
Tridirectional Typechecking

Jana Dunfield

jd169@queensu.ca

Frank Pfenning

fp@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA

ABSTRACT

In prior work we introduced a pure type assignment system that
encompasses a rich set of property types, including intersections,
unions, and universally and existentially quantified dependent types.
This system was shown sound with respect to a call-by-value oper-
ational semantics with effects, yet is inherently undecidable.

In this paper we provide a decidable formulation for this sys-
tem based on bidirectional checking, combining type synthesis and
analysis following logical principles. The presence of unions and
existential quantification requires the additional ability to visit sub-
terms in evaluation position before the context in which they occur,
leading to a tridirectional type system. While soundness with re-
spect to the type assignment system is immediate, completeness
requires the novel concept of contextual type annotations, intro-
ducing a notion from the study of principal typings into the source
program.

Categories and Subject Descriptors: F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure;
D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms: Languages, Theory

Keywords: Type refinements, intersection types, union types, de-
pendent types

1. INTRODUCTION
Over the last two decades, there has been a steady increase in the

use of type systems to capture program properties such as control
flow [15], memory management [22], aliasing [20], data structure
invariants [11, 7, 28] and effects [21, 14], to mention just a few.
Ideally, such type systems specify rigorously, yet at a high level of
abstraction, how to reason about a certain class of program proper-
ties. This specification usually serves a dual purpose: it is used to
relate the properties of interest to the operational semantics of the
programming language (for example, proving type preservation),
and it is the basis for concrete algorithms for program analysis (for
example, via constraint-based type inference).

While the type-based approach has been successful for use in
automatic program analysis (for example, for optimization during

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’04, January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 158113729X/04/0001 ...$5.00.

compilation), it has been less successful in making the expressive
type systems directly available to the programmer. One reason for
this is the difficulty of finding the right balance between the brevity
of the additional required type declarations and the feasibility of the
typechecking problem. Another is the difficulty of giving precise
and useful feedback to the programmer on ill-typed programs.

In prior work [9] we developed a system of pure type assign-
ment designed for call-by-value languages with effects and proved
progress and type preservation. The intended atomic program prop-
erties are data structure refinements [11, 10, 28], but our approach
does not depend essentially on this choice. Atomic properties can
be combined into more complex ones through intersections, unions,
and universal and existential quantification over index domains. As
a pure type assignment system, where terms do not contain any
types at all, it is inherently undecidable [4].

In this paper we develop an annotation discipline and typecheck-
ing algorithm for our earlier type assignment system. The major
contribution is the type system itself which contains several novel
ideas, including an extension of the paradigm of bidirectional type-
checking to union and existential types, leading to the tridirectional

system. While type soundness follows immediately by erasure of
annotations, completeness requires that we insert contextual typing

annotations reminiscent of principal typings [13, 25]. Decidability
is not obvious; we prove it by showing that a slightly altered left

tridirectional system is decidable (and sound and complete with re-
spect to the tridirectional system).

The basic underlying idea is bidirectional checking [18] of pro-
grams containing some type annotations, combining type synthesis

with type analysis, first adapted to property types by Davies and
Pfenning [7]. Synthesis generates a type for a term from its im-
mediate subterms. Logically, this is appropriate for destructors (or
elimination forms) of a type. For example, the first product elimina-
tion passes from e : A∗B to fst(e) : A. Therefore, if we can gener-
ate A∗B we can extract A. Dually, analysis verifies that a term has
a given type by verifying appropriate types for its immediate sub-
terms. Logically, this is appropriate for constructors (or introduc-

tion forms) of a type. For example, to verify that λx. e : A → B we
assume x : A and then verify e : B. Bidirectional checking works
for both the native types of the underlying programming language
and the layer of property types we construct over it.

However, the simple bidirectional model is not sufficient for what
we call indefinite property types: unions and existential quantifica-
tion. This is because the program lacks the prerequisite structure.
For example, if we synthesize A ∨ B, the union of A and B, for
an expression e, we now need to distinguish the cases: the value
of e might have type A or it might have type B. Determining the
proper scope of this case distinction depends on how e is used, that
is, the position in which e occurs. This means we need a “third di-

1



rection” (whence the name tridirectional): we might need to move
to a subexpression, synthesize its type, and only then analyze the
expression surrounding it.

Since the tridirectional type system (like the bidirectional one)
requires annotations, we want to know that any program well typed
in the type assignment system can be annotated so that it is also
well typed in the tridirectional system. But with intersection types,
such a completeness property does not hold for the usual notion of
type annotation (e : A) (as previously noted [16, 6, 23]), a problem
exacerbated by scoping issues arising from quantified types. We
therefore extend the notion of type annotation to contextual typing

annotation, (e : Γ1 ⊢ A1, . . . , Γn ⊢ An), in which the programmer
can write several context/type pairs. The idea is that an annotation
Γk ⊢ Ak may be used when e is checked in a context matching Γk.
This idea might also be applicable to arbitrary rank polymorphism,
a possibility we plan to explore in future work.

Unlike the bidirectional system, the indefinite property types that
necessitate the third direction make decidability of typechecking
nontrivial. Two ideas come to the rescue. First, to preserve type
safety in a call-by-value language with effects, the type of a sub-
term e can only be brought out if the term containing it has the form
E[e] for some evaluation context E, reducing the nondeterminism;
this was a key observation in our earlier paper [9]. Second, one
never needs to visit a subterm more than once in the same deriva-
tion: the system which enforces this is sound and complete.

The remainder of the paper is organized as follows. Section 2
presents a simple bidirectional type system. Section 3 adds refine-
ments and a rich set of types including intersections and unions,
using tridirectional rules; this is the simple tridirectional system.
In Section 4, we explain our form of typing annotation and prove
that the simple tridirectional system is complete with respect to the
type assignment system. Section 5 restricts the tridirectional rules
and compensates by introducing left rules to yield a left tridirec-

tional system. We prove soundness and completeness with respect
to the simple tridirectional system, prove decidability, and use the
results in [9] to prove type safety. Finally, we discuss related work
(Section 6) and conclude (Section 7).

2. THE CORE LANGUAGE
In a pure type assignment system, the typing judgment is e : A,

where e contains no types (eliding contexts for the moment). In a
bidirectional type system, we have two typing judgments: e ↑ A,
read e synthesizes A, and e ↓ A, read e checks against A. The
most straightforward implementation of such a system consists of
two mutually recursive functions: the first, corresponding to e ↑ A,
takes the term e and either returns A or fails; the second, corre-
sponding to e ↓ A, takes the term e and a type A and succeeds
(returning nothing) or fails. This raises a question: Where do the
types in the judgments e ↓ A come from? More generally: what
are the design principles behind a bidirectional type system?

Avoiding unification or similar techniques associated with full
type inference is fundamental to the design of the bidirectional sys-
tem we propose here. The motivation for this is twofold. First,
for highly expressive systems such as the ones under consideration
here, full type inference is often undecidable, so we need less au-
tomatic and more robust methods. Second, since unification glob-
ally propagates type information, it is often difficult to pinpoint the
source of type errors.

We think of the process of bidirectional typechecking as a bottom-
up construction of a typing derivation, either of e ↑ A or e ↓ A.
Given that we want to avoid unification and similar techniques, we
need each inference rule to be mode correct, terminology borrowed
from logic programming. That is, for any rule with conclusion

e ↑ A we must be able to determine A from the information in
the premises. Conversely, if we have a rule with premise e ↓ A, we
must be able to determine A before traversing e.

However, mode correctness by itself is only a consistency re-
quirement, not a design principle. We find such a principle in the
realm of logic, and transfer it to our setting. In natural deduction,
we distinguish introduction rules and elimination rules. An intro-
duction rule specifies how to infer a proposition from its compo-
nents; when read bottom-up, it decomposes the proposition. For
example, the introduction rule for the conjunction A ∗ B decom-
poses it to the goals of proving A and B. Therefore, a rule that
checks a term against A∗B using an introduction rule will be mode
correct.

Γ ⊢ e1 ↓ A1 Γ ⊢ e2 ↓ A2

Γ ⊢ (e1, e2) ↓ A1 ∗A2

(∗I)

Conversely, an elimination rule specifies how to use the fact that
a certain proposition holds; when read top-down, it decomposes a
proposition. For example, the two elimination rules for the con-
junction A ∗ B decompose it to A and B, respectively. Therefore,
a rule that infers a type for a term using an elimination rule will be
mode correct.

Γ ⊢ e ↑ A ∗ B

Γ ⊢ fst(e) ↑ A
(∗E1)

Γ ⊢ e ↑ A ∗ B

Γ ⊢ snd(e) ↑ B
(∗E2)

If we employ this design principle throughout, the constructors
(corresponding to the introduction rules) for the elements of a type
are checked against a given type, while the destructors (correspond-
ing to the elimination rules) for the elements of a type synthesize

their type. This leads to the following rules for functions, in which
rule (→I) checks against A → B and rule (→E) synthesizes the
type A → B of its subject e1.

Γ, x:A ⊢ e ↓ B

Γ ⊢ λx. e ↓ A → B
(→I)

Γ ⊢ e1 ↑ A→B Γ ⊢ e2 ↓ A

Γ ⊢ e1e2 ↑ B
(→E)

What do we do when the different judgment directions meet? If
we are trying to check e ↓ A then it is sufficient to synthesize a
type e ↑ A ′ and check that A ′ = A. More generally, in a system
with subtyping, it is sufficient to know that every value of type A ′

also has type A, that is, A ′ ≤ A.

Γ ⊢ e ↑ A ′ Γ ⊢ A ′ ≤ A

Γ ⊢ e ↓ A
(sub)

In the opposite direction, if we want to synthesize a type for e but
can only check e against a given type, then we do not have enough
information. In the realm of logic, such a step would correspond
to a proof that is not in normal form (and might not have the sub-
formula property). The straightforward solution would be to allow
source expressions (e : A) via a rule

Γ ⊢ e ↓ A

Γ ⊢ (e : A) ↑ A

Unfortunately, this is not general enough due to the presence of
intersections and universally and existentially quantified property
types. We discuss the issues and our solution in detail in Section 4.
For now, only normal terms will typecheck in our system. These
correspond exactly to normal proofs in natural deduction. We can
therefore already pinpoint where annotations will be required in
the full system: exactly where the term is not normal. This will be
the case where destructors are applied to constructors (that is, as
redexes) and at certain let forms.

In addition we permit datatypes δ with constructors c(e) and
corresponding case expressions case e of ms, where the match ex-
pressions ms have the form c1(x1) ⇒ e1| . . . cn(xn) ⇒ en. The
constants c are the constructors and case the destructor of elements

2



Types A,B,C ::= 1 | A → B | A ∗ B | δ

Terms e ::= x | u | λx. e | e1 e2 | fix u. e

| () | (e1, e2) | fst(e) | snd(e)

| c(e) | case e of ms

Matches ms ::= · | c(x) ⇒ e|ms

Values v ::= x | λx. e | () | (v1, v2)

Eval. contexts E ::= [ ] | E(e) | v(E)

| (E, e) | (v, E) | fst(E) | snd(E)

| c(E) | case E of ms

e ′ 7→R e ′′

E[e ′] 7→ E[e ′′]

(λx. e) v 7→R [v/x] e fst(v1, v2) 7→R v1
fix u. e 7→R [fix u. e / u] e snd(v1, v2) 7→R v2

case c(v) of . . . c(x) ⇒ e . . . 7→R [v/x] e

Figure 1: Syntax and semantics of the core language

of type δ. This means expressions c(e) are checked against a type,
while the subject of a case must synthesize its type. Assuming con-
structors have type A → δ, this yields the following rules.

c : A → δ Γ ⊢ e ↓ A

Γ ⊢ c(e) ↓ δ
(δI)

Γ ⊢ e ↑ δ Γ ⊢ ms ↓δ B

Γ ⊢ case e of ms ↓ B
(δE)

Γ ⊢ · ↓δ B

c : A → δ Γ, x:A ⊢ e ↓ B Γ ⊢ ms ↓δ B

Γ ⊢ c(x) ⇒ e |ms ↓δ B

We have elided here a syntactic condition that the left-hand sides
of a case expression with subject δ cover all constructors for a type
δ. Note that in the elimination rule (δE), we move from e ↑ δ to
x:A (which may be read x↑A), checking each branch against B.

In addition we have fixed points, which involve both directions:
to check fix u. e ↓ A, we assume u:A (which should be read u↑A)
and check e against A. Here we have a new form of variable u
that does not stand for a value, but for an arbitrary term, because
the reduction form for fixed point expressions reduces fix u. e to
[fix u. e / u] e (the substitution of fix u. e for u in e). We do
not exploit this generality here, but our design is clearly consistent
with common syntactic restriction on the formation of fixed points
in call-by-value languages.

The syntax and semantics of our core language is given in Figure
1. A capital E denotes an evaluation context—a term with a hole
[ ] representing the part of the term where a reduction may occur.
The semantics is a straightforward call-by-value small-step formu-
lation. [e ′/x] e denotes the substitution of e ′ for x in e.

Figure 2 shows the subtyping and typing rules for the initial lan-
guage. The subtyping rules are standard except for the presence
of the context Γ , used by the subtyping rules for index refinements
and index quantifiers, which we add in the next section. Variables
must appear in Γ , so (var) is a synthesis rule deriving x ↑ A. The
subsumption rule (sub) is an analysis rule deriving e ↓ B, but its
first premise is a synthesis rule e ↑ A. This means both A and B
are available when the subtyping judgment A ≤ B is invoked; no
complex constraint management is necessary. For introduction and
elimination rules, we follow the principles outlined above. Note
that in practice, in applications e1e2, the function e1 will usually
be a variable or, in a curried style, another application—since we
synthesize types for these, e1e2 itself needs no annotation.

Ours is not the only plausible formulation of bidirectionality.
Xi [26] used a contrasting style, in which several introduction forms
have synthesis rules as well as checking rules, for example:

Γ ⊢ e1 ↑ A1 Γ ⊢ e2 ↑ A2

Γ ⊢ (e1, e2) ↑ A1 ∗A2

Xi’s formulation reduces the number of annotations to some extent;
for example, in case (x, y) of . . . the pair (x, y) must synthesize,
but under our formulation (x, y) never synthesizes and so requires
an annotation. However, ours seems to be the simplest plausible
formulation and has a clear logical foundation in the notion of in-
troduction and elimination forms corresponding to constructors and
destructors for elements of a type under the Curry-Howard isomor-
phism. Consequently, a systematic extension should suffice to add
further language constructs. Furthermore, any term in normal form
will need no annotation except at the outermost level, so we should
need annotations in few places besides function definitions. In any
case, if a system based on our formulation turns out to be inconve-
nient, adding rules such as the one above should not be difficult.

3. PROPERTY TYPES
The types present in the language so far are tied to constructors

and destructors of terms. For example, the type A → B is realized
by constructor λx. e and destructor e1e2, related to the introduction
and elimination forms of → by a Curry-Howard correspondence.

In this section we are concerned with expressing richer proper-
ties of terms already present in the language. The only change to
the term language is to add typing annotations, discussed in Section
4; otherwise, only the language of types is enriched:

Types A,B,C ::= . . . | δ(i) | A ∧ B | ⊤ | Πa:γ.A

| A ∨ B | ⊥ | Σa:γ.A

The basic properties are data structure invariants, that is, proper-
ties of terms of the form c(e). All other properties are independent
of the term language and provide general mechanisms to combine
simpler properties into more complex ones, yielding a very general
type system. In this paper we do not formally distinguish between
ordinary types and property types, though such a distinction has
been useful in the study of refinement types [11, 10].

Our formulation of property types is fully explained and justi-
fied in [9] for a pure type assignment system; here, we focus on
the bidirectionality of the rules. We do not extend the operational
semantics: it is easiest to erase annotations before executing the
program. Hence, type safety follows directly from the result for the
type assignment system [9].

3.1 Intersections
A value v has type A ∧ B if it has type A and type B. Because

this is an introduction form, we proceed by checking v against A
and B. Conversely, if e has type A ∧ B then it must have both type
A and type B, proceeding in the direction of synthesis.

Γ ⊢ v ↓ A Γ ⊢ v ↓ B

Γ ⊢ v ↓ A ∧ B
(∧I)

Γ ⊢ e ↑ A ∧ B

Γ ⊢ e ↑ A
(∧E1)

Γ ⊢ e ↑ A ∧ B

Γ ⊢ e ↑ B
(∧E2)

While these rules combine properties of the same term (and are
therefore not an example of a Curry-Howard correspondence), the
erasure of the terms still yields the ordinary logical rules for con-
junction. Therefore, by the same reasoning as for ordinary types,
the directionality of the rules follows from logical principles.

Usually, the elimination rules are a consequence of the subtyp-
ing rules (via the (sub) typing rule), but once bidirectionality is
enforced, this is not the case and the rules must be taken as prim-
itive. Note that the introduction form (∧I) is restricted to values
because its general form for arbitrary expressions e is unsound in
the presence of mutable references in call-by-value languages [7].

3



Γ ⊢ B1 ≤ A1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 → A2 ≤ B1 → B2

(→)
Γ ⊢ 1 ≤ 1

(1)
Γ ⊢ A1 ≤ B1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 ∗A2 ≤ B1 ∗ B2

(∗)
Γ ⊢ δ ≤ δ

(δ)

Γ(x) = A

Γ ⊢ x ↑ A
(var)

Γ, x:A ⊢ e ↓ B

Γ ⊢ λx. e ↓ A → B
(→I)

Γ ⊢ e1 ↑ A → B Γ ⊢ e2 ↓ A

Γ ⊢ e1e2 ↑ B
(→E)

Γ ⊢ e ↑ A Γ ⊢ A ≤ B

Γ ⊢ e ↓ B
(sub)

Γ(u) = A

Γ ⊢ u ↑ A
(fixvar)

Γ, u:A ⊢ e ↓ A

Γ ⊢ fix u. e ↓ A
(fix)

Γ ⊢ e1 ↓ A1 Γ ⊢ e2 ↓ A2

Γ ⊢ (e1, e2) ↓ A1 ∗A2

(∗I)
Γ ⊢ e ↑ A ∗ B

Γ ⊢ fst(e) ↑ A
(∗E1)

Γ ⊢ e ↑ A ∗ B

Γ ⊢ snd(e) ↑ B
(∗E2)

Γ ⊢ () ↓ 1
(1I)

c : A → δ Γ ⊢ e ↓ A

Γ ⊢ c(e) ↓ δ
(δI)

Γ ⊢ e ↑ δ Γ ⊢ ms ↓δ B

Γ ⊢ case e of ms ↓ B
(δE)

Γ ⊢ · ↓δ B

c : A → δ Γ, x:A ⊢ e ↓ B Γ ⊢ ms ↓δ B

Γ ⊢ c(x) ⇒ e|ms ↓δ B

Figure 2: Subtyping and typing in the core language

The subtyping rules for our system are designed following the
well-known principle that A ≤ B only if any (closed) value of type
A also has type B. Thus, whenever we must check if an expression
e has type B we are safe if we can synthesize a type A and A ≤ B.
The subtyping rules then naturally decompose the structure of A
and B by so-called left and right rules that closely mirror the rules
of a sequent calculus. In fact, ignoring Γ for now, we can think
of subtyping as a single-antecedent, single-succedent form of the
sequent calculus.

Γ ⊢ A ≤ B1 Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∧ B2

(∧R)

Γ ⊢ A1 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
(∧L1)

Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
(∧L2)

We omit the common distributivity rule relating intersection and
function types, which is unsound with mutable references [7] and
does not directly fit into the logical pattern of our rules.

3.2 Greatest Type
A greatest type ⊤ can be thought of as the 0-ary form of inter-

section (∧). The rules are simply

Γ ⊢ v ↓ ⊤
(⊤I)

Γ ⊢ A ≤ ⊤
(⊤R)

There is no elimination or left subtyping rule for ⊤. Its typing
rule is a 0-ary version of (∧I), and the value restriction is also re-
quired [9].

3.3 Refined Datatypes
In our system, each datatype is refined as in [6, 8, 9] by an

atomic subtyping relation � over datasorts δ. Each datasort iden-
tifies a subset of values of the form c(v). For example, datasorts
true and false identify singleton subsets of values of the type bool.
We further refine datatypes by indices drawn from some constraint
domain, exactly as in [9] which closely followed Xi and Pfen-
ning [28], Xi [26, 27], and Dunfield [8]. The type δ(i) is the type
of values having datasort δ and index i.

To accommodate index refinements, we extend Γ to allow index

variables a, b and propositions P as well as program variables. Be-
cause the program variables are irrelevant to the index domain, we
can define a restriction function Γ that yields its argument Γ without
program variable typings (Figure 3). No variable may be declared
twice in Γ , but ordering is now significant because of dependencies.

Our formulation, like Xi’s, requires only a few properties of the
constraint domain: There must be a way to decide a consequence
relation Γ |= P whose interpretation is that given the index variable
typings and propositions in Γ , the proposition P must hold. Because

P ::= ⊥ | i
.
= j | . . .

Γ ::= · | Γ, x:A | Γ, a:γ | Γ, P

· = ·

Γ, x:A = Γ

Γ, a:γ = Γ , a:γ

Γ, P = Γ , P

Figure 3: Propositions P, contexts Γ , and the restriction func-

tion Γ

we have both universal and existential quantifiers over elements of
the constraint domain, the constraints must remain decidable in the
presence of quantifiers, though we have not encountered quantifier
alternations in our examples. There must also be a relation i

.
= j

denoting index equality, and a judgment Γ ⊢ i : γ whose interpre-
tation is that i has index sort γ in Γ . Note the stratification: terms
have types, indices have index sorts; terms and indices are distinct.
The proof of safety in [9] requires that |= be a consequence rela-
tion, that

.
= be an equivalence relation, that · 6|= ⊥, and that |= and

⊢ have expected substitution and weakening properties [8].
Each datatype has an associated atomic subtyping relation on

datasorts, and an associated sort whose indices refine the datatype.
In this paper, the only index sort is the natural numbers N with

.
=

and the arithmetic operations +, −, ∗. Then Γ |= P is decidable
provided the equalities in P are linear.

We add an infinitary definite type Πa:γ.A, introducing an index
variable a universally quantified over indices of sort γ. One can
also view Π as a dependent function type on indices (instead of
arbitrary terms).

Example. Assume we define a datatype of integer lists: a list is
either Nil() or Cons(h, t) for some integer h and list t. Refine
this type by a datasort odd if the list’s length is odd, by a datasort
even if it is even. We also refine the lists by their length, so Nil has
type 1 → even(0), and Cons has type (Πa:N . int ∗ even(a) →

odd(a + 1)) ∧ (Πa:N . int ∗ odd(a) → even(a + 1)). Writing
Nil() as Nil, the function

fix repeat. λx.

case x of Nil ⇒ Nil |Cons(h, t) ⇒ Cons(h,Cons(h, repeat(t)))

checks against Πa:N . list(a) → even(2 ∗ a).

The subtyping rule for datatypes checks the datasorts δ1, δ2 and
(separately) the indices i, j:

δ1 � δ2 Γ ⊢ i
.
= j

Γ ⊢ δ1(i) ≤ δ2(j)
(δ)

4



To maintain reflexivity and transitivity of subtyping, we require
� to be reflexive and transitive.

We assume the constructors c are typed by a judgment Γ ⊢ c :

A → δ(i) where A is any type and δ(i) is some refined type. Now,
however, the type A → δ(i) need not be unique; indeed, a con-
structor should often have more than one refined type. The rule for
constructor application is

Γ ⊢ c : A → δ(i) Γ ⊢ e ↓ A

Γ ⊢ c(e) ↓ δ(i)
(δI)

To derive Γ ⊢ case e of ms ↓ B, we check that all the matches in
ms check against B, under a context appropriate to each arm; this is
how propositions P arise. The context Γ may be contradictory (Γ |=

⊥) if the case arm can be shown to be unreachable by virtue of the
index refinements of the constructor type and the case subject. In
order to not typecheck unreachable arms, we have

Γ |= ⊥

Γ ⊢ e ↓ A
(contra)

We also do not check case arms that are unreachable by virtue
of the datasort refinements. For a complete accounting of how we
type case expressions and constructors, see [8].

The typing rules for Π are

Γ, a:γ ⊢ v ↓ A

Γ ⊢ v ↓ Πa:γ.A
(ΠI)

Γ ⊢ e ↑ Πa:γ.A Γ ⊢ i : γ

Γ ⊢ e ↑ [i/a]A
(ΠE)

By our general assumption, the index variable a added to the
context must be new, which can always be achieved via renaming.
The directionality of these rules follows our general scheme. As for
intersections, the introduction rule is restricted to values in order to
maintain type preservation in the presence of effects.

One potentially subtle issue with the introduction rule is that
v cannot reference a in an internal type annotation, because that
would violate α-conversion: one could not safely rename a to b in
Πa:γ.A, which is the natural scope of a. We describe our solution,
contextual typing annotations, in Section 4.

The subtyping rules for Π are

Γ ⊢ [i/a]A ≤ B Γ ⊢ i : γ

Γ ⊢ Πa:γ.A ≤ B
(ΠL)

Γ, b:γ ⊢ A ≤ B

Γ ⊢ A ≤ Πb:γ. B
(ΠR)

The left rule allows one to instantiate a quantified index variable
a to an index i of appropriate sort. The right rule states that if
A ≤ B for an arbitrary b:γ then A is also a subtype of Πb:γ. B. Of
course, b cannot occur free in A.

As written, in (ΠL) and (ΠE) we must guess the index i; in prac-
tice, we would plug in a new existentially quantified index vari-
able and continue, using constraint solving to determine i. Thus,
even if we had no existential types Σ in the system, the solver for
the constraint domain would have to allow existentially quantified
variables.

3.4 Indefinite Property Types
We now have a system with definite types ∧, ⊤, Π. The typing

and subtyping rules are both orthogonal and internally regular: no
rule mentions both ⊤ and ∧, (⊤I) is a 0-ary version of (∧I), and
so on. However, one cannot express the types of functions with
indeterminate result type. A standard example is the filter function
on lists of integers: filter f l returns the elements of l for which f
returns true. It has the ordinary type filter : (int→bool) → list →

list. Indexing lists by their length, the refined type should look like

filter : Πn:N . (int→bool) → list(n) → list( )

To fill in the blank, we add dependent sums Σa:γ.A, quantifying
existentially over index variables, as in [28, 26]. Then we can ex-

press the fact that filter returns a list of some indefinite length m as
follows1:

filter : Πn:N . (int→bool) → list(n) → (Σm:N . list(m))

For similar reasons, we also occasionally would like the union types
and the empty type, which should also be considered indefinite. We
discuss unions first.

On values, the binary indefinite type is simply a union in the
ordinary sense: if v : A ∨ B then either v : A or v : B. The
introduction rules directly express the simple logical interpretation,
again using checking for the introduction form.

Γ ⊢ e ↓ A

Γ ⊢ e ↓ A ∨ B
(∨I1)

Γ ⊢ e ↓ B

Γ ⊢ e ↓ A ∨ B
(∨I2)

No restriction to values is needed for the introductions, but, du-
ally to intersections, the elimination must be restricted. A sound
formulation of the elimination rule in a type assignment form [9]
without a syntactic marker2 requires an evaluation context E around
the subterm of union type.

Γ ⊢ e ′ : A ∨ B
Γ, x:A ⊢ E[x] : C
Γ, y:B ⊢ E[y] : C

Γ ⊢ E[e ′] : C

This is where the “third direction” is necessary. We no longer
move from terms to their immediate subterms, but when typecheck-
ing e we may have to decompose it into an evaluation context E and
subterm e ′. Using the analysis and synthesis judgments we have

Γ ⊢ e ′ ↑ A ∨ B
Γ, x:A ⊢ E[x] ↓ C
Γ, y:B ⊢ E[y] ↓ C

Γ ⊢ E[e ′] ↓ C
(∨E)

Here, if we can synthesize a union type for e ′—which is in eval-
uation position in E[e ′]—and check E[x] and E[y] against C, as-
suming that x and y have type A and type B respectively, we can
conclude that E[e ′] checks against C. Note that the assumptions
x:A and y:B can be read as x↑A and y↑B so we do indeed transi-
tion from ↑ A ∨ B to ↑ A and ↑ B. While typechecking still
somehow follows the syntax, there may be many choices of E and
e ′, leading to excessive nondeterminism.

The subtyping rules are standard and dual to the intersection
rules.

Γ ⊢ A1 ≤ B Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∨ A2 ≤ B
(∨L)

Γ ⊢ A ≤ B1

Γ ⊢ A ≤ B1 ∨ B2

(∨R1)
Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∨ B2

(∨R2)

The 0-ary indefinite type is the empty or void type ⊥; it has no
values and therefore no introduction rules. For an elimination rule
(⊥E), we proceed by analogy with (∨E):

Γ ⊢ e ′ ↑ ⊥

Γ ⊢ E[e ′] ↓ C
(⊥E)

As before, the expression must be an evaluation context E with e ′

in evaluation position. For ⊤ we had one right subtyping rule; for
⊥, following the principle of duality, we have one left rule:

1The additional constraint m ≤ n could be expressed by a subset
sort [27, 26].
2Pierce [17] used an explicit marker case e ′ of x ⇒ e as the union
elimination form. This is technically straightforward but a heavy
burden on the programmer, particularly as markers would also be
needed to eliminate Σ types, which are especially common in code
without refinements; legacy code would have to be extensively
“marked” to make it typecheck.

5



Γ ⊢ ⊥ ≤ A
(⊥L)

For existential dependent types, the introduction rule presents no
difficulties, and proceeds using the analysis judgment.

Γ ⊢ e ↓ [i/a]A Γ ⊢ i : γ

Γ ⊢ e ↓ Σa:γ.A
(ΣI)

For the elimination rule, we follow (∨E) and (⊥E):

Γ ⊢ e ′ ↑ Σa:γ.A Γ, a:γ, x:A ⊢ E[x] ↓ C

Γ ⊢ E[e ′] ↓ C
(ΣE)

Again, there is a potentially subtle issue: the index variable a
must be new and cannot be mentioned in an annotation in E.

The subtyping for Σ is dual to that of Π.

Γ, a:γ ⊢ A ≤ B

Γ ⊢ Σa:γ.A ≤ B
(ΣL)

Γ ⊢ A ≤ [i/b]B Γ ⊢ i : γ

Γ ⊢ A ≤ Σb:γ. B
(ΣR)

3.5 Properties of Subtyping
Our subtyping rules are the same as in [9] except for the addition

of products A ∗ B. Since the premises are smaller than the con-
clusion in each rule, and we assume decidability for the constraint
domain, we immediately obtain that Γ ⊢ A ≤ B is decidable. Re-
flexivity and transitivity are admissible, which follows quite eas-
ily [9].

3.6 The Tridirectional Rule
Considering ⊥E to be the 0-ary version of the ∨E for the binary

indefinite type, what is the unary version? It is:

Γ ⊢ e ′ ↑ A Γ, x:A ⊢ E[x] ↓ C

Γ ⊢ E[e ′] ↓ C
(direct)

One might expect this rule to be admissible. However, due to the
restriction to evaluation contexts, it is not. As a simple example,
consider

append : Πa:N . list(a) → Πb:N . list(b) → list(a + b)

filterpos : Πn:N . list(n) → Σm:N . list(m)

⊢ filterpos [. . . ] ↑ Σm:N . list(m)

Goal: 6⊢ append [42] (filterpos [. . . ]) ↓ Σk:N . list(k)

where [42] is shorthand for Cons(42,Nil) and [...] is some literal list.
Here we cannot derive the goal, because we cannot introduce the k
on the type checked against. To do so, we would need to introduce
the index variable m representing the length of the list returned by
filterpos [. . . ], and use m + 1 for k. But filterpos [. . . ] is not in
evaluation position, because append [42] will need to be evaluated
first. However, append [42] synthesizes only type Πb:N . list(b) →
list(1+b), so we are stuck. However, using rule (direct) we reduce

append [42] (filterpos [. . . ]) ↓ Σk:N . list(k)

to

x : Πb:N. list(b)→list(1+b) ⊢ x (filterpos [. . . ]) ↓ Σk:N. list(k)

Since x is a value, (filterpos [. . .]) is in evaluation position. Apply-
ing the existential elimination rule, we need to derive

x:Πb:N. list(b)→list(1+b),m:N, y:list(m) ⊢ x y ↓ Σk:N. list(k)

Now we can complete the derivation with (ΣI), using 1 +m for k
and several straightforward steps.

4. CONTEXTUAL TYPING ANNOTATIONS
Our tridirectional system so far has the property that only terms

in normal form have types. For example, (λx. x)() neither synthe-
sizes nor checks against a type. This is because the function part of

an application must synthesize a type, but there is no rule for λx. e
to synthesize a type.

But annotations are not as straightforward as they might seem.
In our setting, two issues arise: checking against intersections, and
index variable scoping.

4.1 Checking Against Intersections
Consider the following function, which conses 42 to its argu-

ment.

cons42 = (λx. (λy.Cons(42, x))()) : (odd → even) ∧ (even → odd)

This does not typecheck: λy.Cons(42, x) needs an annotation. Ob-
serve that by rule (∧I), cons42 will be checked twice: first against
odd → even, then against even → odd. Hence, we cannot write
(λy.Cons(42, x)) : (1 → even)—it is correct only when checking
cons42 against odd → even. Moreover, we cannot write

(λy.Cons(42, x)) : (1 → even) ∧ (1 → odd)

We need to use 1 → even while checking cons42 against odd →

even, and 1 → odd while checking cons42 against even → odd.
Exasperatingly, union types are no help here: (λy.Cons(42, x)) :

(1 → even) ∨ (1 → odd) is a value of type 1 → even or of type
1 → odd, but we do not know which; following (∨E), we must
suppose it has type 1 → even and then check its application to 1,
and then suppose it has type 1 → odd and check its application
to 1. Only one of these checks will succeed—a different one, de-
pending on which conjunct of (odd → even) ∧ (even → odd) we
happen to be checking cons42 against—but according to (∨E) both
need to succeed.

Pierce [16] and Reynolds [19] addressed this problem by allow-
ing a function to be annotated with a list of alternative types; the
typechecker chooses the right one. Davies followed this approach
in his datasort refinement checker, allowing a term to be annotated
with (e : A,B, . . . ). In that notation, the above function could be
written as

cons42 = (λx. ((λy.Cons(42, x)) : 1 → even, 1 → odd)())

: (odd → even) ∧ (even → odd)

Now the typechecker can choose 1 → even when checking against
1 → odd. This notation is easy to use and effective but intro-
duces additional nondeterminism, since the typechecker must guess
which type to use.

4.2 Index Variable Scoping
Some functions need type annotations inside their bodies, such

as this (contorted) identity function on lists.

id = λx. (λz. x)() : Πa:N . list(a) → list(a)

In a bidirectional system, the function part of an application must
synthesize a type, but we have no rule to synthesize a type for a λ-
abstraction. So we need an annotation on (λz. x). We need to show
that the whole application checks against list(a), so we might try

λz. x : 1 → list(a)

But this would violate variable scoping. α-convertibility dictates
that Πa:N . list(a) → list(a) and Πb:N . list(b) → list(b) must be
indistinguishable which would be violated if we permitted

λx. ((λz. x) : 1 → list(a))() ↓ Πa:N . list(a) → list(a)

but not

λx. ((λz. x) : 1 → list(a))() ↓ Πb:N . list(b) → list(b)

6



Xi already noticed this problem and introduced a term-level ab-
straction over index variables, Λa.e, to mirror universal index quan-
tification Πa:γ.A [26]. But this violates the basic principle of
property types that the term should remain unchanged, and fails
in the presence of intersections. For example, we would expect the
reverse function on lists, rev, to satisfy

rev : (Πa:N . list(a) → list(a))

∧ ((Σb:N . list(b)) → Σc:N . list(c))

but the first component of the intersection would demand a term-
level index abstraction, while the second would not tolerate one.

4.3 Contextual Subtyping
We address these two problems by a method that extends and

improves the notation of comma-separated alternatives. The essen-
tial idea is to allow a context to appear in the annotation along with
each type:

e ::= . . . | (e : Γ1 ⊢ A1, . . . , Γn ⊢ An)

where each context Γk declares the types of some, but not necessar-
ily all, free variables in e.

In the first approximation we can think of such an annotated term
as follows: if Γk ⊢ e ↓ Ak then Γ ⊢ (e : Γ1 ⊢ A1, . . . , Γn ⊢ An) ↑

Ak if the current assumptions in Γ validate the assumptions in Γk.
For example, the second judgment below is not derivable, since
x:odd does not validate x:even (because odd 6≤ even).

x:even ⊢ ((λy.Cons(42, x)) : x:even ⊢ 1 → odd,
x:odd ⊢ 1 → even) ↑ 1 → odd

x:odd 6⊢ ((λy.Cons(42, x)) : x:even ⊢ 1 → odd,
x:odd ⊢ 1 → even) ↑ 1 → odd

In practice, this should significantly reduce the nondeterminism
associated with type annotations in the presence of intersection.
However, we still need to generalize the rule in order to correctly
handle index variable scoping.

Returning to our earlier example, we would like to find an anno-
tation As allowing us to derive

⊢ λx. ((λz. x) : As)() ↓ Πa:N . list(a) → list(a)

The idea is to use a locally declared index variable (here, b)

λx. ((λz. x) : (b:N , x:list(b) ⊢ 1 → list(b)))

to make the typing annotation self-contained. Now, when we check
if the current assumptions for x validate local assumption for x, we
are permitted to instantiate b to any index object i. In this exam-
ple, we could substitute a for b. As a result, we end up checking
(λz. x) ↓ 1 → list(a), even though the annotation does not men-
tion a. Note that in an annotation e : (Γ0 ⊢ A0), As, all index
variables declared in Γ0 are considered bound and can be renamed
consistently in Γ0 and A0. In contrast, the free term variables in Γ0
may actually occur in e and so cannot be renamed freely.

These considerations lead to a contextual subtyping relation . :

(Γ0 ⊢ A0) . (Γ ⊢ A)

which is contravariant in the contexts Γ0 and Γ . It would be covari-
ant in A0 and A, except that in the way it is invoked, Γ0, A0, and
Γ are known and A is generated as an instance of A0. This should
become more clear when we consider its use in the new typing rule

(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ⊢ e ↓ A

Γ ⊢ (e : (Γ0 ⊢ A0), As) ↑ A
(ctx-anno)

Typings As ::= Γ ⊢A | Γ ⊢A, As

Terms e ::= . . . | (e : As)

Values v ::= . . . | (v : As)

Eval. contexts E ::= . . . | (E : As)

Figure 4: Language additions for contextual typing annotations

(· ⊢ A) . (Γ ⊢ A)
(.-empty)

Γ ⊢ i : γ0 ([i/a] Γ0 ⊢ [i/a]A0) . (Γ ⊢ A)

(a:γ0, Γ0 ⊢ A0) . (Γ ⊢ A)
(.-ivar)

Γ |= P (Γ0 ⊢ A0) . (Γ ⊢ A)

(P, Γ0 ⊢ A0) . (Γ ⊢ A)
(.-prop)

Γ ⊢ Γ(x) ≤ B0 (Γ0 ⊢ A0) . (Γ ⊢ A)

(x:B0, Γ0 ⊢ A0) . (Γ ⊢ A)
(.-pvar)

Figure 5: Contextual subtyping

where we regard the annotations as unordered (so Γ0 ⊢ A0 could
occur anywhere in the list). In the bidirectional style, Γ , e, Γ0, A0

and As are known when we try this rule. While finding a derivation
of (Γ0 ⊢ A0) . (Γ ⊢ A) we generate A, which is the synthe-
sized type of the original annotated expression e, if in fact e checks
against A. It is also possible that (Γ0 ⊢ A0) . (Γ ⊢ A) fails to
have a derivation (when Γ0 and Γ have incompatible declarations
for the term variables occurring in them), in which case we need to
try another annotation (Γk ⊢ Ak).

The formal rules for contextual subtyping are given in Figure 5.
Besides the considerations above, we also must make sure that any
possible assumptions P about the index variables in Γ0 are indeed
entailed by the current context, after any possible substitution has
been applied (this is why we traverse Γ0 from left to right).

While the examples above are artificial, similar situations arise
in ordinary programs in the common situation when local function
definitions reference free variables. Two small examples of this
kind are given in Figure 6 presented in the style of ML; we have
omitted the evident constructor types and, following the tradition of
implementations such as Davies’, written typing annotations inside
bracketed comments.

The essence of the completeness result we prove in Section 4.5
is that annotations can be added to any term that is well typed
in the type assignment system to yield a well typed term in the
tridirectional system. For this result to hold, . must be reflexive,
(Γ ⊢ A) . (Γ ⊢ A). Furthermore, in a judgment

Γ ⊢ (e : (Γ1 ⊢ A1, . . . , Γn ⊢ An)) ↑ A

we must be able to consistently rename index variables in Γ , all
Γk, and e. This different treatment of index variables and term
variables arises from the fact that index variables are associated
with property types and so do not appear in expressions, only in
types.

Reflexivity (together with proper α-conversion) is sufficient for
completeness: in the proof of completeness, where we see Γ ⊢ e :

A we can simply add an annotation (Γ ⊢ A). But it would be
absurd to make programmers type in entire contexts—not only is
the length impractical, but whenever a declaration is added every
contextual annotation in its scope would have to be changed!

Reflexivity of . follows easily from the following lemma.

LEMMA 1. (Γ2 ⊢ A) . (Γ1, Γ2 ⊢ A).

7



true� bool, false� bool even� nat, odd� nat

evenlist� list, oddlist� list, emptylist� evenlist

eq : (even ∗ odd → false)

∧ (odd ∗ even → false)

∧ (nat ∗ nat → bool)

(∗[ member : (even ∗ oddlist → false)

∧ (odd ∗ evenlist → false)

∧ (nat ∗ list → bool) ]∗)

fun member (x, xs) =

(∗[ mem : x:even ⊢ (evenlist → bool) ∧ (oddlist → false),

x:odd ⊢ (evenlist → false) ∧ (oddlist → bool),

x:nat ⊢ natlist → bool ]∗)

let fun mem xs =

case xs of Nil ⇒ False

| Cons(y, ys) ⇒ eq(x, y) orelse mem ys

in mem xs end

(∗[ append : Πa:N . Πb:N . list(a) ∗ list(b) → list(a + b) ]∗)

fun append (xs, ys) =

(∗[ app : c:N , ys:list(c) ⊢ Πa:N . list(a) → list(a + c) ]∗)

let fun app xs = case xs of Nil ⇒ ys

| Cons(x, xs) ⇒ Cons(x, app xs)

in app xs end

Figure 6: Example of contextual annotations

PROOF. By induction on Γ2.

COROLLARY 2 (REFLEXIVITY). (Γ ⊢ A) . (Γ ⊢ A).

4.4 Soundness
Let |e| denote the erasure of all typing annotations from e.

THEOREM 3 (SOUNDNESS, TRIDIRECTIONAL). If Γ ⊢ e ↑

A or Γ ⊢ e ↓ A then Γ ⊢ |e| : A.

PROOF. By straightforward induction on the derivation.

4.5 Completeness
We cannot just take a derivation Γ ⊢ e : A in the type assignment

system and obtain a derivation Γ ⊢ e ↑ A in the tridirectional
system. For example, ⊢ λx. x : A → A for any type A, but in the
tridirectional system λx. x does not synthesize a type. However, if
we add a typing annotation, we can derive

⊢ (λx. x : (⊢ A → A)) ↑ A → A

Clearly, the completeness result must be along the lines of “If Γ ⊢
e : A, then there is an annotated version e ′ of e such that Γ ⊢
e ′ ↑ A.” To formulate this result (Corollary 12, a special case of
Theorem 11) we need a few definitions and lemmas.

DEFINITION 4. A term is in synthesizing form if it has any of

the forms x, e1e2, u, (e : As), fst(e), snd(e).

DEFINITION 5. e ′ extends a term e, written e ′ ⊒ e iff e ′ is e
with zero or more additional typing annotations and e ′ contains no

type annotations on the roots of terms in synthesizing form.

DEFINITION 6. e ′ lightly extends a term e, written e ′ ⊒ℓ e iff

e ′ is e with zero or more typing annotations added to lists of typing

annotations already present in e. That is, we can replace (e : As)
with (e : As,A ′), but cannot replace e with (e : A ′).

PROPOSITION 7. ⊒ and ⊒ℓ are reflexive and transitive.

PROOF. Obvious from the definitions.

LEMMA 8. If e value and e ′ ⊒ e then e ′ value.

PROOF. By a straightforward induction on e ′ (in the base case,
making use of (v : As) value).

LEMMA 9 (LIGHT EXTENSION). If e ′ ⊒ℓ e then (1) Γ ⊢ e ↑

A implies Γ ⊢ e ′ ↑ A, (2) Γ ⊢ e ↓ A implies Γ ⊢ e ′ ↓ A.

PROOF. By induction on the derivation of the typing judgment.
All cases are straightforward: either e and e ′ must be identical (for
instance, for (1I)), or we apply the IH to all premises, which leads
directly to the result.

Recall that the rule (∧I) led to the need for more than one typing
annotation on a term. It should be no surprise, then, that the (∧I)
case in the completeness proof is interesting. Applying the induc-
tion hypothesis to each premise v : A, v : B yields two possibly
different annotated terms v ′

A and v ′

B such that v ′

A ↓ A and v ′

B ↓ B.
But given a notion of monotonicity under annotation, we can in-
corporate both annotations into a single v ′ such that v ′ ↓ A and
v ′ ↓ B. However, the obvious formulation of monotonicity

If e ↓ A and e ′ ⊒ e then e ′ ↓ A

does not hold: given a list of annotations As the type system must
use at least one of them—it cannot ignore them all. Thus ⊢ (() :

(⊢ ⊤)) ↓ 1 is not derivable, even though ⊢ () ↓ 1 is derivable and
(() : (⊢ ⊤)) ⊒ (). However, further annotating (() : (⊢ ⊤)) to
(() : (⊢ ⊤), (⊢ 1)) yields a term that checks against both ⊤ and 1.
Note that this further annotation was light—we added a typing to
an existing annotation. This observation leads to Lemma 10.

LEMMA 10 (MONOTONICITY UNDER ANNOTATION).

(1) If Γ ⊢ e ↓ A and e ′ ⊒ e then there exists e ′′ ⊒ℓ e ′ such that

Γ ⊢ e ′′ ↓ A.

(2) If Γ ⊢ e ↑ A and e ′ ⊒ e then there exists e ′′ ⊒ℓ e ′ such that

Γ ⊢ e ′′ ↑ A.

PROOF. By induction on the typing derivation.

THEOREM 11 (COMPLETENESS, TRIDIRECTIONAL). If Γ ⊢
e : A and e ′ ⊒ e then

(i) there exists e ′′

1 such that e ′′

1 ⊒ e ′ and Γ ⊢ e ′′

1 ↓ A

(ii) there exists e ′′

2 such that e ′′

2 ⊒ e ′ and Γ ⊢ e ′′

2 ↑ A

PROOF. By induction on the derivation of Γ ⊢ e : A.

COROLLARY 12. If Γ ⊢ e : A then there exists e ′ ⊒ e such

that Γ ⊢ e ′ ↓ A and there exists e ′′ ⊒ e such that Γ ⊢ e ′′ ↑ A.

5. THE LEFT TRIDIRECTIONAL SYSTEM
In the simple tridirectional system, the contextual rules are highly

nondeterministic. Not only must we choose which contextual rule
to apply, but each rule can be applied repeatedly with the same
context E; for (direct), which does not even break down the type of
e ′, this repeated application is quite pointless. The system in this

8



Subtyping Γ ⊢ A ≤ B

Contextual subtyping (Γ0 ⊢A0) . (Γ ⊢A)

Constraint satisfaction Γ |= P

Index expression sorting Γ ⊢ i : γ

Data constructor typing Γ ⊢ c : A → δ(i)

Simple tridirectional checking Γ ⊢ e ↓ A

Simple tridirectional synthesis Γ ⊢ e ↑ A

Left tridirectional checking Γ ;∆ ⊢ e ↓L A

Left tridirectional synthesis Γ ;∆ ⊢ e ↑L A

∆ appear linearly in e ∆  e

—and in evaluation position in e ∆ � e

Figure 7: Judgment forms appearing in the paper

Rules of the simple tridirectional system absent in
the left tridirectional system:

Rules new or substantially altered in the left tri-
directional system:

Γ ; x:A ⊢ x ↑L A
(var)

Γ ⊢ e ′ ↑ A Γ, x:A ⊢ E[x] ↓ C

Γ ⊢ E[e ′] ↓ C
(direct)

e ′ not a linear var

Γ ;∆1 ⊢ e ′ ↑L A Γ ;∆2, x:A ⊢ E[x] ↓L C

Γ ;∆1, ∆2 ⊢ E[e ′] ↓L C
(directL)

Γ ⊢ e ′ ↑ ⊥

Γ ⊢ E[e ′] ↓ C
(⊥E) ∆, x:⊥  e

Γ ;∆, x:⊥ ⊢ e ↓L C
(⊥L)

Γ ⊢ e ′ ↑ A ∨ B
Γ, x:A ⊢ E[x] ↓ C
Γ, y:B ⊢ E[y] ↓ C

Γ ⊢ E[e ′] ↓ C
(∨E)

Γ ;∆, x:A ⊢ e ↓L C Γ ;∆, x:B ⊢ e ↓L C

Γ ;∆, x:A ∨ B ⊢ e ↓L C
(∨L)

Γ ⊢ e ′ ↑ Σa:γ.A Γ, a:γ, x:A ⊢ E[x] ↓ C

Γ ⊢ E[e ′] ↓ C
(ΣE)

Γ, a:γ;∆, x:A ⊢ e ↓L C

Γ ;∆, x:Σa:γ.A ⊢ e ↓L C
(ΣL)

Γ ;∆, x:A ⊢ e ↓L C

Γ ;∆, x:A ∧ B ⊢ e ↓L C
(∧L1)

Γ ;∆, x:B ⊢ e ↓L C

Γ ;∆, x:A ∧ B ⊢ e ↓L C
(∧L2)

Γ ⊢ i : γ Γ ;∆, x:[i/a]A ⊢ e ↓L C

Γ ;∆, x:Πa:γ.A ⊢ e ↓L C
(ΠL)

Rules of the left tridirectional system identical to the simple tridirectional system, except for the linear contexts ∆:

Γ(x) = A

Γ ; · ⊢ x ↑ A
(var)

Γ, x:A; · ⊢ e ↓ B

Γ ; · ⊢ λx. e ↓ A → B
(→I)

Γ ;∆1 ⊢ e1 ↑ A → B Γ ;∆2 ⊢ e2 ↓ A

Γ ;∆1, ∆2 ⊢ e1e2 ↑ B
(→E)

Γ ;∆ ⊢ e ↑ A Γ ⊢ A ≤ B

Γ ;∆ ⊢ e ↓ B
(sub)

Γ(u) = A

Γ ; · ⊢ u ↑ A
(fixvar)

Γ, u:A; · ⊢ e ↓ A

Γ ; · ⊢ fix u. e ↓ A
(fix)

Γ ; · ⊢ () ↓ 1
(1I)

Γ ;∆1 ⊢ e1 ↓ A1 Γ ;∆2 ⊢ e2 ↓ A2

Γ ;∆1, ∆2 ⊢ (e1, e2) ↓ A1 ∗A2

(∗I)
Γ ;∆ ⊢ e ↑ A ∗ B

Γ ;∆ ⊢ fst(e) ↑ A
(∗E1)

Γ ;∆ ⊢ e ↑ A ∗ B

Γ ;∆ ⊢ snd(e) ↑ B
(∗E2)

Γ ⊢ c : A → δ2(i) Γ ⊢ δ2(i) ≤ δ1(j) Γ ;∆ ⊢ e ↓ A

Γ ;∆ ⊢ c(e) ↓ δ1(j)
(δI)

Γ |= ⊥ ∆  e

Γ ;∆ ⊢ e ↓ A
(contra)

Γ ;∆ ⊢ e ↑ δ(i) Γ ; · ⊢ ms ↓δ(i) B

Γ ;∆ ⊢ case e of ms ↓ B
(δE)

∆  v
Γ ;∆ ⊢ v ↓ ⊤

(⊤I)
Γ ;∆ ⊢ v ↓ A Γ ;∆ ⊢ v ↓ B

Γ ;∆ ⊢ v ↓ A ∧ B
(∧I)

Γ ;∆ ⊢ e ↑ A ∧ B

Γ ;∆ ⊢ e ↑ A
(∧E1)

Γ ;∆ ⊢ e ↑ A ∧ B

Γ ;∆ ⊢ e ↑ B
(∧E2)

Γ, a:γ;∆ ⊢ v ↓ A

Γ ;∆ ⊢ v ↓ Πa:γ.A
(ΠI)

Γ ;∆ ⊢ e ↑ Πa:γ.A Γ ⊢ i : γ

Γ ;∆ ⊢ e ↑ [i/a]A
(ΠE)

Γ ;∆ ⊢ e ↓ [i/a]A Γ ⊢ i : γ

Γ ;∆ ⊢ e ↓ Σa:γ.A
(ΣI)

Γ ;∆ ⊢ e ↓ A

Γ ;∆ ⊢ e ↓ A ∨ B
(∨I1)

Γ ;∆ ⊢ e ↓ B

Γ ;∆ ⊢ e ↓ A ∨ B
(∨I2)

(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ⊢ e ↓ A

Γ ⊢ (e : (Γ0 ⊢ A0), As) ↑ A
(ctx-anno)

Figure 8: The left tridirectional system, with the part of the simple tridirectional system (upper left corner) from which it substan-

tially differs. The figure also summarizes the simple tridirectional system: The complete typing rules for the simple tridirectional

system can be obtained by removing the second context ∆, including premises of the form ∆  e, from the lower rules, along with

the rules in the upper left corner. Hence the subscripts ↑L, ↓L are elided.

9



Γ ⊢ |e| : A

Type

assignment

system [9]

Thm. 11

❄

✻
Thm. 3

Γ ⊢ e ↑ A
Γ ⊢ e ↓ A

Simple

tridirectional

system

Thm. 20

❄

✻
Thm. 18

Γ ;∆ ⊢ e ↑L A
Γ ;∆ ⊢ e ↓L A

Left

tridirectional

system

Figure 9: Connections between our type systems

section has only one contextual rule and disallows repeated appli-
cation. Inspired by the sequent calculus formulation of Barbanera
et al. [2], it replaces the contextual rules with one contextual rule
(directL), closely corresponding to (direct), and several left rules,
shown in the upper right hand corner of Figure 8. In combination,
these rules subsume the contextual rules of the simple tridirectional
system.

The typing judgments in the left tridirectional system are

Γ ;∆ ⊢ e ↑L A Γ ;∆ ⊢ e ↓L A

where ∆ is a linear context whose domain is a new syntactic cate-
gory, the linear variables x, y and so forth. These linear variables
correspond to the variables introduced in evaluation position in the
(direct) rule, and appear exactly once in the term e, in evaluation
position. We consider these linear variables to be values, like ordi-
nary variables.

The rule (directL) is the only rule that adds to the linear context,
and is the true source of linearity: x appears exactly once in evalu-
ation position in E[x]. It requires that the subterm e ′ being brought
out cannot itself be a linear variable, so one cannot bring out a term
more than once, unlike with (direct).

To maintain linearity, the linear context is split among subterms.
For example, in (∗I) (Figure 8), the context ∆ = ∆1, ∆2 is split
between e1 and e2. To maintain the property that linear variables
appear in evaluation position, in rules such as (→I) that type terms
that cannot contain a variable, the linear context is empty.

After some preliminary definitions and lemmas, we prove that
this new left tridirectional system is sound and complete with re-
spect to the simple tridirectional system from Section 3. (See also
Figure 9).

DEFINITION 13. Let FLV(e) denote the set of linear variables

appearing free in e. Furthermore, let ∆  e if and only if (1) for

every x ∈ dom(∆), x appears exactly once in e, and (2) FLV(e) ⊆
dom(∆). (Similarly define FLV(ms) and ∆  ms.)

PROPOSITION 14 (LINEARITY). If Γ ;∆ ⊢ e ↑L C or Γ ;∆ ⊢
e ↓L C then ∆  e. Similarly, if Γ ;∆ ⊢ ms ↓δ(i) C then ∆  ms.

PROOF. By induction on the derivation. For (contra), (⊤I),
(⊥L), use the appropriate premise.

DEFINITION 15. Let ∆ � e if and only if (1) for every x ∈

dom(∆), there exists an E such that e = E[x] and x /∈ FLV(E), and

(2) FLV(e) ⊆ dom(∆). (It is clear that ∆ � e implies ∆  e.)

LEMMA 16. If D derives Γ ;∆ ⊢ e ↑L C or Γ ;∆ ⊢ e ↓L C by

a rule R and ∆ � e, then for each premise Γ ′;∆ ′ ⊢ e ′ ↑L C ′ or

Γ ′;∆ ′ ⊢ e ′ ↓L C ′ of R, it is the case that ∆ ′ � e ′.

PROOF. Straightforward.

5.1 Soundness

DEFINITION 17. A renaming ρ is a variable-for-variable sub-

stitution from one set of variables (dom(ρ)) to another, disjoint set.

When a renaming is applied to a term, [ρ]e, it behaves as a substi-
tution, and can substitute the same variable for multiple variables.
Unlike a substitution, however, it can also be applied to contexts.
A renaming from linear variables to ordinary program variables,
ρ = x/x, . . . , may be applied to a linear context ∆: [ρ]∆ yields
an ordinary context Γ by renaming all variables in dom(∆). In
the other direction, a renaming ρ from ordinary program variables
to linear variables may be applied to an ordinary context Γ : [ρ]Γ
yields a zoned context Γ ′;∆, where dom(Γ ′) = dom(Γ) − dom(ρ)
and dom(∆) is the image of ρ on Γ restricted to dom(ρ).

THEOREM 18 (SOUNDNESS, LEFT RULE SYSTEM). If ρ re-

names linear variables to ordinary program variables and Γ ;∆ ⊢
e ↑L C (resp. Γ ;∆ ⊢ e ↓L C) and ∆ � e and dom(ρ) ⊇ dom(∆),
then Γ, [ρ]∆ ⊢ [ρ]e ↑ C (resp. Γ, [ρ]∆ ⊢ [ρ]e ↓ C).

The condition ∆ � e is trivially satisfied if ∆ = · and e contains
no linear variables, which is precisely the situation for the whole
program.

PROOF. By induction on the typing derivation. We use Lemma
16 to satisfy the linearity condition whenever we apply the IH.
Most cases are completely straightforward, except for the rules not
present in the simple tridirectional system.

For (var), it is given that dom(ρ) ⊇ dom(∆), so we can apply
(var). For (directL), use the IH on the first premise, let x be new,
and use the IH on the second premise with the renaming ρ, x/x; ap-
ply properties of substitution and weakening to yield derivations to
which (direct) can be applied. For the left rules, use a different re-
naming ρ, x ′/x where x ′ is new for each premise, then apply the IH
to yield derivation(s) typing [ρ, x ′/x] E[x] (by ∆ � e, e = E[x]).
Use (var) to obtain a typing of [ρ]x. Finally, apply the correspond-
ing tridirectional rule, such as (∨E) for the (∨L) case.

5.2 Completeness
We now show completeness: If a term can be typed in the sim-

ple tridirectional system, it can be typed in the left tridirectional
system. First, a small lemma:

LEMMA 19. If Γ ; x:A ⊢ x ↑L B and Γ ;∆, x:B ⊢ e ↓L C then

Γ ;∆, x:A ⊢ e ↓L C.

PROOF. By induction on the first derivation.

THEOREM 20 (COMPLETENESS, LEFT RULE SYSTEM). If ρ
renames ordinary program variables to linear variables and Γ ⊢
e ↑ C (resp. Γ ⊢ e ↓ C) and ∆ � [ρ]e where [ρ]Γ = Γ ′;∆, then

[ρ]Γ ⊢ [ρ]e ↑L C (resp. [ρ]Γ ⊢ [ρ]e ↓L C).

PROOF. By induction on the typing derivation. Most of the
cases can be handled as follows: Restrict ρ to variables appearing
in subterms of e (if any). Apply the IH to all premises. Reason that
if ρ ′ is a restriction of ρ to a subterm e ′, then the result of applying
the IH—namely [ρ ′]Γ ⊢ [ρ ′]e ′ ↓L A—implies [ρ]Γ ⊢ [ρ]e ′ ↓L A.
Finally, reapply the original rule.

However, this fails for the rules that are absent or modified in the
left tridirectional system: (direct), (⊥E), (∨E), (ΣE). In each of
the cases for these rules, there are two subcases:

• If the subterm e ′ is not a variable renamed by ρ, then we ap-
ply the IH to the premise typing e ′, make a new linear vari-
able x, apply the IH to the contextual premises as needed, ap-
ply the corresponding left rule (or do nothing in the (direct)
case) to show E[x] ↓L C, then apply (directL).

10



• If e ′ is a variable in dom(ρ), we apply the IH to all premises,
apply the corresponding left rule (or do nothing in the (direct)
case), then use Lemma 19.

5.3 Decidability of Typing

THEOREM 21. Γ ;∆ ⊢ e ↓L A is decidable.

PROOF. We impose an order < on two judgments J1 = Γ1;∆1 ⊢
e1 ↓↑ A1 and J2 = Γ2;∆2 ⊢ e2 ↓↑ A2. When ordering terms, we
consider linear variables to be smaller than any other terms; for ex-
ample, (x, e2) is smaller than (y, e2)). When ordering types (that
is, type expressions), we consider all index expressions to be of
equal size.

The order is defined as follows.

1. If e1 is smaller than e2 then J1 < J2. If e1 is the same size
as e2:

2. If the directions of the judgments differ, the synthesis judg-
ment is smaller than the checking judgment. If the directions
are the same:

3. If both judgments are checking judgments and A1 is smaller
than A2 then J1 < J2. If both judgments are synthesis
judgments, Γ1 = Γ2, ∆1 = ∆2, A1 is as small as, or smaller
than, some type in (Γ1;∆1), and A1 is larger than A2, then
J1 < J2. Otherwise:

4. If the number of times any of the type constructors ∨, Σ, ⊥,
∧, Π, ⊤ appear in ∆1 is less than the number of times they
appear in ∆2 then J1 < J2.

Now we show that for every rule, each premise is smaller than the
conclusion. For most premises, the first criterion alone makes the
premise smaller. The second criterion is for (sub). The third crite-
rion is needed for rules such as (ΠI) and (ΠE). Note that a synthe-
sis judgment whose type expression becomes larger is considered
smaller! Synthesis judgments eventually “bottom out” at rules like
(ctx-anno) and (∗E1), in which the term becomes smaller, or at
rules (var), (fixvar) or (var), where the type synthesized is taken
from Γ or ∆. Since all the type expressions in Γ and ∆ are finite,
there is no problem. The fourth criterion is for the left rules, where
the term, direction, and type do not change.

The second premise of (directL) is smaller than its conclusion
because we consider linear variables to be the smallest terms and
(directL) does not permit e ′ to be a linear variable.

5.4 Type Safety
If ·; · ⊢ e ↓L A in the left tridirectional system, from Theorem

18 we know · ⊢ e ↓ A. Then by Theorem 3, · ⊢ |e| : A in our type
assignment system [9]. That is, type erasure suffices to get a typ-
ing derivation in the type assignment system. It follows from [9]’s
Theorem 3, Type Preservation and Progress, that |e| either diverges
or evaluates to a value of type A.

6. RELATED WORK

Refinements, intersections, unions. The notion of datasort refine-
ment combined with intersection types was introduced by Freeman
and Pfenning [11]. They showed that full type inference was de-
cidable under the so-called refinement restriction by using tech-
niques from abstract interpretation. Interaction with effects in a
call-by-value language was first addressed conclusively by Davies
and Pfenning [7] who introduced the value restriction on intersec-
tion introduction, pointed out the unsoundness of distributivity, and
proposed a practical bidirectional checking algorithm.

Index refinements were proposed by Xi and Pfenning [28]. As
mentioned earlier, the necessary existential quantifier Σ led to dif-
ficulties [26] because elaboration must determine the scope of Σ,
which is not syntactically apparent in the source program. Xi ad-
dressed this by translating programs into a let-normal form before
checking index refinements, which is akin to typechecking the orig-
inal term in evaluation order. Because of the specific form of Xi’s
translation, our tridirectional system admits more programs, even
when restricted to just index refinements and quantifiers. Nonethe-
less, we conjecture that Xi’s idea of traversing the entire program
strictly in evaluation order is applicable in our significantly more
complex setting to eliminate the nondeterminism inherent in the
(directL) rule; we plan to pursue this in further research.

Intersection types [4] were first incorporated into a practical lan-
guage by Reynolds [19]. Pierce [17] gave examples of program-
ming with intersection and union types in a pure λ-calculus using
a typechecking mechanism that relied on syntactic markers. The
first systematic study of unions in a type assignment framework [2]
identified several issues, including the failure of type preservation
even for the pure λ-calculus when the union elimination rule is too
unrestricted. It also provided a framework for our more specialized
study of a call-by-value language with possible effects.

Some work on program analysis in compilation uses intersection
and union types to infer control flow properties [24, 15]. Because
of the goals of these systems for program analysis and control flow
information, the specific forms of intersection and union types are
quite different from ours. Soft typing systems designed for type in-
ference under dynamic typing [3] are somewhat similar, allowing
intersection, union, and even conditional types [1]. Again, due to
the different setting and goal, the technical realization differs sub-
stantially from our work.

Partial inference systems. Our system shares several properties
with Pierce and Turner’s local type inference [18]. Their language
has subtyping and impredicative polymorphism, making full type
inference undecidable. Their partial inference strategy is formu-
lated as a bidirectional system with synthesis and checking judg-
ments, in a style not too far removed from ours. However, in
order to handle parametric polymorphism without using nonlocal
methods such as unification, they infer type arguments to polymor-
phic functions, which seems to substantially complicate matters.
Hosoya and Pierce [12] further discuss this style, particularly its
effectiveness in achieving a reasonable number of annotations.

Our system does not yet have parametric polymorphism. Prior
research, either with (in [26]) or without (in [7]) a syntactic distinc-
tion between ordinary and property types, is not conclusive. How-
ever, the work on local type inference suggests that, at least, prefix
polymorphism in the style of ML should be amenable to a consis-
tent treatment with bidirectional rules.

Principal typings. A principal type of e is a type that represents all
types of e—in some particular context Γ . A principal typing [13]
of e is a pair (Γ, A) of a context and a type, such that (Γ, A) rep-
resents all pairs (Γ ′, A ′) such that Γ ′ ⊢ e : A ′. These defini-
tions depend on some idea of representation, which varies from
type system to type system, making comparisons between systems
difficult. Wells [25] improved the situation by introducing a gen-
eral notion of representation. Since full type inference seems in any
case unattainable, we have not investigated whether principal typ-
ings might exist for our language. However, the idea of assigning
a typing (rather than just a type) to a term appears in our system
in the form of contextual typing annotations, enabling us to solve
some otherwise very unpleasant problems regarding the scope of
quantified index variables.

11



7. CONCLUSION
In [9], we developed a type assignment system with a rich set of

property type constructors. That system is sound in a standard call-
by-value semantics, but is inherently undecidable. In this paper, by
taking a tridirectional version of the type assignment system, we
have obtained a rich yet decidable type system. Every program
well-typed under the type assignment system has an annotation
with contextual typings that checks under the tridirectional rules.
Contextual typing annotations should be useful in other settings,
such as systems of parametric polymorphism in which subtyping is
decidable.

In order to show decidability, and as a first important step to-
wards a practical implementation, we also presented a less nonde-
terministic left tridirectional system and proved it to be decidable
and sound and complete with respect to the tridirectional system.

We are in the process of formulating a let-normal version of the
left tridirectional system. Such a system would drastically reduce
the nondeterminism in (directL) by forcing the typechecker to tra-
verse subterms in evaluation order, while being sound and complete
with respect to the left tridirectional system.

Once this is done, we plan to develop a prototype implementa-
tion of the let-normal system that should help us answer questions
regarding the practicality of our design on realistic programs. The
main questions will be (1) if the required annotations are reasonable
in size, (2) if type checking is efficient enough for interesting pro-
gram properties, and (3) if the typing discipline is accurate enough
to track properties in complex programs. The preliminary experi-
ence with refinement types, including both datasort refinements [5]
and index refinements [28], gives reason for optimism, but more
research and experimentation is needed.

Acknowledgments. This work supported in part by the National
Science Foundation under grant CCR-0204248; the first author was
also supported in part by an NSF Graduate Research Fellowship.
We thank Jonathan Moody, Sungwoo Park, and the anonymous re-
viewers for their useful comments. We also thank Rowan Davies
for many fruitful discussions regarding the subject of this paper.

8. REFERENCES

[1] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman.
Soft typing with conditional types. In ACM Symp. Principles

of Programming Languages, pages 163–173, 1994.

[2] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo
de’Liguoro. Intersection and union types: syntax and
semantics. Inf. and Comp., 119:202–230, 1995.

[3] R. Cartwright and M. Fagan. Soft typing. In SIGPLAN Conf.

Programming Language Design and Impl. (PLDI),
volume 26, pages 278–292, 1991.

[4] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri.
Functional characters of solvable terms. Zeitschrift f. math.

Logik und Grundlagen d. Math., 27:45–58, 1981.

[5] Rowan Davies. A practical refinement-type checker for
Standard ML. In Algebraic Methodology and Software Tech.

(AMAST’97), pages 565–566. Springer LNCS 1349, 1997.

[6] Rowan Davies. Practical refinement-type checking. PhD
thesis proposal, Carnegie Mellon University, 1997.

[7] Rowan Davies and Frank Pfenning. Intersection types and
computational effects. In Int’l Conf. Functional

Programming (ICFP ’00), pages 198–208, 2000.

[8] Jana Dunfield. Combining two forms of type refinements.
Technical Report CMU-CS-02-182, Carnegie Mellon
University, September 2002.

[9] Jana Dunfield and Frank Pfenning. Type assignment for
intersections and unions in call-by-value languages. In
Found. Software Science and Computational Structures

(FOSSACS ’03), pages 250–266, Warsaw, Poland, April
2003. Springer LNCS 2620.

[10] Tim Freeman. Refinement types for ML. PhD thesis,
Carnegie Mellon University, 1994. CMU-CS-94-110.

[11] Tim Freeman and Frank Pfenning. Refinement types for ML.
In SIGPLAN Conf. Programming Language Design and

Impl. (PLDI), volume 26, pages 268–277. ACM Press, 1991.

[12] Haruo Hosoya and Benjamin C. Pierce. How good is local
type inference? Technical Report MS-CIS-99-17, University
of Pennsylvania, June 1999.

[13] Trevor Jim. What are principal typings and what are they
good for? Technical memorandum MIT/LCS/TM-532, MIT,
November 1995.

[14] Yitzhak Mandelbaum, David Walker, and Robert Harper. An
effective theory of type refinements. Technical Report
TR-656-02, Princeton, December 2002.

[15] Jens Palsberg and Christina Pavlopoulou. From polyvariant
flow information to intersection and union types. J. Func.

Prog., 11(3):263–317, 2001.

[16] Benjamin C. Pierce. Programming with intersection types

and bounded polymorphism. PhD thesis, Carnegie Mellon
University, 1991. Technical Report CMU-CS-91-205.

[17] Benjamin C. Pierce. Programming with intersection types,
union types, and polymorphism. Technical Report
CMU-CS-91-106, Carnegie Mellon University, 1991.

[18] Benjamin C. Pierce and David N. Turner. Local type
inference. In ACM Symp. Principles of Programming

Languages, pages 252–265, 1998. Full version in ACM

Trans. Prog. Lang. Sys., 22(1):1–44, 2000.

[19] John C. Reynolds. Design of the programming language
Forsythe. Technical Report CMU-CS-96-146, Carnegie
Mellon University, 1996.

[20] Fred Smith, David Walker, and Greg Morrisett. Alias types.
In European Symp. on Programming (ESOP’00), pages
366–381, Berlin, Germany, March 2000.

[21] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect
discipline. Inf. and Comp., 111(2):245–296, 1994.

[22] Mads Tofte and Jean-Pierre Talpin. Region-based memory
management. Inf. and Comp., 132(2):109–176, 1997.

[23] J. B. Wells and Christian Haack. Branching types. In
European Symp. on Programming (ESOP’02), pages
115–132, 2002.

[24] J.B. Wells, Allyn Dimock, Robert Muller, and Franklyn
Turbak. A calculus with polymorphic and polyvariant flow
types. J. Func. Prog., 12(3):183–317, May 2002.

[25] Joe Wells. The essence of principal typings. In Int’l Coll.

Automata, Languages, and Programming, volume 2380 of
LNCS, pages 913–925. Springer, 2002.

[26] Hongwei Xi. Dependent types in practical programming.
PhD thesis, Carnegie Mellon University, 1998.

[27] Hongwei Xi. Dependently typed data structures. Revision
superseding WAAAPL ’99, February 2000.

[28] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. In ACM Symp. Principles of

Programming Languages, pages 214–227, 1999.

12


