker itself manages existentials, and lies to the constraint solver by telling it that existential
variables are universal. Therefore, when adding a constraint we cannot immediately check its
validity, since the constraint may include existential variables that the solver thinks are universal:
we cannot directly check â:int |= â

.
= 0 (meaning ∃a. a = 0), only a:int |= a

.
= 0 (meaning

∀a. a = 0) with a universally quantified. Clearly, the first relation should hold and the second
should not. Fortunately, we can still “fail early” (recalling f : A ∧ B from the example earlier).

8We use P for both user propositions, which correspond to the propositions the user can write in the index domain, and
constraints, which correspond to propositions built up internally. The latter are somewhat richer, including quantifiers
∀a:γ. P, ∃â:γ. P and implications P1 ⇒ P2.

August 6, 2007

6.5. CONSTRAINT-BASED TYPECHECKING 183

Instead of checking validity, we assert the new constraint, adding it to the assumptions. If the
resulting assumptions are inconsistent (as with 0

.
= 1, or—less trivially—a

.
= a+1), no instantiation

of existential variables can make the constraint valid, so we can correctly fail, and backtrack as
needed.

Of course, we must check validity of the constraint at some point! Otherwise, given a constraint
b
.
= 0, we would conclude b:int |= b

.
= 0 since b

.
= 0 is a consistent assumption. Therefore,

in addition to asserting b
.
= 0, we add it to a constraint built up in a manner similar to off-line

constraint solving. Eventually, the typechecker solves for existentials and asks the solver if the
built-up constraint is valid; see the description of forceElimExistential below.

The most important functions in Solve from the typechecker’s perspective are accumulate and
assume.

val accumulate : state * Indexing.constraint → state option

(∗ returns NONE if inconsistent ∗)
val assume : state * Indexing.constraint → state option

(∗ returns NONE if inconsistent ∗)

accumulate(s, P) conjoins the constraint P to the constraint in s. If P contains any existential
variables, the constraint P is actually given to the constraint solver as an assumption (ASSERT); an
inconsistent result means that P is unsatisfiable, in which case any further attempts to typecheck
along this part of the search space are doomed to fail, even if some of the variables in P are
existential. For example, if â is an existential and P = (â

.
= â + 1), accumulate returns NONE. If all

variables in P are universally quantified, P is checked (VALID), and NONE is returned if P is not valid.

assume(s, P) also gives P to the constraint solver as an assumption, but adds P to the assump-
tions assn rather than to constraint. Like accumulate, assume returns NONE if the resulting as-
sumptions would be inconsistent.

val forceElimExistential : state → Indexing.constraint → state * Indexing.constraint

The forceElimExistential function is called when the scope of an existentially quantified variable
is closed; the variable must be eliminated before the accumulated constraint can be verified. The
second argument must be a constraint of the form ∃â.P. The actual elimination is carried out
by manipulating each equation i

.
= j in P (where â ∈ FV(i

.
= j)) until the variable â is isolated

(â
.
= j), at which point j is substituted for â throughout, in both the accumulated constraint (to be

validated) and the assumptions (propositions in Γ). The manipulation follows the system of rewrite
rules in Figure 6.3, assuming without loss of generality that â is free on the left-hand side.

u1 + u2
.
= j −→ u1

.
= j− u2 if â ∈ FV(u1)

u1 + u2
.
= j −→ u2

.
= j− u1 if â ∈ FV(u2)

u1 − u2
.
= j −→ u1

.
= j+ u2 if â ∈ FV(u1)

u1 − u2
.
= j −→ u2

.
= u1 − j if â ∈ FV(u2)

u1 ∗ u2
.
= j −→ u1

.
= (1/u2) ∗ j if â ∈ FV(u1)

u1 ∗ u2
.
= j −→ u2

.
= (1/u1) ∗ j if â ∈ FV(u2)

Figure 6.3: Existential elimination rules for integer equations (assuming â free on the left-hand side)

August 6, 2007

184 CHAPTER 6. IMPLEMENTATION

If forceElimExistential finds a solution i for â, it returns (s ′, [i/â]P) where s ′ is s with exiSub

extended by i/â. If it fails, it returns (s, ∃â. P), in which case typechecking will only succeed if P is
valid even when â is regarded as universal (for example, if P = â

.
= â, since ∀a. (a

.
= a) is valid).

The last key function in Solve is solve, which checks if the accumulated constraint is valid; it is
called by Typecheck when it reaches the end of a block.

val solve : state → bool

6.5.1 Interface to ICS

Stardust includes an interface to the ICS system [dMOR+04, SRI03] as an external constraint solver.
ICS, developed at SRI, has cooperating decision procedures for fragments of rational arithmetic,
uninterpreted functions, functional arrays, and other theories; the typechecker presently uses only
the arithmetic theory. While there is a notion of “current context” in the ICS interface (for ex-
ample, ICS’s ASSERT operation takes only a proposition and implicitly uses the current context as
the Ω), previously constructed contexts can be saved and restored quickly, yielding an interface
extremely close to the idealized one presented above. This is no coincidence, since we designed
the typechecker expecting that we would use ICS.

A significant specification gap is that ICS does not properly support Booleans. It has a SAT solver,
but that does not cooperate with the rest of the system. The bit vector theory seemed promising,
but encoding Booleans as bit vectors of length 1 yielded unsatisfying results: asserting a = 1 and
b 6= a does not make b = 0 valid! Fixing this might seem easy in principle but ICS is no longer
supported (and SRI’s oppressive licensing makes it difficult to do on our own).

We do not use ICS as a library; instead, it runs as a separate process and we communicate
through Unix pipes.

6.5.2 Interface to CVC Lite

Stardust also includes an interface to CVC Lite [BB04, Bar06b], the successor to CVC, the Cooperat-
ing Validity Checker [SBD02], which in turn succeeded SVC, the Stanford Validity Checker [BDL96].
CVC Lite has cooperating decision procedures for fragments of integer and rational arithmetic,
Boolean propositions (including conjunction, disjunction, negation, and implication), uninterpreted
functions, bit vectors, and other theories; we presently use only the integer and Boolean theories.
It has limited support for quantifiers, both universal and existential (free variables are, as in ICS,
always universal); a response of Invalid may be given even when an existential solution exists. We
have not explored whether that limited support is sufficient for Stardust; it could be as powerful
than our home-grown existentials, and might lead to a simpler design.

Unlike ICS, CVC Lite does not support persistent contexts. We discuss the impact of this in
Section 6.11.

CVC Lite has recently (2006) become CVC3 [Bar06a]. We hope to add support for CVC3; that
should allow us to easily implement an index domain where the objects are inductive datatypes
(see p. 239), since CVC3 supports them.

August 6, 2007

6.6. INTERNAL INDEX DOMAINS 185

6.6 Internal index domains

Stardust supports index domains that the external solvers do not. Propositions in these “internal”
domains must be nontrivially manipulated before being given to an external solver. Specifically:

• Equations in the dimension sort dim are reduced to propositions in the integer domain by a
process described in the next chapter (Section 7.4.4).

• ICS does not support Booleans. When ICS is used (as opposed to CVC Lite), implications
P1 ⇒ P2 are checked by asserting P1 and checking validity of P2. Note that implications are
not “first class” since they cannot be asserted. They do not appear in the source language of
propositions available to the user; instead, they result from the encapsulation of constraints9:
when an assumption P is discharged, the generated constraint P ′ is replaced with P ⇒ P ′.
That constraint’s validity may be checked, but it will not be asserted.

A consequence of being unable to assert implications is that we cannot support “first class”
negations just by translating ¬P to P ⇒ False, which in turn means that we cannot, in general,
trivially support disjunctions (Section 6.9), at least when using ICS.

• When ICS is used, assertion of an index equation i1
.
= i2 where i1 and i2 have sort bool is

handled as follows:

True
.
= i2 −→ assert i2

False
.
= i2 −→ assert the negation of i2

i1
.
= True −→ assert i1

i2
.
= False −→ assert the negation of i1

We would like to check the general case i1
.
= i2 by transforming it into (i1 ⇒ i2)

V

(i2 ⇒ i1),
but one cannot assert an implication in ICS. In this case, Stardust ignores the assertion and
does not give it to ICS, which may slow typechecking: not knowing i1

.
= i2 may lead to a

failure to notice inconsistent assumptions. The more serious consequence comes in the final
(which, in this case, is also the first) validity check. In the final validity check, to check that
True

.
= i2 is valid we check that i2 is valid, and so forth. Here we can usually check an

equation of the form i1
.
= i2 as if it were (i1 ⇒ i2)

V

(i2 ⇒ i1): assert i1, check i2, roll back
the context, assert i2, and check i1. This assumes that i1 and i2 can be asserted, i.e. that
they do not themselves include implications. In that case the antecedent is ignored, as above,
but with more serious consequences: instead of a performance degradation, the power of
the system is reduced, since equations that should be valid will not be. Again, none of these
problems occur when CVC Lite is used, since it supports Booleans directly.

• Finally ICS does not properly support integers, only rationals, so we “stultify” certain propo-
sitions: for example, instead of asserting a > b we assert a ≥ b + 1, excluding the open
interval (b, b+ 1) that contains no integers.

9Implications also arise from equations in the Boolean sort, discussed in the next item.

August 6, 2007

186 CHAPTER 6. IMPLEMENTATION

6.7 Optimizations

We discuss several optimizations and whether they are performed: how we separate the synthesis
judgment into two, memoization (and why experiments led us to abandon it), left rule optimiza-
tions, and slack variables.

6.7.1 Improvement of the synthesis judgment

For efficiency, the implementation separates the synthesis judgment into two. Suppose we have the
term

let x = x in let y =y in . . . (several more lets). . .

and Γ(x) = A1 ∧ A2. Applying rule let, we need to synthesize a type for x. At least three different
derivations yield a judgment of the form . . . ⊢ x ↑ A for some A:

Γ(x) = A1 ∧ A2

Γ ⊢ x ↑ A1 ∧ A2
var

Γ(x) = A1 ∧ A2

Γ ⊢ x ↑ A1 ∧ A2
var

Γ ⊢ x ↑ A1
∧E1

Γ(x) = A1 ∧ A2

Γ ⊢ x ↑ A1 ∧ A2
var

Γ ⊢ x ↑ A2
∧E2

It is best to derive the first of these, so that in the second premise of let we will have x:A1 ∧ A2,
and wherever x is eventually used, we will have the flexibility to apply either ∧E1 or ∧E2 at that
point, as needed (for example, if we use rule →E on a term x y). If we try x:A1 ∧ A2 and fail, we
will also fail with x:A1 and x:A2: the second and third derivations cause considerable backtracking.
We avoid such backtracking by introducing a ↑1 judgment form that excludes non-invertible rules
such as ∧E1,2. Thus ↑1 produces principally synthesizing types, such as A1 ∧ A2, from which A1
and A2 can be synthesized. (Principal synthesis also came up in Chapter 5; see Section 5.3.1.)

In contrast, if (again) Γ(x) = A1 ∧ A2 and we are trying to synthesize a type for x(e) via rule
→E, we must apply ∧E1 or ∧E2 so we can get an arrow type for x. Likewise, we must eliminate
intersections when applying ∗E1 or ∗E2 (to obtain a ∗ type) and in δE (to obtain a δ(i) type). We
introduce a ↑2 judgment form, equivalent to the original ↑. For example, there are versions of ∧E1
and ∧E2 concluding ↑2, allowing the system to break down the property type (A1 → A2) ∧ (A ′

1 →
A ′
2) into its ordinary components A1 → A2 and A ′

1 → A ′
2.

Relation to focusing

This technique is related to focusing in linear logic [And92]. Consider the structure of a derivation
involving directL:

D1
Γ ⊢ e ′ ↑ A

D2
Γ, x:A ⊢ E [x] ↓ C

Γ ⊢ E [e ′] ↓ C
directL

By constructing D1, a type A for e ′ is found; during construction of D2, the type A appears as
part of an assumption, to the left of the turnstile. The construction of D1 corresponds to the

August 6, 2007

6.7. OPTIMIZATIONS 187

inversion phase, in which one does not apply non-invertible rules. The part of D2 in which x is
used corresponds to the focusing phase, in which non-invertible rules may be applied. To see this
correspondence, we must know which linear logic sequent rule corresponds to a given synthesis
rule.

Operationally, synthesis rules proceed from a known fact about the subject term to another fact.
For instance, ∧E1 proceeds from the fact that e has the property expressed by A1 ∧ A2 to the fact
that e has the property expressed by A1. This is analogous to a left rule in the sequent calculus,
namely the additive conjunction rule NL1 (as well as our own left rule ∧L1):

. . . , A1 ⊢ C

. . . , A1 N A2 ⊢ C
NL1

Asynchronous rules are applied during the inversion phase, synchronous rules in the focusing phase.
To know when to permit application of the left rule NL1, we simply need to ask whether N is a left
synchronous or left asynchronous connective. It is left synchronous, so the left rule NL1 should not
be applied in the inversion phase.

Thus, ∧ has the character of a left synchronous connective. In contrast,→ is left asynchronous,
with no clear correspondence to linear logic; of course, → is not a property type and →E de-
composes its subject term, so a direct correspondence would be startling. On the other hand, an
indefinite property type such as ∨ should correspond to additive disjunction ⊕, and indeed it would
seem that if we had any ∨ rules with a synthesized conclusion, they could be safely applied in the
inversion phase.

Implementation

The two judgment forms are implemented through an additional argument to infer:

datatype inference_disposition = MAINTAIN_PRINCIPALITY || WANT_ORDINARY_TYPE

If the ↑1 form is to be derived, MAINTAIN_PRINCIPALITY is passed to infer, whereas for the ↑2 form
WANT_ORDINARY_TYPE is passed.

6.7.2 Memoization

The backtracking due to union and intersection types, such as with rules ∧E1 and ∧E2, can be
problematic. Consider a case expression with several arms. If every arm but the last typechecks,
the failure in the last arm could be due to a choice made while checking an earlier arm: that
choice could lead to a different generated constraint, potentially affecting the success of checking
the final arm. Thus, if n two-way choices are made, we will traverse all paths on a complete
binary tree of height n. However, the common case appears to be complete independence between
the well-typedness of the arms. It would be incorrect to assume such independence, but we can
detect some instances of independence through memoization [Mic68]. Essentially, when deriving
Γ ;∆;Ω;Φ ⊢ e ↓ A (Γ ′;Ω ′;Φ ′) we can memoize the result (a sequence of context/constraint
pairs), keyed by (Γ, ∆,Φ, e,A) (under α-equivalence of index variable contexts). The result is a

August 6, 2007

188 CHAPTER 6. IMPLEMENTATION

sequence since there may be several possible output pairs, corresponding to different choices made
while checking e.

However, our experience indicates that memoization is a net loss. Few memoized results can
actually be used. Even a minor and irrelevant change in the assumptions will cause a table miss,
and the typechecker rarely needs to derive a judgment absolutely identical (modulo α-equivalence)
to one already derived. A more robust notion of equivalence could be helpful here.

Note that these problems arise from the combination of intersection (and union) types with
index refinements; Davies’ system has no index refinements, so case arms are truly independent and
memoization is highly beneficial [Dav05a, pp. 271–273]; in DML [Xi98], there are no intersections
and no unions, and thus no need to backtrack.

6.7.3 Left rule optimizations

The left rules (Figure 3.8) are troublesome: they can be applied whenever we need to derive a
checking judgment and have a linear variable of type ⊥, Σ, ∨, O, Π, ∧ or ⊃ somewhere in ∆.
Fortunately, the rules for the indefinite types—⊥L, ΣL, ∨L, OL—are invertible, so they can safely
be applied as soon as a linear variable of the relevant type is added to the context. Moreover, the
rules for the definite types (∧L1,2, etc.) need not be applied when doing so would only expose
ordinary type constructors: there is no need to look inside the ∧ in x:(A1 → A2) ∧ (B1 → B2), for
example, since it only exposes arrows, which have no left rule; when x is actually used, the ordinary
elimination rules like ∧E1 can be applied. However, if an indefinite type could be exposed, we may
have to apply ∧L1 or ∧L2. This situation—a kind of quantifier alternation—is rare in the examples
we have tried: one tends to see either various definite type constructors applied to ordinary types
(e.g. a universally quantified intersection of arrows), or an indefinite type constructor applied to
ordinary types (e.g. δ(i) ∨ δ(j)). It does not matter if an ordinary type contains nested definite or
indefinite property types, since those are not manipulated by the type system until the ordinary
type is eliminated.

As with the synthesis-judgment technique above (Section 6.7.1), there is some connection to
focusing in linear logic: the invertible decomposition of the indefinite type ∨ is similar to the left
asynchronicity of ⊕, while the situation with the definite type ∧ corresponds to the left synchronic-
ity of N.

6.7.4 Slack variables

We have not encountered many slack variable bindings. Annotated values—terms of the form
(v : As)—are rare in our examples; most annotations are on fun declarations, which correspond to
a fix of a λ (for mutually recursive declarations, a fix of a tuple of λs) in our formal systems, and we
do not consider fix a value. We have not tried to assess how many annotated values appear in real
SML programs, so it is possible that a redesign of the slack variable scheme would be necessary, but
we have at least seen no discouraging evidence.

August 6, 2007

6.8. PATTERN CHECKING 189

6.8 Pattern checking

Subtraction and intersection are implemented such that they should have the properties required
in Chapter 4. The implementation follows the useful optimization described in Section 4.8. Rules
∧-p, Σ-p and O-p (p. 102) are not implemented, not for any deep reason but simply because we
encountered no cases in which they were needed.

6.9 Disjunctions

Some programs call for case analysis (splitting) of disjunctive propositions. Consider the refined
binary search trees in Figure 6.4, in which values of tree type are refined by pairs (l, u) of integer
indices: l and u are the least and greatest keys appearing in the tree. Datasorts are used to
distinguish empty (Leaf) and nonempty (Node) trees; by convention, both l and u are 0 for empty
trees.

For example, Node(5,Node(1, Leaf, Leaf),Node(8, Leaf, Leaf)) has type tree(1, 8). The refinement
ensures that all trees are ordered—disordered trees such as Node(7, Leaf,Node(5, Leaf, Leaf)) have
no type, because Node(5, Leaf, Leaf) has type tree(5, 5), but S(Node) requires that the first index
of the right child is greater than or equal to the integer stored at that node (7). The constructor

(*[

datatype tree with int * int

datasort tree : empty < tree; nonempty < tree

datacon Leaf : empty(0,0)

datacon Node :

(-all x,l1,u1,l2,u2 : int- {l1<=u1 and l2<=u2 and u1<=x and x<=l2}

int(x) * nonempty(l1,u1) * nonempty(l2,u2) → nonempty(l1,u2))

& (-all x,l2,u2 : int- {x<=l2 and l2<=u2}

int(x) * empty(0,0) * nonempty(l2,u2) → nonempty(x,u2))

& (-all x,l1,u1 : int- {l1<=u1 and u1<=x}

int(x) * nonempty(l1,u1) * empty(0,0) → nonempty(l1,x))

& (-all x : int-

int(x) * empty(0,0) * empty(0,0) → nonempty(x,x))

]*)

datatype tree = Leaf | Node of int * tree * tree

Figure 6.4: Ordered binary search trees

types are rather straightforward (if somewhat clumsy since S(Node) enumerates all permutations
of emptiness/nonemptiness in the children), but the obvious insert function raises some issues.
Inserting a key into an empty tree is trivial, as shown in the first line of the annotation; when
inserting a key into a nonempty tree we have to separately consider the cases where (1) the inserted
key is smaller than the minimum key in the existing tree, (2) greater than the maximum key in the
existing tree, (3) between the minimum and the maximum.

(*[val insert : -all key:int- (empty(0,0) * int(key) → nonempty(key,key))

August 6, 2007

190 CHAPTER 6. IMPLEMENTATION

& -all l,u : int-

({key<=l} nonempty(l,u) * int(key) → nonempty(key,u))

& ({key>=u} nonempty(l,u) * int(key) → nonempty(l,key))

& ({key>=l and key<=u} nonempty(l,u) * int(key) → nonempty(l,u))

]*)

The difficulty comes when insert is applied (whether recursively or by another function) and the
new key’s standing vis-à-vis the minimum and maximum keys in the existing tree is not known. In
our type system, we cannot derive

Γ, l:Z, u:Z, t:tree(l, u), a:Z, x:int(a) ⊢ insert(t, x) ↑ . . .

because we cannot show a ≤ l or a ≥ u, needed to apply ⊃E. We need to notice that the disjunction
(a ≤ l) V (a > l) holds so we can split it, checking the term separately under Γ, . . . , a ≤ l and under
Γ, . . . , a > l. (In the latter case, we need to likewise split (a ≥ u) V (a < u).)

At the level of the inference rules, we can simply add a disjunctive analogue of rule contra: as
contra deals with falsehood (the disjunction of nothing), rule disjunction would deal with binary
disjunctions.

Γ |= ⊥

Γ ⊢ e ↓ C contra
Γ |= P1 V P2 Γ, P1 ⊢ e ↓ C Γ, P2 ⊢ e ↓ C

Γ ⊢ e ↓ C disjunction

However, such a rule is harder to implement than contra. The premise Γ |= P1 V P2 is nontrivial:
P1 and P2 are not known and there is no obvious way to have the constraint solver report relevant
disjunctions. This can be overcome by invoking the rule only when P1 V P2 is added to Γ , which
occurs when the user writes annotations containing propositions P1 V P2, e.g. when checking a
function against ((a ≥ u) V (a < u)) ⊃ Of course such a proposition always holds—its sole
purpose is to signal to the typechecker that disjunction should be applied.

Remark 6.2 (Convexity and the disjunction rule). An index domain (or “theory”) is convex if, when-
ever some disjunction of equations is entailed by assumptions10, there is a specific equation that is
also entailed [NO79, p. 252]. For instance, the linear integers are not convex:

a:Z, a ≥ 0, a ≤ 2 |= (a
.
= 0) V (a

.
= 1) V (a

.
= 2)

but a:Z, a ≥ 0, a ≤ 2 6|= a
.
= k for any k ∈ {0, 1, 2}.

In a convex theory, rule disjunction seems less useful, yet not superfluous. Case-analyzing the
disjunction (a < 0) V (a ≥ 0) is just as useful in the rationals (convex) as the integers (nonconvex),
but the only situation in which the disjunction P = (a

.
= 0) V (a

.
= 1) V (a

.
= 2) is entailed in the

rationals is when P itself is an assumption.

Validation of disjunctions is possible in many cases even if the constraint solver does not directly
support disjunction: if the negation of P1 (or of P2, since P1 V P2 ⇐⇒ P2 V P1) is defined, we can
use the equivalence

P1 V P2 ⇐⇒ (¬P1)⇒ P2

10Propositions in the assumptions must be “literals”, that is, index predicates such as a ≥ 0; they must not contain
disjunctions (otherwise no theory would be convex).

August 6, 2007

6.10. THE REFINEMENT RESTRICTION 191

to change the disjunction into an implication. However, not all constraint solvers can directly assert
implications (see Section 6.6).

We are not completely pleased with this approach, as it forces users to put extraneous guards
and assertions in annotations, but there may be no better way.

Disjunctive splitting is not yet implemented.11

6.10 The refinement restriction

In Davies’ Refinement ML [Dav05a], there is a refinement restriction on intersection types: an inter-
section A ∧ B is well formed only if A and B are refinements of the same simple type. For example,
even ∧ odd is permitted if even and odd both refine list; likewise, (even → odd) ∧ (odd → even)

is permitted, since each component of the intersection refines list → list. On the other hand,
list ∧ (list → list) and int ∧ string do not satisfy the refinement restriction; in the first, lists and
functions are incompatible, while int and string are distinct base types. This sits well with Davies’
terminology, in which the “types” are still the usual ML types, and the corresponding, more pre-
cise entities in the refinement system are called “sorts”. Because of the refinement restriction,
typechecking in Refinement ML is conservative over Standard ML in the following sense: every
program that is well typed in Refinement ML is also well typed in Standard ML.12 Therefore, Re-
finement ML programs can be processed by ordinary SML compilers. In addition, Davies’ system
can exploit SML’s Hindley-Milner type inference for polymorphic instantiations (see Section 8.1.1),
which would be difficult if the program were not a valid SML program.

In contrast, Stardust does not enforce a refinement restriction on intersections and unions.
Stardust also does not check code that it knows (via rules contra, ⊥L, and the pattern rules) to
be dead. Thus, it is not conservative in the sense that Refinement ML is—a number of programs
typecheck in Stardust that do not typecheck in Standard ML, ranging from the silly This function

is in restric-
tion1.rml.(*[val f : bool(true) → int]*)

fun f x = case x of true ⇒ 0 | false ⇒ () ()

to the mildly intriguing implementation of functional arrays (as lists) shown below. The dispatch

function is inspired by Reynolds’ representation of arrays as intersections in Forsythe [Rey96], but
differs in having an explicit “selector” argument to pick out the component (length, read, or write),
giving it something of an object-oriented flavor.

Listing 6.2: restriction2.rml

(*[datacon Nil : list(0)

datacon Cons : -all u:nat- int * list(u) → list(u + 1)

datatype list with nat]*)

datatype list = Nil | Cons of int * list

(*[datasort array_op : length_op < array_op; read_op < array_op; write_op < array_op

datacon Length : length_op

11Some of the machinery is present in the system, but even trivial examples requiring splitting do not work.
12The Standard ML compiler may emit “nonexhaustive match” warnings that the Refinement ML system knows are

spurious, but it will still compile such programs.

August 6, 2007 — Listing 6.2: restriction2.rml

http://type-refinements.info/stardust/thesis/examples/restriction1.rml
http://type-refinements.info/stardust/thesis/examples/restriction2.rml

192 CHAPTER 6. IMPLEMENTATION

datacon Read : read_op

datacon Write : write_op]*)

datatype array_op = Length | Read | Write

(*[datacon Array : -all n:nat- int(n) * list(n) → array(n)

datatype array with int]*)

datatype array = Array of int * list ;

(*[val append : -all a, b : nat- list(a) * list(b) → list(a + b)]*)

fun append (xs, ys) =

case xs of

Nil ⇒ ys

| Cons(x, xs’) ⇒ Cons(x, append(xs’, ys))

(*[val nth : -all len : nat- list(len) → -all n : nat- {n < len} int(n) → int]*)

fun nth list n =

case list of

Cons(h, t) ⇒ if n = 0 then h else nth t (n - 1)

(*[val replace : -all len : nat-

list(len) → -all n : nat- {n < len} int(n) → int → list(len)]*)

fun replace list n x =

case list of

Cons(h, t) ⇒ if n = 0 then Cons(x, t) else Cons(h, replace t (n - 1) x)

(*[val dispatch :

-all len:nat-

array(len)

→ ((length_op → int(len))

& (read_op → -all n : nat- {n < len} int(n) → int)

& (write_op → -all n : nat- {n < len} int(n) → int → array(len)))]*)

fun dispatch array selector =

case array of Array(length, list) ⇒
case selector of

Length ⇒ length

| Read ⇒ nth list

| Write ⇒ (fn n ⇒ fn x ⇒ Array(length, replace list n x))

Listing 6.2: restriction2.rml

Our next and final example might look like valid Standard ML, but does not typecheck due to
that language’s half-baked operator overloading.This function

is in restric-
tion3.rml. (*[val add3 : (-all a, b, c : int- int(a) * int(b) * int(c) → int(a + b + c))

& (-all d : dim- real(d) * real(d) * real(d) → real(d))]*)

fun add3 (x, y, z) = x + y + z

(∗ SML arbitrarily prefers the integer variant of +, inferring
val add3 : int ∗ int ∗ int→ int ∗)

val x = add3 (10, 100, 1000)

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/restriction2.rml
http://type-refinements.info/stardust/thesis/examples/restriction3.rml

6.11. PERFORMANCE 193

val y = add3 (12.3, 100.0, 3.1267) (∗ rejected by SML ∗)

The immediate utility of these examples is nil, since none of them can presently be compiled.
However, they give some clues as to the possible benefits of building compilers based on our type
system.

6.11 Performance

In this section, we give the time needed to typecheck several example programs (Figure 6.5), and
discuss some of the factors affecting performance.

Wall-clock time in seconds
CVC Lite CVC Lite

Input program ICS (library) (standalone)

redblack < 1 < 1 < 1

redblack-full 1.9 8.2 9.2

redblack-full-bug1 1.6 6.8 8.1

rbdelete * 37.7 31.6

real < 1 < 1 < 1

refine < 1 < 1 < 1

bits * 9.5 4.0

bits-un 33.5 298.5 241.4

Figure 6.5: Time required for typechecking

The times indicated are under Standard ML of New Jersey version 110.59 on a 4-CPU Intel Xeon
(3 GHz) and 2 GB RAM. The constraint solvers were ICS version 2.0 (November 2003) and CVC
Lite version 20070121 (January 2007). An asterisk (*) indicates programs for which the constraint
solver, or the interface to the constraint solver, gives a wrong answer or is deficient13

‘redblack’ implements red-black tree insertion and contains only datasort refinements (and
therefore does not check the black height invariant). ‘redblack-full’ also contains index refine-
ments, checking the black height invariant; this is the program in Listing 7.4. ‘redblack-full-bug1’ is
the same program with a bug introduced. ‘rbdelete’ implements red-black tree deletion, using both
datasort and index refinements; see Listing 7.5. ‘real’ contains simple functions of real numbers;
it and several other (unlisted) files containing dimension type annotations do not use intersection
and union types, and typechecking is consequently fast. ‘refine’ contains a few very short functions
(with the even/odd datasort refinement of list), repeated several dozen times; each function is fast
to typecheck, and the functions are checked independently, so typechecking the entire file takes
very little time. ‘bits’ and ‘bits-un’ are the programs in Listings 7.1 and 7.3.

13The problem with ICS and rbdelete is caused by the use of Boolean sorts, which are not completely handled by
Stardust. In contrast, the problem with bits.rml is triggered by the asserting type [len >= len1 and len >= len2] in
the type of add. With the guard [len >= len1] alone, and with [len >= len2] alone, ICS works correctly. We cannot
completely rule out a bug in Stardust rather than ICS, but the fact that the system behaves as expected when CVC Lite is
used instead is suggestive.

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/redblack.rml
http://type-refinements.info/stardust/thesis/examples/redblack-full.rml
http://type-refinements.info/stardust/thesis/examples/redblack-full-bug1.rml
http://type-refinements.info/stardust/thesis/examples/rbdelete.rml
http://type-refinements.info/stardust/thesis/examples/real.rml
http://type-refinements.info/stardust/thesis/examples/refine.rml
http://type-refinements.info/stardust/thesis/examples/bits.rml
http://type-refinements.info/stardust/thesis/examples/bits-un.rml
http://type-refinements.info/stardust/thesis/examples/bits.rml

194 CHAPTER 6. IMPLEMENTATION

6.11.1 Impact of solver interfaces

Stardust communicates with ICS through Unix pipes. This is not very efficient: experiments14

suggest that the overhead of sending one command and receiving one response is 20–40% for ICS.

We can also communicate with CVC Lite through Unix pipes, but we have also implemented a
direct interface to a shared library through CVC Lite’s C-level API and the SML/NJ NLFFI. As we
expected, this speeds typechecking in most cases; bits.rml is an anomaly, which might be explained
by additional swapping; we manually “manage” CVC Lite expressions by never deallocating them!

For CVC Lite, another source of inefficiency is CVC Lite’s inability to rapidly switch back to
previously visited contexts. Unlike ICS, in which contexts are persistent and can be recalled instan-
taneously, CVC Lite can roll back only to ancestors of its current context. Suppose we assert a < 0,
yielding a context Ω1, and then assert b < a, yielding a state Ω2 in which a < 0 and b < a. We
can roll back to Ω1 in a single transaction, but if we assert c < a, we cannot go back to Ω2 without
rolling back to Ω1 and re-asserting (replaying) b < a. Typically, 20–50% of transactions with CVC
Lite are replay assertions.15 This suggests that for our purposes, persistent context in a constraint
solver is useful but not absolutely essential.

Stardust also supports solvers running remotely, a feature motivated by our inability to run
CVC Lite on an antiquated version of Linux; the machine in question subsequently had its OS
upgraded, so the feature is disused. This was very easy to implement since communication through
a Unix socket to a remote host is so similar to communication through a pipe to a local process.
Typechecking using a remote solver is impractical; for example, checking redblack with CVC Lite
running remotely on a host connected by local Ethernet takes over four minutes, due to the high
cost of continually sending constraints. This does not mean that distributed typechecking in general
is impractical—in fact, we outline a plausible approach with lower communication cost in Section
6.11.3—but the solver(s) should run on the same host as the Stardust process itself.

6.11.2 Conservation of speed

We believe that the system conserves typechecking speed, in the sense that checking a program—
more usefully, a block—that does not use property types will be polynomial time (as with monomor-
phic SML programs). This is subject to the caveat that property types appear in lib_basis.rml, so any
block that uses basis identifiers such as + is really using property types, whether the user realizes it
or not.

The foundation of this (unproven) claim is that we believe our formal systems have a sub-
formula property [Pra65, p. 53]: formulas (here, type expressions)—and, therefore, connectives
like ∧—appear in parts of a derivation only if they appear as subformulas of the goal: to show
Γ ⊢ v ↓ A ∧ B one shows Γ ⊢ v ↓ A and Γ ⊢ v ↓ B; both A and B are subformulas of A ∧ B. (For
this to make sense, types in annotations should be considered part of the goal.) Our system lacks

14We measured the slowdown resulting from a “no-op” transaction (asserting true and receiving a response) being
executed before every normal transaction. Even that “no-op” has to be parsed, and results in some amount of legitimate
constraint solver computation, but we assume that to be negligible.

15Specifically, 22% for redblack (which does not significantly use index refinements) and about 50% for
redblack-full and redblack-full-bug1, in which index refinements are pervasive. These figures were arrived at
with the standalone version, but should apply to the shared library case as well.

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/bits.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

6.12. ERROR REPORTING 195

common type system machinery that breaks the subformula property (or that at least requires the
property’s radical reformulation); in particular, we have no non-orthogonal subtyping rules, and
we do not compute greatest lower and least upper bounds of types.

6.11.3 Scaling up

Typechecking is modular, in the specific sense that each block of mutually recursive function dec-
larations can be checked independently of each other block. For example, given a program with
two mutually recursive functions f1, f2 followed by a function g, i.e. fun f1 . . . and f2 . . . fun g, if
checking g fails, it cannot be blamed on a choice made while checking f1 and f2.

Modularity leads us to forbid contextual typing annotations on top-level declarations. Suppose
we have (*[val f : (Γ1 ⊢ A1), (Γ2 ⊢ A2)]*) at the top level. Depending on the choice of first or
second typing, we may have either f:A1 or f:A2 in Γ when checking subsequent blocks, which could
force us to backtrack and try the other typing. In any case, there seems to be no situation in which
a contextual annotation would be useful at the top level.

Thus, while property types can make checking a particular block very slow, adding a second
block of the same complexity will only double typechecking time. Of course, work remains to be
done to make the system fast enough to be truly usable, but this “block independence” should
mean that once we have acceptable efficiency for typical programs of a few hundred lines, only
linear speedup will be required to be acceptably efficient on larger programs. Moreover, we should
be able to get that linear speedup through an easy form of distributed computation: If we send
each block to a different processor for typechecking, the communication cost will be low, since the
input is little more than the environment Γ and the block’s abstract syntax, and the output is tiny:
typechecking either succeeds, or fails with some error information, for that block.

There is one class of exceptions to the above: unannotated declarations of the form val x = e

where e is a synthesizing nonvalue can produce more than one type. For example, if f : (1 →
B1) ∧ (1 → B2) then val x = f() will yield first x:B1 and—if subsequent typechecking fails—x:B2.
This would have to be taken into consideration in a parallelization scheme. Alternatively, we could
require annotations on all top-level declarations, even synthesizing nonvalues such as the above.
With a module system, exported top-level declarations need annotations in the module signature
anyway, so this is not as extreme as it might appear. Another option would be to require an
annotation only if the bound expression has no principal type; if we had f : 1 → B instead, the
bound expression f() would principally synthesize B. Of course, this option assumes we can easily
determine if a bound expression has a principal type.

6.12 Error reporting

Error reporting is currently very limited. When a program does not pass the typechecker, the system
gives only the locations (range of line numbers) of the ill-typed block and the last expression
examined. Two factors make good reporting difficult: index constraints and intersection/union
types.

Index constraints contain index variables generated internally, making them hard to decipher.
However, one can maintain a map from index variables to the program locations at which they

August 6, 2007

196 CHAPTER 6. IMPLEMENTATION

were generated. For example, if we apply a function f : Πa:γ.A→ B in the term f x, the existential
variable created for a should map to the line containing f x. Then, when typechecking fails due to
a constraint P being invalid, we can report the locations associated with the free index variables in
P. This seems to work fairly well in Xi’s DML [Xi98].

Intersections and unions cause multiple obligations. Checking against an intersection A1 ∧ A2
requires checking each part; one would like to know which part failed. That is straightforward.
However, in checking against a union B1 ∨ B2 the typechecker tries to check against B1 and, if that
fails, B2. We report an error when both fail; simply reporting the location of the last error would
ignore B1. If unions and intersections alternate in the type checked against, as with (A1 ∧ A2) ∨

(C1 ∧ C2), we should report appropriately: “In A1 ∧ A2, could not check against A2 because . . . ;
in C1 ∧ C2, could not check against C1 because . . . ”, with the right program locations for each part.
Such alternations make reporting harder than in Davies’ Refinement ML, which has intersections
only [Dav05a].

Even with these issues, bidirectionality gives us some advantage over typecheckers based on
unification. As Davies [Dav05a] and Pierce and Turner [PT98] have observed, in a bidirectional
system, the location reported is more likely to be the real cause of the error, rather than hundreds
of lines away as is sometimes the case with unification.

6.13 Parametric polymorphism

Like the type systems in previous chapters, Stardust does not support parametric polymorphism.
No type quantifiers or type schemes can appear in annotations. Such things are not fabricated,
satisfying the subformula property. Our preliminary ideas for how to add parametric polymorphism
to the system likewise do not involve producing polymorphism out of thin air; see Section 8.1.1.

Acknowledgment

Portions of Stardust are based on code from Tolmach and Oliva’s “Restricted ML” compiler [TO98],
known as RML (hence the .rml filename suffix), which should not be confused with Davies’ “Re-
finement ML” [Dav05a].

August 6, 2007

Chapter 7

Index domains

7.1 Introduction

Our type system, like Xi’s DML [Xi98], is parametric in the index domain. Our implementation
(Chapter 6) supports two major index domains: integers and dimensions. The integer domain
(Section 7.2) was studied and implemented in DML, but the application of index refinements to
dimension types, discussed in Section 7.4, is novel. We also support a domain of Booleans (Section
7.3).

Each section includes examples typed with refinements from the relevant domain. Of these, bit-
strings (Section 7.2.3) and red-black tree insertion and deletion (Sections 7.2.4 and 7.2.5) may be
of particular interest, and those sections can reasonably be read independently of the surrounding
material.

7.2 Integers

We write Z for the index sort of integers, which has the following structure:

mathematical notation Stardust notation

Index sort Z int

Constants . . . ,−2,−1, 0, 1, 2, , ~2, ~1, 0, 1, 2, . . .

Functions +, −, ∗, / +, -, *, /

Predicates <, ≤,
.
=, 6=, ≥, > <, <=, =, <>, >=, >

Nonlinear expressions such as a * b must be avoided to ensure that the resulting constraints
are decidable.

The integer sort refines the base type int. This is something of a mismatch, since int is a type
of finite integers. The more direct application of Z would be to index IntInf, SML’s arbitrary-
precision integer type. We are saved from a truly worrisome situation by the fact that SML integer
arithmetic operations must raise an exception on overflow [GR04, pp. 170–171], so the results of
such operations will have the values their integer indices claim they do; if x = 5 then x + 1 = 6

as claimed, while if x = maxInt then x + 1 raises an exception—no harm done. The only major

197

198 CHAPTER 7. INDEX DOMAINS

shortcoming is that the type system cannot prove that overflow will not happen; this is not trivial,
because there is presently no way in our system to assert anything about the exception-raising
properties of terms. Likewise, in the body of handle Overflow⇒ . . . the type system does not know
that overflow occurred.

Bit vectors might be a better index domain for int; even if we have to encode every integer
index variable as 32–64 Boolean variables, addition and subtraction should be no trouble for SAT
solvers designed to handle enormous formulas. As with the current state of affairs, it does not
matter if overflow occurs in the ML program as an exception will be raised (in fact, the constraint
solver could produce nonsense in overflow situations without making the system unsound). How-
ever, bit vectors would be perfect for types in which arithmetic operations are supposed to silently
“roll over” without raising an exception, such as word in SML and int in OCaml.

7.2.1 Natural numbers

A sort of natural numbers, N, is defined as the subset sort {a:Z | a ≥ 0}:The definition
is in
lib_basis.rml. (*[

...

indexsort nat = {a:int | a >= 0}

]*)

As described in Section 6.3.4, the Stardust system removes subset sorts by transforming type
expressions, adding guarded and asserting types. Thus, when an index variable a of sort N is de-
clared to the underlying constraint solver, the proposition a ≥ 0 will be either assumed or checked
(for example, when checking the body of a function whose argument or result, respectively, has
type δ(a)). Other subsets, such as the strictly positive numbers, can be defined in the same way.

7.2.2 Implementation

In Stardust, most of the work of integer constraint solving is handled by external solvers (ICS
or CVC Lite); we discussed Stardust’s interface to external solvers, and issues specific to inte-
gers, in Section 6.6. We add only that this is a well-studied area; see, for instance, Dantzig and
Eaves [DE73] and Pugh [Pug91].

7.2.3 Example: Inductive bitstrings

Adapting an example of Davies et al. [DP00, Dav05a], we show how datasort and index refinements
in combination can elegantly capture data structure invariants. In this example, E represents the
empty bitstring and Zero, One add to the end of the string: for example, One(E) represents the
bitstring 1 or e1 (rendering the “empty part” of the string as e), and Zero(One(E)) represents e10.

A datasort refinement distinguishes bitstrings without leading zeroes (std, for “standard form”),
as well as those that have no leading zeroes and are also not the empty bitstring (pos). Index
refinements encode both the bitstring’s length and its value, as a natural number. For example,
One(One(E)), which is two bits long and represents 3, has type pos(2, 3).

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

7.2. INTEGERS 199

The example, bits.rml, is shown in Listing 7.1. We can give refined types for several functions
on bitstrings:

• For the type of the increment function inc, we need to give the datasort, length, and value
refinements of its output. The datasort and value are straightforward enough (since inc is
supposed to increment the bitstring by one, the value represented by the result is the value
of the input + 1); for the length, which might or might not increase by one, we use union
types.1

• For the addition function add we write a rather vague type; a more accurate type, using
unions, is given in bits-un.rml (Listing 7.3), but the type of inc is insufficient to check add

against the more accurate type. The sticking point is in the last arm of add:

| (x, One y’) ⇒ inc (add (x, Zero y’))

We want to show, given x of length len1 and y ′ of length len2 - 1, that inc(add(x,Zero y ′))

has length ≤ max(len1, len2) + 1. The difficulty is that, in general, add may return a bit-
string longer than both its arguments, and inc may return a bitstring longer than its argu-
ment. However, incrementing the result of a “lengthening addition” cannot again lengthen
the result:

– If x = y then add(x, y) will be even, i.e. Zero(z); but then inc(Zero(z)) = One(z), which
is no longer than Zero(z).

– On the other hand, if x 6= y, suppose w.l.o.g. that x > y. Then len1 ≥ len2. We have
y < x < 2len1. Because y is strictly less than x, the sum of x and y is strictly less than
twice x, so x + y < 2len1+1 − 1. Thus the length of x + y is at most len1 + 1. Moreover,
if the length is len1+ 1, the bitstring x+ y must have at least one zero bit, because the
only bitstring of length len1+1 that does not have any zeroes has value 2len1+1−1—and
we showed that x+ y is strictly less than that. Therefore:

∗ If add(x, y) returns a bitstring of length len1 + 1, it will have a zero. When inc is
applied to an argument of length len1 + 1 with a zero, its result also has length
len1+ 1.

∗ If add(x, y) returns a bitstring of length len1, it may or may not have a zero; inc
will return a bitstring of length len1 or len1+ 1.

In both cases, the length of inc(add(x, y)) must be len1 or len1+ 1.

It might be helpful to capture, with a datasort refinement, the property of a bitstring being
all ones or having at least one zero. This is relevant because inc’s result is longer than its
argument iff its argument is all ones.

A more clearly promising alternative would be to use an index domain including logarithms
and powers of 2. Then we can remove the length entirely (provided we force all bitstrings to

1As an aside, it is clear that the type of inc contains redundant information. We are really specifying three distinct
properties: (1) that inc takes std to pos and bits to bits; (2) that the length of its result is either the same or one more
than its argument; (3) that the value of its result is one plus the value of its argument. We leave a more concise means
of writing types that thus “orthogonally” combine properties as future work.

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/bits.rml
http://type-refinements.info/stardust/thesis/examples/bits-un.rml

200 CHAPTER 7. INDEX DOMAINS

be in standard form std), since it is always given by ⌈log2(value+ 1)⌉. This is played out in
Listing 7.2, which of course does not fully typecheck because we lack a constraint solver for
such a domain.

• The functions toInt and length, which convert a bitstring to an integer and obtain its length,
are easy to type, using singletons in the ranges.

• The function to produce a bitstring from a nonnegative integer is problematic in our index
domain. We can easily write a type expressing that the result is in standard form (i.e. no
leading zeroes) and represents the given integer. We leave the length unspecified since that
would need a logarithm operation (⌈log2(value+ 1)⌉). Unfortunately, checking the datasort
and value-index refinements requires division and remainder index operations. If we had
those operations, we would be able to check the fromInt function in Listing 7.2.

Listing 7.1: bits.rml

(∗ bits.rml −− Inductively defined bitstrings, with:

(1) a datasort refinement:
bits = any bitstring,
std = "standardized" bitstrings, i.e. with no leading zeros,
pos = standardized bitstrings of nonzero value (i.e. not the empty bitstring).

(2) index refinement: (length, value) where
length : nat = the length of the bitstring,
value : nat = the number represented. ∗)

(*[

datasort bits : pos <= std; std <= bits

datacon E : std(0, 0)

datacon Zero : -all len, value : nat- pos(len, value) → pos(len+1, 2*value)

& bits(len, value) → bits(len+1, 2*value)

datacon One : -all len, value : nat- std(len, value) → pos(len+1, 2*value + 1)

& bits(len, value) → bits(len+1, 2*value + 1)

datatype bits with nat * nat

]*)

datatype bits =

E

| Zero of bits

| One of bits

;

(*[val xx : std(0, 0)]*) val xx = E

(*[val yy : bits(2, 1)]*) val yy = One (Zero (E)) (∗ e01 : Leading zero ∗)
(*[val zz : pos (2, 2)]*) val zz = Zero (One (E)) (∗ e10 : No leading zero ∗)
(*[val zz’ : pos(6, 43)]*) val zz’ = One (One (Zero (One (Zero (One (E))))))

(∗ e101011 : No leading zero ∗)

(*[val inc : -all len, value : nat-

std(len, value) → pos(len, value+1) \/ pos(len+1, value+1)

& bits(len, value) → bits(len, value+1) \/ bits(len+1, value+1)

]*)

fun inc n =

August 6, 2007 — Listing 7.1: bits.rml

http://type-refinements.info/stardust/thesis/examples/bits.rml

7.2. INTEGERS 201

case n of

E ⇒ One E

| Zero n ⇒ One n

| One n ⇒ Zero (inc n)

(*[val add : -all len1, len2, val1, val2 : nat-

bits(len1, val1) * bits(len2, val2)

→ (-exists len : nat- [len >= len1 and len >= len2]

bits(len, val1 + val2))

]*)

fun add arg = case arg of

(x, E) ⇒ x

| (E, y) ⇒ y

| (Zero x’, Zero y’) ⇒ Zero (add (x’, y’))

| (One x’, Zero y’) ⇒ One (add (x’, y’))

| (x, One y’) ⇒ inc (add (x, Zero y’))

(*[val toInt :! -all len, value : nat- bits(len, value) → int(value)

]*)

fun toInt n = case n of

E ⇒ 0

| Zero n’ ⇒ 2 * toInt n’

| One n’ ⇒ (2 * toInt n) + 1 (∗ BUG ∗)

(*[val toInt : -all len, value : nat- bits(len, value) → int(value)

]*)

fun toInt n = case n of

E ⇒ 0

| Zero n’ ⇒ 2 * toInt n’

| One n’ ⇒ (2 * toInt n’) + 1

(*[val length : -all len, value : nat- bits(len, value) → int(len)

]*)

fun length n = case n of

E ⇒ 0

| Zero n’ ⇒ 1 + length n’

| One n’ ⇒ 1 + length n’

(∗ Can’t properly check spec because
div, mod not supported by constraint solver

(*[val fromInt : −all value : nat− int(value)
→ −exists len : nat− std(len, value)

]*)

∗)
(∗ Weak specification: ∗)
(*[val fromInt : int → bits

]*)

fun fromInt n =

if n = 0 then E

else

let val d = fromInt (n div 2)

val r = n mod 2

in

August 6, 2007 — Listing 7.1: bits.rml

202 CHAPTER 7. INDEX DOMAINS

if r = 0 then Zero d

else One d

end

Listing 7.1: bits.rml

Listing 7.2: unconstrained-bits.rml

(∗ unconstrained−bits.rml −− Inductively defined bitstrings, with:

(1) a datasort refinement:
bits = any bitstring,
std = "standardized" bitstrings, i.e. with no leading zeros,
pos = standardized bitstrings of nonzero value (i.e. not the empty bitstring).

(2) index refinement: (value) where
value : nat = the number represented.

This is a "dead" example: it assumes an index domain that
includes div, mod, and constant−base exponentiation (2∗∗n), logarithms (log_2(n)),
and ceiling ceil(n), and we do not have a constraint solver for that domain.

The functions ‘inc’, ‘add’, and ‘toInt’ do not use those operations, so we
∗can∗ check their types.

∗)
(*[

datasort bits : pos <= std; std <= bits

datacon E : std(0)

datacon Zero : -all value : nat- pos(value) → pos(2*value)

& bits(value) → bits(2*value)

datacon One : -all value : nat- std(value) → pos(2*value + 1)

& bits(value) → bits(2*value + 1)

datatype bits with nat

]*)

datatype bits = E | Zero of bits | One of bits ;

(*[val xx : std(0)]*) val xx = E

(*[val yy : bits(1)]*) val yy = One (Zero (E)) (∗ e01 : Leading zero ∗)
(*[val zz : pos (2)]*) val zz = Zero (One (E)) (∗ e10 : No leading zero ∗)
(*[val zz’ : pos(43)]*) val zz’ = One (One (Zero (One (Zero (One (E))))))

(∗ e101011 : No leading zero ∗)

(*[val inc : -all value : nat-

std(value) → pos(value+1) \/ pos(value+1)

& bits(value) → bits(value+1) \/ bits(value+1)

]*)

fun inc n =

case n of

E ⇒ One E

| Zero n ⇒ One n

| One n ⇒ Zero (inc n)

(*[val add : -all val1, val2 : nat-

bits(val1) * bits(val2) → bits(val1 + val2)

]*)

August 6, 2007 — Listing 7.2: unconstrained–bits.rml

http://type-refinements.info/stardust/thesis/examples/bits.rml
http://type-refinements.info/stardust/thesis/examples/unconstrained-bits.rml

7.2. INTEGERS 203

fun add arg = case arg of

(x, E) ⇒ x

| (E, y) ⇒ y

| (Zero x’, Zero y’) ⇒ Zero (add (x’, y’))

| (One x’, Zero y’) ⇒ One (add (x’, y’))

| (x, One y’) ⇒ inc (add (x, Zero y’))

(*[val toInt :! -all value : nat- bits(value) → int(value)

]*)

fun toInt n = case n of

E ⇒ 0

| Zero n’ ⇒ 2 * toInt n’

| One n’ ⇒ (2 * toInt n) + 1 (∗ BUG ∗)

(*[val toInt : -all value : nat- bits(value) → int(value)

]*)

fun toInt n = case n of

E ⇒ 0

| Zero n’ ⇒ 2 * toInt n’

| One n’ ⇒ (2 * toInt n’) + 1

(∗ Everything above this line does not use log_2 / 2 ∗∗ / div / mod,
and can be typechecked by Stardust. ∗)

(*[val length : -all value : nat- std(value) → int(ceil(log_2(value + 1)))

]*)

fun length n = case n of

E ⇒ 0 (∗ ceil(log_2(value + 1)) = ceil(log_2(0 + 1)) = ceil(0) = 0 ∗)
| Zero n’ ⇒ 1 + length n’

| One n’ ⇒ 1 + length n’

(*[val fromInt : -all value : nat- int(value) → std(value)

]*)

fun fromInt n =

if n = 0 then E

else

let val d = fromInt (n div 2) (∗ d : std(value div 2) ∗)
val r = n mod 2 (∗ r : −exists a : nat− [a < 2] int(r) ∗)

in

if r = 0 then Zero d

else One d

end

Listing 7.2: unconstrained-bits.rml

Listing 7.3: bits-un.rml

(∗ bits−un.rml

Ill−typed ‘add’ function (see bits.rml) with union types.
∗)

(*[

datasort bits : pos <= std; std <= bits

datacon E : std(0)

August 6, 2007 — Listing 7.3: bits–un.rml

http://type-refinements.info/stardust/thesis/examples/unconstrained-bits.rml
http://type-refinements.info/stardust/thesis/examples/bits-un.rml

204 CHAPTER 7. INDEX DOMAINS

datacon Zero : -all len : nat- pos(len) → pos(len+1)

& bits(len) → bits(len+1)

datacon One : -all len : nat- std(len) → pos(len+1)

& bits(len) → bits(len+1)

datatype bits with nat

]*)

datatype bits =

E

| Zero of bits

| One of bits

;

(*[val inc : -all len : nat-

std(len) → pos(len) \/ pos(len+1)

& bits(len) → bits(len) \/ bits(len+1)

]*)

fun inc n =

case n of

E ⇒ One E

| Zero n ⇒ One n

| One n ⇒ Zero (inc n)

(*[val add : -all len1, len2 : nat-

bits(len1) * bits(len2)

→
bits(len1)

\/ bits(len1 + 1)

\/ bits(len2)

\/ bits(len2 + 1)

]*)

fun add arg = case arg of

(x, E) ⇒ x

| (E, y) ⇒ y

| (Zero x’, Zero y’) ⇒ Zero (add (x’, y’))

| (One x’, Zero y’) ⇒ One (add (x’, y’))

| (x, One y’) ⇒ inc (add (x, Zero y’))

Listing 7.3: bits-un.rml

7.2.4 Example: Red-black tree insertion

Red-black trees are another good example of datasort and index refinements in combination. We
will use the datatype declaration that follows. We fix the key type to be int, and we have no
associated record component, so that a dict represents a set of integers rather than a map from
integers to some other type. Since our refinements will be concerned with the structure of the trees
rather than the integers contained—we will not try to guarantee an order invariant, for example—
having a set rather than a map is not detrimental to the example.

datatype dict =

Empty

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/bits-un.rml

7.2. INTEGERS 205

| Black of int * dict * dict

| Red of int * dict * dict

We use refinements to guarantee the second and third invariants given in Listing 7.4:

2. The children of a red node are black (color invariant).

3. Every path from the root to a leaf has the same number of black nodes, called the black height
of the tree.

Every tree satisfying these invariants is balanced: the height of a tree containing n non-Empty

nodes is at most 2 log2(n + 1) [GS78, CLR90, p. 264]. Invariant 2 is concerned with color, and the
colors of a datasort form a small finite set, so it is a suitable candidate for a datasort refinement.
Invariant 3 involves node color, but also black height, which is a natural number and therefore
suitable for index refinement.

The obvious datasort refinement might be

red

✒

black

■

dict datasort dict :

red <= rbt; black <= rbt

With the appropriate types for Red and Black we could ensure that only trees satisfying the
invariants are constructed. However, it will be useful to create, on a temporary basis, trees that
do not satisfy the color invariant (2). (Invariant 3, about black height, is still guaranteed for all
trees.) So we add a datasort rbt of “proper” red-black trees, which satisfy invariants 2 and 3. In
the following datasort declaration, red and black are subsorts of rbt, so they (continue to) represent
proper red-black trees of known color.

red

✒

black

■

rbt

✻

dict

datasort dict :

rbt <= dict;

red <= rbt; black <= rbt

However, we need one further refinement of the datasorts. The relation above distinguishes
trees that satisfy all the invariants (rbt) from those that might not satisfy the color invariant (dict);
if we know something is a dict we know nothing about where the color violation occurs. Thus, even
if we know that a color violation, if any, in the argument x of a function f : dict→ rbt, if any, occurs
at the root of x, Stardust cannot—and even if f deals properly with such violations at x’s root,
as far as Stardust is concerned there may still be violations elsewhere in x. So we add datasorts
badRoot, badLeft and badRight for possible color violations at the root (the root is red and some
child is red), at the left child (the left child is red and one of its children is red), and at the right
child (mutatis mutandis). Note that the “good” datasorts rbt, red, black are subsorts of the “bad”
datasorts badRoot, etc.: the “bad” datasorts represent not that the color invariant is violated, but
that it may be violated.

August 6, 2007 — Listing 7.3:

206 CHAPTER 7. INDEX DOMAINS

red

✒

black

■

rbt

✻⑥ ❃

badLeft badRoot badRight

✻❃ ⑥

dict

datasort dict :

badLeft <= dict; badRoot <= dict; badRight <= dict;

rbt <= badLeft; rbt <= badRoot; rbt <= badRight;

red <= rbt; black <= rbt

Listing 7.4: redblack-full.rml

(∗ redblack−full.rml

Based on an example of Rowan Davies and Frank Pfenning
∗)

(*[datatype dict with nat

datasort dict :

badLeft <= dict; badRoot <= dict; badRight <= dict;

rbt <= badLeft; rbt <= badRoot; rbt <= badRight;

red <= rbt; black <= rbt

datacon Empty : black(0)

datacon Black :

-all h : nat- int * dict(h) * dict(h) → dict(h+1)

& int * rbt(h) * rbt(h) → black(h+1)

& int * badRoot(h) * rbt(h) → badLeft(h+1)

& int * rbt(h) * badRoot(h) → badRight(h+1)

datacon Red :

-all h : nat- int * dict(h) * dict(h) → dict(h)

& int * black(h) * black(h) → red(h)

& int * rbt(h) * black(h) → badRoot(h)

& int * black(h) * rbt(h) → badRoot(h)

]*)

datatype dict =

Empty

| Black of int * dict * dict

| Red of int * dict * dict

;

(∗ Representation Invariants

1. The tree is ordered: for every node (Red|Black)(key1, left, right),
every key in left is less than key1 and
every key in right is greater than key1.

2. The children of a red node are black (color invariant).

3. Every path from the root to a leaf has the same number of
black nodes, called the black height of the tree.

August 6, 2007 — Listing 7.4: redblack–full.rml

http://type-refinements.info/stardust/thesis/examples/redblack-full.rml

7.2. INTEGERS 207

∗)

(*[val lookup : rbt → int → bool]*)

fun lookup dict key =

let

(*[val lk : rbt → bool

val lk’ : int * rbt * rbt → bool]*)

fun lk dict =

case dict of

Empty ⇒ false

| Red tree ⇒ lk’ tree

| Black tree ⇒ lk’ tree

and lk’ (key1, left, right) =

if key = key1 then true

else if key < key1 then lk left

else lk right

in

lk dict

end

(*[val restore_right : -all h : nat- badRight(h) → rbt(h)

]*)

(∗ restore_right (Black(e,l,r)) =⇒ dict
where (1) Black(e,l,r) is ordered,

(2) Black(e,l,r) has black height n,
(3) color invariant may be violated at the root of r:

one of its children might be red.
and dict is a re−balanced red/black tree (satisfying all invariants)
and same black height n. ∗)

fun restore_right arg = case arg of

Black(e, Red lt, Red (rt as (_,Red _,_))) ⇒
Red(e, Black lt, Black rt) (∗ re−color ∗)

(∗ EXAMPLE BUG: Black lt instead, above. Not caught: black height same as correct version. ∗)
(∗ EXAMPLE BUG: Empty instead, above. Caught. ∗)

| Black(e, Red lt, Red (rt as (_,_,Red _))) ⇒
Red(e, Black lt, Black rt) (∗ re−color ∗)

| Black(e, l, Red(re, Red(rle, rll, rlr), rr)) ⇒
(∗ l is black, deep rotate ∗)
Black(rle, Red(e, l, rll), Red(re, rlr, rr))

| Black(e, l, Red(re, rl, rr as Red _)) ⇒
(∗ l is black, shallow rotate ∗)
Black(re, Red(e, l, rl), rr)

| dict ⇒ dict

(∗ restore_left is like restore_right, except
the color invariant may be violated only at the root of left child ∗)

(*[val restore_left : -all h : nat- badLeft(h) → rbt(h)]*)

fun restore_left arg = case arg of

(Black(e, Red (lt as (_,Red _,_)), Red rt)) ⇒

August 6, 2007 — Listing 7.4: redblack–full.rml

208 CHAPTER 7. INDEX DOMAINS

Red(e, Black lt, Black rt) (∗ re−color ∗)
| (Black(e, Red (lt as (_,_,Red _)), Red rt)) ⇒

Red(e, Black lt, Black rt) (∗ re−color ∗)
| (Black(e, Red(le, ll as Red _, lr), r)) ⇒

(∗ r is black, shallow rotate ∗)
Black(le, ll, Red(e, lr, r))

| (Black(e, Red(le, ll, Red(lre, lrl, lrr)), r)) ⇒
(∗ r is black, deep rotate ∗)
Black(lre, Red(le, ll, lrl), Red(e, lrr, r))

| dict ⇒ dict

(*[val insert : rbt * int → rbt]*)

fun insert (dict, key) =

let

(∗ val ins1 : dict→ dict inserts entry ∗)
(∗ ins1 (Red _) may violate color invariant at root ∗)
(∗ ins1 (Black _) or ins (Empty) will be valid red/black tree ∗)
(∗ ins1 preserves black height ∗)
(*[val ins1 : -all h : nat- rbt(h) → badRoot(h)

& black(h) → rbt(h)

]*) (∗ the second conjunct is needed for the recursive cases ∗)
fun ins1 arg = case arg of

Empty ⇒ Red(key, Empty, Empty)

| Black(key1, left, right) ⇒
if key = key1 then Black(key, left, right)

(∗ EXAMPLE BUG: change ‘Black(...)’ to ‘left’ (see redblack−full−bug1.rml ∗)

else if key < key1 then restore_left (Black(key1, ins1 left, right))

else restore_right (Black(key1, left, ins1 right))

| Red(key1, left, right) ⇒
if key = key1 then Red(key, left, right)

else if key < key1 then Red(key1, ins1 left, right)

else Red(key1, left, ins1 right)

in

case ins1 dict

of Red (t as (_, Red _, _)) ⇒ Black t (∗ re−color ∗)
| Red (t as (_, _, Red _)) ⇒ Black t (∗ re−color ∗)
| dict ⇒ dict (∗ depend on sequential matching ∗)

end

Listing 7.4: redblack-full.rml

Related work

Our combination of refinements for red-black tree insertion is new, but the application of data-
sort and index refinements individually is not. In fact, Listing 7.4 is based on code from Davies’
thesis [Dav05a, pp. 277–279]; our contribution is that the black height is also guaranteed. How-
ever, that refinement is not new either: it can be found in Xi’s thesis [Xi98, pp. 161–165]. Xi also
guarantees the color invariant, but by refining the tree datatype by the index product Z ∗ Z ∗ Z,
representing the color, black height, and “red height” respectively. 0 in the first component means

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/redblack-full.rml

7.2. INTEGERS 209

red and 1 means black, with an existential quantifier used if the color is not known. The so-called
“red height” is not analogous to the black height, but instead is supposed to count the consecutive

red nodes, and is to be 0 if there are none, i.e. if the color invariant is satisfied. The resulting types
are awkward and substantially less legible.2

Type-level programming techniques not involving type refinements have also been applied to
check red-black tree invariants, relying on phantom and existential types [Kah01]. At least to our
untrained eyes, such approaches are more complicated and awkward than even Xi’s color-encoding.
Moreover, they require substantial changes to the basic tree datatype and associated code.

7.2.5 Example: Red-black tree deletion

As just discussed, others have previously studied how to refine red-black tree insertion. Deletion
is another matter. Though more complicated than insertion, deletion in an imperative style can
be cooked up from pseudocode in standard sources, e.g. Cormen et al. [CLR90]; purely functional
deletion cannot (unlike insertion, it is not treated by Okasaki [Oka98]). However, there are imple-
mentations, such as the RedBlackMapFn structure in the Standard ML of New Jersey library3. We
easily translated RedBlackMapFn into the Stardust subset of ML. Finding appropriate refinements
and invariants was substantially more difficult; however, we eventually succeeded, resulting in an
implementation of deletion that is known to satisfy invariants (1)–(3) (see the previous section on
red-black tree insertion). In the course of this implementation, we found several lacunae in the
New Jersey library (including two bugs leading to a violated color invariant), which we discuss at
the end of this section.

A key data structure in deletion is the zipper, which represents a tree with a hole, backwards,
allowing easy traversal toward the tree’s root. This corresponds to the series of rotations and color
changes that may be required after deleting a node. The function zip takes a zipper and a tree and
plugs the tree into the zipper’s hole.

datatype zipper

= TOP

| LEFTB of int * dict * zipper

| LEFTR of int * dict * zipper

| RIGHTB of dict * int * zipper

| RIGHTR of dict * int * zipper

The TOP constructor represents a zipper consisting of just a hole; the LEFTB and LEFTR construc-
tors represent the edge from a left child to a Black or Red node, respectively. The RIGHTB and
RIGHTR constructors are symmetric. The examples in Figure 7.1 should clarify the constructors’
meaning.

We refine zippers by a datasort and two integer indices.

2In fact Xi uses a four-tuple of integers, with the fourth component representing size (number of non-leaf nodes), but
that would not be a fair comparison. Note that we could easily incorporate size into our refinement, leading to dict being
refined by a datasort and two integers.

3The SML/NJ library is not part of the standard Basis Library, but is included with major SML compilers such as
SML/NJ and MLton; its use is widespread.

August 6, 2007

210 CHAPTER 7. INDEX DOMAINS

z TOP LEFTB(5, b,TOP) LEFTB(5,RIGHTR(a, 2,TOP), b)

. . . as a diagram []

[]

✒

b
❘

5

[]

✒

b
❘

5

2

■

a
✠

Result of zip(z, t) t Black(5, t, b) Red(2, a,Black(5, t, b))

. . . as a diagram t

t
✠

b
❘

5

t
✠

b
❘

5

2

❘
a
✠

Figure 7.1: Examples of zippers

Datasort refinement of zipper

The datasort encodes two properties: the color of the hole’s parent and the color of the root of the
result of zip(z, t). If a zipper has datasort blackZipper, the root (of the zipper, that is, the parent of
the hole) is black and can therefore tolerate black trees as well as red; thus, all values LEFTB(. . .)
and RIGHTB(. . .) have datasort blackZipper. If a zipper z has datasort BRzipper, meaning “Black
Root zipper”, the resulting zipped tree zip(z, t) will have a black root and thus have datasort black;
all zippers having the form . . . LEFTB(_, _,TOP) . . . or the form . . .RIGHTB(_, _,TOP) . . .) have
datasort BRzipper.

We also have a datasort topZipper, such that TOP : topZipper. Zipping TOP with a tree t yields t
itself; therefore, zipping TOP with a black tree yields a black tree. This property of a zipper yielding
a black tree when it is zipped with a black tree is captured by topZipper.

The remaining datasorts, topOrBR and blackBRzipper, can be thought of as the union and inter-
section, respectively, of BRzipper and topZipper, as shown in Figure 7.2.

Index refinement of zipper

We refine the zipper datatype by a pair of natural numbers. A zipper z has index refinement (h, hz)
precisely if zip, when given z and a tree t of black height h (that is, t : rbt(h)), yields a tree of
black height hz. Hence, TOP has type zipper(h, h) for all h, because zip(TOP, t) yields just t.

August 6, 2007

7.2. INTEGERS 211

blackBRzipper

■ ✒

BRzipper

✻

topZipper

✻■

topOrBR blackZipper

■✒

zipper

datasort zipper :

topOrBR < zipper; blackZipper < zipper;

BRzipper < topOrBR; topZipper < topOrBR; topZipper < blackZipper;

blackBRzipper < topZipper; blackBRzipper < BRzipper

Figure 7.2: Datasort relation for zippers

Overview of the algorithm

Our code is closely based on the New Jersey library, which claimed to implement, in a functional
style, the imperative pseudocode given in Cormen et al. [CLR90]. At a very high level, without
regard for the red-black tree invariants, deletion of key k in the tree t goes as follows:

1. Starting from the root of t, find a node with key k.

2. Join the left and right children a, b of the node containing key k:

i. Find the minimum x of b; this x is greater than all keys in a, and less than all other keys
in b.

ii. Delete the node containing x.

iii. Replace the node containing k with one containing x, with the same a and the new b

(with x deleted) as its children.

We can distinguish cases of deletion based on the color of the node containing x, the minimum key
in the subtree rooted at b.4 First note that since x is the minimum, the node containing it must
have an empty left child.

• If the node containing x is red, its right child cannot be Red (color invariant), nor can it be
Black (its left child is empty—black height 0—so its right child must also have black height 0,
but any Black-rooted tree has black height at least 1), so the right child must also be empty.

Deleting a red node does not change any black heights, so the black height invariant is pre-
served; the only change needed is to substitute x for k.

• If the node containing x is black, its right child cannot be Black (by similar reasoning to the
red case). However, its right child could be Red(y,Empty,Empty), in which case we can just
replace x with y—keeping the node containing x black—which preserves black height. The
hard case is when both children of the node containing x are empty: merely deleting that

4These cases do not correspond to the joinRed and joinBlack functions, whose names refer to the color of the node
containing k, the key searched for, not x, the minimum element in k’s right subtree.

August 6, 2007

212 CHAPTER 7. INDEX DOMAINS

node means that its parent will have a left subtree of black height 0 and a right subtree of
black height 1, which is inconsistent. This is called a black deficit. We can try to fix it by calling
bbZip, which moves up the tree towards the root, performing rotations and color changes.
While this process will always yield a valid subtree that satisfies the black height invariant
(and of course the color invariant), it may not actually “fix the deficit”: the resulting subtree
may still have a black height that is one less than before. If that occurs—signalled by bbZip

returning (true, t)—we call bbZip again, continuing the rotations and color changes upward
past the node that used to contain k (and now contains x). Otherwise, all the invariants have
been fixed, and we need only replace k with x and call zip.

The zip function

The zip function is quite straightforward, but its refined type may need some explanation.

(*[val zip :

-all h, hz : nat-

blackZipper(h, hz) * rbt(h) → rbt(hz)

& zipper(h, hz) * black(h) → rbt(hz)

& blackBRzipper(h, hz) * rbt(h) → black(hz)

& topOrBR(h, hz) * black(h) → black(hz)

]*)

The index refinement is almost painfully obvious: a zipper that yields a tree of black height hz
when zipped with a tree of black height h, when zipped with such a tree, yields a tree of black
height hz. This is because we refined the zipper datatype with the behavior of zip in mind.

The datasorts are, perhaps, less painfully obvious. The first part of the intersection expresses
the fact that if the parent of the zipper’s hole is black (blackZipper) then replacing the hole with any
valid tree (rbt) yields a valid tree. The second part says that if the parent of the hole is not known to
be black, then only a black tree can be substituted, because the parent might be red and we cannot
allow a color violation. The third part of the intersection says that, when a blackBRzipper—a zipper
with a black node as the parent of the hole and that, when zipped, yields a black-rooted tree—is
zipped with any tree, a black-rooted tree results. The fourth says that when either a topZipper

(such as TOP) or a BRzipper (such as RIGHTB(a, 2,TOP)) is zipped with a black tree t, a black
tree results—if the zipper is TOP, because the result consists of just t, which is black; if the zipper
is BRzipper, because the result has a black root regardless of the color of t.

The bbZip function

bbZip is a recursive, zipper-based version of the pseudocode function “RB-DELETE-FIXUP” [CLR90,
p. 274]; the comments show how the various case arms correspond to sections of pseudocode. We
therefore focus on the type annotation.

(*[val bbZip :

-all h, hz : nat-

zipper(h+1, hz) * rbt(h) → ((bool(true)*rbt(hz - 1)) \/ (bool(false)*rbt(hz)))

& BRzipper(h+1, hz) * rbt(h) → ((bool(true)*black(hz - 1)) \/ (bool(false)*black(hz)))

& topOrBR(h+1, hz) * black(h) → ((bool(true)*black(hz - 1)) \/ (bool(false)*black(hz)))

August 6, 2007

7.2. INTEGERS 213

]*)

Each part of the intersection shares index refinements; we will look at the first, which has the
simplest datasorts:

zipper(h+1, hz) * rbt(h) → ((bool(true)*rbt(hz - 1)) \/ (bool(false)*rbt(hz)))

Given a zipper that when zipped with a tree of black height h + 1 yields a tree of black height hz,
and a tree of black height h (one less than h+ 1, i.e. , with a “black deficit”), bbZip returns either

• (true, t) where t : rbt(hz−1) (that is, a valid tree—with no internal black height mismatches—
but with a black height one less than before), or

• (false, t) where t : rbt(hz), a valid tree with the same black height hz as the original tree.

The second part of the intersection says that given a zipper that, when zipped with any tree, yields
a tree with a black root, the resulting tree (whether of black height hz− 1 or hz) will have a black
root. The third part of the intersection says that given a zipper that is either TOP or of the kind
featured in the second part of the intersection, and a black-rooted tree, the resulting tree must be
black. This information is needed when we typecheck delMin.

The delMin function

delMin(t, z) returns the minimum key (an integer) in t; it also returns t with the minimum re-
moved. It calls bbZip to fix internal black height mismatches, but like bbZip it may be unable to
maintain the black height of the entire tree, so like bbZip it returns a Boolean indicating whether
there is still a “black deficit”. The datasorts are needed by joinRed, to make sure that the new
children of the red node are black.

The functions joinRed and joinBlack

If one subtree (a or b) is empty, we simply zip up the tree (bbZip) with the other subtree; we can
drop the first part of bbZip’s result—the flag indicating whether the black height has changed—
because the zipper z goes all the way up to the original root passed to delete; the root of the entire
tree has no siblings, so there is no other black height that needs to match.

Otherwise, we call delMin, which returns a tree that may or may not have a deficit. If the
returned flag is false, there is no deficit, and we can simply zip up to the root. If the flag is true,
there is a deficit, and we call bbZip—again, throwing away the flag, justified as before.

One quirk is that we have hand-inlined joinRed’s call to delMin; we could not figure out how to
check the color invariant otherwise (there may be some further refinement of delMin that does the
job, but if there is, it is not obvious). Several of the “inlined” case arms in delMin are impossible
and disappear, so this only slightly lengthens joinRed.

The delete function

delete and its local function del are simple: they search for the key to delete, building a zipper
representing the path back up to the root, and then call joinRed or joinBlack.

August 6, 2007 — Listing 7.5: rbdelete.rml

214 CHAPTER 7. INDEX DOMAINS

Listing 7.5: rbdelete.rml

(∗ rbdelete.rml

Based on redblack−full.rml and the SML/NJ library file redblack−map−fn.sml
∗)
(*[

datatype dict with nat

datasort dict :

badLeft < dict; badRoot < dict; badRight < dict;

rbt < badLeft; rbt < badRoot; rbt < badRight;

nonempty < rbt; black < rbt;

red < nonempty; nonemptyBlack < nonempty; nonemptyBlack < black

datacon Empty : black(0)

datacon Black :

-all h : nat- int * dict(h) * dict(h) → dict(h+1)

& int * rbt(h) * rbt(h) → nonemptyBlack(h+1)

& int * badRoot(h) * rbt(h) → badLeft(h+1)

& int * rbt(h) * badRoot(h) → badRight(h+1)

datacon Red :

-all h : nat- int * dict(h) * dict(h) → dict(h)

& int * black(h) * black(h) → red(h)

& int * rbt(h) * black(h) → badRoot(h)

& int * black(h) * rbt(h) → badRoot(h)

]*)

datatype dict =

Empty

| Black of int * dict * dict

| Red of int * dict * dict

(*[

(∗ z : zipper(h, hz) if zip(z, t) : rbt(hz), where t : rbt(h). ∗)
datatype zipper with nat * nat

(∗ Our datasort refinement captures two distinct properties:

− the color of the hole’s parent:
If blackZipper, the root (of the zipper, that is, the parent of the hole)
is black and can therefore tolerate black trees as well as red;

− the color of the root ∗of the corresponding zipped tree∗:
When a zipper consisting of various LEFTx and RIGHTx constructors
applied to a final LEFTB(_,_,TOP) or RIGHTB(_,_,TOP) is actually zipped,
the resulting tree will be Black(...), and this is represented by the datasort
BRzipper (Black Root zipper).

Zipping TOP with a tree ‘t’ results in just the tree ‘t’, so we need to
distinguish TOP, via datasort topZipper.

Zipping a black tree and a topZipper yields a black tree;
zipping a black tree (or a red tree) and a BRzipper yields a black tree;
Therefore, zipping a black tree and either a topZipper or a BRzipper
will yield a black tree, so we have a datasort topOrBR that is above both

August 6, 2007 — Listing 7.5: rbdelete.rml

http://type-refinements.info/stardust/thesis/examples/rbdelete.rml

7.2. INTEGERS 215

topZipper and BRzipper.

The datasort blackBRzipper represents zippers that have both a
black root ∗of the zipper∗ and that will have a black root ∗when zipped∗. ∗)

datasort zipper :

topOrBR < zipper; blackZipper < zipper;

BRzipper < topOrBR; topZipper < topOrBR; topZipper < blackZipper;

blackBRzipper < topZipper; blackBRzipper < BRzipper

datacon TOP : -all h : nat- topZipper(h, h)

datacon LEFTB : -all h, hz : nat- int * rbt(h) * zipper(h+1, hz) → blackZipper(h, hz)

& int * rbt(h) * topOrBR(h+1, hz) → blackBRzipper(h, hz)

datacon RIGHTB : -all h, hz : nat- rbt(h) * int * zipper(h+1, hz) → blackZipper(h, hz)

& rbt(h) * int * topOrBR(h+1, hz) → blackBRzipper(h, hz)

datacon LEFTR : -all h, hz : nat- int * black(h) * blackZipper(h, hz) → zipper(h, hz)

& int * black(h) * blackBRzipper(h, hz) → BRzipper(h, hz)

datacon RIGHTR : -all h, hz : nat- black(h) * int * blackZipper(h, hz) → zipper(h, hz)

& black(h) * int * blackBRzipper(h, hz) → BRzipper(h, hz)

]*)

datatype zipper

= TOP

| LEFTB of int * dict * zipper

| LEFTR of int * dict * zipper

| RIGHTB of dict * int * zipper

| RIGHTR of dict * int * zipper

;

(*[val zip :

-all h, hz : nat-

blackZipper(h, hz) * rbt(h) → rbt(hz)

& zipper(h, hz) * black(h) → rbt(hz)

& blackBRzipper(h, hz) * rbt(h) → black(hz)

& topOrBR(h, hz) * black(h) → black(hz)

]*)

fun zip arg = case arg of

(TOP, t) ⇒ t

| (LEFTB (x, b, z as _), a) ⇒ zip(z, Black(x, a, b))

| (RIGHTB(a, x, z as _), b) ⇒ zip(z, Black(x, a, b))

| (LEFTR (x, b, z), a) ⇒ zip(z, Red(x, a, b))

| (RIGHTR(a, x, z), b) ⇒ zip(z, Red(x, a, b))

(∗ bbZip propagates a black deficit up the tree until either the top
∗ is reached, or the deficit can be covered. It returns a boolean
∗ that is true if there is still a deficit and the zipped tree.

∗)
(*[val bbZip :

-all h, hz : nat-

zipper(h+1, hz) * rbt(h) → ((bool(true)*rbt(hz - 1)) \/ (bool(false)*rbt(hz)))

& BRzipper(h+1, hz) * rbt(h) → ((bool(true)*black(hz - 1)) \/ (bool(false)*black(hz)))

& topOrBR(h+1, hz) * black(h) → ((bool(true)*black(hz - 1)) \/ (bool(false)*black(hz)))

]*)

August 6, 2007 — Listing 7.5: rbdelete.rml

216 CHAPTER 7. INDEX DOMAINS

fun bbZip arg =

case arg of

(TOP, t) ⇒ (true, t)

| (LEFTB(x, Red(y, c, d), z), a) ⇒ (∗ case 1L−Black ∗)
bbZip (LEFTR(x, c, LEFTB(y, d, z)), a)

| (LEFTB(x, Black(w, Red(y, c, d), e), z), a) ⇒ (∗ case 3L−Black ∗)
(false, zip (z, Black(y, Black(x, a, c), Black(w, d, e))))

| (LEFTR(x, Black(w, Red(y, c, d), e), z), a) ⇒ (∗ case 3L−Red ∗)
(false, zip (z, Red(y, Black(x, a, c), Black(w, d, e))))

| (LEFTB(x, Black(y, c, Red(w, d, e)), z), a) ⇒ (∗ case 4L−Black ∗)
(false, zip (z, Black(y, Black(x, a, c), Black(w, d, e))))

| (LEFTR(x, Black(y, c, Red(w, d, e)), z), a) ⇒ (∗ case 4L−Red ∗)
(false, zip (z, Red(y, Black(x, a, c), Black(w, d, e))))

| (LEFTR(x, Black(y, c, d), z), a) ⇒ (∗ case 2L−Red ∗)
(false, zip (z, Black(x, a, Red(y, c, d))))

| (LEFTB(x, Black(y, c, d), z), a) ⇒ (∗ case 2L−Black ∗)
bbZip (z, Black(x, a, Red(y, c, d)))

| (RIGHTB(Red(y, c, d), x, z), b) ⇒ (∗ case 1R−Black ∗)
bbZip (RIGHTR(d, x, RIGHTB(c, y, z)), b)

(∗(NJ library:) | (RIGHTR(Red(y, c, d), x, z), b)⇒ (∗ case 1R−Red ∗)
(∗ ?!? This is a color violation: RIGHTRed − Red! ∗)

bbZip (RIGHTR(d, x, RIGHTB(c, y, z)), b) (∗ ...and there is no corresponding arm for 1L ∗)
∗)

| (RIGHTB(Black(y, Red(w, c, d), e), x, z), b) ⇒ (∗ case 3R−Black ∗)
(false, zip (z, Black(y, Black(w, c, d), Black(x, e, b))))

| (RIGHTR(Black(y, Red(w, c, d), e), x, z), b) ⇒ (∗ case 3R−Red ∗)
(false, zip (z, Red(y, Black(w, c, d), Black(x, e, b))))

(∗ This 4R is correct −− unlike the buggy NJ library ∗)
| (RIGHTB(Black(y, c, Red(w, d, e)), x, z), b) ⇒ (∗ case 4R−Black ∗)

(false, zip (z, Black(w, Black(y, c, d), Black(x, e, b))))

| (RIGHTR(Black(y, c, Red(w, d, e)), x, z), b) ⇒ (∗ case 4R−Red ∗)
(false, zip (z, Red (w, Black(y, c, d), Black(x, e, b))))

| (RIGHTR(Black(y, c, d), x, z), b) ⇒ (∗ case 2R−Red ∗)
(false, zip (z, Black(x, Red(y, c, d), b)))

| (RIGHTB(Black(y, c, d), x, z), b) ⇒ (∗ case 2R−Black ∗)
bbZip (z, Black(x, Red(y, c, d), b))

(∗
| (z, t)⇒ (false, zip(z, t)) (∗ Impossible, bogus fallthru case in NJ library ∗)

∗)

(*[val delMin :

-all h, hz : nat-

nonempty(h) * blackZipper(h, hz)

→ int * ((bool(false)*rbt(hz)) \/ (bool(true)*rbt(hz - 1)))

& nonemptyBlack(h) * zipper(h, hz)

→ int * ((bool(false)*rbt(hz)) \/ (bool(true)*rbt(hz - 1)))

August 6, 2007 — Listing 7.5: rbdelete.rml

7.2. INTEGERS 217

& nonempty(h) * blackBRzipper(h, hz)

→ int * ((bool(false)*black(hz)) \/ (bool(true)*black(hz - 1)))

& nonemptyBlack(h) * BRzipper(h, hz)

→ int * ((bool(false)*black(hz)) \/ (bool(true)*black(hz - 1)))

]*)

fun delMin arg = case arg of

(Red(y, Empty, b), z) ⇒ (y, (false(∗ i.e., no deficit, black height unchanged ∗), zip(z, b)))

| (Black(y, Empty, b), z) ⇒
(∗ This is the minimum, and it’s black, so deleting it yields a black deficit. ∗)
(y, bbZip(z, b))

(∗ Call bbZip; the flag is important, since it tells the caller whether the resulting
tree has an internal black deficit (if true) or not (if false).
(For example, if this is the only non−Empty node in the tree originally passed to delMin,
there is no way to fix the deficit (nowhere to put the "extra blackness") in this function,
and the flag will be ‘true’.) ∗)

| (Black(y, a, b), z) ⇒ delMin(a, LEFTB(y, b, z))

| (Red(y, a, b), z) ⇒ delMin(a, LEFTR(y, b, z))

(*[val joinRed : -all h, hz : nat- black(h) * black(h) * blackZipper(h, hz) → rbt]*)

fun joinRed arg = case arg of

(Empty, Empty, z) ⇒ zip(z, Empty)

| (a, Empty, z) ⇒ #2(bbZip(z, a))

| (Empty, b, z) ⇒ #2(bbZip(z, b))

| (a, Black(x, Empty, bb), z) ⇒ #2(bbZip(RIGHTR(a, x, z), bb))

| (a, Black(y, aa, bb), z) ⇒
let in case delMin(aa, LEFTB(y, bb, TOP)) of

(x, (needB as false(∗ no deficit ∗), b’)) ⇒ zip(z, Red(x, a, b’))

| (x, (needB as true(∗ deficit ∗), b’)) ⇒
#2(bbZip(RIGHTR(a, x, z), b’))

(∗ #2(bbZip(z, Red(x, a, b’))) buggy NJ library: b’ could be red (and would not be fixed) ∗)
end

(*[val joinBlack : -all h, hz : nat- rbt(h) * rbt(h) * zipper(h+1, hz) → rbt]*)

fun joinBlack arg = case arg of

(a, Empty, z) ⇒ #2(bbZip(z, a))

| (Empty, b, z) ⇒ #2(bbZip(z, b))

| (a, b, z) ⇒
let in case delMin(b, TOP) of

(x, (needB as false, b’)) ⇒ zip(z, Black(x, a, b’))

| (x, (needB as true, b’)) ⇒
#2(bbZip(RIGHTB(a, x, z), b’))

(∗ #2(bbZip(z, Black(x, a, b’)))
(∗ NJ library version: The black heights of a and b’ are different;

the Black _ node thus constructed is bogus. ∗) ∗)
end

(*[val delete : -all h : nat- rbt(h) → int → rbt]*)

fun delete t key =

let

(*[val del : -all h, hz : nat- rbt(h) * blackZipper(h, hz) → rbt

August 6, 2007 — Listing 7.5: rbdelete.rml

218 CHAPTER 7. INDEX DOMAINS

& black(h) * zipper(h, hz) → rbt]*)

fun del arg = case arg of

(Empty, z) ⇒ raise NotFound

| (Black(entry1 as (key1), a, b), z) ⇒
if key = key1 then

joinBlack (a, b, z)

else if key < key1 then del (a, LEFTB(entry1, b, z))

else del (b, RIGHTB(a, entry1, z))

| (Red(entry1 as (key1), a, b), z) ⇒
if key = key1 then

joinRed (a, b, z)

else if key < key1 then del (a, LEFTR(entry1, b, z))

else del (b, RIGHTR(a, entry1, z))

in

del(t, TOP)

end

Listing 7.5: rbdelete.rml

Library bugs

We found two clear bugs in the deletion code in the SML/NJ library; triggering either one re-
sults in a tree with a red child of a red parent: that is, the color invariant is broken, making the
trees slightly unbalanced. These broken trees are otherwise fine; in particular, they are ordered,
so searches succeed or fail as usual, and the failure of the color invariant does not (as far as
we could determine) cause subsequent operations to produce disordered trees. Hence, the only
calamity caused is that operations will take longer than they should. Since RedBlackMapFn makes
the exported tree type opaque, client code cannot possibly detect the broken invariant. In that
sense, these bugs are pernicious: no one will ever know the module is wrong, unless insertion and
deletion are time-critical operations, and they are so stubborn as to actually investigate whether
operations in RedBlackMapFn are logarithmic. Moreover, runtime testing is not particularly helpful:
traversing a tree to verify the invariant is linear time, so adding the tests to every operation makes
those operations linear instead of logarithmic, defeating the purpose of using a balanced-tree data
structure. (Of course we might dream up more clever tests that would add only constant overhead,
but then we have to verify our cleverness.)

The first bug is in the “4R” case of bbZip; upon inspection, the case is obviously wrong because
it is not symmetric to the “4L” case. We found this bug some time before we converged on the
present refinement of zipper: we had only a datasort refinement on zipper, but even that, combined
with actually reading each case closely, sufficed to lead us to this bug.

The second bug is in the joinRed function5; if delMin returns with its first argument true,
meaning that the result has a black deficit, the original code calls bbZip to fix the deficit; however,
the tree passed to bbZip includes a red node with b’ as a child, but b’ may be red, leading to a
color violation (which is not somehow fixed inside bbZip). We found this second bug much later

5The original implementation has a single join function rather than separate joinRed and joinBlack functions; the
bug appears to occur in the original code only when join is applied with its “color” set to R (meaning Red).

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/rbdelete.rml

7.3. BOOLEANS 219

than the first: we had settled on the index refinement of zipper and a nearly-final version of the
datasort refinement. Once we became suspicious that b’ might not always be black, we looked for
an input to delete that would trigger the bug; we found one, confirming that there was a bug and
not simply a case of our invariants, expressed through refinements, being too weak.

We found a few other problems, some of which may also be bugs. One that is not a bug, but
still very unfortunate, is the last case arm of bbZip in the original code, which is a “catch-all”

| (z, t) ⇒ (false, zip(z, t))

This is clearly wrong: false is supposed to mean the black deficit was fixed, but the second part
of the result is just the argument (as a tree, rather than a zipper with a hole and the tree intended
to fill it). For the case to make sense at all, it should return true. This is not actually a bug—in
our implementation, we leave out the case entirely, and the code still typechecks; thus the case
is impossible. Including impossible cases in SML code is an unfortunate but understandable prac-
tice, since without type refinements, one would otherwise get a “nonexhaustive match” warning;
however, to avoid confusion, the impossible case should be clearly marked, e.g.

| (z, t) ⇒ raise Match (∗ Impossible case ∗)

7.3 Booleans

If we consider index predicates such as ≥ to be index functions, then a Boolean sort manifests itself
immediately, as the range of such functions. The Boolean sort can also index the bool datatype.
Such an indexing scheme is handy for specifying the result of certain functions. For example,
lib_basis.rml defines the type of the ML function < to be

primitive fun < : -all a, b : int- int(a) * int(b) → bool(a < b)

If we instead refined bool with a datasort refinement, with sorts false, true � bool, we would have
to write

primitive fun < : -all a, b : int-

(int(a) * int(b) → bool)

& ({a < b} int(a) * int(b) → true)

& ({a >= b} int(a) * int(b) → false)

If having to write this longer type were the only problem we might not object. However, the datasort
refinement formulation also limits the information available when typechecking case arms. For
example, it seems we should be able to check that the absolute value function returns a nonnegative
integer:

(*[val abs : Πa:Z. int(a)→ Σb:Z. (b ≥ 0 O int(b))]*)

fun abs x =

if x < 0 then ~x else x

The expression if-then-else is syntactic sugar for case x < 0 of True⇒ ~x ||False⇒ x. With bool

refined only by a datasort, typechecking goes as follows. The function application x < 0 synthesizes
bool (it cannot synthesize true or false since we do not know whether a < b holds or a ≥ b holds).

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

220 CHAPTER 7. INDEX DOMAINS

Then in the True ⇒ ~x arm, we must check that ~x is nonnegative, i.e. that x is strictly negative.
We know that x is indexed by some integer a, but we know nothing about a. Contrast this with the
situation when we refine the type bool by the sort bool: now x < 0 synthesizes bool(a < 0), and
when we are in the True⇒ ~x arm, we will have the assumption true

.
= a < 0.

Finally, the additional intersections in the datasort refinement version can greatly slow type-
checking of programs that call <, even if typechecking really does not depend on connecting the
arguments of < and its result; the typechecker is not smart enough to know when that connection is
irrelevant. (We initially used a datasort refinement of bool and specified the types of <, <>, and so
forth with intersections, until we discovered the resulting limitation in power. Faster typechecking
was a bonus.)

The structure of the Boolean sort, as implemented, is very simple:

mathematical notation Stardust notation

Index sort bool bool

Constants true, false true, false

Functions none
Predicates none

We could enrich this with some of the usual Boolean operators (which could be considered functions
and predicates)—at least conjunction, since that is already present in the constraint language, but
we have not encountered any situation calling for this.

7.4 Dimensions: an invaluable refinement

Dimensions are ubiquitous in physics and related disciplines. For example, the plausibility of engi-
neering calculations can be checked by seeing whether the dimension of the result is the expected
one. If one concludes that the work done by a physical process is x · (a1 + a2) where x is a distance
and a1, a2 are masses, something is wrong. If, on the other hand, the conclusion has the form
x · (n1 + n2) where n1 and n2 are forces, it is at least possible that the calculation is correct, work
being a product of distance and force. The basic operations such as addition are subject to sanity
checking through dimensional analysis: one cannot add a distance to a force, and so forth. (Dimen-

sion refers to a quantity such as distance, mass or time; systems of units define base quantities for
dimensions. For example, in civilized countries, the base unit of distance is the meter.) Moreover,
dimensions aid in the discovery of physical laws: dimensional analysis constrains the form of the
law by permitting only equations that are dimensionally consistent.

The idea of trying to catch dimension errors in programs is old. Kennedy’s dissertation [Ken96]
cites sources as early as 1978; Allen et al. [ACL+04], as early as 1975. Many dimension checking
schemes were hamstrung by their lack of polymorphism: they could not universally quantify over
dimension variables. For example, they could not express a suitably generic type for the square
function λx. x ∗ x. House’s extension of Pascal [Hou83] and Wand et al.’s extension of ML [WO91]
could express such types, but lacked user-definable dimensions. Kennedy’s system, extending Stan-
dard ML, is an elegant formulation providing dimension polymorphism and user-definable dimen-
sions. However, Kennedy’s formulation is a substantial extension of the underlying type system, and

August 6, 2007

7.4. DIMENSIONS: AN INVALUABLE REFINEMENT 221

is complicated by doing full inference rather than bidirectional checking. In our system, dimensions
are, formally speaking, just another index domain; practically speaking, the implementation work
involved was modest (less than one person-week).

The basic idea is to refine the primitive type real of floating point numbers6 with a dimension.
Certain quantities, including nonzero floating-point literals, are dimensionless and indexed by 1

(though the zero literal 0.0 has type Πa:dim. real(a)). Constants M, S, and so forth have type
real(m), real(s), etc.7 All these constants have the value 1.0, so 3.0 ∗ M has value 3.0.

In fact, the value produced by 3.0 ∗ M is equal to the values produced by 3.0, and to that
produced by 3.0 ∗ S, by 3.0 ∗ M ∗ M, and so on. Unlike the data structure refinements used in our
examples thus far, dimension refinements say virtually nothing about values! We therefore call it
an invaluable refinement (“in-” meaning “not”, leading to a pun). Zero is an exception to this: it
appears that if · ⊢ v : Πa:dim. real(a) then v = 0.0. However, for any · ⊢ v : real(d) (without a Π)
the set of possible values is exactly the same for every d, as well as being the same set as the simple
type real. This is appropriate—there should be no explicit constructor or tag at runtime.

But what, then, do we actually learn when a program with dimension refinements passes the
typechecker? With refinements of lists one could prove properties such that if a closed value has
the emptylist refinement it must be Nil, but with dimensions there are few directly corresponding
properties. Instead, being well typed means that subterms of dimension type are used in a consis-
tent way. We will explore this notion of consistency first by example, showing which manipulations
of dimension-typed entities are considered consistent, and later more formally (Section 7.4.3).

7.4.1 Consistency and casting

The user must make some initial claims about dimensions (otherwise everything will be dimen-
sionless and nothing is gained), and these claims cannot be checked, though we can check the
consistency of their consequences. For example, the user must be free to multiply by constants
such as M, to assign dimensions to literals and to the results of functions like Real.fromString.
Given free access to those constants, for any known constant dimensions d1, d2, it is trivial to write
the appropriate ‘coercion’, such as this one for converting m2 to kg:

(*[val m2_to_kg : real(m ^ 2)→ real(kg)]*)

fun m2_to_kg x = (x/(M ∗ M)) ∗ KG

However, we cannot write a ‘universal cast’ between arbitrary dimensions, unless the dimension
constants are also passed to the cast as arguments:

(*[val universal_cast : Πd1, d2:dim. real(d1)→ real(d2)]*)

fun universal_cast x = ???

(*[cast_with_args : Πd1, d2:dim. real(d1)→ real(d1)→ real(d2)→ real(d2)]*)

fun cast_with_args x u1 u2 = (x/u1) ∗ u2

6Like Standard ML and many languages before it, we give the name real to values that are anything but.
7Writing M for the meters constant clashes with the established usage of M/L/T, etc. for generic dimensions of

mass/length/time; see, for example, Logan [Log87]. We do not use generic dimensions (instead we use units in a
particular system, namely SI, the “metric system”) in this work, so there is no internal inconsistency; anyway, an identifier
appearing in a term is unlikely to denote a generic dimension.

August 6, 2007

222 CHAPTER 7. INDEX DOMAINS

As a consequence, there is no useful Real.toString of type Πd1:dim. real(d1) → string. But we can
readily write one toString function for each dimension—appending the appropriate string repre-
sentation of the dimension to the result of Real.toString : real(1)→ string, as in the following.

(*[val meters_toString : real(m)→ string]*)

fun meters_toString x = (Real.toString (x/M)) ^ " m"

We could provide a universal_cast function as a primitive. If such a function seems horrific,
consider the fact that ML implementations typically have library modules that break type safety,
such as SML’s Unsafe and OCaml’s Obj. However, it is rarely helpful and even more rarely required
to use these modules; perhaps most importantly, it is considered unseemly. As long as similar
cultural practice prevailed with a universal_cast for dimensions, the consequences of including it
would be limited. It would be trivial to declare such a function in lib_basis.rml, and the SML
implementation would just be the identity, fun universal_cast n = n. Nonetheless, we see no
compelling reason to bother.

7.4.2 Definition of the index domain

The structure of the index domain is defined by its index sorts, expressions, and predicates; how-
ever, dimensions have no predicates besides index equality. Again, 1 stands for the multiplicative
identity that indexes dimensionless quantities.

mathematical notation Stardust notation

Index sort dim dim

Constants 1, m, s, kg NODIM, M, S, KG

Functions ∗, ^ *, ^

Predicates
.
= =

‘∗’ is a function of two dimensions (e.g. m ∗ s), while ‘^’ is a function of a dimension and an
integer (e.g. s ^ (−1)).

Choice of exponents

Kennedy [Ken96, p. 7] argues that only integer exponents should be permitted, because fractional
exponents have no physical basis. If a fractional exponent appears, say h1/2, this means that in
fact the system of units should be changed: h should be replaced with its square root, and uses of
hn should be replaced with h2∗n; the old h1/2 then becomes h. For example, if we had area as a
base dimension A, the proper response to the appearance of A1/2 should be to introduce a distance
dimension and define area as its square. The counterargument is that one may wish to temporarily
create a value whose dimension is physically nonsensical (fractional), on the way to producing
a sensible result. We follow Kennedy and permit only integers. However, our constraint solvers
support rational arithmetic, so allowing rational exponents should not be difficult.

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

7.4. DIMENSIONS: AN INVALUABLE REFINEMENT 223

7.4.3 Soundness

Our type safety theorem does not immediately apply. The first thing is to extend the typing rules
and operational semantics to handle real. Let NdR stand for a real (floating point) number N of
dimension d. These dimension superscripts have no runtime representation in actual code; we put
them in the operational semantics so we can state a soundness conjecture. Gloss literal reals asN1

R;
for example, 1.5 means 1.51

R. Moreover, gloss unit constants such as M as 1.0m
R , etc.8

Add the following rules for typing and transitions:

Γ ⊢ NR : real(1) Γ ⊢ 0.0R : Πa:dim. real(a) Γ ⊢ NdR : real(d)

(N1)
d1
R ∗ (N2)

d2
R 7→ (N1 ·N2)

d1·d2
R ∗R

(N1)
d
R + (N2)

d
R 7→ (N1 +N2)

d
R +R

... (rules for −, /, etc.)

Note that this is no mere decoration, but a restriction of the unrefined semantics: in a dimension-
free semantics, the + rule would have the form

(N1)R + (N2)R 7→ (N1 +N2)R

In contrast, rule +R can be applied only if N1 and N2 have the same dimension d. This raises
the possibility that progress (not only preservation of dimension refinements) could somehow fail.
However, we conjecture that type safety continues to hold for the resulting semantics.

Conjecture 7.1. If Γ ⊢ e : C (allowing the typing rules for real values above) and σ is a substitution

over program variables such that ⊢ σ : Γ and Γ = ·, then either

(1) e value and ⊢ [σ] e : C, or

(2) there exists e ′ such that [σ] e 7→ e ′ (allowing the transition rules above) and ⊢ e ′ : C.

7.4.4 Implementation

In most cases this should require the addition or modification of well under a thousand lines of
(high-level) source code. (This is not meant to imply that the task is trivial: the lines of code
have to be the right ones, and they have to be in the right places.)

—G. Baldwin

In this section, we describe how we implement the dimensions index domain. Neither ICS nor
CVC Lite directly support dimensions, so Stardust reduces constraints on dimensions to constraints
on integers, as described below.

8Equivalently, we could provide user-level syntax for Nd
R , eliminating unit constants entirely. However, that would

depart significantly from SML syntax.

August 6, 2007

224 CHAPTER 7. INDEX DOMAINS

Base dimensions and unit constants

Both the base dimensions m, s, etc. and the associated unit constants such as M are rendered in
uppercase and declared in lib_basis.rml as follows:9

indexconstant NODIM : dim (∗ The only place NODIM should need to be written
is in this file, as the default index for type
‘real’, so its ugliness is not a problem. ∗)

indexconstant M : dim

indexconstant S : dim

indexconstant KG : dim

...

indexfun * : int * int → int, dim * dim → dim

indexfun / : int * int → int, dim * dim → dim

indexfun ^ : dim * int → dim

...

primitive type real with dim = NODIM

...

primitive val M : real(M)

primitive val S : real(S)

primitive val KG : real(KG)

...

The dimension 1 is rendered as NODIM; this is rather ugly, but since the type real with no index given
is translated to real(NODIM) by the Inject phase (Section 6.3.2), there is no need for the user to write
it.

Solving constraints

Stardust reduces constraints on dimensions to a conjunction of constraints on the exponents: ma .=

(m ∗ s)b, which is equivalent to (ma) ∗ (s0)
.
= (mb) ∗ (sb), reduces to (a

.
= b) ∧ (0

.
= b). Without

existentials, that would be the end of the story, since every index expression of dimension sort can
be reduced to a normal form in which each base dimension or (universally quantified) dimension
variable appears once and in some particular order [Ken96, pp. 16–17]. Then equality is just the
conjunction of equalities of exponents. Existentials require that we actually solve for dimension
variables, but this is not at all difficult.

Given a normal form equation i1
.
= i2 containing a factor â (with nonzero exponent), we first

rearrange the equation into the form 1
.
= (i−11) ∗ i2 and distribute the −1 over the factors in i1,

yielding an equation 1
.
= âk ∗ jk11 ∗ · · · ∗ jknn , where k 6= 0. Multiplying both sides by â−k yields

â−k = jk11 ∗ · · · ∗ jknn ; raising both sides to the power 1/(−k) gives the solved form â =

7.4.5 Related work on dimension types in ML

We point out certain differences between Kennedy’s work on dimension types in ML and ours.
Kennedy [Ken96, p. 66] notes that the function power : int → real → real, such that power n x

9The complete lib_basis.rml appears in Listing 6.1.

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml
http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

7.4. DIMENSIONS: AN INVALUABLE REFINEMENT 225

yields xn, cannot be typed in his system; his system lacks any sort of dependent type on integers.
With our integer index refinement, this is no problem:

power : Πd:dim. Πn:Z. int(n)→ real(d)→ real(d ^ n)

This function
is in
kennedy66.rml.

(*[val power : -all d : dim- -all n : int- int(n) → real(d) → real(d ^ n)]*)

fun power n x =

if n = 0 then

1.0

else if n < 0 then

1.0 / power (~n) x

else

x * power (n-1) x

Similarly, in Kennedy’s system, universal quantifiers over dimension variables must be prenex
(on the outside), just like universal quantifiers over SML type variables. Kennedy [Ken96, pp.
66–67] gives the example of a higher-order function polyadd that applies prod to arguments of
different dimensions (first to 1 and kg, then to kg and 1); Kennedy’s system cannot infer the type
polyadd : (Πd1:dim. Πd2:dim. real(d1) → real(d2) → real(d1 ∗ d2)) → real(kg) because the Πs are
inside the arrow. This function

is in
kennedy67.rml.fun polyadd prod = prod 2.0 KG + prod KG 3.0

Since we do not require universal index quantifiers to be prenex, we have no difficulty typechecking
polyadd.

We close with two additional examples from Kennedy [Ken96, p. 11]. The first implements the
Newton-Raphson method. This function

is in
kennedy11.rml.(*[val newton : -all d1,d2:dim-

(∗ f, a function ∗) (real(d1) → real(d2))

(∗ f’, its derivative ∗) * (real(d1) → real((d1 ^ ~1) * d2))

(∗ x, the initial guess ∗) * real(d1)

(∗ xacc, relative accuracy ∗) * real

→ real(d1)

]*)

fun newton (f, f’, x, xacc) =

let val dx = f x / f’ x

val x’ = x - dx

in

if abs dx / x’ < xacc

then x’

else newton (f, f’, x’, xacc)

end

The second illustrates how, while Kennedy’s inference algorithm must actually determine the
least common multiple of 2, 5, and 6 (the number of factors in each term in the function), bidi-
rectional checking means that we simply do trivial arithmetic on small integers (15 + 15 = 30,
etc.).

This function
is in
kennedy11b.rml.

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/kennedy66.rml
http://type-refinements.info/stardust/thesis/examples/kennedy67.rml
http://type-refinements.info/stardust/thesis/examples/kennedy11.rml
http://type-refinements.info/stardust/thesis/examples/kennedy11b.rml

226 CHAPTER 7. INDEX DOMAINS

(*[val powers : -all d:dim- real(d ^ 15) * real(d ^ 6) * real(d ^ 5) → real(d ^ 30)

]*)

fun powers (x, y, z) = x*x + y*y*y*y*y + z*z*z*z*z*z

Kennedy also presents results about dimension polymorphism that are in the same vein as
Wadler’s “theorems for free” [Wad89] based on Reynolds’ work on parametricity [Rey83], and
discusses how Buckingham’s Π Theorem [Lan51, Log87]—about the behavior of equations under
a change of dimensions—might carry over to dimension types. We do not know if similar results
hold for our system.

7.4.6 Units of the same dimension

Some of the most catastrophic dimension bugs are not strictly attributable to confusion of dimen-
sions, but to confusion of units. In 1984, the space shuttle Discovery erroneously flew upside down
because a system was given input in feet, when it expected input in nautical miles [Ken96, p. 12].10

And in 1999, NASA’s $125 million Mars Climate Orbiter was lost and presumed destroyed after nav-
igational errors. Initial reports put the blame on unit confusion—the result of a calculation based
on Imperial units was given to onboard software expecting quantities in SI units. While some have
argued that the causes of the loss were multifarious [Obe99], it is clear that unit confusion played
a role: an “impulse-bit” in pound-forces was not converted to newtons. The software performing
this calculation was a modified version of software for an earlier space probe; even though the
conversion was done correctly in the original software, the conversion was not obvious in the code,
and was lost when the system was revised for the Mars Climate Orbiter [EJC01, p. 7].

Our system does not directly support multiple units of the same dimension. We see two ways
to handle programs with mixed units:

1. Recognize units of the same dimension, such as ft and m, and automatically convert among
them. For example, if we have feet ft as a unit of distance, applying a function of type
real(ft)→ bool to an argument of type real(m) would be legal, and the compiler would insert
a coercion (multiplying by 0.3048) to convert meters to feet.

2. Consider units of the same logical dimension to be distinct dimensions. Conversion of feet to
meters would not be automatic; the user would have to explicitly call a conversion function,
as in the example in Figure 7.3.

The first way needs compiler support (and of course a proper theoretical foundation), and is
therefore outside the scope of our current implementation approach, but there is a more fundamen-
tal objection: it is already difficult enough to reason about floating-point computations without the
compiler sneaking in unit conversions. Most of the time, perhaps, the hidden conversions would
be harmless, but over- or underflow is conceivable. If we followed the second way, the conversions

10Kennedy, who quotes a report of the incident in ACM SIGSOFT Software Engineering Notes vol. 10 no. 3 (July
1985), says this was “really a problem with the human-computer interface”. Fair enough, but in implementing the
obvious fix—to refuse input of unadorned numbers, requiring instead that the units be appended to the string (as “10023
ft”)—one would write conversion functions whose interface (and trivial implementation) could be usefully checked with
dimension/unit types.

August 6, 2007

7.4. DIMENSIONS: AN INVALUABLE REFINEMENT 227

(*[

indexconstant M : dim

indexconstant FT : dim

...

primitive val M : real(M)

primitive val FT : real(FT)

]*)

(*[val metersPerFoot : real(M / FT)]*)

val metersPerFoot = (0.3048 * M) / FT

(*[val fromFeet : real(FT) → real(M)]*)

fun fromFeet ft = ft * metersPerFoot

(*[val toFeet : real(M) → real(FT)]*)

fun toFeet m = m / metersPerFoot

(*[val parse : string → real * string]*)

...

(*[val readDistance : real → string → real(M)]*)

fun readDistance number units =

case units of

"m" ⇒ number * M

| "ft" ⇒ fromFeet (number * FT)

| _ ⇒ raise BadInput ("unknown␣distance␣unit:␣" ^ units)

Figure 7.3: Units of the same dimension in Stardust

August 6, 2007

228 CHAPTER 7. INDEX DOMAINS

would be obvious. We expect (or hope) that in most systems with mixed units, large components
do not mix units; for instance, if feet appear in input data but all interesting computation is in
meters, the burden of manually adding a few conversions would be small. The second strategy also
has the virtue of requiring no changes to the index domain.

A variant of the first approach was followed by Allen et al. [ACL+04] in their work on dimen-
sions and units in an object-oriented language with nominal typing. They significantly extend the
Java language with “metaclasses”, “instance classes”, and “abelian classes”, of which dimensions
are an instance.

7.4.7 Related work on invaluable refinements

Our term “invaluable refinement” is new, but similar refinements have come up in other contexts.
In security, untrusted data is considered tainted; for instance, a string literal in a program should
be safe to use on a command line passed to the OS function system, whereas a string entered into
a Web form is considered “tainted” and should not, in most circumstances, be passed to system.
Similarly to dimensions, the sets of tainted and untainted values are identical. “Casting” between
tainted and untainted data is permitted; the idea is to make such casts obvious.11 “Taint checking”
can of course be performed at runtime, but static checking has been investigated by Foster [Fos02],
whose qualified types encompass a variety of flow-sensitive, invaluable properties12: Zero or more
qualifiers, under a partial order (reminiscent of datasort refinements), may appear with a type.
Foster’s qualified type annotations are of two forms: annot(e,Q), which adds the qualifier Q to the
type inferred for e (a kind of cast), and check(e,Q), which directs the system to check that Q is
among the qualifiers of the type inferred for e. Thus, as with dimensions in our system, qualified
types are based on annotations provided by the user and cannot be checked at runtime. In our
system, we suspect that either a datasort refinement or an index refinement with a domain of finite
sets of constants (the qualifiers) would suffice to model qualified types, with some kind of cast—
some well-named identity function—acting as annot(e,Q), and type annotation (e : A) with the
appropriate refinement acting as check(e,Q). If an index refinement were chosen, the typeAmight
take the form Σs:quals. (Q ∈ s) O τ(s). For example, the type of strings qualified by Tainted might
be Σs:quals. (Tainted ∈ s) O string(s).

In a curious way, garden-variety Hindley-Milner typing also supports invaluable refinements. A
phantom type [FLMP99, LM99] is merely an ordinary datatype with a “phantom” polymorphic type
parameter that is not tied to the values of that type, at least not in the completely obvious way of
the α in α list. For example, we can cook up our own tainted/untainted string datatype in SML by
defining dummy opaque types tainted and untainted, used only in the polymorphic type parameter
of the datatype α str:

11Perl, which has a notion of tainted data (checked at runtime), fails to get even this right: the standard way to
“launder” an entire string is not to call some suggestively named identity function but to copy the string to a new
variable by matching the tainted string against a regular expression that matches everything; the new string will be
untainted.

12Foster’s work, and ours, is distinct from work focused on statically ensuring that high-security information does
not leak to low-security processes (e.g. [Mye99, Zda02, CKP05]), which considers only security levels, providing strong
guarantees (e.g. noninterference) over a different domain.

August 6, 2007

7.4. DIMENSIONS: AN INVALUABLE REFINEMENT 229

signature STR = sig

type tainted

type untainted

type ’a str

...

val untaint :

tainted str → untainted str

end

structure Str :> STR = struct

type tainted = unit

type untainted = unit

datatype ’a str = Str of string

...

fun untaint (Str s) =

Str s

end

A few points should be noted. First, the actual definitions of the dummy types tainted and
untainted are irrelevant since no values of these types are actually created. Second, the untaint

function merely re-creates the underlying value, since a newly constructed Str can have whatever
α we like—in this case, untainted.

More complicated uses of phantom types can even mimic integer index refinements by encod-
ing integers through dummy types, a technique Blume uses in his “No Longer Foreign Function
Interface” for Standard ML of New Jersey [Blu01]. Blume uses phantom types to model the lengths
of C-language arrays, which might seem to be a value-based refinement rather than an invaluable
one; however, from the standpoint of the SML type system it is invaluable, since C arrays are not
accounted for in SML’s semantics. From the user’s point of view, integer index refinements seem
more natural.

Phantom types can also be used as value refinements, but the typechecker’s ability to reason
based on inversion is limited. Our intention in the “taint” example above is that α str will be
instantiated only by tainted or untainted, not by int or string → string, etc. However, even if we are
careful to only instantiate α str as we intend (which is not difficult, since str is abstract outside the
structure Str) the typechecker does not know this is the case. For this invaluable refinement, there
are no inversion principles (not counting “any value of type A str where A is a type must have the
form Str s”, which we knew anyway!), but when phantom types are used to encode some value-
based property, such as the length of an SML list, this is a serious shortcoming, especially since
exhaustiveness of pattern matching cannot be shown. Hence, researchers have designed various
systems supporting “first-class” phantom types, whether called that [CH03, FP06], guarded recursive

datatypes [XCC03], generalized algebraic datatypes [PVWW06], or equality-qualified types [SP04].
This approach eliminates one virtue of phantom types: that one can use any standard compiler for
SML, Haskell, etc.13

From our (biased) perspective, phantom types (whether first- or second-class) are tantamount
to index refinements in which the index objects are types. These systems do not have intersection
types and cannot express conjunctions of refinement properties, at least not trivially. Perhaps more
fundamentally, when the index objects are types, index equality is type equivalence—which, as
equational theories go, is rather impoverished in conventional type systems. It is no coincidence
that one of the standard examples of phantom types is an interpreter for a tiny typed language,
where (in our terminology) terms in the interpreted language are indexed by types. There, the
encoding from the problem domain—types of terms in the interpreted language—is trivial, because
arrows, products, etc. are among the types of the source language. This encoding breaks down if

13This will likely be less of an issue in the future; in fact, first-class phantom types are now supported in the Glasgow
Haskell Compiler [PVWW06].

August 6, 2007

230 CHAPTER 7. INDEX DOMAINS

the types of the interpreted language are in some significant way more expressive than the types of
the source language.

To obtain richer index domains (in our terminology) than their current type expressions, some
have enriched phantom type systems with elements of traditional dependent typing [She04]. These
systems allow the user to write their own proofs of properties in undecidable domains, an ability
missing in our system. From a user’s perspective, this approach seems more complex than ours.
However, given the present work’s conspicuous lack of parametric polymorphism, we would be
unwise to cast any more aspersions.

Ephemeral refinements [MWH03] may be a form of invaluable refinement as well: the ephemeral
refinements are about ‘the state of the world’, which is not a directly manipulable value in SML and
many related type systems. If we consider only ephemeral refinements involving mutable storage,
a monadic formulation of ephemeral refinement systems would reify the state into a value and
the ephemeral/invaluable refinement of the state into a value refinement. Think of Haskell’s state
monad with a refinement about the array’s contents: the contents of the array become part of
the world encapsulated by the monad. However, given an ephemeral refinement that encodes
information that cannot be directly inspected, such as (some property of) the string representing
the program’s output so far, there is nothing to reify; unless the program is modified (not merely
annotated) to store the information so it can be inspected, there is no value to refine. Thus, both
value and invaluable refinements should be useful in a system with monadic encapsulation of
effects.

We end by observing that, as implied in Section 4.9.2, Davies’ datasort refinement system does
not support invaluable refinements. In his system, the inhabitants of the datasorts are specified
through regular tree grammars in which the symbols are the datatype’s constructors; the only
way to define datasorts that are not perfectly synonymous is to specify that they are inhabited by
different sets of values. (Serendipitously, mere laziness kept us from following the same strategy:
we simply did not want to bother transforming regular tree grammar-based specifications into
signatures S(c)!)

7.5 Conclusion

We have formulated index domains of integers, dimensions, and Booleans, and implemented them
in Stardust. Our examples illustrate the power of these domains, as well as certain limitations, such
as our difficulty with add in the bitstrings example. That difficulty may be surmountable, but users
have finite time and effort to put into making refinements work. However, in programming (unlike
pure mathematics), the perfect should not be allowed to be the enemy of the good. Completely
correct programs can be achieved only at great, and often unwarranted, cost.

Besides dimensions, other invaluable refinements may prove a rich lode. Because they are not
bound up in the details of data structures, they seem attractively simple.

As the set of supported domains grows, an already present problem grows with it: the scalability
of the refinements themselves. Different invariants will be important in different parts of a program.
It is perfectly reasonable to index lists by length; it is also perfectly reasonable to index them by
their contents, or by some property of the first or second or ith element. Our current approach
requires that one either cram all manner of indices into a tuple, and index by that, or create new

August 6, 2007

7.5. CONCLUSION 231

datatypes for each new property, each with its own refinement. The first technique is brazenly anti-
modular; the second leads to code duplication and tedium. Thus, designing modular refinements
is an important goal for future work. We mention here only a preliminary idea. First, we must
permit the post hoc addition of datasort and/or index refinements to a previously declared type.
By itself, that only allows us to avoid writing out the same datatype more than once; the functions
manipulating that datatype will not “know” about the new refinements. So we must also allow
the post hoc modification of function types. This should be safe (and not break code using the
old refinement) if the modified type principally synthesizes the original type; in particular, if we
already have f : A1 → A2 with A1 and A2 in the “old” refinements, we can add an intersection to
get f : (A1 → A2) ∧ (B1 → B2), with B1 and B2 using the new refinements—and (A1 → A2) ∧

(B1 → B2) ↑ (A1 → A2), so we can still typecheck code depending on f synthesizing A1 → A2.
Of course, when we modify the type of f in this way, we must check it against the new conjunct
B1 → B2.

August 6, 2007

232 CHAPTER 7. INDEX DOMAINS

August 6, 2007

Chapter 8

Conclusion

Conclusion I did it and it works.

—G. Baldwin

. . . we know from past experience that what has been sufficiently expensive is automatically
declared to have been a great success.

—Edsger W. Dijkstra

We have formulated a type system that is rich, yet practical. We have gone beyond work on var-
ious refinements in isolation to a combination of atomic refinements. Our work builds on Davies
and Pfenning’s illuminating, practical approach to intersection types, and goes beyond Xi and Pfen-
ning’s work on index refinements by combining them, for the first time, with intersections. We
have formulated an elegant theory of marker-free unions and index-level existentials, made practi-
cal through our let-normal transformation. Index refinements are parametric in the index domain,
but until now, the integer domain has ruled. Our work on dimensions breaks past that, and demon-
strates that our approach to refinements can check properties that are not value-based.

There are several key elements underlying our work. One is bidirectional typechecking. We
thus rely on information given by the user rather than the result of some bottom-up analysis. This
does not only yield an elegant theory, but seems highly effective for programs in which the user
understands what is going on. Those are the good programs—there will always be mistakes and
errors as the program is developed, but we can catch many of them with the aid of the user’s
specifications. Unlike many other approaches to catching bugs, we can reasonably hope that when
a program passes typechecking it really does have the types claimed. Of course there will be bugs
in typecheckers, constraint solvers, and so forth; we are still in the gutter, but we are looking up at
the stars.

Another element is respect for the subformula property. Though never precisely formulated or
proved for our systems, it influenced important design decisions; it is one reason that we have
no distributivity rules in our subtyping system, and that we do not intersect typings in contextual
typing annotations. It may also be why our implementation is as successful as it is: the typechecker’s
speed would be grossly unpredictable if the typechecker fabricated backtracking-inducing property
types.

233

234 CHAPTER 8. CONCLUSION

A final element of our type refinements is usability. We believe that types with datasort and
index refinements are easy to write and understand, in contrast to approaches closer to true de-
pendent types (the name Dependent ML aside, index refinements are a pale shadow of dependent
types, and we like them that way). Such approaches have their place, but we would rather build
up from the ground than dive from the sky.

The remainder of this chapter examines a number of avenues for future work.

8.1 Future work

8.1.1 Parametric polymorphism

The lack of parametric polymorphism is a major limitation of the present system. Adding parametric
polymorphism to the type assignment system of Chapter 2 appears rather straightforward: add type
variables α,β and a universal quantifier over types (not, like Π, over indices) ∀α.A to the grammar
of type expressions, extend Γ to allow assumptions of the form α type, and add the following
subtyping and typing rules1:

Γ ⊢ [A ′/α]A ≤ B Γ ⊢ A ′ ok

Γ ⊢ ∀α. A ≤ B
∀L

Γ, β ⊢ A ≤ B

Γ ⊢ A ≤ ∀β. B
∀R

Γ, α type ⊢ v : A

Γ ⊢ v : ∀α. A
∀I

Γ ⊢ e : ∀α. A Γ ⊢ A ′ ok

Γ ⊢ e : [A ′/α]A
∀E

For a type assignment system, decidability is of little concern. We are inclined to believe, but
have not proved, that the results shown for the system in Chapter 2 hold for the system with
these new rules; the key results are substitution, value definiteness, and type safety. We suspect
that the interesting problems lie further on, as we move from type assignment to the tridirectional
framework. Figuring out the judgment directions for ∀I and ∀E seems easy enough, following the
principle that introduction rules check and elimination rules synthesize that we used successfully
in Chapter 3:

Γ, α type ⊢ v ↓ A
Γ ⊢ v ↓ ∀α. A ∀I

Γ ⊢ e ↑ ∀α. A Γ ⊢ A ′ ok

Γ ⊢ e ↑ [A ′/α]A
∀E

∀I is straightforward enough, but with ∀E (and ∀L) we have to somehow “guess” the type
A ′ that replaces α. With ΠE we had a similar problem of guessing an index; as discussed in
Chapter 6 we solved that by introducing an existential index variable and solving for it. Often no
solution is known when ΠE is applied, so typechecking simply goes on with the existential index
variable “in tow”. This seems intuitively valid because indices exist on a level distinct from (and
inferior to) types. With ∀E everything is at the type level, and caution is advised: inference is
undecidable for many systems with similar features, including System F<: [Pie94], even without
distributivity [Chr98].

1For simplicity, we do not treat polymorphic datatypes (e.g. list would be covariant in the type argument, so α list ≤

β list if α ≤ β), as a realistic proposal would require.

August 6, 2007

8.1. FUTURE WORK 235

The key problem, then, is figuring out how to instantiate polymorphic ∀α. e types. We see
several possible approaches.

• With a refinement restriction, do simple type inference first. The refinement restriction found
in past work on (datasort) refinements disallows A ∧ B (and A ∨ B) if A and B are not
refinements of the same simple (unrefined) type. In the bitstrings refinement, bits ∧ pos

would be acceptable, but bits ∧ (pos → pos) would be invalid.2 Standard Hindley-Milner
inference can find simple polymorphic instances. If the number of refinements of a simple
type thus found is finite and small, one can enumerate them and try them all; for example, if
bits is refined only by a datasort, the typechecker can instantiate it first with bits, and if that
fails, with std, and finally with pos. If the number of refinements is large (bits∗bits→ bits∗bits
has 34 = 81 refinements, for instance), try the simple type alone (e.g. bits); if typechecking
fails, the user must annotate.

This is essentially how Davies’ typechecker works; lacking index refinements, he always has a
finite number of refinements but must handle the possibility that there are too many [Dav05a,
pp. 241–243]. However, in our system, anything indexed by a sort with infinitely many index
elements, such as the integer sort Z, has infinitely many refinements.

• Types with modes. Davies also discusses allowing the user to specify directional modes of
types [Dav05a, pp. 241–243]. The typechecker can be told that the argument to a function
g : ∀α. α → B should be inferred, so that when g is applied to e a type is synthesized for e
(rather than checked as rule→E would have it), yielding the instantiation for α. One possible
syntax would be ↑→ for arrows in which the argument is to be synthesized:

g : ∀α. α ↑→ B

This does not work well with multiple occurrences of α. Suppose we have f : ∀α.α→ α→ α,
x : A, y : B, and the application (f x) y. An intersection might allow either the first or second
argument to synthesize:

f : ∀α. (α ↑→ α→ α) ∧ (α→ α ↑→ α)

Right away we have a problem, because in the second part α → α ↑→ α we must somehow
skip the first argument so we can get to the second. But leaving that aside, we still cannot
handle the case where neither A ≤ B nor B ≤ A.

Another objection to this approach is that one can no longer see immediately which terms are
synthesizing and which are checking, since that is now dependent on types rather than mere
syntactic forms. That is, one must know the type of g to know whether e in g e needs to be
a synthesizing form; if e is a checking form, an annotation must be added. While some other
bidirectional formulations, such as Xi’s [Xi98], are more liberal than ours—Xi allows (x, y)

to synthesize since x and y do, for instance—directionality is still a local syntactic property,
just deeper than in our system, where directionality is based solely on the root syntactic form.

2Of course, SML compilers cannot do anything sensible with expressions of the latter type—but such types are per-
fectly valid in our type system.

August 6, 2007

236 CHAPTER 8. CONCLUSION

That is, in our system, the user can deduce a term’s directional character by looking at the
root of its abstract syntax tree; in Xi’s, by looking at the whole abstract syntax tree of the
term; but if directional modes are permitted in declared types, one must look at the entire
program.

We could modify the approach by moving the directional marker from the type to the use:
instead of g x, write g $↑ x. This avoids the last objection, at the cost of invading term
syntax with a new form of annotation.

• Local type inference. Pierce and Turner [PT98] describe a strategy for type inference with sub-
typing and (impredicative) polymorphism. Their strategy has two components: bidirectional
typing and local instantiation of polymorphic function applications. The first is not radically
unlike bidirectionality in our system. The second uses a constraint-generating system. The
main idea is that the constraints are manipulated to yield polymorphic instance(s) locally,
i.e. within that application of a polymorphic function. Their system requires construction
of greatest lower and least upper bounds of types, going to some effort to ensure that such
bounds actually exist. That problem is trivial in our system, where those bounds are simply
intersection and union, respectively—and since users can write intersections and unions, a
system modeled on ours should not be expected to make them up on its own.

• Be greedy. Suppose we resign ourselves to towing along an existential type variable. A strat-
egy of accumulating constraints (type equations and subtypings) and manipulating them,
nonlocally, seems too powerful. It also seems highly nontrivial, given the presence of inter-
sections and unions. But what if we keep the accumulated constraints very simple, in fact,
always in solved form3 (e.g. (α̂1 = A1) and (α̂2 = A2) and . . .)? (We can think of this as a
substitution, a rigid but relatively simple structure.) The “greedy” strategy does this: When
we try to derive A ≤ α̂, or α̂ ≤ A, we immediately choose A as the instance, conjoining
α̂ = A to the constraint (barely worthy of the name).

But this approach is severely limited, as the following example (adapted from Pierce and
Turner [PT98]) shows. Suppose

f : ∀α. α→ α→ α, x : pos, y : std

and we need to instantiate α in the application f x y. (Perhaps f is a kind of choice operator,
returning each argument with probability 1/2.) If we instantiate α to pos as suggested by
the type of x, we cannot check y ↓ pos since std 6≤ pos. If we try y’s type, instantiating α to
std, we will succeed since pos ≤ std. This suggests that perhaps we just need some way of
trying all the “obvious” instantiations of α. Unfortunately, if we instead had Γ = . . . , x : even,
y : odd neither x’s nor y’s type works since neither is a subtype of the other. In fact, α must
be instantiated to a supertype of both types in question. In the first instance displayed above,
one of these types (Γ(y) = std) happened to be a supertype of the other, but some more
general mechanism is needed.

Union types are exactly that mechanism! Instantiating α to even ∨ odd works perfectly. But
how does the typechecker come up with the union?

3We write α̂ as the name of the existential induced by trying to instantiate α.

August 6, 2007

8.1. FUTURE WORK 237

One answer is that the typechecker does nothing of the kind. The user must explicitly call
for the union, not by wedging some sort of annotation inside the site of the polymorphic
instantiation f x y (which, to be consistent with our annotation scheme so far, should not
need an annotation since it contains no checking forms in synthesizing position; see Remark
3.6). Instead, f’s type must be changed:

f : ∀α1. ∀α2. (α1 ∨ α2)→ (α1 ∨ α2)→ (α1 ∨ α2)

f : ∀α. α→ α→ α =⇒ or

f : ∀α1. ∀α2. α1 → α2 → (α1 ∨ α2)

The first rewrite corresponds to the original type with a union instantiating α; the second is
more readable. For the first, the built-in backtracking of subtyping decomposes the union,
choosing to derive either even ≤ α̂1 or even ≤ α̂2. If we try even ≤ α̂1 first, we set α̂1 = even.
For the next argument, we have odd ≤ α̂1 ∨ α̂2. There, trying odd ≤ α̂1 fails since (substi-
tuting for α̂1) odd 6≤ even, but when we try odd ≤ α̂2 we instantiate α̂2 = odd, synthesizing
α̂1 ∨ α̂2 = even ∨ odd for the whole expression.

If that “manual” approach seems unsatisfying, consider that anything else shatters the subfor-
mula property: unions (and in other situations, intersections) are produced out of nowhere.
The subformula property is not esoteric, but has immense practical value given the type-
checking performance problems that unions and intersections sometimes cause, as in the
bits-un.rml example (Listing 7.3 and Figure 6.5). Even if we improved our typechecking al-
gorithms significantly, it is not at all clear that we could handle unions exploding out of every
polymorphic instantiation.

Nonetheless, we have some ideas for “automatic” instantiation. The above example suggests
the importance of the number of occurrences of α: since α appears twice in the domain of f,
when f is applied two expressions will be checked against α, and it makes sense to instantiate
α with a two-part union; if α appeared three times we might create a three-part union α1 ∨
α2 ∨ α3; if α appeared only once, no “split” would be necessary. Thus we could split only
the nonlinear type variables. The position of α is also key: the αs are on the left hand side
(negative position); if they were on the right, in the range of the function, an intersection

split would be natural. (If α appeared more than once on each side, the left hand side should
adequately constrain α and we would not introduce an intersection “lurking” on the right
hand side.)

A more uniform approach would keep the union and intersection splits fluid; deriving A1 ≤ α̂
would itself introduce a new type variable and add α̂ = A1 ∨ α̂ ′ to the constraint, keeping
our options open for A2 ≤ α̂, which would become A2 ≤ A1 ∨ α̂ ′; the α̂ ′ could be split in
turn: α̂ ′ = A2 ∨ α̂ ′, and so on, for however many . . . ≤ α̂ judgments we try to derive. We
would need to get rid of the last existential variable introduced, perhaps by instantiating it
to ⊥. (After all, the subformula property is long gone.) If the existential appears on the left,
α̂ ≤ A1, introduce an intersection instead.

Finally, a historical note: the basic “greedy strategy” is, according to Pierce and Turner [PT98],
the basis of one of Cardelli’s System F<: typing algorithms [Car93]. Having no union types,

August 6, 2007

http://type-refinements.info/stardust/thesis/examples/bits-un.rml

238 CHAPTER 8. CONCLUSION

that algorithm cannot crack the std-pos example (which uses only atomic subtyping and
should be within the purview of his system).

Our present inclination is to pursue the “manual” greedy approach, perhaps in combination with
the directional modes suggested by Davies. If manual instantiation of unions and intersections turns
out to be too cumbersome for users, we might pursue automatic instantiation methods, but such
methods would probably have the simpler manual system as their foundation, making a manual
system worth pursuing as a means if not an end.

Finally, we briefly consider a philosophical question about polymorphism. We presently have
no parametric polymorphism, but we do have intersection polymorphism and index polymorphism
(Π), and in our formulation these have an implicit character. That is, when a term of intersection
type is used, the component is not indicated in the program: there is no marker saying which of
∧E1 and ∧E2 to apply. Likewise (and with the clearest analogy to parametric polymorphism) the
index instantiating a Π type is not explicit in the term: for x ↑ Πa:γ.A1 → A2 the term is simply x,
not some x[i] containing the index i to substitute for a in A1 → A2. In contrast, parametric poly-
morphism, while implicit at the level of source terms (the user applying the SML function List.app

to a list of integers need not write List.app[int]), is typically made explicit during elaboration.
Thus, as far as most of the compiler’s phases are concerned, (parametric) polymorphism is explicit,
and for good reason (if nothing else, one does not want to keep doing type inference to find the
instantiations!).

One wonders, then, whether our implicit polymorphism is somehow inappropriate, due to being
mismatched against tried-and-true explicit parametric polymorphism in SML compilers (among
others). Our work so far is on type checking, not compilation. In a standalone SML typechecker that
produced no intermediate code, the value of explicit parametric polymorphism would no longer be
obvious, and might not even exist. So we see no particular reason to expect intersection and/or
index polymorphism to be explicit in the setting of a standalone typechecker. In a compiler, the
story is likely to be different. We have no clear idea of what a compiler based on intersection
types, union types, etc.—in the same way that modern ML compilers are based on ordinary types in
the sense of having typed intermediate languages, type-based optimizations, and so forth—would
look like, but it could well call for explicit intersection and index polymorphism (recalling the
classic compilation method of intersection types as pairs, unions as injections, etc.). In that case,
there would no longer be any mismatch between parametric polymorphism and the forms we have
explored in this thesis: all forms of polymorphism would be implicit at the source level, but made
explicit during compilation.

8.1.2 Refinement-based compilation

Value-based refinements can make compiled code more efficient. For example, knowing that the
subject of a case expression must be a particular constructor can eliminate a tag check. A special
instance of this is when a Boolean expression is known to have type bool(true) or bool(false), as
in case x < y of True⇒ e1 ||False⇒ e2 when Γ = a:N, b:N, a < b, x:int(a), y:int(b): the test x < y
and the second case arm can be eliminated entirely. In fact, this corresponds to eliminating array
bounds checks, an application of index refinements explored by Xi and Pfenning [XP98]. Unlike
that system, ours has intersection and union types. Terms of such types might be compiled as pairs

August 6, 2007

8.1. FUTURE WORK 239

and sums, at least in some cases, so that functions of intersection type would yield specialized
code for each component of the intersection. Code specialization is nothing new, of course, but
optimizations grounded in the user’s type annotations could potentially surpass optimizations based
on generic heuristics.

8.1.3 Index domains

While we have gone beyond the well-established domain of integers by supporting dimension re-
finements, further expansion is desirable. We outline a few candidate domains here.

• Bit vectors, not integers, are the appropriate index objects for “integer” arithmetic in Standard
ML (and many other languages): the precision of int is limited and operations can overflow.4

CVC Lite supports fixed-length bit vectors with several arithmetic operations, including stan-
dard binary addition.

• Uninterpreted functions. Index functions and predicates with no properties beyond congru-
ence (if i

.
= j then f(i)

.
= f(j)) are already supported by ICS and CVC Lite; there should be no

difficulty in adding them.

• Inductive families. A form of ML-style datatype can be transposed into the index domain: each
constructor c becomes an index function. Unlike uninterpreted functions, such functions
should have inversion properties: c(i)

.
= c(j) should imply i

.
= j. Xi [Xi00, pp. 13–16]

gives an example of an evaluator for a tiny functional language, in which typ is an index sort
representing types in the object language, context is an index sort representing deBruijn-style
contexts, and object expressions are indexed by typ and context (the latter representing the
object-language types of the expression’s free variables):5

indexsort typ = I | B | Fun of typ * typ

indexsort context = CTXempty | CTXcons of typ * context

datatype exp with typ * context

datacon One : -all t:typ, ctx:context- exp(t, CTXcons(t, ctx))

datacon Shift : -all ta,tb:typ- -all ctx:context-

exp(ta, ctx) → exp(ta, CTXcons(tb, ctx))

datacon Lam : -all ta,tb:typ- -all ctx:context-

exp(tb, CTXcons(ta, ctx)) → exp(Fun(ta, tb), ctx)

datacon App : -all ta,tb:typ- -all ctx:context-

exp(Fun(ta, tb), ctx) * exp(ta, ctx) → exp(tb, ctx)

...

Neither ICS nor CVC Lite directly supports inductive families, though CVC Lite’s successor
CVC3 does [Bar06a]. In CVC Lite the inversion properties can be asserted as quantified

4Overflow in SML raises an exception, so the present indexing by integers should be sound: if a function of type
Πa:Z. int(a) → int(a+1) is applied to an integer n, any value actually returned will have value n+1; if overflow occurs,
the function’s result is effectively ⊥, and ⊥ ≤ int(n + 1). In languages that ignore overflow, such as Objective Caml, we
would have serious problems.

5We have adapted Xi’s notation to make it more similar to ours.

August 6, 2007

240 CHAPTER 8. CONCLUSION

formulas, but subsequent queries sometimes yield a result of “unknown due to quantifier
instantiation”.

• Functional arrays. Arrays (in ML terminology, vectors) with functional update i[j := k] (de-
noting the array i with the jth element replaced by k) are supported by both ICS and CVC
Lite [SBDL01]. We have not explored possible applications of this domain except in connec-
tion with sets, discussed next.

• Uninterpreted sets with order. In the red-black tree example in Chapter 7, we used refinements
to capture the structural invariants that ensure red-black trees are balanced. We left out a
more basic invariant: the set of keys/records stored. We would like to index red-black trees,
and other container data structures, by that set. Order is another important property. An
index sort ordset of ordered sets of otherwise unspecified objects would allow us to check the
full specification of operations such as insertion. Plausible types for the Black constructor and
insert function are as follows:

datacon Black : Πn:Z. Πh:N. ΠL, R:ordset.(
(l ∈ L)⇒ (l < n)

)
⊃

(
(r ∈ R)⇒ (r > n)

)

⊃
(
int(n) ∗ dict(h, L) ∗ dict(h, R)→ dict(h+ 1, L ∪ {n} ∪ R)

)

∧ . . .

(*[val insert : Πh:N. ΠS:ordset. rbt(h, S) ∗ int(n)→ Σh ′:Z. rbt(h ′, S ∪ {n})]*)

It should be possible to model ordering in the integer (or rational) domain; the additional
operations and laws, such as a + 0 = a, would simply never come into play. The blurring
of n as integer (int(n)) and as member-of-a-set is somewhat curious—we might need a sort
ordered of objects with an order, of which Z would be a “subsort”. One hopes that adding
such subsorting (not to be confused with datasort subsorting) would not have unfortunate
consequences.

As for the set constraints, useful fragments of set theory are decidable, including:

– MLSS (Multi-Level Syllogistic with Singleton), the unquantified theory with {}, ∪, ∩, \,
=, ⊆, ∈, and singletons {—}; see Cantone and Ferro [CF95];

– MLSSF∀, which extends MLSS with uninterpreted functions and universal quantification
(in a cumulative hierarchy); see Cantone and Zarba [CZ99].

MLSSF∀ is sufficient to write the types above, considering < and > to be uninterpreted func-
tions.

As mentioned previously, ICS and CVC Lite support functional arrays. Couchot et al. [CDD+04]
show how to reduce set-theoretic propositions to propositions in the theory of functional ar-
rays mentioned previously. However, we have not determined if their method is in fact ap-
plicable in this setting; in particular, it is not clear if their method allows online assertion at
reasonable cost.

Any decision procedure for sets must be usable in combination with other theories, e.g. in a
Nelson-Oppen framework (see below). The particular case of sets is discussed by Kuncak and

August 6, 2007

8.1. FUTURE WORK 241

Rinard [KR04]; the work of Cantone et al. [CF95, CZ99] may also be of value, since support
for uninterpreted function symbols (from the perspective of sets, <, >, etc. are uninterpreted)
is among the prerequisites for a Nelson-Oppen theory.

• Regular languages. For simple string processing, we might like to express that a given func-
tion’s result contains its argument as a substring, that is, if x = S1 then f(x) = S0S1S2 for
strings S0, S1, S2. For example, a function to construct an error message that takes several ar-
guments, one of which is an informational string, should include that string in the constructed
message.

This and many similar properties are within the scope of regular languages. The propositions
P would include s ∈ L, where L is a language specified by a regular grammar or regular
expression. We would need a procedure to decide relations such as s ∈ L1 |= s ∈ L2, which
amounts to L1 ⊆ L2; fortunately, containment of regular languages is decidable [HU79].

While it appears that no significant cooperation between a regular language constraint solver
and the integer solver would be necessary (unless we extended the domain significantly, e.g.
by allowing conversion between numeric strings and integers), we have not specified the
domain precisely; doing so and writing the appropriate solver could be nontrivial.

• Context-free languages. For properties of more complex string processing, such as fully veri-
fying the correctness of (say) recursive descent parsers, regular languages are not powerful
enough. Following the approach to regular languages just discussed, we must decide L1 ⊆ L2
where L1 and L2 are context-free languages. Unfortunately, this is undecidable [Hop69].
However, an incomplete but sound algorithm might suffice; this is the approach followed by
Thiemann [Thi05], whose system supports refinement of strings by context-free languages.

We note that while constraint solvers (perhaps more properly, decision procedures) are a hot
area of research (and probably will remain so), our application seems to be atypical. Speed is much
less important in our setting than in many others; unlike say circuit verification, our constraints are
quite small. While there is no problem in principle with using a system that works well on huge
problems to solve tiny ones, in practice this consideration may conflict with another unusual re-
quirement: correctness. Unlike many “bug-finding” approaches to software quality, our approach
means that we can at least hope that when our typechecker says a program is type-correct it ac-
tually is—not just that no specific bug has been found. In bug-finding, a constraint solver that is
occasionally wrong is tolerable, whereas one that would take decades to give an answer is utterly
useless. Their engineering requirements therefore emphasize speed over correctness. But in our
setting, our constraints are so small that naïve algorithms may be good enough, yet correctness is
paramount.6

An important issue is combination of index domains. We are fortunate that dimension equalities
can be reduced to sets of integer equalities, which makes it easy to support integers and dimensions
simultaneously. In general, to combine theories one needs a generic combination procedure. Both

6As a depressing aside, SRI recently (2006) abandoned ICS in favor of a new system called Yices. Unlike ICS,
Yices lacks persistent state, so we would have to “replay” assertions as we do for CVC Lite. Also unlike ICS, Yices is
implemented in C++ rather than OCaml. In the interests of decorum, we decline to give our thoughts on whether
persistence and implementation language are related.

August 6, 2007

242 CHAPTER 8. CONCLUSION

ICS and CVC Lite use such machinery internally, but neither provides a good interface for plugging
in solvers for new domains7. On a positive note, the theoretically inefficient but elegant Nelson-
Oppen combination procedure [NO79] might be enough for our purposes, allowing us to avoid
Shostak’s method [Sho84, RS01, SR02].8

We hope that there are other applications with similar requirements, and that more systems of
the kind we need will be built, possibly through an open-ended interface for plugging in simple
constraint solvers (perhaps based on rewriting systems [Mit96, BN98]).

8.1.4 Mutable references

Neither our formal systems nor our implementation have SML’s ref, nor any other form of mutable
storage. Adding ref to the implementation should be straightforward, but awkward: without para-
metric polymorphism we would need a family of types A ref and would probably have to add to
lib_basis.rml lines such as

primitive fun ! : (int ref → int) & (bool ref → bool) & ...

Extending the formal systems is a weightier matter. However, we believe that our property type
rules ∧I, ∨E, and so on would be sound without modification (except the straightforward addition
of store typings). Our ∧I is the same as that of Davies and Pfenning [DP00], which they proved
sound in the presence of ref. In particular, in their proof of safety, restricting ∧I to values ensured
consistency of the store typings obtained by applying the IH to each premise. That argument should
hold for our system’s ∧I. In ∨E, we type the same term twice, but we do not apply the IH to both
of those premises, since value definiteness allows us to conclude either v : A or v : B from v : A ∨ B

and thereby focus on a single premise, on which the IH would yield a single store typing.

8.1.5 Call-by-name languages

We have worked in a call-by-value semantics throughout the thesis. What about other formulations
such as call-by-name and call-by-need [AFM+95] (“lazy evaluation”)? In this section we sketch
some ideas for how to adapt our work to call-by-name (cbn)9. To keep things simple, we strip
down the system so the only types are 1, →, ∧, ∨, ⊤ and ⊥ and the only terms are (), x, λx. e,
e1 e2, u and fix u. e. Even this suffices to look into key issues surrounding union types.

Does anything need to change? After all, type safety holds for the simply typed lambda calculus
under either reduction strategy. This also appears to be the case in our setting; unfortunately, the
resulting type system is crippled under cbn. We start by explaining why, and then discuss a few
ideas for alternative formulations of ∨E and related rules.

7To “protect” SRI’s “intellectual property”, the ICS source code is unavailable; the successor project, Yices, is similarly
“protected”. CVC Lite is open but written in C++. Implementation language issues are not insurmountable, but life is
short.

8It is not entirely unfair to sum up the difference between the Nelson-Oppen and Shostak algorithms by observing
that some time after the respective seminal papers, there appeared a new proof of correctness of the former [TH96] and
a disproof of the correctness of the latter [RS01].

9The interplay between intersection/union types and reduction strategies is presently being studied, with a theoretical
emphasis, by Zeilberger, as part of what he calls operationally-sensitive typing phenomena [Zei07].

August 6, 2007

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

8.1. FUTURE WORK 243

Note that we specifically assume a pure deterministic semantics. (Our cbv semantics happens
to be deterministic, but that is not essential to our results.)

Straightforward adaptation to cbn

Recall the union elimination rule from Chapter 2.

Γ ⊢ e ′ : A ∨ B Γ, x:A ⊢ E [x] : C Γ, y:B ⊢ E [y] : C

Γ ⊢ E [e ′] : C
∨E

This rule is a good representative of the family of rules {⊥E,∨E, ΣE,OE, direct}. The rule requires
that the subterm e ′ of union type be in evaluation position. Under cbn, function arguments are not
evaluated, so vE is not an evaluation context:

[E ::= [] | Ee | vE] call by value

E ::= [] | Ee call by name

We believe rule ∨E is sound under both cbv and cbn with this new definition of Es. Under cbv,
E [e ′] takes a step if either e ′ does or e ′ is a value; under cbn the latter case is excluded—E [e ′] takes
a step only if e ′ does. In the proof case for type safety under cbn, it appears one would simply
consider the two possibilities: e ′ takes a step, in which case the logic is the same as the cbv case,
or e ′ is a value, in which case we have a value (e ′) to add to σ, allowing us to apply the IH.

However, ∨E with the cbn version of E is too restrictive. For example, we cannot now use ∨E
to derive

f : (A→ C) ∧ (B→ C), x : A ∨ B ⊢ f x : C

since x is not in evaluation position. A term such as (f y) z where z is of union type is likewise
inadmissible; we can apply direct to get x z but z is not in evaluation position in cbn.

A value restriction?

A value restriction on e ′ in ∨E [vBDCdM00] is a non-starter: for type preservation under β-
reduction, one needs a generalized substitution property that allows even non-values to be sub-
stituted for x, but that generalization does not hold for value-restricted rules (whether a modified
∨E or ∧I/⊃I/⊤I): consider ∧I applied to x, a value; after substituting a non-value for x we can no
longer apply ∧I. It seems that for ∧I and ⊃I we can simply remove the value restriction, which was
motivated by soundness under effects (such as mutable references); what to do with ⊤I is less clear.
In any case, it appears that we cannot help matters by putting a value restriction on the subterm e ′

of ∨E’s subject.

Strictness restriction

If we restrict e ′ to be in some strict position S[e ′], union-elimination should be safe. Formulating
such positions would be nontrivial, but might be the only way to obtain a useful rule.

August 6, 2007

244 CHAPTER 8. CONCLUSION

Call-by-need vs. call-by-name

Working in an explicitly call-by-need system might allow a value restriction to be imposed: instead
of (λx. e)e ′ 7→ [e ′/x]e we would have (λx. e)e ′ 7→ let x = e ′ in e. This seems worth investigating,
especially since call-by-name systems are typically implemented via call-by-need anyway. More-
over, in the case where ∨E is applied with e ′ = x, call-by-need suspiciously resembles the parallel
reduction semantics studied by others.

8.1.6 Evidence of things unseen

Our work expands the capabilities of static type systems by making more properties expressible. Yet
there will always be properties that, even with guidance in the form of type annotations, cannot be
expressed without losing decidability. Furthermore, components such as object-code libraries are
simply impervious to typechecking. We suggest several ways to mitigate such difficulties.

The first is a fallback strategy of runtime refinement checking. For example, if we claim that
some library function f has type

f : Πa:N. int(a)→ list(a)

we could wrap every call to f with a check that the length of the resulting list is equal to its
argument. One mechanism for this would be a soft annotation. The idea is that we erase such an
annotation if the typechecker can determine whether or not the annotated code checks against the
type; if it cannot, because the code is in an external library, we generate a wrapper function that
includes a call to a (perhaps automatically generated) checking function.

As the above example illustrates, such checks could take time linear (at least!) in the size of
the data structures involved. Moreover, if the data is functional, we would need to build a new
copy of the data with the functions replaced by wrapped functions. This suggests a use for a third
kind of annotation, a sharp annotation, which is not even checked at runtime. As the name suggests,
this is perilous: if the property claimed by the sharp annotation does not hold, the typechecker will
happily reason from that false assumption, drawing all manner of wrong conclusions.

A more compelling need for sharp annotations arises out of the index refinements. Some con-
straint domains involve properties that cannot be checked at runtime. A simple example is found
in the seemingly innocuous theory of order, where the index objects have an operation � which
must be reflexive, antisymmetric and transitive. If we use this theory with a primitive type such as
the integers and assume the built-in integer comparison function has the necessary properties, all
is well, since that function really does have those properties. But if we need the theory of order
for some user-defined type, such as keys in a database with various components lexicographically
ordered, the comparison function cmp comes from the user, so we would like to check that cmp is
reflexive, antisymmetric and transitive. However, the property of transitivity is neither expressible
in the refinement system nor checkable at runtime! In this case, the form of the sharp annotation
is different:

cmp :♯ : TRANSITIVE

The constraint solver furnishes the information that TRANSITIVE denotes a property. There can be
no check that cmp actually is transitive, but the programmer must explicitly claim that the property
holds.

August 6, 2007

8.1. FUTURE WORK 245

We discussed external libraries because they are obviously impervious to static typechecking.
But programs can grow so large that parts of the program may as well be an external library.
Suppose there is a module M with datatype τ which M’s programmer refined as they saw fit; years
later someone working on another part of the program needs an unforeseen refinement of τ, but
the benefit from static checking may not justify the effort involved in modifying M. In such a
situation, soft or sharp annotations would be expedient.

Ideally, the system would be able to use evidence of various kinds to support sharp annotations.
A key goal of the Programatica project [Pro03] is to build a system that tracks various kinds of
evidence, from claims of the kind just discussed to proofs produced by full-blown theorem provers.
Integrating type refinements with a Programatica-like system could be quite powerful. Other ap-
proaches, which we briefly examined in Section 1.6.3, aim to combine automatic checking of some
properties with user proofs of others; these could play a very useful role.

The Extended Static Checker, which we discussed in Section 1.7.2, has assume statements
roughly corresponding to our “sharp annotations”, and Leino [Lei01] suggests falling back on
dynamic checks (our “soft annotations”) or assume statements in cases where static checking is
undecidable.

8.1.7 Derivation generation

The typechecker could be extended to generate a derivation if typechecking succeeds. A stand-
alone program to check a derivation’s validity would be far simpler and (in general) much faster
than generating the derivation through typechecking, since there would be no backtracking.

A key benefit would be to increase confidence in the typechecker: the pronouncement “Program
typechecks” would be given much more weight, especially if derivation generation were combined
with a proof-generating decision procedure for the index domain(s).

Saving the generated derivations could enable some form of incremental typechecking by al-
lowing the typechecker to refer to a previously saved derivation as a first guess for nondeterministic
choices: if the saved derivation moved from x:A1 ∧ A2 to x:A2 while checking a use of x, the choice
x:A2 could be tried first, even though the system would normally try it second. Obviously, such
a scheme’s effectiveness depends on how resilient derivations are in the face of small changes to
source code. (A variant of the scheme would store only an oracle string and use that to decide
which choices to try first.)

8.1.8 Counterexample generation

When a program fails to typecheck, it would be useful to know why. An intuitively appealing idea
is to generate a counterexample. For instance, if a function does not check against red → black,
give the user a value v : red such that the result of the function is not black. However, this is not
a trivial problem, especially with higher-order functions, as we then need to generate functions as
counterexamples. Finally, the technique is not directly applicable to invaluable refinements such as
dimensions: there is no value of simple type real that is not also of type real(d) for any dimension
d!

August 6, 2007

246 CHAPTER 8. CONCLUSION

8.1.9 Suggestion tools for refinements

Our experience with red-black tree deletion (Section 7.2.5) indicates that coming up with appro-
priate refinements and type annotations for legacy code, while productive in terms of finding bugs,
is not easy. For value refinements, it could be useful to apply tools analogous to Daikon [ECGN01]
to find alleged invariants, from which the user could—if convinced that the invariant should hold
and is not evidence of a bug—derive a possible type annotation.

August 6, 2007

Appendix A

Guide to Notation

Roman

a, b index variables
c datatype constructors
e expressions (terms, program terms)
ě pre-values Chapter 5, p. 121
ê anti-values Chapter 5, p. 121
i, j, k index-domain expressions; also subscripts (e.g. Ai)
ms matches (case arms)
p patterns Chapter 4, p. 100
s states in Solve Chapter 6
u fixed point variables
v values
other lowercase program variables, index variables, meta-variables
A, B, C, D types p. 32
As, Bs contextual typing annotations Chapter 3
BLV bound linear variables
FLV free linear variables
FV free (program, index) variables
L lists of bindings Chapter 5
NdR floating-point value N of dimension d Chapter 7
P index-domain propositions

Bold

a, . . . , x, y, z linear variables Chapters 3 and 5

247

248 APPENDIX A. GUIDE TO NOTATION

Greek

γ index sorts
δ datasorts
ǫ empty bitstring
µ measure for induction Def. 5.77, p. 160
ρ renaming (variable-for-variable substitution) Chapter 3
σ substitution (for index variables and/or program variables)
Γ contexts (environments) for program variable typings,

index variable typings, and propositions
∆ contexts (environments) for linear variables
Θ operators (in pattern checking) Figure 4.3
Π universal index quantifier
Σ existential index quantifier
Ω external solver-level context Chapter 6

Script

C syntactic contexts, unrestricted
D derivations
D :: . . . D derives judgment “. . . ”
E syntactic contexts, evaluation
J judgments Chapter 4
Q syntactic contexts, “elongated evaluation” Figure 5.1
R rules e.g. Def. 2.15
W let-free viable paths Def. 5.32, p. 135

Angular/

Rounded

≤ is a subtype of Figure 2.11
. is a contextual subtype of Section 3.4.3
⊥ falsehood (index-level proposition)
⊥ empty type
⊤ top (greatest) type
∧ intersection type

V

conjunction (index-level proposition) Chapter 6
∨ union type
V disjunction (index-level proposition) Section 6.9
⊃ guarded type Chapter 2
O asserting type Chapter 2

August 6, 2007

249

Arrows

7→ steps to Chapter 2
7→R reduces to Chapter 2
7→M reduces to (“tiny-step” pattern matching) Chapter 4
⇒ implication (index-level proposition)
↑ synthesizes (“in the present system”)
↓ checks against (“in the present system”)
↑tri synthesizes (tridirectional system) Chapter 3
↓tri checks against (tridirectional system) Chapter 3
↑L synthesizes (left tridirectional system) Chapters 3 and 5
↓L checks against (left tridirectional system) Chapters 3 and 5
↑let synthesizes (let-normal system) Chapter 5
↓let checks against (let-normal system) Chapter 5
↓↑ checks against or synthesizes
↓↑ . . . ↓↑ two (or more) judgments having the same direction:

checks against . . . checks against,
or synthesizes . . . synthesizes

Other

|e| erasure of typing annotations Chapters 3 and 4
|e| Xi’s let-normal translation [Xi98] Chapter 5
Z points to part of what is to be shown Section 1.9.2

Extended BNF (Chapter 6)

[. . .] zero or one occurrences of ‘. . . ’
(. . .)∗ zero or more occurrences of ‘. . . ’
(. . .)+ one or more occurrences of ‘. . . ’

August 6, 2007

250 APPENDIX A. GUIDE TO NOTATION

August 6, 2007

Sources of Quotations

p. 5 Mukesh Agrawal.

Personal communication.

p. 9 Jean-Yves Girard.

Bulletin of Symbolic Logic, 2003, p. 140.

p. 223 G. Baldwin.

SIGPLAN Notices, August 1987.

p. 233 G. Baldwin.

SIGPLAN Notices, August 1987.

p. 233 Edsger W. Dijkstra.

EWD 1243, http://www.cs.utexas.edu/users/EWD/.

251

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1243.html

252 SOURCES OF QUOTATIONS

August 6, 2007

Bibliography

[AC98] Roberto Amadio and Pierre-Louis Curien. Domains and lambda calculi, volume 46 of
Cambridge Tracts in Theoretical Comp. Sci., chapter 3. Cambridge Univ. Press, 1998.
1.6.1, 3.1

[ACL+04] Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, and Guy L. Steele
Jr. Object-oriented units of measurement. SIGPLAN Notices, 39(10):384–403, 2004.
Originally presented at OOPSLA ’04. 7.4, 7.4.6

[AFM+95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler.
A call-by-need lambda calculus. In ACM Symp. Principles of Programming Languages

(POPL ’95), pages 233–246, 1995. 8.1.5

[AH05] David Aspinall and Martin Hofmann. Dependent types. In B. C. Pierce, editor, Ad-

vanced Topics in Types and Programming Languages, chapter 2, pages 46–86. MIT
Press, 2005. 1.6.3

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Logic

and Computation, 2(3):297–347, 1992. 6.7.1

[Aug98] Lennart Augustsson. Cayenne—a language with dependent types. In Int’l Conf. Func-

tional Programming (ICFP ’98), pages 239–250, 1998. 1.6.3

[AWL94] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with condi-
tional types. In ACM Symp. Principles of Programming Languages (POPL ’94), pages
163–173, 1994. 1.6.1

[Bar06a] Clark Barrett. CVC 3.0 website. http://www.cs.nyu.edu/acsys/cvc3/, 2006. 6.5.2,
8.1.3

[Bar06b] Clark Barrett. CVC Lite website. http://www.cs.nyu.edu/acsys/cvcl/, 2006. 6.5.2

[BB04] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the Cooper-
ating Validity Checker. In Int’l Conf. Computer Aided Verification (CAV ’04), volume
3114 of LNCS, pages 515–518. Springer, July 2004. 6.5.2

[BCKW05] Adam Bakewell, Sébastien Carlier, A. J. Kfoury, and J. B. Wells. Inferring intersection
typings that are equivalent to call-by-name and call-by-value evaluations. Technical
report, Church Project, Boston University, April 2005. 1.6.1

253

http://www.cs.nyu.edu/acsys/cvc3/
http://www.cs.nyu.edu/acsys/cvcl/

254 BIBLIOGRAPHY

[BDCd95] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersection
and union types: syntax and semantics. Information and Computation, 119:202–230,
1995. 2.1, 2.4.1, 2.8, 3.5

[BDF+04] Michael Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram
Schulte. Verification of object-oriented programs with invariants. Journal of Object

Technology, 3(6):27–56, 2004. 1.7.2

[BDL96] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity checking for combi-
nations of theories with equality. In Int’l Conf. Formal Methods in Computer-Aided

Design (FMCAD ’96), volume 1166 of LNCS, pages 187–201. Springer, November
1996. 6.5.2

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system. In Construction and Analysis of Safe, Secure, and Interoperable Smart Devices

(CASSIS), volume 3362 of LNCS, pages 49–69. Springer, 2004. 1.7.2

[Blu01] Matthias Blume. No-longer-foreign: Teaching an ML compiler to speak C “natively”.
Electronic Notes in Theoretical Computer Science, 59(1), 2001. 7.4.7

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. 8.1.3

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and
S. F. Smith. Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, 1986. 1.6.3

[Cam] Caml Light website. http://caml.inria.fr/caml-light/. 1.6.3

[Car93] Luca Cardelli. An implementation of F<:. Research report 97, DEC/Compaq Systems
Research Center, February 1993. 8.1.1

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In ACM

Symp. Principles of Programming Languages (POPL ’77), pages 238–252, 1977. 1.6.1

[CDCV81] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable
terms. Zeitschrift f. math. Logik und Grundlagen d. Math., 27:45–58, 1981. 1.6.1, 3.1

[CDD+04] Jean-François Couchot, Frédéric Dadeau, David Déharbe, Alain Giorgetti, and Silvio
Ranise. Proving and debugging set-based specifications. Electronic Notes in Theoreti-

cal Computer Science, 95:189–208, 2004. 8.1.3

[CDG+97] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. http://www.grappa.

univ-lille3.fr/tata, 1997. Release of 1 October 2002. 1.1

August 6, 2007

http://caml.inria.fr/caml-light/
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

BIBLIOGRAPHY 255

[CF91] Robert Cartwright and Mike Fagan. Soft typing. In SIGPLAN Conf. Programming

Language Design and Impl. (PLDI), volume 26, pages 278–292, 1991. 1.6.1

[CF95] D. Cantone and A. Ferro. Techniques of computable set theory with applications to
proof verification. Comm. Pure and Applied Math., 48:901–945, 1995. 8.1.3

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information and

Computation, 76(2–3):95–120, 1988. 1.6.3

[CH03] James Cheney and Ralf Hinze. First-class phantom types. Technical Report CUCIS
TR2003-1901, Cornell University, 2003. 7.4.7

[Chr98] Jacek Chrząszcz. Polymorphic subtyping without distributivity. In L. Brim, J. Gruska,
and J. Zlatuska, editors, Mathematical Foundations of Computer Science, volume 1450
of LNCS, pages 346–355. Springer, 1998. 8.1.1

[CKP05] Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of information
flow security with mutable state. J. Functional Programming, 15(2):249 – 291, 2005.
12

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. MIT Press, 1990. 7.2.4, 7.2.5, 7.2.5, 7.2.5

[CW04] Sébastien Carlier and J. B. Wells. Expansion: the crucial mechanism for type infer-
ence with intersection types: A survey and explanation. In Workshop on Intersection

Types and Related Systems (ITRS ’04), pages 173–202, 2004. 1.6.1

[CX05] Chiyan Chen and Hongwei Xi. Combining programming with theorem proving. In
Int’l Conf. Functional Programming (ICFP ’05), pages 66–77, 2005. 1.6.3

[CZ99] Domenico Cantone and Calogero G. Zarba. A tableau-based decision procedure for
a fragment of set theory involving a restricted form of quantification. In Int’l Conf.

Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX ’99),
LNAI, pages 97–112. Springer, 1999. 8.1.3

[Dav97] Rowan Davies. A practical refinement-type checker for Standard ML. In Algebraic

Methodology and Software Tech. (AMAST’97), pages 565–566. Springer LNCS 1349,
1997. 1.6.1

[Dav05a] Rowan Davies. Practical refinement-type checking. PhD thesis, Carnegie Mellon Uni-
versity, 2005. CMU-CS-05-110. 1.1, 1.3, 1.6.1, 1.6.1, 2, 2.3.2, 2, 3.1, 3.3, 3.4.1, 4.3,
4.9.2, 6.1, 6.7.2, 6.10, 6.12, 6.13, 7.2.3, 7.2.4, 8.1.1

[Dav05b] Rowan Davies. SML CIDRE distribution page. http://www.cs.cmu.edu/~rowan/

sorts.html, 2005. 1.6.1

[DD01] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: on the
impact of the CPS transformation. Technical Report BRICS-RS-01-54, University of
Aarhus, December 2001. 5.9

August 6, 2007

http://www.cs.cmu.edu/~rowan/sorts.html
http://www.cs.cmu.edu/~rowan/sorts.html

256 BIBLIOGRAPHY

[DE73] G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. J. Combinatorial

Theory (A), 14:288–297, 1973. 7.2.2

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. Technical Report SRC-159, Compaq SRC, 1998. 1.7.2

[dMOR+04] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, and Natarajan Shankar.
The ICS decision procedures for embedded deduction. In Int’l Joint Conf. Automated

Reasoning (IJCAR ’04), volume 3097 of LNCS, pages 218–222, Cork, Ireland, June
2004. 6.5.1

[DP00] Rowan Davies and Frank Pfenning. Intersection types and computational effects.
In Int’l Conf. Functional Programming (ICFP ’00), pages 198–208, 2000. 1.6.1, 2.1,
2.3.2, 2.7, 2.9, 3.1, 3.3.1, 7.2.3, 8.1.4

[DP03] Jana Dunfield and Frank Pfenning. Type assignment for intersections and unions
in call-by-value languages. In Found. Software Science and Computation Structures

(FOSSACS ’03), pages 250–266, Warsaw, Poland, April 2003. Springer LNCS 2620.
1

[DP04a] Jana Dunfield and Frank Pfenning. Tridirectional typechecking. Technical Report
CMU-CS-04-117, Carnegie Mellon University, March 2004. Extended version of
[DP04b]. 1

[DP04b] Jana Dunfield and Frank Pfenning. Tridirectional typechecking. In X. Leroy, editor,
ACM Symp. Principles of Programming Languages (POPL ’04), pages 281–292, Venice,
Italy, January 2004. A

[Dun02] Jana Dunfield. Combining two forms of type refinements. Technical Report CMU-
CS-02-182, Carnegie Mellon University, September 2002. 2.1, 2.3.4

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Trans. Soft.

Eng., 27(2):99–123, February 2001. 8.1.9

[EJC01] Edward A. Euler, Steven D. Jolly, and H. H. ‘Lad’ Curtis. The failures of the Mars
Climate Orbiter and Mars Polar Lander: a perspective from the people involved.
In 24th Annual AAS Guidance and Control Conf. American Astronautical Society,
2001. http://brain.cs.uiuc.edu/integration/AAS01_MCO_MPL_final.pdf; also
appears in Advances in the Astronautical Sciences, volume 107, pages 635–656.
7.4.6

[Els05] Martin Elsman et al. ML Kit website. http://www.itu.dk/research/mlkit/, 2005.
1.6.1

[FF02] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
Int’l Conf. on Functional Programming (ICFP’02), pages 48–59, October 2002. 1.7.1

August 6, 2007

http://brain.cs.uiuc.edu/integration/AAS01_MCO_MPL_final.pdf
http://www.itu.dk/research/mlkit/

BIBLIOGRAPHY 257

[FLMP99] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling hell from
heaven and heaven from hell. In Int’l Conf. Functional Programming (ICFP ’99), pages
114–125, 1999. 7.4.7

[Fos02] Jeffrey Scott Foster. Type qualifiers: lightweight specifications to improve software

quality. PhD thesis, University of California, Berkeley, 2002. 7.4.7

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In SIGPLAN Conf.

Programming Language Design and Impl. (PLDI), pages 268–277. ACM Press, 1991.
1.3, 1.6.1, 3.3

[FP06] Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. ArXiv postprint,
http://arxiv.org/abs/cs.PL/0403034, January 2006. 7.4.7

[Fre94] Tim Freeman. Refinement types for ML. PhD thesis, Carnegie Mellon University, 1994.
CMU-CS-94-110. 1.1, 3.3

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In SIGPLAN Conf. Programming Language Design and

Impl. (PLDI ’93), pages 237–247, 1993. 5.3

[Gir03] Jean-Yves Girard. From foundations to ludics. Bulletin of Symbolic Logic, 9(2):131–
168, 2003. 1.6.1

[GR04] Emden R. Gansner and John H. Reppy. The Standard ML Basis Library. Cambridge
University Press, 2004. 7.2

[GS78] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.
In Foundations of Computer Science, pages 8–21, 1978. 7.2.4

[Hay94] Susumu Hayashi. Singleton, union, and intersection types for program extraction.
Information and Computation, 109:174–210, 1994. 1.6.1

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993. 1.6.3

[Hin69] R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. Amer.

Math. Soc., 146:29–60, 1969. 5.3.1

[Hop69] John E. Hopcroft. On the equivalence and containment problems for context-free
languages. Math. Systems Theory, 3(2):119–124, 1969. 8.1.3

[Hou83] R. T. House. A proposal for an extended form of type checking of expressions. Com-

puter Journal, 26(4):366–374, 1983. 7.4

[HP99] Haruo Hosoya and Benjamin C. Pierce. How good is local type inference? Technical
Report MS-CIS-99-17, University of Pennsylvania, June 1999. 3.6.2

August 6, 2007

http://arxiv.org/abs/cs.PL/0403034

258 BIBLIOGRAPHY

[HS97] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML.
Technical Report CMU-CS-97-147, Carnegie Mellon University, 1997. A shorter ver-
sion appeared in Proof, Language and Interaction: Essays in Honour of Robin Milner.
4.9.1

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979. 1.1, 8.1.3

[IN06] Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming.
In Symp. Applied Computing (SAC ’06), pages 1435–1441, 2006. 2.8

[Jim95] Trevor Jim. What are principal typings and what are they good for? Technical
memorandum MIT/LCS/TM-532, MIT, November 1995. 3.1, 3.6.3

[Kah01] Stefan Kahrs. Red-black trees with types. J. Functional Programming, 11(4):425–
432, July 2001. 7.2.4

[Ken96] Andrew Kennedy. Programming languages and dimensions. PhD thesis, University of
Cambridge, 1996. TR No. 391, University of Cambridge Computer Laboratory. 7.4,
7.4.2, 7.4.4, 7.4.5, 7.4.5, 7.4.6

[Kfo00] Assaf J. Kfoury. A linearization of the lambda-calculus. J. Logic Comput., 10(3),
2000. 3

[KMM91] Paris C. Kanellakis, Harry G. Mairson, and John C. Mitchell. Unification and ML type
reconstruction. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in

Honor of Alan Robinson, pages 444–478. 1991. 1.6.1

[KR04] Viktor Kuncak and Martin Rinard. On decision procedures for set-valued fields. Tech-
nical Report 975, MIT CSAIL, November 2004. 8.1.3

[KTU94] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. An analysis of ML typability.
Journal of the ACM, 41(2):368–398, 1994. 1.6.1

[KW04] Assaf J. Kfoury and J. B. Wells. Principality and type inference for intersection types
using expansion variables. Theoretical Computer Science, 311(1–3):1–70, 2004. 1.6.1

[Lan51] Henry L. Langhaar. Dimensional Analysis and Theory of Models. Wiley, 1951. 7.4.5

[Lei01] K. Rustan M. Leino. Extended Static Checking: A ten-year perspective. In Dagstuhl

Anniversary Conf., volume 2000, pages 157–175, 2001. 1.7.2, 8.1.6

[LH05] Daniel R. Licata and Robert Harper. A formulation of Dependent ML with ex-
plicit equality proofs. Technical Report CMU-CS-05-178, Carnegie Mellon University,
2005. 1.6.3

[Lit03] Vassily Litvinov. Constraint-Bounded Polymorphism: an Expressive and Practical Type

System for Object-Oriented Languages. PhD thesis, University of Washington, 2003.
2.8

August 6, 2007

BIBLIOGRAPHY 259

[LM99] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In USENIX Conf.

Domain-Specific Languages (DSL ’99), pages 109–122, October 1999. Also appeared
in ACM SIGPLAN Notices 35 (1), Jan. 2000. 7.4.7

[Log87] J. David Logan. Applied Mathematics: A Contemporary Approach. Wiley, 1987. 7,
7.4.5

[Mic68] Donald Michie. “Memo” functions and machine learning. Nature, 218:19–22, 1968.
6.7.2

[Mil78] Robin Milner. A theory of type polymorphism in programming. J. Computer and

System Sciences, 17(3):348–375, 1978. 1

[Mit96] John C. Mitchell. Foundations for Programming Languages, pages 203–233. MIT
Press, 1996. 8.1.3

[MM04a] Conor McBride and James McKinna. The view from the left. J. Functional Program-

ming, 14(1):69–111, 2004. 1.6.3

[MM04b] Peter Møller Neergaard and Harry G. Mairson. Types, potency, and idempotency:
Why nonlinearity and amnesia make a type system work. In Int’l Conf. Functional

Programming (ICFP ’04), pages 138–149, Snowbird, Utah, USA, September 2004.
1.6.1, 1.6.1

[Mog88] Eugenio Moggi. Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-66, University of Edinburgh, 1988. 2.3.2, 5.3

[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive
polymorphic types. Information and Control, 71:95–130, 1986. 2.8

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of

Standard ML (Revised). MIT Press, 1997. 2.1, 4.9.1, 6, 6.1.6

[MW03] Kenneth MacKenzie and Nicholas Wolverson. Camelot and Grail: resource-
aware functional programming on the JVM. http://groups.inf.ed.ac.uk/mrg/

publications/mrg/, 2003. 5.3

[MWH03] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory of type
refinements. In Int’l Conf. Functional Programming (ICFP ’03), pages 213–226, Upp-
sala, Sweden, September 2003. 7.4.7

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In ACM

Symp. Principles of Programming Languages (POPL ’99), pages 228–241, 1999. 12

[NGd94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors. Selected Papers on Au-

tomath, volume 133 of Studies in Logic and the Foundations of Mathematics. North
Holland, 1994. 1.6.3

August 6, 2007

http://groups.inf.ed.ac.uk/mrg/publications/mrg/
http://groups.inf.ed.ac.uk/mrg/publications/mrg/

260 BIBLIOGRAPHY

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Prog. Lang. Sys., 1(2):245–257, 1979. 6.2, 8.1.3

[Obe99] James Oberg. Why the Mars probe went off course. IEEE Spectrum, 36(12), Decem-
ber 1999. http://www.jamesoberg.com/mars/loss.html. 7.4.6

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge, 1998. 7.2.5

[Pie91a] Benjamin C. Pierce. Programming with intersection types and bounded polymorphism.
PhD thesis, Carnegie Mellon University, 1991. Technical Report CMU-CS-91-205.
1.6.1, 3.1, 3.4.1

[Pie91b] Benjamin C. Pierce. Programming with intersection types, union types, and polymor-
phism. Technical Report CMU-CS-91-106, Carnegie Mellon University, 1991. 2.1, 6,
2.8, 3

[Pie94] Benjamin C. Pierce. Bounded quantification is undecidable. Information and Compu-

tation, 112(1):131–165, July 1994. Also in C. A. Gunter and J. C. Mitchell, editors,
Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and Language

Design, MIT Press, 1994. Summary in ACM Symp. Principles of Programming Lan-

guages (POPL ’93). 8.1.1

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. 1.9

[PP01] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to in-
tersection and union types. J. Functional Programming, 11(3):263–317, 2001. 1.6.1

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksells, 1965. 1.9, 2.2, 2.3.2, 2.4.1,
3.2, 6.11.2

[Pro03] Programatica project website. http://www.cse.ogi.edu/PacSoft/projects/

programatica/, 2003. 8.1.6

[PT98] Benjamin C. Pierce and David N. Turner. Local type inference. In ACM Symp. Prin-

ciples of Programming Languages, pages 252–265, 1998. Full version in ACM Trans.

Prog. Lang. Sys., 22(1):1–44, 2000. 1.4, 3.1, 3.6.2, 6.12, 8.1.1

[Pug91] William Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In ACM/IEEE Conf. Supercomputing, pages 4–13, 1991.
7.2.2

[PVWW06] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for GADTs. In Int’l Conf. Functional

Programming (ICFP ’06), Portland, Oregon, September 2006. 7.4.7, 13

[PW03] Jens Palsberg and Mitchell Wand. CPS transformation of flow information. J. Func-

tional Programming, 13(5):905–923, 2003. 5.9

August 6, 2007

http://www.jamesoberg.com/mars/loss.html
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/

BIBLIOGRAPHY 261

[Rep01] John Reppy. Local CPS conversion in a direct-style compiler. In ACM Workshop on

Continuations (CW ’01), pages 13–22, 2001. 5.3

[Rey67] John C. Reynolds. Automatic computation of data set definitions. ftp://ftp.cs.

cmu.edu/user/jcr/autodataset.pdf. A shorter version appears in Information Pro-

cessing 68, November 1967. 1.6.1

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, pages 513–523. Elsevier, 1983. http://

www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf. 7.4.5

[Rey88] John C. Reynolds. Preliminary design of the programming language Forsythe. Report
CMU-CS-88-159, Carnegie Mellon University, 1988. Superseded by [Rey96]. 1.6.1,
3.4.1, A

[Rey93] John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation,
6(3–4):233–247, 1993. 5.3

[Rey96] John C. Reynolds. Design of the programming language Forsythe. Technical Report
CMU-CS-96-146, Carnegie Mellon University, 1996. Supersedes [Rey88]. 1.6.1,
1.6.1, 3.4.1, 6.10, A

[RP96] Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for
higher-order logic programs. In European Symp. Programming (ESOP ’96), pages
296–310, Linköping, Sweden, April 1996. Springer LNCS 1058. 3.2

[RS01] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In Logic in Computer

Science (LICS ’01), pages 19–28, 2001. 8.1.3, 8

[SBD02] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity
checker. In Int’l Conf. Computer Aided Verification (CAV ’02), volume 2404 of LNCS,
pages 500–504. Springer, 2002. 6.5.2

[SBDL01] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision
procedure for an extensional theory of arrays. In Logic in Computer Science (LICS

’01), pages 29–37, 2001. 8.1.3

[SF94] Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data flow anal-
ysis? In SIGPLAN Conf. Programming Language Design and Impl. (PLDI ’94), pages
1–12, June 1994. 5.9

[She04] Tim Sheard. Languages of the future. SIGPLAN Notices, 39(12):119–132, December
2004. Originally presented at OOPSLA ’04. 1.6.3, 7.4.7

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1–
12, 1984. 8.1.3

August 6, 2007

ftp://ftp.cs.cmu.edu/user/jcr/autodataset.pdf
ftp://ftp.cs.cmu.edu/user/jcr/autodataset.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

262 BIBLIOGRAPHY

[SP04] Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality. In 4th

Int’l Workshop on Logical Frameworks and Meta-languages (LFM ’04), pages 106–124,
July 2004. 1.6.3, 7.4.7

[SR02] Natarajan Shankar and Harald Rueß. Combining Shostak theories. In Sophie Tison,
editor, Int’l Conf. Rewriting Techniques and Applications (RTA ’02), volume 2378 of
LNCS, pages 1–18. Springer, 2002. 8.1.3

[SRI03] SRI International. ICS website. http://www.icansolve.com, 2003. 6.5.1

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–Oppen
combination procedure. In F. Baader and K. U. Schulz, editors, Int’l Workshop on

Frontiers of Combining Systems, Applied Logic, pages 103–120, March 1996. 8

[Thi05] Peter Thiemann. Grammar-based analysis of string expressions. In Workshop on

Types in Language Design and Impl. (TLDI ’05), pages 59–70, Long Beach, Calif.,
2005. 8.1.3

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed
optimizing compiler for ML. In SIGPLAN Conf. Programming Language Design and

Implementation (PLDI ’96), pages 181–192, 1996. 5.3

[TO98] Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed language
interoperability via source translation. J. Functional Programming, 8(4):367–412,
1998. 5.3, 6.13

[vBDCdM00] Steffen van Bakel, Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Yoko Moto-
homa. The minimal relevant logic and the call-by-value lambda calculus. Technical
Report TR-ARP-05-2000, The Australian National University, August 2000. 2.4.1,
2.8, 8.1.5

[Wad89] Philip Wadler. Theorems for free! In Symp. Functional Programming Languages and

Computer Architecture (FPCA) ’89, pages 347–359, September 1989. 7.4.5

[WDMT02] J.B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak. A calculus with poly-
morphic and polyvariant flow types. J. Functional Programming, 12(3):183–317,
May 2002. 1.6.1

[Wel02] J.B. Wells. The essence of principal typings. In Int’l Coll. Automata, Languages, and

Programming, volume 2380 of LNCS, pages 913–925. Springer, 2002. 3.1, 3.6.3

[WH02] J. B. Wells and Christian Haack. Branching types. In European Symposium on Pro-

gramming (ESOP ’02), pages 115–132, 2002. 3.1

[WO91] Mitchell Wand and Patrick M. O’Keefe. Automatic dimensional inference. In J.-L.
Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson,
pages 479–483. 1991. 7.4

August 6, 2007

http://www.icansolve.com

BIBLIOGRAPHY 263

[WSW05] Edwin Westbrook, Aaron Stump, and Ian Wehrman. A language-based approach to
functionally correct imperative programming. In Int’l Conf. Functional Programming

(ICFP ’05), pages 268–279, 2005. 1.6.3

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype construc-
tors. In ACM Symp. Principles of Programming Languages (POPL ’03), pages 224–235,
2003. 7.4.7

[Xi98] Hongwei Xi. Dependent types in practical programming. PhD thesis, Carnegie Mellon
University, 1998. 1, 1.2, 1.6.3, 2.1, 2.3.4, 2.3.5, 2.4, 2.4.5, 2.8, 3.2, 3.4.2, 3.6.1,
5.2.1, 6.7.2, 6.12, 7.1, 7.2.4, 8.1.1, A

[Xi00] Hongwei Xi. Dependently typed data structures. Revision superseding WAAAPL ’99;
http://www.cs.bu.edu/~hwxi/academic/papers/DTDS.pdf, February 2000. 2.3.4,
2.3.5, 8.1.3

[Xi01] Hongwei Xi. Dependent types for program termination verification. In Logic in

Computer Science (LICS ’01), pages 231–242, June 2001. 1.6.3

[Xi02] Hongwei Xi. Dependent types for program termination verification. Journal of

Higher-Order and Symbolic Computation, 15:91–131, October 2002. 1.6.3

[Xi04] Hongwei Xi. Applied Type System (extended abstract). In TYPES 2003, LNCS, pages
394–408. Springer, 2004. 2.3.5

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through depen-
dent types. In SIGPLAN Conf. Programming Language Design and Impl. (PLDI ’98),
pages 249–257, 1998. 8.1.2

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In ACM

Symp. Principles of Programming Languages (POPL ’99), pages 214–227, 1999. 1.3,
2.1, 2.3.4, 2.4, 2.8, 3.6.1

[Zda02] Stephan A. Zdancewic. Programming Languages for Information Security. PhD thesis,
Cornell University, 2002. 12

[Zei07] Noam Zeilberger. The logical basis of evaluation order. PhD thesis proposal, Carnegie
Mellon University, 2007. http://www.cs.cmu.edu/~noam/research/proposal.pdf.
9

August 6, 2007

http://www.cs.bu.edu/~hwxi/academic/papers/DTDS.pdf
http://www.cs.cmu.edu/~noam/research/proposal.pdf

264 BIBLIOGRAPHY

August 6, 2007

Index

:!, 177
Ω, 181
µ, 37
Rank, 37
Size, 37
7→, 20
Acon, 24
Ωmega, 11
Z, 15
lib_basis.rml, 173
0-CFA, 166

A-normal form, 118
adequacy, 10
Agrawal, Mukesh

on type annotations, 5
annotations

contextual typing, 61
anti-colon, 177
asserting types, 30

subtyping, 30

Baldwin, G.
on having done it, 233

basis, 173
bidirectional typechecking, 233
bit vectors, 239
bitstrings, 198–204
block, 169
Booleans

index sort, 219–220
brittle subterm, 137

Cayenne, 11
CFA, 166
colocated bindings, 137

compilation, 118
completeness

of the left tridirectional system, 83
of the tridirectional system, 65

completeness theorem
left tridirectional system, 84
let-normal system, 165
tridirectional system, 71

constructor types, 24
context

of constraint solver, 181
context-free languages

as index domain, 241
contextual subtyping

reflexivity, 65
contextual typing annotations, 61, 177
continuation-passing style, see CPS
control flow analysis, see CFA
convex theory, 190
Cooperating Validity Checker, see CVC
CPS, 118, 166
Curry-Howard isomorphism, 8, 56
CVC, 184
CVC Lite, 184

decidability of typing
in the left tridirectional system, 87

definite types, 19
definiteness, 36

theorem, 38
dependent types, 11–12
derivation measure µ, 37
derivation rank, 36–37
Dijkstra, Edsger W.

on success, 233
dimensions

265

http://type-refinements.info/stardust/thesis/librml/lib_basis.rml

266 INDEX

in object-oriented languages, 228
index sort, 220–230

direct style, 127
disjunctive propositions, 189–191
disordered linear variables, 158
dynamic typing, 8–9

empty type, 29
ephemeral refinements, 230
Epigram, 11
equivalence relations

index equality, 23
error reporting, 195–196
erstwhile CMU grad students, vii
erstwhile officemates, vii
ESC, 12
evaluation contexts E , 19
exceptions, 170
existential dependent types, see existentially quan-

tified types
existentially quantified types, 30
Extended Static Checker, see ESC
extends relation (terms), 67

reflexivity, 67
transitivity, 67

filter function, 27
focusing, 186
Forsythe, 191
functional arrays, 240

Girard, Jean-Yves
calling people morons, 9
on intersection types, 10

gratuitous citations, 187
greatest type, 21, 57
guarded types, 26
gutters, 233

ICS, 184
idempotency, 8
identity substitution, 35
impotence, 8
indefinite types, 27
index domain

properties
consequence, 23
equality

.
=, 23

substitution, 23
weakening, 23

induction measure
for let-normal completeness, 160

inductive families
as index domain, 239

injection phase (in Stardust), 179
integers

index sort, 197–219
intersection types, 21
invaluable refinements, 113, 220–230
inverse let-normal translation, see unwinding

left tridirectional system
completeness, 83
completeness theorem, 84
decidability of typing, 87
soundness of, 81
soundness theorem, 81

let-equivalence ≡let, 127, 129
let-free viable paths W, 135
let-free viable position, 136
let-normal completeness, 165
let-normal soundness, 134
let-normal translation

in Stardust, 181
inverse, see unwinding
traditional, 118
Xi’s, 116

let-respecting, 132
letification, 138–143
light extends relation (terms), 67
light extension lemma, 68
linear logic, 186
linearity, 80
local type inference, 88, 236
ludics, 10

Mars Climate Orbiter, 226
maximal decomposition, 137
memoization, 187

August 6, 2007

INDEX 267

minimal relevant logic, 49
monotonicity under annotation, 68
mutable references, 18, 242

natural numbers
index sort, 198

negation of propositions, 175
Nelson-Oppen method, 242
non-convex theory, 190

object-oriented languages
union types in, 49

object-oriented programming, 191
operational semantics, 20

call by name, 242–244
call by need, 244
call by value, 20

operator overloading
in Standard ML, 192

operator precedence
in Stardust, 171

ordered sets
as index domain, 240

parametric polymorphism, 196, 234–238
pattern matching

in the let-normal system, 166
pattern typing

compared to Davies’ system, 112
compared to Standard ML, 112

patterns
implementation, 112, 189

permutation, 143–153
phantom types, 228
poetic language

dreadful, 234
questionable, 233

pointing hand notation “Z”, 15
polymorphism, see intersection types, see para-

metric polymorphism
precedes relation (of subterms), 136
preservation, 44
prickly, 137
principal typings, 89

product sort flattening phase, 180
program extraction, 8
progress, 44

qualified types, 228

random colleagues, vii
rank, 36–37
red-black trees

deletion, 209–219
insertion, 204–209

redeemable bindings, 159
refinement restriction, 7, 191, 235
reflexivity

of
.
=, 23

of contextual subtyping, 65
of subtyping, 34
of the extends relation (terms), 67

regular languages
as index domain, 241

relevant logic, 49
rewriting systems, 242
root (in a term), 137

semantics of refinements, 10
sets

as index domain, 240
Shostak’s method, 242
slack variables, 124, 188
slackening, 143
soft typing, 8–9
software engineering

great moments in, 226
solver context, 181
soundness

of pattern checking, 106
of the left tridirectional system, 81
of the tridirectional system, 65

soundness theorem
left tridirectional system, 81
let-normal system, 134
tridirectional system, 65

Stanford Validity Checker, see SVC
steps-to relation 7→, 20

August 6, 2007

268 INDEX

subset sorts, 27, 175
asserting types, 30
elimination phase (in Stardust), 180
guarded types, 26

substitution
identity, 35
of let-bindings ([L]e), 130
property of index domains, 23
typing rules, 35

substitution lemma, 35
ranked formulation, 38

subtyping
decidability, 34
reflexivity, 34
summary of rules, 33
transitivity, 34

SVC, 184
symmetry

of
.
=, 23

synthesis subtyping, 24
synthesizing form, 67

tainted data, 228
termination checking, 10
top type, 21, 57

subtyping, 57
transitivity

of
.
=, 23

of subtyping, 34
of the extends relation (terms), 67

transposed linear variables, 138
tridirectional system

completeness of, 65
soundness of, 65

type annotations, 169, 177
type preservation, 44
type safety, 44

left tridirectional system, 88
type safety proof, 45–48
type safety theorem, 45

full pattern language, 110

unfortunate misfeatures
of the implementation, 189

uninterpreted functions, 239
uninterpreted sets with order, see ordered sets
union types, 28

for parametric polymorphism, 236
subtyping, 28

universal dependent types, see universally quan-
tified types

universally quantified types, 22
unwinding, 129

value definiteness, 36
theorem, 38

value inversion, 41
value inversion on→, ∗, δ(i), 41
value monotonicity, 34
value permutation, 153–157
values, 19
viable subterm, 121

weakening
property of index domains, 23

Yices, 241

August 6, 2007

	Introduction
	Datasort refinements and intersection types
	Index refinements and union types
	The role of type annotations
	Bidirectional, tridirectional, and let-normal typechecking
	Statement of thesis
	Related work
	Intersection types and datasort refinements
	Union types
	Index refinements

	Other approaches
	Assertions
	ESC and related systems

	Contributions
	Reader's guide
	Reading online
	Notation

	A type assignment system
	Introduction
	The base language
	Definite property types
	Refined datatypes
	Intersections
	Greatest type:
	Index refinements and universal dependent types
	Guarded types

	Indefinite property types
	Unions
	The empty type
	Existential dependent types:
	Asserting types
	Typechecking in evaluation order

	Properties of subtyping
	Properties of values
	Substitutions
	Definiteness
	Value inversion on , *, (i)
	Lemmas for case

	Type preservation and progress
	Related work
	Conclusion

	A tridirectional type system
	Introduction
	The core language
	Property types
	Intersections
	Greatest type:
	Refined datatypes
	Indefinite property types
	Subtyping
	The tridirectional rule

	Contextual typing annotations
	Checking against intersections
	Index variable scoping
	Contextual subtyping
	Soundness
	Completeness

	The left tridirectional system
	Soundness
	Completeness
	Decidability of typing
	Type Safety

	Related work
	Refinements, intersections, unions
	Partial inference systems
	Principal typings

	Conclusion

	Pattern matching
	Introduction
	Foundations of pattern checking
	Pattern language
	Free variables and well-formedness
	Pattern matching
	Subtraction and intersection

	Overview
	Case, match, and constructor typing

	Type assignment version of the system
	Substitution

	Lemmas for soundness
	Soundness
	Limitations
	Implementation
	Related work
	Pattern checking in unrefined type systems
	Davies' datasort refinement system

	A let-normal type system
	Introduction
	Tridirectional typechecking
	Evaluation contexts do not strictly determine order
	Approaching the problem

	Let-normal typechecking
	Principal synthesis of values

	Introduction to the proofs
	Preliminaries
	Soundness
	Completeness
	Let-free paths and the `precedes' relation
	Properties of -3mu
	Position and ordering of let-bindings
	Type preservation lemmas
	Results

	Extension to full pattern matching
	Related work
	Conclusion

	Implementation
	The implemented language
	Type expressions
	Basis
	Declaring refinements
	Annotating declarations
	Annotating expressions
	Expression syntax

	Design
	Initial phases
	Index sort checking
	Injection
	Product sort flattening
	Subset sort elimination
	Let-normal translation

	Interface to an ideal constraint solver
	Constraint-based typechecking
	Interface to ICS
	Interface to CVC Lite

	Internal index domains
	Optimizations
	Improvement of the synthesis judgment
	Memoization
	Left rule optimizations
	Slack variables

	Pattern checking
	Disjunctions
	The refinement restriction
	Performance
	Impact of solver interfaces
	Conservation of speed
	Scaling up

	Error reporting
	Parametric polymorphism

	Index domains
	Introduction
	Integers
	Natural numbers
	Implementation
	Example: Inductive bitstrings
	Example: Red-black tree insertion
	Example: Red-black tree deletion

	Booleans
	Dimensions: an invaluable refinement
	Consistency and casting
	Definition of the index domain
	Soundness
	Implementation
	Related work on dimension types in ML
	Units of the same dimension
	Related work on invaluable refinements

	Conclusion

	Conclusion
	Future work
	Parametric polymorphism
	Refinement-based compilation
	Index domains
	Mutable references
	Call-by-name languages
	Evidence of things unseen
	Derivation generation
	Counterexample generation
	Suggestion tools for refinements

	Guide to Notation
	Sources of Quotations
	Bibliography
	Index

